
Rapid and Efficient Detection of Distributed

Anomalous Aggregates

Ankur Jain & David Wetherall

Computer Science and Engineering

University of Washington Seattle

{ankur,djw}@cs.washington.edu

Abstract

We consider the problem of how to monitor the behav-

ior of a large-scale distributed system to quickly and effi-

ciently determine when any of its aggregate traffic flows

exceeds a fixed rate-limit. Existing algorithms such as

periodic distributed queries are either expensive or slow

to detect violations. We present the design and evalua-

tion of CoCop, a family of new, lighweight mechanisms

that tie the computation of an aggregate value to the ac-

tivity level of the aggregate in the system. We analyze

CoCop and evaluate it with trace-driven simulations us-

ing PlanetLab flow data. We find that it can detect ag-

gregate anomalies quickly and with orders of magnitude

lower communication overhead than periodic queries in

the common case of normal system behavior. Moreover,

CoCop is difficult for an adversary to undermine because

its efficiency is not strongly tied to the distribution of the

aggregate across the system.

1 Introduction

As more open, distributed systems such as PlanetLab are

deployed, there is a greater need for mechanisms that

monitor the overall health of systems. We give three mo-

tivating examples that require the aggregate behavior of

a distributed system to be checked for anomalies. First,

Internet measurement experiments are now routinely run

across hundreds of Scriptroute [33] servers that probe the

Internet. Scriptroute aims to ensure that the servers do

not collectively overwhelm any of the IP addresses that

they probe, even when multiple experiments run con-

currently. Second, public DHT storage systems such as

OpenDHT [17] share soft-storage across a wide pool of

users and machines. To prevent misuse or abuse, the sys-

tem may wish to limit allocations to a user if the stor-

age that is charged to their IP address exceeds a specified

proportion of the total storage. Third, a distributed IDS

may use correlated activity at different locations, exhib-

ited when many nodes experience a small rate of a spe-

cific event, to detect Internet worms and viruses.

These aggregate anomalies are important events that need

to be detected and corrected, or the system may later be

halted and require administrative action, e.g., consider

the consequences of a DDoS attack launched via Plan-

etLab. Unfortunately, while monitoring individual nodes

is straightforward, monitoring the aggregate activity of

a distributed system can be expensive. This is because

all of the individual nodes must exchange information

about their state with other nodes to compute the aggre-

gate; the most active tasks at any node will not necessar-

ily correspond to the most active tasks across the system.

One straightforward possibility is to periodically query

each node and have it send a summary of its activity

to a central location, where the aggregate is then com-

puted. These periodic operations require sending n such

summaries for a system of size n. Tolerable overhead

thus requires a trade-off against collection frequency, so

that this method may be slow to detect anomalies instead

of expensive. Moreover, the communication cost is in-

curred whether or not there is anomalous activity, which

is wasteful in the common case of normal behavior.

In this paper, we study the problem of rapid and efficient

detection of anomalously large aggregates in a distributed

system. Our work is geared to produce new mechanisms

that can operate to check large aggregates in demanding

settings where periodic queries are not sufficient. Such

mechanisms would enable new styles of monitoring for

distributed systems. Very efficient mechanisms would al-

low detailed monitoring that covers many kinds of flow

aggregates at the same time and at different timescales

(e.g., ports and types of TCP packets, IP addresses and

/24 prefixes). Very rapid detection would allow sys-

tems to provide more open access, since problems can

be halted with a “runtime exception” before they cause

substantial damage.

We began to tackle this problem by studying the litera-

ture, since the general problem of finding frequent items

1

UW CSE Technical Report UW-CSE-07-08-02

in streams is well-studied. To our surprise, we found few

results that were well-suited to our specific problem. Re-

cent work such as PIER [14] and Sophia [34] also con-

siders the monitoring of large-scale distributed systems.

However, at the core of these systems is an engine that

distributes queries to all nodes and aggregates the results.

This is well-suited to scenarios where the goal is to obtain

a snapshot (e.g., “how many nodes saw a TCP connection

at port 1434 in the last minute?”) or continually record

system state (e.g., to study traffic patterns). But in terms

of detecting anomalies it is analogous to periodic queries,

which we have argued are ill-suited to our task. The most

relevant other work is distributed “top-k” monitoring [3],

which comes from the database community. This work

increases the efficiency with which the k largest aggre-

gates may be tracked. However, from our point of view

it is potentially wasteful since it tracks the top aggregates

whether or not they are anomalous. Its efficiency further

depends on traffic patterns, which can be manipulated by

an adversary.

Our new approach makes the system wide collection of

data needed to compute aggregates proportional to the

level of system activity. As a result, there is little over-

head in the common case that there are no anomalies.

When there is an anomaly, it is likely to be detected,

with larger anomalies being detected more rapidly. We

put forth the idea of proportional triggers in a workshop

paper [15], suggested possible design strategies and dis-

cussed other design considerations. Here, we develop

one of those strategies in detail to design the “pull-based”

CoCop(global) and CoCop(scoped), and make an initial

stab at the other strategy to design the “push-based” Co-

Cop(push) - all three of which are systems that detect

anomalous aggregates. We further evaluate CoCop by

analysis and with a trace-driven simulation based on six

days of fine-grained PlanetLab flow data. We find it can

detect anomalies as quickly as the straightforward ap-

proach of periodic queries but with communication costs

that are orders of magnitude lower. Although the differ-

ent CoCop variants are probabilistic/approximate in na-

ture, they are highly accurate on our trace data and do not

miss significant anomalies, even if they are widely dis-

tributed. Moreover, the simple approach has the virtue of

being robust to changes in the makeup of system traffic.

The rest of this paper is organized as follows. We for-

mally define the problem we are tackling in Section 2,

and outline our approach in Section 3. We present the de-

sign of our pull-based systems in Section 4. We then eval-

uate these pull-based systems to better understand their

properties, using analysis (Section 5) and trace-driven

simulation (Section 6). In Section 7, we explore push-

based mechanisms and present the design, analysis and

simulation results of our push-based system. We discuss

the major points to take away in Section 8, contrast our

approach with related work in Section 9, and conclude in

Section 10.

2 Problem and Goals

In this section, we formally define the problem we study

and goals for the design of our solution.

2.1 Problem Definition

We use a motivating problem instance for ease of exposi-

tion: the hypothetical use of PlanetLab to launch DDOS

attacks. PlanetLab represents a large pool of widely ac-

cessible and well-placed nodes that could collectively be

used to attack a target by simply having each node send

traffic towards the target. This could occur either inten-

tionally or due to an experiment gone awry. If 1000 nodes

send at the low rate of 10Kbps then home users would be

overwhelmed; if the nodes send at commonly observed

rates of 1Mbps then even a highly provisioned target

may be overwhelmed. Any of these situations would be

highly detrimental, and we want to be able to detect them

rapidly, should they occur, so that the traffic can be halted.

Note that PlanetLab currently imposes rate-limits at indi-

vidual nodes on the amount of traffic that can be sent to

any destination to mitigate bandwidth overuse and abuse.

But this mechanism will not catch aggregate problems,

and there is no available mechanism that will.

This scenario captures the core design problem, though

we note that the problem we study is more generally ap-

plicable, e.g., to incoming traffic and events other than

traffic. More formally, let n be the number of nodes in

the system, and let a flow be a collection of packets across

all nodes in the system that share some common charac-

teristic. This may range from IP addresses and TCP/UDP

ports to more subtle properties such as the links along the

path the packets take through the network. In our Plan-

etLab scenario a flow is defined by the destination IP ad-

dress. Let bx
i (t) be a function of time that gives the bytes

sent to flow x (which has destination ipx in our exam-

ple) by node i at time t. That is, bx
i (t) is the contribution

of node i to flow x, having non-zero values only at the

times at which the node sends a packet that belongs to the

flow. Finally, let the threshold at which a flow becomes

anomalous be N bytes in T seconds. Intuitively this is a

threshold to catch a flow that sends at a rate greater than

N/T , but we express this using an interval so that the rate

is well defined.

Our goal is to find system-wide flows that are anomalous

aggregates because they have sent more quickly than the

2

UW CSE Technical Report UW-CSE-07-08-02

threshold. That is, our problem is to solve the following

“sliding window” test:

∃ x, y s.t.
n

∑

i=1

t=y
∑

t=y−T

bx
i (t) > N (1)

A solution to this equation means that flow x is an anoma-

lous aggregate at time y. Note that other temporal weight-

ings may also be natural in some settings, e.g., exponen-

tial decay [24]. We do not explore this further in this

paper.

2.2 Solution Goals

An ideal distributed detector would possess several prop-

erties. These serve as design goals for our solution: effi-

ciency, scalability, timeliness, accuracy and robustness.

The primary goal for our design is that it be efficient. This

can have different meanings, but our emphasis is on com-

munication costs rather than computation and storage at

a node, which we assume are adequate to the task. We

would like the communication costs to be low in the com-

mon case that there is no anomaly.

We also seek a design that scales, in the sense of preserv-

ing efficiency as the system grows, both in terms of the

number of nodes and flows that are being monitored. At

a minimum, our solution must be efficient at moderate

scales of hundreds of nodes, such as the current Planet-

Lab deployment. Ideally, beyond this scale, we want the

communication costs to increase proportional to the ac-

tivity of the system, since this seems a plausible lower

bound on the required work.

