
Discovering and Representing Logical Structure in Code
Change

Miryung Kim, Jonathan Beall, David Notkin
Computer Science & Engineering

University of Washington
Seattle WA, USA

{miryung, jibb, notkin}@cs.washington.edu

ABSTRACT
There is a significant gap between how programmers think
about code change and how change is represented in most
software engineering tools. Programmers often think about
code change in terms of structure: which code elements
changed and how their structural dependencies are affected
by the change. By reasoning about structural information
within and around changed code, they recognize high-level
systematic changes such as refactorings and crosscutting
changes. Yet, most software engineering tools are based
on a textual representation of code change. To bridge this
gap, we propose a novel rule-based delta representation that
explicitly and concisely captures systematic changes to a
program’s structure, along with an engine that automati-
cally infers such rules. Our logical structural delta (LSD)
can complement existing uses of textual deltas: e.g., un-
derstanding another programmer’s modification, reviewing a
patch before submission, and writing change documentation.
We believe that LSD may serve as a basis for many software
engineering tools that can benefit from explicit logical
structure in code change: a bug finding tool, a refactoring
reconstruction tool, a dependency removal checker, etc.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering

Keywords
code change, delta, systematic change, software evolution

1. INTRODUCTION
Programmers often inspect differences between program

versions. For example, a team lead may review the work
done by her team members by examining a program delta
rather than the entire program. For such change-centric
tasks, programmers generally use software engineering tools

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

such as diff, CVS, and Unix patch that are based on line-
based textual program deltas.

However, in some situations, textual deltas are not very
effective in helping programmers understand code change.
Suppose a team lead is reviewing a patch that involves
hundreds of lines across multiple files. The team lead
may find it difficult to figure out whether the intended
change is implemented completely, why a certain group of
files changed together, or whether a new dependency was
unexpectedly introduced by the patch.

Several limitations of textual deltas seem to contribute
to these difficulties. First, textual deltas do not explic-
itly capture structural information that programmers often
look for when they understand code changes: which code
elements (types, methods, and fields) changed and how
their structural dependencies (subtyping, overriding, data
access, invocation, and containment) are affected by the
change. Second, textual deltas are verbose because they
treat code changes as line-level differences even if the
individual changes form a single high-level change. Finally,
they do not contain contextual information that can help
programmers understand logical structure in code change;
for example, when all added methods override type t’s
method m, a textual delta reports the methods individually,
leaving it to the programmer to discover their common
structural characteristic.

To overcome these limitations, we propose a novel pro-
gram delta that represents structural information using logic
rules and facts, along with an algorithm that automatically
infers these rules. Each of our inferred rules describes a
group of atomic changes that share similar structural char-
acteristics and thus corresponds to a high-level systematic
change. To discover contextual information, our inference
algorithm examines not only changed code fragments but
also unmodified code fragments connected to them by
structural dependencies. Using logic rules makes the delta
more concise because a single rule can summarize many
related facts at once. In addition, our approach detects and
explicitly represents anomalies that signal incomplete and
inconsistent change by allowing exceptions to a general rule.

For example, imagine a crosscutting change made by a
programmer to prevent SQL injection attacks: removing
all calls to DB.exec from the old version and replacing
them with calls to SafeSQL.exec. Although this change is
conceptually simple, its corresponding textual delta would
likely involve changes scattered across many files. In our
logical structural delta (LSD), this change is represented
concisely as the following two rules—the first rule states

that all methods that called DB.exec in the old version no
longer call DB.exec and the second rule states that these
methods now call SafeSQL.exec. The details on the syntax
and semantics of rules appear in Section 3.
past calls(m,“DB.exec”) ⇒ deleted calls(m,“DB.exec”)
past calls(m,“DB.exec”) ⇒ added calls(m,“SafeSQL.exec”)

As another example, imagine a pull-up method refactoring
that moves getHost methods to their superclass, NameSvc.
The following two rules show that getHost methods were
pulled up to NameSvc from all of its subclasses except for
LmiSvc, indicating that a programmer may have forgotten
to finish the refactoring.
current inheritedmethod(“getHost”, “NameSvc”, t)
⇒ added inheritedmethod(“getHost”,“NameSvc”, t)
past subtype(“NameSvc”, t) ∧ past method(m,“getHost”, t)
⇒ deleted method(m,“getHost”, t), except t =“LmiSvc”