Our timeliness goal is that our design quickly detect ag-

gregate anomalies, despite tradeoffs made to attain the

goals of efficiency and scalability. Moreover, it should be

accurate such that it is not possible for persistent aggre-

gate anomalies to escape detection.

Finally, we want our design to be robust in the sense that

its accuracy in the case that there are anomalies cannot

be undermined by controlling the pattern of traffic. This

is because we may be dealing with adversaries who will

seek to evade detection. Similarly, we do not want ad-

versaries to be able to greatly affect the efficiency of the

design in the case that there are no anomalies.

3 Approach

To check if an aggregate is anomalous, the data needed to

calculate the aggregate must come together at the same

place at the same time. In a pull-based mechanism, a

node requests (“pulls”) readings from all the participants

at once. Whereas in a push-based mechanism, each node

sends(“pushes”) data toward the accumulating node au-

tonomously. In this paper, we have designed, analyzed

and evaluated both kinds of mechanisms, albeit the for-

mer in more detail than the latter. Sections 4-6 present

the design and evaluation using analysis and trace-driven

simulations of our pull-based mechanisms, while Section

7 does the same for a push-based mechanism. However,

both kind of mechanisms are based on what we call the

“proportional approach”, where the system-wide collec-

tion of data needed to compute the aggregate of a flow

is proportional to the level of aggregate activity of the

flow. In the pull-based mechanism, this approach is real-

ized using probabilistic triggers which we now discuss in

more detail. The push-based mechanism uses determin-

istic triggers which we elaborate in Section 7.

3.1 Probabilistic Triggers

In contrast to our approach of collecting data propor-

tional to the level of aggregate activity of the flow, pe-

riodic queries collect system-wide data whether or not

the aggregate is likely to be large. There is still an ap-

parent “catch-22” in our approach, however, since we do

not know the level of aggregate activity before collecting

system-wide data, so it would seem difficult to make col-

lection proportional to this activity. This is not so. Each

node can act independently to trigger a system-wide col-

lection with a probability that depends on its local ac-

tivity. The overall behavior will then be the sum of the

actions of individual nodes, which will be related to the

system-wide activity in an expected sense. By suitably

adjusting the probabilities (as given in the next section)

we can arrange for computation of the aggregate to be

expected to occur if there is an anomaly.

In the sections that follow, we will show that simple, in-

dependent triggers have three desirable properties. First,

not only is computation of the aggregate expected to oc-

cur if it is anomalous, but it is increasingly less likely

to occur if the aggregate is increasingly small. By def-

inition, most flows will be significantly smaller than the

anomaly threshold, and in real systems there are typically

many small flows (as we see in PlanetLab traces). This

means that collection is unlikely for most flows, which

lends our approach efficiency. It also implies scalability,

since the communication cost of collection is tied to sys-

tem activity.

Second, larger aggregate anomalies are more likely to be

detected, since the chance of a collection increases with

the value of the aggregate. It is precisely these signif-

icant anomalies that we most wish to detect; an aggre-

gate that is anomalous by definition because it is just over

the threshold is little different in practice than an aggre-

3

UW CSE Technical Report UW-CSE-07-08-02

gate that is not anomalous because it is just under the

threshold. Moreover, this probabilistic form of detection

seems suited to our problem, whereas in other settings the

lack of a guarantee may be unacceptable. The chance of

detection is independent for each period that is checked

for anomalies. Thus, a persistent anomaly will soon be

caught, and as before it is precisely these anomalies that

we most wish to detect; an aggregate that briefly exceed

the threshold then ceases to do so does not require correc-

tive action. To capture these factors, we define the excess

of an anomalous aggregate to be the traffic it sends be-

fore its detection that is beyond the permitted threshold.

To be accurate, our design aims to minimize excess rather

than the time to detection. This weights the time to detect

larger anomalies more heavily than smaller ones.

Finally, the collection behavior depends on the overall

level of activity of a flow, rather than its distribution

across individual nodes. This means that widely dis-

tributed anomalies are as likely to be caught as concen-

trated ones. It contributes to robustness since an adver-

sary cannot manipulate traffic in the system to lower their

chance of detection.

4 Design of Pull-based CoCop

In this section we sketch the design of pull-based CoCop.

We begin with the core algorithm and then describe the

system that is built around it.

4.1 Algorithm

We define two variants of the algorithm, Global and

Scoped, that we study. In both, nodes independently run

trigger logic to decide whether to compute and check the

aggregate. They differ in how they query to check the

aggregate. We describe the trigger logic and then each

variant in turn.

4.1.1 Trigger Logic

Recall that our problem definition seeks to determine

when a system-wide flow x sends more than N bytes in T
seconds. For convenience, let C = N/T be the anomaly

threshold rate, which is well-defined for periods greater

than T . Let our trigger interval, τ seconds, be a multiple

of T seconds.

In our trigger logic, each node monitors its outgoing traf-

fic. Periodically, at time t that is a multiple of the trigger

interval of τ seconds, each node i computes the average

rate of traffic f it has sent to each flow x in the past τ
seconds:

fx
i (t) =

1

τ
·

t′=t
∑

t′=t−τ

bx
i (t′) (2)

Each node then compares its contribution to the flow, fx
i

(we drop t for brevity), with the system-wide threshold

C . The node uses the fraction of contribution as a proba-

bility to determine whether it will trigger:

px
i =

0 if fx
i < C · ε

fx

i

C if C · ε ≤ fx
i ≤ C

1 if fx
i > C

(3)

The lower cut-off at (C · ε) is motivated by the observa-

tion that if each node is contributing less than C/n then

the aggregate across n nodes must be less than C . That is,

we preferentially avoid triggering given extremely small

local contributions. The use of ε instead of 1/n is to con-

trol the transition between these regions. While this cut-

off is low, we will nevertheless see that it is valuable in

Section 6 when dealing with real measurements because

of the highly skewed nature of flows, in particular with

very many tiny flows.

4.1.2 Global Queries

In CoCop(global), once a node triggers for flow x, it is-

sues a global query to ask all the other nodes, j, for their

local rates fx
j for the suspect flow. With the responses,

the triggering node can trivially compute the aggregate

for flow x, Fx, as the sum of all the individual contri-

butions to destination x, fx
i . It then checks whether the

aggregate exceeds C . If so, the node alarms and begins to

apply its enforcement function (which is a system policy,

discussed in the next section).

With this algorithm, if even a single node triggers, then

the global query will be run and the aggregate will be

computed. The calculation of the trigger is such that one

trigger is expected if the aggregate is anomalous. There

is also the issue of suppression of multiple simultaneous

triggers. These should be combined into a single global

query operation. To do so in a fully distributed manner,

we borrow from SRM [10]: nodes wait a short random-

ized interval between the time they trigger and the time

they issue a global query, and they defer if they hear an-

other node has issued a query for their flow. In this man-

ner it is likely that only one global query will be issued.

4.1.3 Scoped Queries

The expensive operation in CoCop(global) is the global

query. CoCop(scoped) aims to reduce the number of

global queries based on the intuition that queries across

smaller numbers of nodes can be used to gain confidence

in whether there is likely a system-wide problem. Of

4

UW CSE Technical Report UW-CSE-07-08-02

course, a node can never be sure that is no anomaly with-

out computing the overall aggregate, so we are trading

reduced communication overhead for an increased risk

of missing an anomaly.

In CoCop(scoped), a triggering node asks a random sub-

set of the system for their contributions. The size of this

subset is related to its fraction of the aggregate thresh-

old. If the sum of these contributions is greater than their

fair share of C (with each node entitled to C/n) then this

process repeats and asks an ever larger subset of the sys-

tem. This continues until either the global aggregate has

been checked and found to be anomalous, or the scoped

query terminates early when it falls below its fair share.

To keep the number of iterations low, we round the size of

the subset up to the nearest power of two. In this manner,

there can be no more than log n steps for n nodes.

More formally, a node i that triggers starts with a view

V0 = {i} of only its contribution which observes the

global aggregate as GV0

i =
∑

j∈V0
fj . This observa-

tion of the global aggregate is above its fair share if

GV0

i > |V0|·C
n . In this case, the node extends its view

to 2dlog
n·G

V0

i

C
e nodes, a set large enough that it may be

below the fair share in aggregate. We refer to this view as

V1. Once the node hears from the nodes in V1, it calcu-

lates GV1

i =
∑

j∈V1
fj . Again, it checks to see if this is

over the fair share, i.e., if GV1

i >
|V1|·C

n . If so, the node

extends its view further to 2dlog
n·G

V1

i

C
e nodes that consti-

tute V2. This process continues until either the aggregate

check completes or is halted.

Observe that in the case of a detected anomaly this pro-

cess makes a global query that is spread over time. How-

ever, small aggregate values are increasingly likely to ter-

minate early, saving the work involved in a global query.

Also, note that the suppression of multiple simultaneous

triggers is not included in CoCop(scoped) because each

node grows its own set of nodes. Instead, it should be pos-

sible to merge global queries that collide, if they prove

problematic. Finally, this variant implicitly contains an

ε-cutoff of 1/n, since the scoped query will not proceed

unless the node is greater than its fair share.

4.2 System Components

Figure 1 shows the architecture of pull-based CoCop run-

ning on each node. There are four main components:

• Monitor: All packets leaving the node pass through

the monitor. It logs the bytes sent to each flow.

• Summarizer: The summarizer reads the logs pro-

duced by the monitor, produces an activity summary,

and runs the trigger logic described in Section 4.1 to

 trigger

MONITOR
+

ENFORCER

O
u

tg
o

in
g

 p
a

c
k
e

ts

COLLECTOR

SUMMARIZER

To/from COLLECTOR

of other nodes

summary

Figure 1: Components of pull-based CoCop at each node

decide whether to issue a query for the aggregate. It

runs every trigger interval of τ seconds.

• Collector: This component handles inter-node com-

munication. It acts as both a server and client,

spawning an aggregation query when requested by

the summarizer. As part of this query it sends re-

quests to other nodes for a particular flow, collects

the responses, and uses them to determine if the ag-

gregate is over the threshold.

• Enforcer: This component is notified when an

anomalous aggregate is found by the collector. The

action it takes is a system policy. We describe some

possibilities shortly.

4.3 System Communication

CoCop needs two communication mechanisms to imple-

ment the components described above. Both mechanisms

solve well-known problems, and so we do not innovate

but instead borrow existing solutions.

First, the collector must send a request to all other nodes

in the system. Simple one-to-one strategies scale up to

on the order of hundreds of nodes (and were workable

in our PlanetLab experiments). Beyond this, distribution

trees with better scaling properties are needed, such as

any multicast scheme. Additionally, in-network aggre-

gation is needed in the reverse direction to combine re-

sponses from individual nodes.

Second, nodes in pull-based CoCop require knowledge

of the other nodes that are participating in the system.

That is, the nodes should run a membership protocol.

This information is used in two ways: to send queries

to other nodes; and for knowledge of the system size to

estimate the fair share (of C/n). We do not expect this

to particularly demanding because approximate member-

ship should be sufficient.

5

UW CSE Technical Report UW-CSE-07-08-02

4.4 Enforcement Policies

Our focus is on detecting anomalous aggregates, but once

an anomaly is found then something must be done. One

possibility is to halt the anomalous flow until an admin-

istrator allows it to continue. This may be reasonable

when anomalies are clearly dangerous, e.g., a malicious

attack. But it is likely to be too severe a response when

the anomaly is a temporary excess of resource usage. In

this case, we would like to cap the aggregate resource

usage to provide a result closer to a distributed form of

rate-limiting.

To do so, we may limit each node to the fraction of its

current usage that sums across all nodes to the thresh-

old minus a penalty. This is slightly more complicated

than limiting each node to its fair share, but better han-

dles nodes with uneven contributions (as long as the level

of contribution of a node does not change greatly).

A final consideration is the period for which the limit is

enforced. As before, we would rather use an automated

mechanism than have the system frozen until an admin-

istrator intervenes. To do so, we can use exponential

backoff. That is, we double the punishment period for

an anomalous flow with each subsequent violation that

is not preceded by a sufficiently long period of good be-

havior. This scheme has the desirable property that even

persistent anomalies cannot send a large amount of traffic

above the threshold.

5 Analysis of Pull-based CoCop

In this section we theoretically analyze pull-based Co-

Cop. We begin by formally defining communication

overhead and average excess traffic as our metrics of con-

cern. We then analyze our algorithms in terms of these

metrics. In particular, we find the expected communica-

tion overhead over a trigger interval, and the worst-case

excess traffic for an anomalous aggregate. Later in Sec-

tion 6, we will corroborate our bounds with simulation

results.

The two metrics that we use to assess our algorithms are:

Communication Overhead: This is the wide-area com-

munication (in bits per second) that is exchanged between

the participating nodes to find the aggregate flow values,

send alarms upon detecting anomalies, etc.

Average Excess Traffic: Excess Traffic is the volume of

traffic (in bytes) beyond that allowed by the threshold that

the anomaly sends before it is detected. Thus, excess

traffic for an anomaly captures the “cost” of not having

caught it in a timely manner. Average excess traffic is

the average of excess traffic over all anomalies. Let t be

the time required to detect an anomalous aggregate flow

transmitting at a rate above the set threshold, C (in bits

per second); and let F x be the average rate (in bits per

second) of that anomaly over the period until it is caught.

Then, its excess traffic is (F x − C) · t.

5.1 Analysis - CoCop(global)

To simplify the analysis, ignore the ε-cutoff, i.e., in equa-

tion (3), assume px
i =

fx

i

C even when fx
i < C · ε.

Consider a flow x and let the aggregate traffic on it,
∑

i fx
i , be F x. At the end of a trigger interval, in an

expected sense,
∑

i px
i =

∑

i fx
i /C = F x/C nodes will

initiate a global query for flow x.

Thus, in the common case that the aggregate traffic for a

flow is much below the threshold C , it is unlikely that

a global query will be issued for that flow. However,

when there is an anomaly, i.e., F x > C , atleast one node

is expected to trigger a global query. Multiple queries

are avoided by suppression. Each aggregation requires

n to-and-fro messages. Thus, assuming that suppression

works perfectly, the total expected communication over-

head of the system is 2 · n ·
∑

x max(F x/C, 1) · 64
τ

. The

factor of 64/τ is to account for size of query request and

reply being 8 bytes and to convert units from messages

per trigger interval τ , to bps. We then have:

(overhead) = 2n · max(F/C, #(flows)) ·
64

τ
(4)

This is proportional to the total activity level in the sys-

tem, F (=
∑

x F x). Only in the worst case that all flows

in the system are anomalous does this overhead approach

that of global querying (with the same period as the trig-

ger interval).

To calculate the excess traffic, consider an anomalous

flow x. Observe that since nodes are independent, the

probability that no node triggers aggregation at the end

of a trigger interval is
∏

i (1 − px
i); and similarly until

the end of (k − 1) intervals, is
∏

i (1 − px
i)

(k−1)
. The

probability, Pkτ that some node triggers for the first time

in the kth trigger interval is the probability no node has

triggered a query until (k − 1)th multiplied by the prob-

ability that atleast one node does so in the kth, i.e.

Pkτ = [
∏

i

(1 − px
i)

(k−1)
] · [1−

∏

i

(1 − px
i)]

This gives the expected time after which some node trig-

gers a global query:

∞
∑

k=1

kτ · Pkτ = τ/(1 −
∏

i

(1 − px
i)) (5)

6

UW CSE Technical Report UW-CSE-07-08-02

Now, since x is an anomaly,
∑

i px
i (= F x/C) ≥ 1.

Given this,
∏

i (1 − px
i) takes its maximum value when

∀i, px = 1/n; and (1 − 1/n)n can be shown to have

an upper bound of e−1. Thus, even in the worst case,

which corresponds to the situation when all nodes send

just above their fair share, the expected excess traffic,

which is (1/8) · (F x − C) ·
∑∞

k=1 kτ · Pkτ is bounded

from above by:

(excess traffic) =
(F x − C)τ

1 − e−1
·
1

8
(6)

The factor of 8 in the denominator is to convert units from

bits to bytes. Note that the worst case bound depends

only on the F x and not on individual fx
i ’s. Thus an ad-

versary can not fool the system by spatially varying the

nodes which contribute to the aggregate. Also, the entire

triggering logic is based only on observations over the

last epoch, which makes it less amenable to attacks that

exploit temporal variations.

Qualitatively, the ε-cutoff significantly cuts down the

communication cost because of skew towards very small

flows in real systems, but increases excess traffic because

of potentially longer time-to-detection. Since, the over-

heads only reduce by introducing the ε-cutoff, the actual

overhead of CoCop(global) is bounded by equation (4).

Let us study the effect of excess traffic more closely. Out

of F x, let F ′x be the contribution of nodes which are

above ε-cutoff. Then, the time to detection for traffic F x

with ε-cutoff is no more than the time-to-detection for

traffic F ′x without ε-cutoff. The latter, call it T ′, can be

calculated using equation (5). The excess with cutoff is

then bounded by 1
8 (F x − C) · T ′.

5.2 Analysis - CoCop(scoped)

As before, consider a flow x and let the aggregate traffic

sent on it,
∑

i fx
i , be F x. At the end of each trigger inter-

val, in an expected sense,
∑

i px
i =

∑

i fx
i /C = F x/C

nodes will initiate a scoped query for flow x. The node

initiating a scoped query will in the worst case (for over-

head) ask all the non-zero contributors to the aggregate

and thereby end up asking 2logdn·Fx/Ce of the nodes.

The expected overhead for a particular flow is the prod-

uct of the probability that a node will initiate a scoped

query and the number of nodes that may be asked for the

scoped query of that flow; and therefore is bounded by

2 · (F x/C) · 2logdn·Fx/Ce · 64
τ

. Hence, the total overhead

of the system is bounded by:

(overhead) ≤ 2 ·
64

τ
·
∑

x

(F x/C) · 2logdn·Fx/Ce

≤ 4n ·
64

τ
·
∑

x

(F x/C)2 (7)

where the expression on the right-hand side is a weak up-

per bound of the left-hand side. Note that in the common

case that F x < C , the overhead is even lower than that

of CoCop(global). The overhead is more when the aggre-

gate is above the threshold, but since that, by definition,

happens very infrequently, the average overhead remains

much lower.