We applied our LSD tool to two open source projects as
well as our own project. While an average textual delta
consists of 997 lines of change scattered across 16 files, our
LSD represents its logical structure using an average of 7
rules and 27 facts. Our qualitative assessment shows that
LSDs complement textual deltas by providing an overview of
systematic changes and complement change descriptions by
providing concrete structural information that can be traced
to code. Compared to structural deltas without rules, LSDs
are 9.3 times more concise and they include 10 additional
structural dependencies on average.

This paper makes the following three contributions:

• Our LSD explicitly represents logical structure in code
change.

• Our rule inference approach improves conciseness and
also discovers useful contextual information from the
code fragments related to changed code.

• Our empirical results show promise that our LSD
representation and tool can serve as a basis for many
tools that focus on code change.

The rest of this paper is organized as follows. Section 2
describes several scenarios that motivate our LSD. Section
3 and Section 4 present the formal definition of LSD and
our LSD inference algorithm. Section 5 compares LSDs
with textual deltas, change descriptions provided by a
programmer, and structural deltas without rules. Section
6 discusses potential applications of LSD based on the
motivating examples found in our study. Section 7 discusses
related work, and Section 8 concludes with future work.

2. MOTIVATING SCENARIOS
In this section, we list several scenarios that illustrate

difficulties that programmers face when investigating code
change using textual deltas.1

Understand the rationale of others’ change. Alice
and Bill work in the same team. When Alice tried to
commit her bug fix, she got an error message that her change
conflicted with Bill’s last change. To understand what he
changed and why, she started reading Bill’s last check-in
comment, “Common methods go in an abstract class. Easier
to extend/maintain/fix,” and the associated diff output.
However, she could not easily understand whether his change

1The scenarios are motivated by the observation carried out
by Ko et al. [20] as well as the examples found in our study.

was truly an extract superclass refactoring, which classes
were involved, and whether the refactoring was completed.
Browsing the diff output, she was overwhelmed by the many
files to examine.
Review a patch before its submission. To simplify the
usage of constants in her program, Alice decided to put all
constants in the Context class. While implementing this
change, she ported the constant accesses to use Context’s
constants instead. After finishing edits, she reviewed the
diff output but could not easily verify the correctness of
constant porting because some constants were accessed from
many methods.
Write change documentation. To write a check-in
comment, Alice ran a diff tool to examine her modification.
By looking at the list of changed files, she suspected that
two different logical changes got mixed up: a design change
request and a configuration bug fix. However, she could
not remember which changed code fragments correspond to
which logical change.

3. LOGICAL STRUCTURAL DELTA
We hypothesize that many difficulties of investigating

code change using textual deltas originate from a lack
of structural information about code change: which code
elements (types, methods, and fields) changed and how their
structural dependencies (subtyping, overriding, data access,
invocation, and containment) were affected by the change.

To augment a program delta with such structural infor-
mation, we represent each program version as a set of logic
facts that describe code elements and their structural de-
pendencies to other code elements. The difference between
two versions is then represented as a set of facts deleted
from the old fact-base (FBo) and a set of facts added to the
new fact-base (FBn). For example, Table 1 shows the fact-
base representation of two program versions and the delta
between the two fact-bases (∆FB). Even though the change
is conceptually simple, “remove all accesses to Key.on, and
invoke Key.chk from the start methods in Car’s subtypes,”
∆FB lists the three accesses facts separately and also does
not capture contextual information such as subtype(“Car”,
“BMW”) and subtype(“Car”,“GM”).

Although ∆FB is a program delta with structural infor-
mation, it has two major weaknesses. The first weakness
is poor conciseness; because ∆FB is a set of facts without
any high level structure, it is time-consuming to read and
understand when it contains a large number of facts. The
second weakness is that ∆FB describes only the structural
dependencies of changed code fragments but not those of
their surrounding code. For example, when several fields
are removed from many different classes, it is useful to know
that the fields of t1 type were removed from t2’s subclasses
even if t2 does not appear in ∆FB. To overcome these two
problems, our approach infers logic rules from the union of
all three fact-bases, FBo, FBn, and ∆FB.