To calculate the excess traffic, let us again consider an

anomalous flow x. In CoCop(global), if a node initiates a

query, it learns whether there is an anomaly or not since

it asks all the other nodes for their contributions. How-

ever, in CoCop(scoped), the initiator might choose nodes

which are not sending any traffic though there might still

be other other nodes which are sending a large amount of

traffic. Given that node i initiates a scoped query for flow

x, let qx
i be the probability that a node ends up asking all

other nodes (and therefore detects the anomaly). Then,

using an argument similar to the above, the expected ex-

cess traffic is:

(excess traffic) ≤
(F x − C)τ

1 −
∏

i (1 − px
i · qx

i)
·
1

8
(8)

However, calculating a precise closed-form expression

for qx
i turns out to be difficult. Using Chebyshev’s bounds

to bound the probability, still does not give a closed-form

expression (and Chernoff bounds give a very loose bound

in this setting). So, in order to analyze this expression, we

consider a very simplified model where (F x/C)k nodes

are at C/k each and the rest are at zero. This gives us a

lower bound of 1/k for qx
i (see appendix); and hence an

upper bound of 1
8 · (F

x−C)τ/(1−e−1/k) for the excess

traffic.

Since (F x/C)k ≤ n, therefore k < n and so, for a

given n, this expression can be shown to be bounded

from above. Thus under the simplified model, the ex-

cess traffic for for CoCop(scoped) is bound - though this

bound is much weaker than the tight bound we gave for

CoCop(global).

As in CoCop(global), the logic depends only on the ob-

servations over the last epoch. Therefore, it too is re-

sistant to temporal exploits. It is more difficult to argue

that it is resistant to spatial variations without a generic

closed form expression; but intuitively, since the set of

nodes asked at a step is chosen randomly, that should be

the case.

7

UW CSE Technical Report UW-CSE-07-08-02

Introducing the ε-cutoff has does not change the results

because if the local contribution of flow x at node i, fx
i ,

is less than the ε-cutoff (and hence less than its fair-share

of the global threshold, because C · ε < C/n), then n
does not issue a query to any other node; and this is

exactly what happens by introducing the ε-cutoff too.

6 Simulation Results

In this section, we use traces of PlanetLab flow data to

evaluate the efficiency, timeliness and accuracy of pull-

based CoCop.

6.1 Data and Setup

We collected traces over a period of 6 days in January

2005 from 337 PlanetLab [1] nodes. These traces record,

at a 1-second granularity, the volume of traffic (in pack-

ets and bytes) that each node sends to each destination

address. The traces are generated using a module built on

top of ulogd [2] which allows userspace packet-logging

via the ULOG target in iptables/netfiler.

To use these traces to test our algorithms, we must define

what we mean by flow and specify the anomaly thresh-

olds. We use destination IP address to define a flow. We

study the traces and pick a threshold (80 Mbps) that treats

a small fraction of the highest rate aggregates as anoma-

lous; a later subsection considers the effect of varying this

threshold. This seems a more demanding test than adding

synthetic anomalies to our traces. We further pick an ε-

cutoff of 0.1% of the threshold. This is roughly a third of

the node fair share given the size of the system.

6.2 Characterization of Aggregates

We begin by characterizing the aggregates in our trace

data along several dimensions. We observe how aggre-

gates vary across flows, and how they are distributed

across nodes and across time.

6.2.1 Variation Across Flows

In real networks, flows tend to be skewed, and this

skew impacts the effectiveness of different designs, e.g.,

caching. To test for this skew, we study the distribution

of the magnitude of aggregate flows at different points in

time (Figure 2). For each second traced in the dataset,

we calculate the total traffic for each flow from all the

nodes combined. There were nearly 2.1 million distinct

IP destinations to which one or more PlanetLab nodes

10^0

10^1

10^2

10^3

10^4

10^5

10^6

10^7

10^8

10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

N
u

m
b

e
r

o
f

F
lo

w
s
 I

n
s
ta

n
c
e

s

Aggregate Value (in bps)

Distribution of Aggregate Values

Figure 2: Distribution of Aggregate samples. The distri-

bution is skewed, with very many small samples and very

few large samples. Note the log-log scale.

Threshold #Aggregates #Samples

> 0 Mbps (Total) 2.1M 1067M

> 40 Mbps 135 13736

> 60 Mbps 66 1176

> 80 Mbps 42 547

> 100 Mbps 2 50

Table 1: Number of aggregates and aggregate samples

above different thresholds

sent traffic during our trace, which resulted in 1067 mil-

lion one-second aggregate flow samples. The graph plots

the distribution of these samples on a log-log scale.

We see that there are a very large number of flow sam-

ples for which only a small amount of aggregate traffic

is seen; this number falls quickly as the aggregate traffic

increases but spans more than five orders of magnitude.

That is, the distribution is highly skewed and there are

both very large and very small aggregates. To examine

the tail more closely, Table 1 lists the number of distinct

aggregate flows and the number of aggregate flow sam-

ples for different thresholds in the tail of the distribution.

From this tail we somewhat arbitrarily pick 80 Mbps as a

threshold, as it leaves a sufficient number of larger aggre-

gate samples for our experiments. We study the effect of

varying the threshold later in this section.

6.2.2 Spatial Spread of Aggregates

A property of specific interest to us is the spread of ag-

gregates across nodes, since our system finds widely dis-

tributed aggregates. To see this spatial spread, we take the

anomalous flows (the 42 flows that exceeded our thresh-

old of 80 Mbps during the trace) and plot them as CDFs

in Figure 3. Each CDF shows the fraction that each Plan-

etLab node contributes to an aggregate, ordered with the

8

UW CSE Technical Report UW-CSE-07-08-02

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

C
u
m

m
u
la

ti
v
e
 c

o
n
tr

ib
u
ti
o
n
 t
o
 A

g
g
re

g
a
te

 V
a
lu

e

number of sourcing nodes

Breakup of contributors to Aggregate

Figure 3: Cumulative composition of anomalous flow ag-

gregates by PlanetLab node. Most anomalies have only

one significant contributor and the curves for these over-

lap as a step function at n=1. The slanted curves are dis-

tributed anomalies.

largest contribution first for each aggregate. Thus a verti-

cal line over the y-axis is an anomaly made up of a single

node, while a 45o line is an anomaly spread evenly across

all nodes.

We observed a range of scenarios. In the majority of

cases, there are only one or two contributors. Some

aggregates were comprised of tens of contributors, and

a few were very widely distributed across hundreds of

nodes. Further, although the total aggregate for these

widely distributed flows was well above the threshold

(some exceed 100 Mbps), the highest value that an indi-

vidual node saw was low in many cases with one as little

as 470 Kbps. Thus, the traces contain flows that appear

benign when viewed from the perspective of individual

nodes but are anomalous in aggregate.

6.2.3 Temporal Spread of Aggregates

We are also interested in how the anomalies vary over

time, since relatively steady aggregates lend themselves

to history-based methods. To explore this, we plotted the

variation in the values of anomalous aggregate flows. All

of the aggregates show significant variation over the pe-

riod. Figure 4 shows the plots of four of the 42 anoma-

lies. We picked these plots to show a sample of behavior

as we could not discern a common trend: some were tran-

sient while others persisted over a long periods of time;

some anomalies greatly exceeded the threshold, others

were very close to it.

This temporal variance has two implications. First, the

existence of persistent anomalous aggregates suggest that

there indeed is a need for mechanisms that quickly detect

(and respond) to them. Second, making predictions about

future behavior of flows based on their history seems dif-

ficult, which again suggests that a monitoring mechanism

is useful.

6.3 Performance of Pull-based CoCop

We now use the PlanetLab traces to evaluate the effi-

ciency and timeliness with which pull-based CoCop can

detect anomalous aggregates. We use the metrics of com-

munication overhead and excess traffic defined in Sec-

tion 5. In the absence of any other system specifically

designed for this task, we compare our system with two

practices that lie at opposite extremes in terms of what

they try to achieve:

• Global Pull: Periodically, a central coordinator asks

all the nodes for the volume of traffic that they have

sent to each flow in the last period.

• Heavy-hitter: Each node runs a heavy-hitter algo-

rithm [13, 9](anyone will do) and sends information

to the coordinator only for the top flows it sees lo-

cally instead of all the local flows.

Global Pull ensures that if there is an aggregate that was

anomalous during an interval, then it will be detected at

the end of that interval. However, it incurs a large com-

munication overhead as a result of sending information

for all flows. Thus it trades overhead for bounded excess

traffic. Heavy-hitter algorithms reduce communication

costs significantly by only sending information about the

largest local flows. However, anomalous aggregates with

many contributors may then go undetected for an indefi-

nite period.

The choice of the trigger period, τ , plays an important

role in this balance. The smaller this time interval, the

greater the communication overhead, but the sooner the

anomaly will be caught. We study overhead and excess

first, then consider the effect of varying the trigger period.

Note that to better evaluate our detectors we run our sys-

tem without enforcement by forgetting an anomaly as

soon as it is found and searching it all over again. En-

forcement would simply reduce the effective size of our

dataset.