This approach has two advantages. First, our rule-based
delta is often very concise because a single logic rule can
imply a number of related facts. Second, by inferring
rules from not only ∆FB but also from FBo and FBn, our
approach finds useful structural information that cannot be
found in ∆FB itself: for example, one can answer whether
a systematic change evidenced by ∆FB is true for the
entire old or new version, and one can discover structural
characteristics shared by changed code fragments even if

Table 1: A Fact-Base Representation of Two Program Versions and their Difference
Po (an old version) FBo (a fact-base of Po) Pn (a new version) FBn (a fact-base of Pn) ∆FB

class BMW implements Car subtype(“Car”,“BMW”), . . . class BMW implements Car subtype(“Car”,“BMW”), . . .
void start (Key c) { method(“BMW.start”, “start”, BMW) void start () { method(“BMW.start”, “start”, BMW)

... . . . Key.chk (null); ... calls(“BMW.start”, “Key.chk”) +calls(“BMW.start”, “Key.chk”)
class GM implements Car subtype(“Car”,“GM”), . . . class GM implements Car subtype(“Car”,“GM”), . . .
void start (Key c) { method(“GM.start”, “start”, “GM”) void start (Key c) { method(“GM.start”, “start”, “GM”)
if (c.on) { accesses(“Key.on”, “GM.start”) Key.chk (c); calls(“GM.start”,“Key.chk”) -accesses(“Key.on”, “GM.start”)

... +calls(“GM.start”,“Key.chk”)
class Kia implements Car subtype(“Car”,“Kia”), . . . class Kia implements Car subtype(“Car”,“Kia”), . . .
void start (Key c) { method(“Kia,start”,“start”, “Kia”) void start (Key c) { method(“Kia,start”,“start”, “Kia”)
c.on = true; accesses(“Key.on”, “Kia.start”), -accesses(“Key.on”, “Kia.start”)

class Bus { type(“Bus”) class Bus { type(“Bus”)
void start (Key c) { method(“Bus,start”, “start”, Bus) void start (Key c); method(“Bus,start”, “start”, Bus) -accesses(“Key.on”, “Bus.start”)
c.on = false;} } accesses(“Key.on”, “Bus.start”) log(); } } calls(“Bus.start”,“log”) +calls(“Bus.start”,“log”)

class Key { type (“Key”) class Key { type (“Key”)
boolean on = false; field(“Key.on”, “on”,“Key”) boolean on = false; field(“Key.on”, “on”, “Key”)
void chk (Key c) { ... method (“Key.chk”, “chk”, “Key”) static void chk (Key c) { method (“Key.chk”, “chk”, “Key”)

* The deleted and added facts in ∆FB are noted with + and − sign respectively.

Table 2: LSD Rule Inference Example
∆FB′ ∆FB′′

1. past accesses(“Key. on”, m) 1. past accesses(“Key. on”, m)
⇒ deleted accesses(“Key.on”, m) ⇒ deleted accesses(“Key.on”, m)

2. added calls(“BMW.start”,“Key.chk”) 2. past method(m,“start”, t)
3. added calls(“GM.start”,“Key.chk”) ∧ past subtype(“Car”,t)
4. added calls(“Bus.start”,“log”) ⇒ added calls(m,“Key.chk”)

except t = Kia
3. added calls(“Bus.start”,“log”)

they appear in unmodified parts of a program.
The intuition behind our rule-based approach is that

there are many situations in which apparently independent
changes implement a higher-level, more systematic change
together. By inferring rules that correspond to such high-
level systematic changes, our approach concisely summarizes
structural information within and around changed code. For
instance, changing an API and subsequently changing all
invocations of the API is an example of such systematic
change. A crosscutting change that removes all dependen-
cies to a particular module is another familiar example.
LSD Predicate. Our prototype currently models struc-
tural dependencies in a Java program at the type, field, and
method level using the following twelve predicates. The first
seven predicates describe code elements and their contain-
ment relationships. For example, type(“org.foo.Bar”, “Bar”,
“org.foo”) means that there is either a class or an interface
with the name Bar in org.foo package, and its fully qualified
name is org.foo.Bar. The next five predicates describe
field access, method invocation, subtyping, and overriding
dependencies. For example, inheritedmethod(“foo”, “Boo”,
“Bob”) means that Bob inherits foo method of Boo class.