6.3.1 Communication Overhead

We begin by studying the communication overhead of the

system. Figure 5 compares the schemes by plotting the

log of communication overhead (in Kbps) for different

trigger intervals. The overhead for all mechanisms falls

as the trigger interval increases from one second to ten

9

UW CSE Technical Report UW-CSE-07-08-02

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6

A
g
g
re

g
a
te

 V
a
lu

e
 (

in
 M

B
)

Time (in Days)

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6

A
g
g
re

g
a
te

 V
a
lu

e
 (

in
 M

B
)

Time (in Days)

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6

A
g

g
re

g
a

te
 V

a
lu

e
 (

in
 M

B
)

Time (in Days)

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6

A
g

g
re

g
a

te
 V

a
lu

e
 (

in
 M

B
)

Time (in Days)

Figure 4: These figures show the temporal variation of four of the 42 aggregate flows that were anomalous at some

point during the trace. In general, no common temporal characteristic is observed amongst the anomalous flows.

10^-1

10^0

10^1

10^2

10^3

 1 2 3 4 5 6 7 8 9 10

O
v
e

rh
e

a
d

 (
in

 K
b

p
s
)

Trigger Interval (in seconds)

Global Pull
Heaviest-8

CoCop(global)
Heaviest-4
Heaviest-2
Heaviest-1

CoCop(scoped)

Figure 5: Communication Overhead. The overhead of

CoCop(global) is approximately the same as heaviest-

5 and about 10 times less than periodic pull. Co-

Cop(scoped) is almost an order of magnitude less than

reporting the heaviest flow.

seconds and beyond. The fall is close to inversely pro-

portional but not exactly so. This is because as trigger

interval falls from ten to one, the number of flows does

not decrease by a factor of 10, but falls somewhat more

slowly.

Among the different mechanisms, global pull incurs the

most overhead. The overhead of the heavy-hitter algo-

rithms depends on how many heavy-k flows the nodes

report, but even for k = 4, the overhead is nearly an

order of magnitude lower than periodic global pull. Co-

Cop(global) incurs about as much overhead as reporting

the heaviest 5-6 flows. Finally, CoCop(scoped) is almost

another order of magnitude more efficient than reporting

just the heaviest flow. Intuitively, this is because, Co-

Cop(scoped) does not necessarily initiate a query even

for the local heaviest flow, unless it is suspect.

The above results incorporate the ε-cutoff, where nodes

do not trigger for very low flow values. To study its ef-

fect, we also ran CoCop(global) the cutoff. We found

that removing the cut-off increased the overhead by al-

most 25%. This is because of the skew in the distribution

of aggregate values (Figure 2) which included many ex-

tremely small flows.

Finally, we found the experimental overhead to be in

good agreement with our analysis. The average F value

of the aggregates of all concurrent flows over the trace

was about 288 Mbps. This translates to 31 Kbps using

equation (4). The actual overhead for CoCop(global) is

somewhat lower at 24 Kbps. However, the difference be-

tween the two is very close to the 25% we observed from

the ε-cutoff, which the analysis of communication over-

head ignores.

Similarly, plugging in values from the traces in equa-

tion (7) gives an overhead of 0.92 Kbps which indeed

bounds the experimental overhead of 0.8 Kbps for Co-

Cop(scoped).

6.3.2 Accuracy

Due to their probabilistic nature, our algorithms are not

guaranteed to detect all the anomalous aggregates that pe-

riodic querying detect. We define the relative accuracy

of a mechanism to be that fraction of anomalies detected

by periodic querying, which is eventually detected by the

mechanism as well. Table 2 shows the relative accuracy

of different mechanisms with varying trigger intervals.

Trigger Interval 1s 2s 5s 10s

CoCop(global) 1.0000 0.9866 1.0000 0.9778

CoCop(scoped) 0.9961 0.9859 0.9744 0.9778

Heaviest-1 0.9940 0.9860 0.9744 0.9767

Heaviest-2 0.9963 0.9913 0.9881 1.0000

Heaviest-4 0.9982 1.0000 1.0000 1.0000

Table 2: Accuracy (relative to periodic querying) of

anomalies detected by different mechanisms

Both variants of CoCop are quite accurate. In all experi-

ments they detected more than 97% of the anomalies that

periodic querying did. Both were more accurate than re-

porting only the heaviest local flow. We were surprised,

however, that heaviest-2 and heaviest-4 had such high rel-

ative accuracy, since they may miss widely distributed

10

UW CSE Technical Report UW-CSE-07-08-02

aggregates. After investigating our data, we suspect that

they do well because the system is lightly loaded most of

the time. As the load grows, they are likely to resemble

heaviest-1.

Whereas anomalous aggregates are defined in terms of a

“sliding-window” test (see equation (1)), all the mecha-

nisms discussed till now use “hopping-window” seman-

tics, i.e., nodes do local computation at the end of each

successive, non-overlapping trigger interval. As a re-

sult, although the accuracy of CoCop and heaviest-k is

bounded above by that of periodic querying, there are

some “true” anomalies that are not detected even by peri-

odic querying. For example, consider an aggregate flow

sending at rate C which starts 0.2τ seconds after the last

trigger interval started and lasts till 0.2τ seconds after

that interval ended. This is an anomaly under the sliding-

window semantics, but is not detected by periodic query-

ing as the aggregate is less than the threshold C in both

the trigger intervals during which the aggregate was send-

ing traffic. We studied the occurences of such anoma-

lies in the traces that were not detected even by peri-

odic querying. Periodic querying showed an accuracy of

0.9957, 0.9883 and 0.8823 for trigger intervals of 2s, 5s,

and 10s respectively; where the (absolute) accuracy of

a mechanism is defined to be the fraction of anomalies

that it eventually detects. We could not find the accu-

racy corresponding to a trigger interval of 1s because the

traces were collected at a granularity of 1s and so instead

of running the sliding-window test with windows sliding

continuously, we could slide them only in discrete steps

of 1s each. The decreasing trend in the accuracies is ex-

plained by the fact that the larger the trigger interval, the

more the likelihood of having a “true” anomaly spread

across two consecutive intervals in such a manner that it

is anomalous in neither.

6.3.3 Excess Traffic

With significant savings on communication overhead and

having reasonable accuracy, one might expect that CoCop

will pay a large penalty in term of excess traffic. How-

ever, this is not the case. The average excess traffic sent

before detection of an anomalous aggregate is plotted in

Figure 6 as a function of the trigger interval.

Note that the larger the trigger interval, the longer the

minimum time before an anomaly can be detected, and

hence the larger the average excess traffic. This trend is

common across all mechanisms. Also, the curve corre-

sponding to global pull is a lower bound on the curves

for the other mechanisms. This is because, in global pull,

the coordinator has an system-wide view of all the flow

aggregates at the end of every trigger interval. Thus for a

given trigger interval, any anomaly is detected as soon as

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 E

x
c
e
s
s
 M

B
 o

v
e
r

th
e
 t
h
re

s
h
o
ld

Trigger Interval (in seconds)

Global Pull
CoCop(global)

CoCop(scoped)
Heaviest-1
Heaviest-2
Heaviest-4

Figure 6: Average Excess Traffic. The lowermost curve

is Periodic Pull, which is the best a mechanism can hope

to achieve. CoCop and heaviest-k are only very slightly

worse, though for different reasons.

it possibly could have been.

The graph shows that the average excess traffic of Co-

Cop (both with global and scoped queries) and the heavy-

hitter algorithms is only marginally greater than that of

global pull. As before, we suspect that the heavyhitter is

performing well because the system is lightly loaded.

The reason for CoCop’s good performance is different.

Because of its proportional approach, anomalies well

above the threshold are almost always detected at once.

It is typically only aggregates just above the threshold

that remain undetected for any period of time. The small

increase in the average excess traffic is due to these ag-

gregates.

We test the analytical bounds on excess traffic that we got

in Section 5. As compared to periodic querying, simula-

tions showed an increase by factor of 1.049 in the average

excess traffic for CoCop(global). This is much lower than

the tight analytical worst bound of 1/(1 − e−1) ≈ 1.58
(from equation (6)), because there were only a few widely

distributed anomalous aggregates in the traces, to which

the worst case corresponds to. CoCop(scoped), like Co-

Cop(global), also showed only a slight increase of factor

of 1.076.

6.3.4 Tradeoff and Ordering

The preceding results hint at the inherent trade-off be-

tween the communication overhead and the excess traf-

fic. As the trigger interval τ increases, the communica-

tion overhead falls but the excess traffic increases, and

vice versa. Figure 7 highlights this tradeoff by plotting

the (log of) communication overhead versus the excess

traffic for the different mechanisms.

11

UW CSE Technical Report UW-CSE-07-08-02

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12

O
v
e

rh
e

a
d

 (
in

 K
b

p
s
)

Average Excess Bytes over the Threshold (in MB)

Global Pull
Heaviest-8

CoCop(global)
Heaviest-4
Heaviest-1

CoCop(scoped)

Figure 7: Tradeoff between Average Excess Traffic

and Communication overhead for the different mecha-

nisms. The graph illustrates the win-win situation for Co-

Cop(scoped) over the rest.

This graph allows us to compare different schemes in

terms of both metrics at once: a point to the left and

lower of another point is superior to it since it has both

less overhead and a lower excess. The key result of this

graph is that there is a strict ordering of the mechanisms

we have studied. CoCop(scoped), our best mechanism, is

always to the left and lower than any other curve. This

implies that it can beat the operating point of any of the

above schemes (for our dataset at least, but we presume

more generally) by a suitable choice of operating point.