1. package (p:Package).
2. type (t:Type, tn:TypeName, p:Package).
3. method (m:Method, mn:MethodName, t:Type).
4. field (f:Field, fn:FieldName, t:Type).
5. return (m:Method, returnType:Type).
6. fieldoftype (f:Field, declaredType:Type).
7. typeintype (inner:Type, outer:Type).
8. accesses (f:Field, accessor:Method).
9. calls (caller:Method, callee:Method).
10. subtype (super:Type, sub:Type).
11. inheritedfield (fn:FieldName, super:Type, sub:Type).
12. inheritedmethod (mn:MethodName, super:Type, sub:Type).

To distinguish which fact-base each fact belongs to, we

prefix past and current to the facts in FBo and FBn

respectively. To distinguish which facts were deleted from
the old version and added to the new version, we prefix
deleted and added to the corresponding facts in ∆FB.

Currently LSD predicates do not model access modifiers,
local variable accesses, control logic, and temporal logic.
LSD Rule. A logic rule describes the relationship among
groups of related logic facts. An LSD rule describes a high-
level systematic change by relating groups of facts in the
three fact-bases.

To represent a group of similar facts at once, we create
a logic literal by binding some of a predicate’s arguments
to variables. For example, subtype(“Foo”, t) represents all
subtype facts that have Foo as a first argument.

Rules relate groups of facts by connecting literals with
boolean logic operators. In particular, our LSD rules are
horn clauses where the conjunction of one or more literals
in the antecedent implies a single literal in the conclusion,
i.e., A(x) ∧ B(x,y)... ∧ C(x,z) ⇒ D(x,z). In LSD rules,
all variables are universally quantified and variables do not
appear in the conclusion unless they are bound in the
antecedent. LSD rules are either ungrounded rules (rules
without constant bindings) or partially grounded rules (rules
with constant bindings).

A rule r has a match f in ∆FB if f is a fact created
by grounding r’s conclusion with constants that satisfy r’s
antecedent given FBo, FBn, and ∆FB. A rule r has an
exception if there is no match in ∆FB implied by a true
grounding of its antecedent. For example, a rule A(x)⇒B(x)
has a match B(c1) and an exception x=c2 if A(c1), A(c2),
and B(c1) are in the three fact-bases, but B(c2) is not in
∆FB. We explicitly encode exceptions as a part of a rule to
note anomalies to a systematic change.

Table 3 shows the rule styles and an example rule for each
style. These rule styles can express high-level systematic
changes such as dependency removal and addition, feature
addition and deletion, consistent maintenance, replacement
of API usage or related code change.
Example. Suppose that a programmer intended to remove
all accesses to a field Key.on and call Key.chk from the start
methods in the classes implementing Car. Table 1 presents
the fact-bases and Table 2 shows the rule inference and ∆FB
reduction process. Based on the fact that all accesses to
Key.on are removed from the old version, ∆FB is reduced
to ∆FB′ by replacing the three deleted accesses facts with

Table 3: LSD Rule Styles and Example Rules
Rule Styles High-Level Example Rule and Its Interpretation

Antecedent ⇒ Conclusion Change Patterns
past * ⇒ deleted * dependency removal, past calls(m,“DB.exec”) ⇒ deleted calls(m,“DB.exec”)

feature deletion, etc. All methods that called DB.exec in the old version deleted a call dependency to DB.exec.
past * ⇒ added * consistent past accesses(“Log.on”,m) ⇒ added calls(m,“Log.trace”)

maintenance, etc. All methods that accessed Log.on in the old version added a call dependency to Log.trace.
current * ⇒ added * dependency addition, current method(m, “getHost”, t) ∧ subtype(“Svc”, t) ⇒ added method(m,“getHost”, t)

feature addition, etc. All getHost methods in the Svc’s subclasses are newly added ones.
deleted * ⇒ added * related code change, deleted method(m, “getHost”, t) ⇒ added inheritedfield(“getHost”,“Service”, t)
added * ⇒ deleted * API usage change, etc All types that deleted getHost method inherit getHost from Service instead.

the following rule:
past accesses (“Key.on”, m) ⇒ deleted accesses (“Key.on”, m)
Based on the fact that start methods that call Key.chk are
contained in Car’s subtypes, ∆FB′ is reduced to ∆FB′′ by
winnowing out the two added calls facts using the following
inferred rule. This rule also signals inconsistency that Kia

did not change similarly.
past method (m,“start”, t) ∧ past subtype (“Car”, t)
⇒added call (m,“Key.chk”), except t=Kia.

4. ALGORITHM
Our algorithm accepts two versions of a program and

outputs a logical structural delta that consists of logic rules
and facts. Our algorithm has three parts: (1) generating
fact-bases, (2) inferring rules from the fact-bases, and (3)
post-processing the inferred rules.
Part 1. Fact-base Generation. We use JQuery to
extract logic facts—whose predicates are the types described
in Section 3—from a Java program [14]. JQuery is a
query-based browser that represents a Java program in
terms of logical relations and provides an interface to
execute a logic query. It analyzes a Java program and
extracts code elements and their structural dependencies
using the Eclipse JDT Parser; thus, its precision depends
on the Eclipse’s static analysis capability. Using JQuery,
we create fact-bases, FBo and FBn, from the old and
new version respectively and compute ∆FB using a set-
difference operator. When a programmer renames some
code elements, ∆FB includes pairs of deleted and added
facts even though the corresponding code did not change.
For example, if foo package is renamed to bar, ∆FB will
contain deleted package(“foo”) and added package(“bar”). We
identify code element matches using our previous work [18],
allowing our delta algorithm to consider these as renamings
rather than deleted and added fact pairs.
Part 2. First Order Logic Rule Learning. Our goal
is to infer rules each of which corresponds to a high-level
systematic change and thus explains a group of added and
deleted facts. This step takes the three fact-bases and
outputs inferred rules and remaining unmatched facts in
∆FB. Some rules refer to groups of past and current facts,
providing structural characteristics about changed code that
cannot be found in ∆FB only.

Three input parameters define which rules to be con-
sidered in the output: (1) m, the minimum number of
facts a rule must match, (2) a, the minimum accuracy of
a rule, where accuracy = # matches / (# matches + #
exceptions), and (3) k, the maximum number of literals in a
rule’s antecedent. A rule is considered valid if the number
of matches and exceptions is within the range set by these
parameters.

Our rule learning algorithm is a bounded-depth search
algorithm that enumerates rules up to a certain length. The
depth is determined by k. Increasing k allows our algorithm
to find more contextual information from FBo and FBn;
evaluating all possible rules with k literals in the antecedent
has the same effect as examining surrounding contexts that
are roughly k dependency hops away from changed code
fragments. Our algorithm enumerates rules incrementally
by extending rules of length i to create rules of length i + 1.
In each iteration, we extend the ungrounded rules from the
previous iteration by appending each possible literal to the
antecedent of the rules. Then for each ungrounded rule,
we try all possible constant substitutions for its variables.
After selecting valid rules in this iteration, we winnow out
the selected rules’ matches from U (a set of unmatched facts
in ∆FB) and proceed to the next iteration.

Some rules are always true regardless of change content
and do not provide any specific information about code
change. For example, deleting a package deletes all con-
tained types in the package, and deleting a method implies
deleting all structural dependencies involving the method.
To prevent learning such rules, we have written 30 default
winnowing rules by hand and winnow out the facts from
U in the beginning of our algorithm.

For the rest of this section, we explain two subroutines in
detail: (1) extending ungrounded rules from the previous
iteration and (2) generating a set of partially grounded
rules from an ungrounded rule. Then we discuss a beam
search heuristic that we use to tame the exponential growth
of the rule search space. Our rule inference algorithm is
summarized in Algorithm 1.
Subroutine 1. Extending Ungrounded Rules. For
each ungrounded rule from the previous iteration, we iden-
tify all possible predicates that can be appended to its
antecedent. For each of those predicates, we create a set
of candidate literals by enumerating all possible variable
assignments. After we create a new rule by appending each
candidate literal to the ungrounded rule’s antecedent, we
check two conditions: (1) we have not already generated
an equivalent rule, and (2) it matches at least m facts in
U . If the rule has fewer than m matches, we discard it
because adding a literal to its antecedent or grounding its
variables to constants can find only fewer matches. If the
two conditions are met, we add the ungrounded rule to the
list of new ungrounded rules to try constant substitutions
for its variables and to pass to the next iteration.
Subroutine 2. Generating Partially Grounded Rules.
To create partially grounded rules from an ungrounded rule,
we consider each variable in turn and try substituting each
possible constant for it as well as leaving it alone. At each
step within this process, we evaluate the rule to check how
many matches it finds in U . If it finds fewer than m matches,