6.3.5 Scalability

Next, we evaluate how pull-based CoCop scales with sys-

tem size. Figure 8 plots the communication overhead

of CoCop as we vary the number of nodes from 30 to

337, keeping the threshold fixed. These simulations were

run for a trigger interval of 5 seconds. We also plot the

curve for global-pull; any periodic approach (global-pull,

heaviest-k) will scale linearly with size of the system.

The graph shows that CoCop always has less overhead

than global pull. Under scaling, in the worst case it de-

grades to global pull. We see that the increase in commu-

nication overhead of CoCop is greater than that of peri-

odic querying. This is expected given that we have fixed

the threshold, and is in good agreement with our analy-

sis. As we increase the size of the system, its activity will

also increase roughly linearly. With a constant thresh-

old, our analysis predicted that the communication over-

head of CoCop(global), (2·n·F/C), would grow roughly

quadratically. We observe the same underlying behavior

for CoCop(scoped). Conversely, by raising our threshold

with the size of the system, we would expect to improve

the scaling of CoCop(global). We consider this next.

10^-3

10^-2

10^-1

10^0

10^1

10^2

10^3

 100 1000

O
v
e

rh
e

a
d

 i
n

 K
b

p
s
 (

lo
g

 s
c
a

le
)

Number of nodes (log scale)

Global Pull
CoCop(global)

CoCop(scoped)

Figure 8: Variation of communication overhead with

number on nodes

6.3.6 Variation with Threshold

The performance of CoCop depends on the threshold that

is chosen. To study this, we plot the variation of both the

average excess traffic (left y-axis) and overhead (right y-

axis) as we vary the threshold in Figure 9. The curves

for the excess traffic of both CoCop(scoped) and Co-

Cop(global) were very close to each other and we plot

CoCop(scoped) only to avoid clutter.

Recall that our analysis predicted overhead that was

inversely proportional (linear in CoCop(global) and

quadratic in CoCop(scoped)) to the value of the thresh-

old C . This is what we see. It reflects our original design

that allowed CoCop to be effective at reducing overhead

in exchange for targeting anomalies that constitute only

a small fraction of the total number of aggregate flows.

As the threshold decreases and a larger fraction of the ag-

gregates are considered anomalous, the overhead of Co-

Cop increases. However, this increase is bounded – in the

worst case it will degrade to periodic querying.

Our analysis also predicts average excess traffic to be

proportional to the excess rate beyond the threshold,

(F x − C), and inversely proportional to the number of

anomalies. Both of these factors are affected by a change

in the threshold in opposite ways. The combined effect

is to cancel out both factors, and there is no discernible

trend in Figure 9.

7 A Push-based Mechanism

In the previous sections we saw the design and evalua-

tion of two pull-based mechanisms to detect anomalies.

Once a node triggers for a flow, it issues a query request-

ing (“pulling”) readings from all the other nodes at once.

An alternative to this kind of synchronous pull is to have

12

UW CSE Technical Report UW-CSE-07-08-02

 0

 5

 10

 15

 20

 25

 30

 0 20000 40000 60000 80000 100000
10^-5

10^-4

10^-3

10^-2

10^-1

10^0

10^1

10^2

10^3

A
v
e

ra
g

e
 E

x
c
e

s
s
 M

B
 o

v
e

r
th

e
 t

h
re

s
h

o
ld

C
o
m

m
u
n
ic

a
ti
o
n
 O

v
e
rh

e
a
d
 (

in
 K

b
p
s
)

-
lo

g
s
c
a
le

Threshold (in Kbps)

Overhead - CoCop(global)
Overhead - CoCop(scoped)

Excess Traffic - CoCop

Figure 9: Effect of varying the threshold. Average Excess

Bytes in the left y-axis and communication overhead on

the right y-axis. While excess traffic shows no discern-

able trend, communication overhead increases as thresh-

old decreases.

each node autonomously send (“push”) data towards an

accumulating node, whenever its local trigger fires.

There is a large design space to be explored in the context

of push-based mechanisms. There are two major choices

to be made in the mechanism - the algorithm running at

each node for sending off a trigger, and the algorithm run-

ning at the node accumulating these triggers to check if

the aggregate is anomalous - for both of which there are

numerous possibilities to choose from. In this paper, we

take an initial stab at exploring this space by designing

and analyzing a push-based mechanism, CoCop(push).

We also compare it to the pull-based mechanisms we

studied earlier.

7.1 Design

CoCop(push), very briefly, works as follows. Whenever

a node sees some fixed amount of traffic on a flow, it

sends a trigger to the node coordinating the aggregate-

estimation and the anomaly-detection for that flow. If

a coordinator node receives a large number of triggers

over a short period of time, it infers that there may be an

anomalous aggregate and after confirming from all nodes

which reported, it raises an alarm.

We now present this algorithm more formally and briefly

describe the various system components.

7.1.1 Algorithm

Let the responsibility for maintaining the aggregate value

for flow x and detecting if it is anomalous, be on a node

that we call the “node coordinating for flow x”, N(x).

Each node i maintains a counter bx
i of the traffic sent to

each flow x, which get reset to zero after every τ seconds.

But during those τ seconds, whenever the counter of node

i for flow x exceeds the node’s fair-share traffic-volume

for that interval, Cτ/n, it sends a trigger to N(x) for flow

x and decreases the counter by Cτ/n. If a coordinating

node, N(x), receives n triggers for flow x in less than the

last τ seconds (sliding-window), then that flow aggregate

may be anomalous. N(x) then checks if flow x is a false

positive by issuing a query to all nodes that had sent trig-

gers to it for that flow; and if not, it raises an alarm for

having detected an anomaly.

Although the trigger logic in CoCop(push) is determin-

istic as opposed to the probabilistic approach that Co-

Cop(global) and CoCop(scoped) took, but they all use

the proportional approach (see section 3) in which the

communication overheads of the system are tied to the

aggregate activity level in the system.

7.1.2 System Components

Each node has a monitor which maintains the flow coun-

ters and sends off triggers when required; and an enforcer

that has the same functionality as in the pull-based sys-

tem.

A critical architectural design decision is how to choose

the coordinating nodes. A straight-forward approach is

to have a single, central node that acts as the coordinating

node for all flows, but this could become the central point

of failure or a overload/congestion hotspot. An alterna-

tive is to leverage a distributed hash table (DHT) to spread

the responsibility among all the participating nodes. The

coordinating node for flow x, N(x), could then simply

be the DHT node corresponding to HASH(x). This, how-

ever, has the overheads associated with the maintenance

of DHTs.

7.2 Analysis

Consider a flow x and let the aggregate traffic on it,
∑

i fx
i , be F x bps. Then, with triggers being sent for ev-

ery Cτ/n bits of traffic, a maximum of n · F x/Cτ trig-

gers can be sent to the coordinating node every second.

The total communication overhead of the system is then

bounded above by the summation of this expression over

all flows,
∑

x n · F x/Cτ · 64, where the factor of 64 is to

account for the packet size of triggers and the conversion

of units. Then we have:

(overhead) ≤ n · F/C ·
64

τ
(9)

Notice the similarity with the expression for overhead of

CoCop(global) (see equation 4). This is because both

13

UW CSE Technical Report UW-CSE-07-08-02

mechanisms follow the same approach of proportional

triggering.

To calculate excess traffic, consider an anomalous flow x.

It would take approximately Cτ/F x seconds for the co-

ordinator, N(x), to receive n triggers 1 . Then the excess

traffic, which is the product of the excess rate, (F x −C),
and the time-to-detection, is approximately:

(excess traffic) ≈ C/F x · (F x − C)τ ·
1

8
(10)

This is very low for F x slightly greater then C and

bounded from above by Cτ for large F x, i.e., the ex-

cess traffic is bounded by a constant no matter whether

the anomaly is small or large.

7.3 Simulations

7.3.1 Methodology

For simulating CoCop(push), we need traces that log the

timestamp everytime a node sends on a flow its fair-share

worth of traffic, Cτ/n (and hence resets the counter and

sends a trigger for that flow). However, as mentioned

in section 6.1, the traces that we collected on PlanetLab

record at a 1-second granularity the volume of traffic that

each node sends on each flow; and thus, hide any in-

formation about the burstiness of traffic during that one

second. So, to obtain traces for simulating CoCop(push)

from the our PlanetLab traces, we make a simplifying ap-

proximation that the traffic that a node sent on a flow dur-

ing a second, was sent at a uniform rate over that one

second. For example, even if entire volume of traffic sent

to a destination was in a burst lasting 20ms, as a result of

using this approximation, in the traces used in simulating

CoCop(push), it would appear as if the volume was sent

at a uniform rate over one second.

It is easy to see that this approximation could give rise to

both false positives and false negatives. However, a sim-

ple experiment (that we now describe) on actual traces

shows that performance results change very marginally

because of this approximation. Simulations were run over

two different traces. The 1-second granularity traces were

“grouped” to get 10-second granularity traces and then

Trace-A was obtained using the above simplifying ap-

proximation. Trace-B was “closer to reality” in that it

was obtained by directly using the 1-second granularity

traces. Simulations of CoCop(push) showed little differ-

ence in the communication overhead, excess traffic or ac-

curacy between these two traces.