we discard the rule and do not explore further substitutions,
as more specific rules can find only fewer matches than m.
Beam Search. As the size of the rule search space increases
exponentially with the number of variables in ungrounded
rules, enumerating rules quickly becomes infeasible for
longer rules. To tame this exponential growth, we use a
beam search heuristic: in each iteration, we save only the
best β number of ungrounded rules and pass them to the
next iteration. The beam search is a widely used heuristic
in first order logic rule learning [21]. As our tests found no
improvement when β was increased beyond 100, we used this
as a default. To select the best β rules, we first rank rules by
their number of matches. When there’s a tie, we prefer rules
with fewer number of exceptions, as these rules are worth
refining further. If there is still a tie, we prefer rules whose
variables are more general in terms of Java containment
hierarchy: package > type > field = method > name.

Algorithm 1 LSD Rule Inference Algorithm

1: R := ∅ // a set of ungrounded rules
2: L := ∅ // a set of valid learned rules

// U is a set of facts in ∆FB that are not covered by L.
3: U := reduced ∆FB using default winnowing rules
4: for each antecedent size, i = 0 . . . k do

5: if (i = 0) then

6: R := ungrounded rules with an empty antecedent by
enumerating all possible conclusions.

7: else

8: R := extend all ungrounded rules in R by adding all
possible literals to their antecedent.

9: end if

10: for each ungrounded rule r do

11: G := try all possible constant substitutions for r’s
variables

12: for each partially grounded rule g in G do

13: if g is valid then

14: L:=L ∪ g
15: end if

16: end for

17: end for

18: R := select the best β rules in R.
19: U := U − {facts covered by L}
20: end for

Part 3. Post Processing. Rules with the same length
may still have overlapping matches after Part 2. To avoid
outputting rules that cover the same set of facts in the ∆FB,
we select a subset of the rules using the greedy version of
SET-COVER algorithm [2]. In this step, we use the same
ranking order as in our beam search. We then output the
selected rules and the remaining unmatched facts in ∆FB.

5. EVALUATION
To investigate if and when LSD can be useful for de-

scribing code change, we performed a set of quantitative
and qualitative assessments. We compared LSDs with
textual deltas (TDs) and change descriptions written by
programmers. We also compared LSD with ∆FB, a simple
structural delta between two versions.
Subject Programs. We applied our LSD tool to two open
source projects, carol and dnsjava, and to our LSD tool itself.
We selected these programs because their medium code size
(up to 30 KLOC) allowed us to manually analyze changes in
these programs in detail. Carol is a library that allows clients
to use different remote method invocation implementations.
From its version control system, we selected 10 version pairs

Table 4: Comparison with Textual Delta
Textual Delta LSD

Files CLOC Hunk % Rule Fact
Version + - X Total Touched

carol (carol.objectweb.org)

62-63 7 1 13 21 2151 44 19% 12 71

128-129 0 0 10 10 164 11 7% 1 4

289-290 0 0 1 1 67 9 1% 2 3

387-388 0 0 12 12 528 107 7% 7 21

388-389 0 0 12 12 90 31 7% 3 4

421-422 3 0 11 14 4313 131 7% 36 30

429-430 2 0 7 9 723 71 4% 12 7

480-481 6 4 25 35 3032 132 17% 24 29

547-548 1 0 5 6 90 11 3% 1 10

576-577 4 2 4 10 1133 27 4% 1 25

MED 2 0 11 11 626 38 7% 5 16

AVG 2 1 10 13 1229 57 8% 10 20

dnsjava (www.dnsjava.org)