1Though there are pathological (worst) cases where only n ·

(Fx/C − 1) triggers are received over τ seconds inspite of flow x
being anomalous, i.e., Fx > C.

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9 10 11 12

O
v
e

rh
e

a
d

 (
in

 K
b

p
s
)

Average Excess Bytes over the Threshold (in MB)

Global Pull
CoCop(global)
CoCop(push)

CoCop(scoped)

Figure 10: Tradeoff between Average Excess Traffic and

Communication Overhead. The curve of CoCop(push)

lies about below CoCop(global). CoCop(scoped) is still

the lowermost curve.

We now present the performance results from simulation

of CoCop(push) and compare it to the pull-based mecha-

nisms.

7.3.2 Performance

Similar to the pull-based mechanisms, simulations of Co-

Cop(push) show that by increasing the parameter τ , com-

munication overhead decreases and the average excess

traffic increases. And this should come as no surprise

considering that the analysis also suggested so. What is

interesting though, is the placement of its trade-off curve

relative to other mechanisms. Figure 10 plots the (log

of) communication overhead versus the excess traffic for

CoCop(push) along with curves of periodic querying and

pull-based CoCop from Figure 7.

CoCop(push) performs better than CoCop(global) on the

PlanetLab traces, as is illustrated by the fact that the curve

for CoCop(push) is lower and to the left of the curve for

CoCop(global). Infact for the same average excess traffic,

the former has only about half the communication over-

head. This tallies well with the analytical bounds where

the expression for overheads of these mechanisms differ

by a factor of 2. CoCop(scoped), however, is still the

lowermost curve, illustrating its a win-win choice over

the rest.

In section 6.3.2, we studied the accuracy of mechanisms

relative to periodic querying. This is because the best

a pull-based mechanism can do (in terms of accuracy),

is to catch all the anomalies that periodic querying does.

However, as discussed in that section, there still are “true”

anomalies (as defined by equation (1)) in the traces that

are not detected even by periodic querying because of

its hopping-window semantics. But these can (and in

14

UW CSE Technical Report UW-CSE-07-08-02

most cases, are) detected by CoCop(push) because of

the sliding-window semantics that the coordinating node

uses. Therefore, to compare CoCop(push) with periodic

querying and the two pull-based CoCop variants, Table 3

shows their (absolute) accuracy.

Trigger Interval 1s 2s 5s 10s

Periodic Query 1.0000 0.9957 0.9883 0.8823

CoCop(global) 1.0000 0.9822 0.9876 0.8627

CoCop(push) 0.9929 0.9884 0.9801 0.9807

CoCop(scoped) 0.9660 0.9767 0.9620 0.8627

Table 3: Accuracy of different mechanisms. Co-

Cop(push) is about as accurate as CoCop(global) except

at large trigger intervals where it is much better.

CoCop(push) is about as accurate as CoCop(global), ex-

cept for the trigger interval of 10s where it is much more

accurate than even periodic querying (for the reason just

described). Although there are anomalies which only Co-

Cop(push) detects, there are others that pull-based mech-

anisms detect but CoCop(push) doesn’t. This is because,

at each node, there could always be (just less than) a

node’s-fair-share-worth of traffic, (Cτ/n), for which no

trigger is sent. This could lead to an under-estimation of

the aggregate value by the coordinating node and hence

lead to a false-negative.

8 Discussion

In the previous sections, we have seen several mecha-

nisms to detect anomalous aggregates. Our efforts to

taxonomize these, [15], suggest that there is still a

large, unexplored design space of such mechanisms. Not

only could the algorithms themselves be tweaked (espe-

cially the push-based mechanisms, which are far from

being fleshed-out), but more fundamental changes could

be made to the system design and architecture itself.

There is also the possibility of hybrid mechanisms that

use different combinations of variable-settings at differ-

ent scales.

But what we hope the design and evaluation of these

mechanisms have illustrated is that it is indeed possi-

ble to design mechanisms that can detect anomalous ag-

gregates more rapidly and with significantly (orders-of-

magnitude) lesser overheads than the current de facto

approach of periodic querying. Such mechanisms raise

the possibility of new kinds of monitoring for large, dis-

tributed systems that simultaneously check much larger

number of conditions than were previously possible, or

enable more open systems.

Although CoCop(scoped) emerged as the clear winner

in the simulations on our PlanetLab traces, it would be

presumptuous to claim that it should be the algorithm

of choice whenever one needs to detect any number of

anomalies in any aggregate property of any large, dis-

tributed system. On the contrary, we believe different

mechanisms have different properties and could be the

one best-suited to some scenario.

For small distributed systems having few global con-

straints that need to be monitored, periodic querying

could be a pragmatic choice by virtue of its simplicity

and clear semantics.

At the very other extreme, for very large distributed sys-

tems with thousands of nodes, a synchronous pull from

all the nodes becomes infeasible and push-based schemes

provide the only alternative.

It is medium-scale distributed systems that puts one a

slippery ground. One major architectural decision that

has to taken with regards a push-based design is to choose

the “nodes that coordinate for a flow”. We proposed the

two alternatives of having one central coordinator or of

having a DHT substrate, and discussed issues with each.

Pull-based CoCop variants steer clear of this issue by

not anointing any such canonical node. What they do

require is the knowledge of other participating nodes -

which is easy to maintain in a fairly static system such as

PlanetLab, but might be overwhelming in a system with

high churn. Choosing between CoCop(global) and Co-

Cop(scoped) is to an extent driven by performance ex-

pectations from the system. CoCop(scoped) trades-off

slightly higher average excess and a little lower accuracy

for significantly lower overhead.

PlanetLab is fairly-static, large-scale distributed system,

which is still small enough to support synchronous pull

from all nodes (as our real experiments on PlanetLab

have shown). While we ideally want to catch all anoma-

lous aggregates, but we do not have very strict accuracy

expectations and are not particularly concerned about

missing those that are just above the threshold. All these

factors make CoCop(scoped) well-suited to the scenario

of detecting anomalous flow aggregates on PlanetLab.

But we reiterate that in a different setting, another mech-

anism could be better-suited.

9 Related Work

Recently, there have been many proposals for large

scale network monitoring systems such as PIER [14],

Sophia [34], SDIMS [36], IrisNet [27] that along with

monitoring individual nodes of the system, also moni-

tor their aggregate behavior as a whole. While these all

are well-suited when one wants to continuously monitor

global state or obtain an instantaneous snapshot, none of

15

UW CSE Technical Report UW-CSE-07-08-02

them were specifically designed to detect anomalies in

these aggregates. Checking for anomalies is achieved by

periodically polling the aggregate values - which are ac-

cumulated at a location (a node [14] or within the net-

work [34]) either using a coupled pull [14, 34, 27] or de-

coupled push [36]. Section 6, however shows that our

approach of proportional querying outperforms periodic

querying for the specific task of detecting anomalous ag-

gregates.

There is significant work in the networking commu-

nity [39, 9, 13] and others([26, 18]) on techniques that

can be used to find the elephants flows (flows with value

above a prespecified threshold), heavy-hitters (flows that

account for atleast a specified proportion of the total ac-

tivity) and the top-k flows in a traffic stream. Most of

this work has focused on a single data stream. The

problem that we solve essentially reduces to finding ele-

phants (also called “iceberg queries”) in a distributed data

stream.

Gibbons and Tirthapura introduced the notion of dis-

tributed data streams in [11], extended it to sliding win-

dows in [12], and gave algorithms to find the bitwise OR

of the streams and the number of distinct values in the

distributed streams. Perhaps the work closest in spirit to

ours is the distributed top-k monitoring mechanism pro-

posed by Babcock et al [3], which continuously monitors

the top-k aggregates. Using it to solve our problem of

“aggregates above a threshold” however, leads to need-

less overheads. In the common case when there is noth-

ing anomalous in the system, all the top-k aggregate flows

would be sending at a rate less than the threshold. More-

over, it is quite likely that the top-k aggregate flows will

keep on changing, leading to needless exchange of con-

trol traffic.

There is an immense amount of work on DDoS preven-

tion and defense mechanisms. To the best of our knowl-

edge this work assumes support from either the destina-

tion (e.g.[30]) or the network itself(e.g., [32, 23]). Those

that tackle it at source D-WARD [25] do not aggregate

information across a set of nodes. Nobody in our knowl-

edge has tried to look at preventing DDoS at sources (ei-

ther cooperating or those belonging to a large open dis-

tributed system) by looking at flow aggregates.

Complementary to our work is the rich literature on com-

puting aggregates over large distributed systems: using

multiple aggregation trees [4], gossiping [31, 19, 16],

hierarchy [31] and model-based acquisition [6], etc.

Model-driven data acquisition suits well when, unlike in

our setting, there is high temporal or spatial correlation.

Aggregation has been studied in the context of continu-

ous monitoring of sensor networks domain using query-

ing [22] and directed diffusion [40]. It would be an inter-

esting direction for future work to adapt CoCop for the

sensor network domain where communication is also at

a premium and detecting anomalies in aggregates, rather

than continuously monitoring them, is quite often all that

is needed.

We highlight some analogous themes in databases re-

search. Standard database triggers, which form the ba-

sis of “active databases” [35], tend to focus on match-

ing(joining)events, rather than on aggregates. In continu-

ous queries over distributed stream query system [29, 22],

dataflow moves either on each data arrival, or periodi-

cally, which ever comes first; and ostensibly we can do

better than either in our setting.

There have been many results over the years in commu-

nication complexity [20] which studies the amount of in-

formation that needs to be communicated between parties

that wish to reach a common computational goal. The

two-party model was introduced by Yao in [37] and has

since been extended in several direction - multiparty pro-

tocols [5], deterministic vs. randomized [38], public vs

private random coins [28], etc. Our protocol can best be

classified as a “randomized multiparty protocol with pri-

vate coins”. Although such protocols have been used to

compute other aggregate functions such as basic boolean

functions [7], we are not aware of any work that addresses

the aggregate function in our problem.

10 Conclusions

In this paper, we tackle the problem of quickly and effi-

ciently detecting anomalous aggregates in a large, dis-

tributed system. We describe a lightweight approach

that makes the system-wide collection of data to detect

anomalies proportional to the level of system activity, and

a system, CoCop, that is based on it.

We evaluate CoCop with a trace-driven simulation that

uses six days of detailed PlanetLab-wide flow data.

We find that CoCop can detect anomalous aggregates

as quickly as other methods, detects widely distributed

anomalies as easily as concentrated ones, and has orders-

of-magnitude lower communication overhead. Further,

all of the algorithms we study exhibit a tradeoff between

communication and the excess traffic before the anomaly

is detected, but CoCop is able to outperform them at all

operating points. We also derive bounds for communi-

cation overhead and excess traffic and find them to be in

good agreement with our experimental results.

There is still a large, unexplored design space, but CoCop

illustrates that it is indeed possible to design mechanisms

that can detect aggregate anomalies more rapidly and

with significantly lesser overheads than periodic query-

16

UW CSE Technical Report UW-CSE-07-08-02

ing. Such rapid and efficient detection mechanisms raises

the possibility of new kinds of monitoring for large, dis-

tributed systems that simultaneously check much larger

numbers of conditions than were previously possible.

In the future we plan to explore combinations of dis-

tributed triggers with other algorithms for locally detect-

ing anomalies [8, 21], as well as other kinds of aggregate

properties that may be useful for distributed intrusion de-

tection.

References

[1] Planetlab: An open platform for developing, deploying
and accessing planetlary-scale services.

[2] ulogd: Userspace packet logging for netfilter.

[3] B. Babcock and C. Olston. Distributed top-k monitoring,
2003.

[4] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani.
Estimating aggregates on a peer-to-peer network. Tech.
rep., Computer Science Department Stanford University,
2003.

[5] A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party
protocols. In Proc. of the 15th annual ACM STOC, p.94-

99, 1983.

[6] A. Deshpande, et al. Model-driven data acquisition in
sensor networks. In Proc. of VLDB. Toronto, 2004.

[7] D. Dolev and T. Feder. Determinism vs. nondeterminism
in multiparty communication complexity. SIAM J. Com-
put., 21(5):889–895, 1992.

[8] C. Estan, S. Savage, and G. Varghese. Automatically in-
ferring patterns of resource consumption in network traf-
fic. In SIGCOMM ’03, pp. 137–148, 2003.

[9] C. Estan and G. Varghese. New directions in traffic mea-
surement and accounting. In Proc. of the SIGCOMM
2002, 2002.

[10] S. Floyd, et al. A reliable multicast framework for light-
weight sessions and application level framing. In Proc. of
the SIGCOMM 1995. ACM Press, 1995.

[11] P. B. Gibbons and S. Tirthapura. Estimating simple func-
tions on the union of data streams. In ACM SPAA, 2001.

[12] P. B. Gibbons and S. Tirthapura. Distributed streams al-
gorithms for sliding windows. In ACM SPAA, 2002.

[13] L. Golab, et al. Identifying frequent items in sliding win-
dows over on-line packet streams. In Proc. of the 3rd
ACM SIGCOMM IMC, 2003.

[14] R. Huebsch, et al. Querying the internet with pier. In
Proc. of VLDB, 2003.

[15] A. Jain, J. M. Hellerstein, S. Ratnasamy, and D. Wether-
all. A Wakeup Call for Internet Monitoring Systems: The
Case for Distributed Triggers. In Proc. of the HotNets-III,
San Diego, CA, USA, 2004.

[16] M. Jelasity, W. Kowalczyk, and M. van Steen. An ap-
proach to massively distributed aggregate computing on
peer-to-peer networks. In Proc. of the 12th Euromicro
PDP’04. A Coruna, Spain, 2004.

[17] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker. Adop-
tion of dhts with openhash, a public dht service. In Proc.
of the 3rd International Workshop on Peer-to-Peer Sys-
tems, 2004.

[18] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A sim-
ple algorithm for finding frequent elements in streams and
bags. ACM Trans. Database Syst., 28(1), 2003.

[19] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based com-
putation of aggregate information. In Proc. of FOCS,
2003.

[20] E. Kushilevitz and N. Nisan. Communication Complexity.
Cambridge, 1996.

[21] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies, 2004.

[22] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: A Tiny AGgregation service for ad-hoc
sensor networks. In OSDI ’02. Boston, 2002.

[23] R. Mahajan, et al. Controlling high bandwidth aggre-
gates in the network. SIGCOMM Comput. Commun. Rev.,
32(3):62–73, 2002.

[24] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Ol-
ston. Finding (recently) frequent items in distributed data
streams. In To appear in ICDE, 2005.

[25] J. Mirkovic, G. Prier, and P. L. Reiher. Attacking ddos at
the source. In Proc. of ICNP ’02, 2002.

[26] S. Muthukrishnan. Data streams: Algorithms and appli-
cations.

[27] S. Nath, et al. Irisnet: An architecture for internet-scale
sensing services. In VLDB, 2003.

[28] I. Newman. Private vs. common random bits in commu-
nication complexity, 1991.

[29] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In ACM
SIGMOD International Conference on Management of
Data, pp. 563–574. San Diego, 2003.

[30] C. Papadopoulos, et al. Cossack: Coordinated suppres-
sion of simultaneous attacks.

[31] R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe:
A robust and scalable technology for distributed system
monitoring, management, and data mining. ACM Trans.

Comput. Syst., 21(2), 2003.

[32] S. Savage, D. Wetherall, A. R. Karlin, and T. Ander-
son. Practical network support for IP traceback. In SIG-
COMM, 2000.

[33] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A
public internet measurement facility, 2002.

[34] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An
Information Plane for Networked Systems. In Proc. of the
HotNets-II, Cambridge, MA, USA, 2003.

[35] J. Widom and S. Ceri. Active Database Systems: Triggers
and Rules for Advanced Database Processing. Morgan
Kaufmann, San Francisco, 1996.

[36] P. Yalagandula and M. Dahlin. A scalable distributed
information management system. In Proc. of the SIG-
COMM 2004. ACM Press, 2004.

[37] A. C.-C. Yao. Some complexity questions related to dis-
tributive computing. In Proc. of the 11th annual ACM
STOC, p.209-213, 1979.

17

UW CSE Technical Report UW-CSE-07-08-02

[38] A. C.-C. Yao. Lower bounds by probabilistic arguments.
In Proc. of IEEE FOCS, p.420-428, 1983.

[39] Y. Zhang, et al. Online identification of hierarchical
heavy hitters: Algorithms, evaluation and application. In
Proc. of the ACM SIGCOMM IMC, 2004.

[40] J. Zhao, R. Govindan, and D. Estrin. Computing aggre-
gates for monitoring wireless sensor networks, 2003.

APPENDIX

Given that out of n nodes, (F x/C)k are at C/k and the

rest at zero; and node i has decided to initiate a scoped

query. What is the (lower-bound on the) probability qx
i of

success (i.e.i will find that the sum of all nodes is > C)?

Observe that if, instead of (F x/C)k, we consider k nodes

at C/k, then qx
i can only reduce as the number of contrib-

utors has reduced. Also, for ease of argument, assume n
to be the smallest power of 2 greater than n.

Now consider the step at which node i has already asked

n/2 nodes. It will proceed on to ask the remaining n
nodes, iff there were >= k/2 contributors in the set of

nodes it had already asked. Now, if we look at this step

independent from all the previous steps, the probability

that the n/2 nodes it has asked has atleast k/2 contribu-

tors is 1/2. Note that the independence assumption will

only reduce the probability. This is because, if i reaches

this step, then it must have been successful in the previ-

ous step also and hence would have already asked atleast

k/4 contributors. By assuming independence, we are ig-

noring this prior, which would have increased the prob-

ability. Similarly, consider the second last step at which

node i has already asked n/4 nodes. It will proceed to ask

a total of n/2 (including the current n/4) iff there were

>= k/4 contributors in the set of nodes it had asked.

Like before, the probability for this 1/2. Combining this

with the last step, the probability of success from this step

is (1/2)2. In general, from the j-th last step, the proba-

bility of success is (1/2)j .

Since node i itself was as C/k, it would have started by

asking 2logdn/ke. Thus, the maximum number of steps

that i can take are log k. Hence, qx
i >= (1/2)log k =

1/k.

18

UW CSE Technical Report UW-CSE-07-08-02