0.1-0.2 1 0 5 6 137 17 14% 1 17

0.2-0.3 8 0 28 36 1120 134 73% 3 21

0.3-0.4 1 1 24 26 711 45 52% 3 35

0.4-0.5 3 2 25 30 978 95 57% 31 37

0.5-0.6 0 0 9 9 272 45 18% 6 29

0.6-0.7 6 0 10 16 1052 40 25% 5 53

0.7-0.8 6 1 16 23 1354 78 34% 23 46

0.8-0.8.1 0 0 3 3 27 3 5% 1 2

0.8.1-0.8.2 0 0 42 42 1519 344 70% 19 55

0.8.2-0.8.3 0 0 6 6 307 40 10% 1 45

0.9-0.9.1 1 2 6 9 553 30 13% 0 13

0.9.1-0.9.2 58 56 3 117 15915 115 100% 21 55

0.9.2-0.9.3 0 0 1 1 5 1 2% 0 0

0.9.3-0.9.4 0 0 1 1 9 1 2% 0 0

0.9.4-0.9.5 0 0 4 4 307 16 7% 0 5

0.9.5-1.0 3 0 61 64 1181 105 100% 9 43

1.0-1.0.1 0 0 6 6 52 11 9% 0 10

1.0.1-1.0.2 0 0 13 13 457 47 20% 4 36

1.0.2-1.1 16 2 35 53 3362 264 62% 29 174

1.1-1.1.1 1 0 13 14 413 29 17% 4 13

1.1.1-1.1.2 0 0 5 5 26 6 6% 0 6

1.1.2-1.1.3 2 0 2 4 240 10 4% 0 10

1.1.3-1.1.4 0 0 3 3 47 11 4% 0 5

1.1.4-1.1.5 0 0 8 8 354 41 10% 11 24

1.1.5-1.1.6 1 0 8 9 271 14 10% 0 7

1.1.6-1.2.0 2 1 21 24 2150 208 27% 36 201

1.2.0-1.2.1 0 0 28 28 323 56 34% 10 23

1.2.1-1.2.2 0 0 14 14 436 72 17% 3 31

1.2.2-1.2.3 0 0 4 4 36 8 5% 0 4

MED 0 0 8 9 354 40 17% 3 23

AVG 4 2 14 20 1159 65 28% 8 34

LSD tool

3-4 2 0 6 8 747 33 7% 3 23

4-13 5 0 5 10 563 13 8% 0 13

13-20 1 0 5 6 276 10 5% 0 8

20-21 0 5 6 11 637 37 9% 6 19

21-26 0 0 6 6 60 10 6% 1 6

26-27 0 0 3 3 31 3 3% 0 0

27-28 0 0 2 2 96 17 2% 0 2

28-34 0 0 4 4 178 28 4% 1 54

34-36 1 0 7 8 344 39 8% 2 8

36-39 0 0 2 2 9 2 2% 0 0

MED 0 0 5 6 227 15 6% 1 8

AVG 1 1 5 6 294 19 5% 1 13

MED 0 0 6 9 344 31 8% 2 17

AVG 3 2 11 16 997 54 19% 7 27

with check-in comments that indicate non-trivial changes.
Its size ranged from 10800 LOC to 29050 LOC and from 90
files to 190 files. Dnsjava is an implementation of domain
name services in Java. From its release archive, we selected
29 version pairs. Its program size ranged from 5080 LOC to
14500 LOC and from 40 files to 83 files. We also selected
our LSD tool’s first 10 versions pairs—revisions that are at
least 8 hours apart and committed by different authors. Its
program size ranged from 15651 LOC to 16897 LOC and
from 93 files to 101 files.
Comparison with Textual Delta. The goal of a compar-
ison with TD is to investigate (1) how LSD and TD differ
in terms of conciseness and (2) which types of changes LSD
describes more effectively than TD. We computed TDs using
diff and LSDs using our tool with default input parame-
ter settings (m=3, a=0.75, k=2). We then investigated
individual TDs and LSDs and studied associated change
contents. To assist in this investigation, we built a viewer
that visualizes each rule along with the facts explained
by the rule. When a user clicks on a fact, it shows the
corresponding code snippet in both old and new version.

Table 4 shows quantitative comparison results. CLOC

Table 5: Extracted Rules and Associated Change Descriptions
Source Rules and Their Interpretation Excerpt from Change Description

carol
62-63 current field(x,y,“CarolConfiguration”) ∧ current accesses(x,“CarolConfiguration.loadCarolConfiguration()”) A new simplified

⇒ added field(x,y,“CarolConfiguration”) configuration mechanism.
Addition of related fields: all fields accessed from loadCarolConfiguration are newly added constants. (with bug id references)
past field(x,y,“CarolDefaultValues”) ∧ past fieldoftype(x,“Properties”) ⇒ deleted field(x,y,“CarolDefaultValues”)
Deletion of related fields: all fields with type Properties in CarolDefaultValues are deleted.

128-129 current method(x,“getPort()”,z) ⇒ added method(x,“getPort()”,z) Port number trace problem.
Feature addition: many getPort methods are added (with bug id references)

421-422 current calls(x,“NamingExceptionHelper.create(Exception)”) ⇒ added calls(x,“NamingExceptionHelper.create(Exception)”) Refactoring of the spi package. . .
past calls(x,“JNDIRemoteResource.getResource()”) ⇒ deleted calls(x,“Throwable.printStackTrace()”) (247 words long)
Changes in exception handling: all calls to NamingExceptionHelper are newly added ones, and
all methods that called getResource no longer calls printStackTrace.
current inheritedmethod(x,“AbsContext”,y) ⇒ added inheritedmethod(x,“AbsContext”,y)
past method(x,y,“JRMPContext”) => deleted method(x,y,“JRMPContext”). . .
Extract superclass refactoring: create AbsContext by extracting common methods from Context classes.

429-430 added type(“AbsRegistry”) Common methods go in
current inheritedmethod(m, “AbsRegistry”, t) ⇒ added inheritedmethod(m,“AbsRegistry”, t) an abstract class,
past subtype(“NameSvc”, t) ∧ past field(f,“host”, t) ⇒ deleted field(f, “host”, t), except t=“LmiRegistry” easier to extend/maintain/fix.
past subtype(“NameSvc”, t) ∧ past method(m,“getHost()”, t) ⇒ deleted method(m, “getHost()”, t), except t=“LmiRegistry”
Extract superclass refactoring: host related fields and methods are pulled from NameSvc’s
subclasses to AbsRegistry class, except from LmiRegistry.

480-481 past calls(x,“CarolCurrentConfiguration.setRMI(String)”) ⇒ deleted calls(x,“Enumeration.nextElement())” Change the configuration
current accesses(“MultiContext.contextsOfConfigurations”,x) ⇒added calls(x,“Iterator.next()”) process of Carol as discussed. . .
Library usage change: All methods that call setRMI no longer use Enumeration and use Iterator instead. (139 words long.)

dnsjava
0.6-0.7 current method(x,y,“RRset”) ∧ current calls(“Cache.addRRset(RRset,byte,Object)”,x) ⇒ added method(x,y,“RRset”) DNS.dns uses Cache

Related change: all newly added methods in RRSet call Cache.addRRSet.
1.0.2-1.1 past method(x,“sendAsync()”,w) ⇒ added return(x,“Object”) Resolver.sendAsync returns

past method(x,“sendAsync()”,w) ⇒ deleted return(x,“int”) an Object instead of an int.
API change: Resolver.sendAsync returns Object instead of int.

1.1.4-1.1.5 past calls(x,“.update.parseRR(Tokenizer,short,int)”) ⇒ deleted calls(x,“String.equals(Object)”) update client syntax enhancement
past calls(x,“.update.parseSet(Tokenizer,short)”) ⇒ deleted calls(x,“.update.parseRR(Tokenizer,short,int)”) (add/delete/require/prohibit/glue)
past calls(x,“.update.parseSet(Tokenizer,short)”) ⇒ added calls(x,“String.startsWith(String)”) no longer require -r, -s, or -n.
Consistent change of code clones.

LSD tool
20-21 past type(x,y,“edu.uw.cs.lsd”) ∧ past type(z,y,“edu.uw.cs.lsd.jquery”) ⇒ deleted type(x,y,“edu.uw.cs.lsd”) no corresponding comment

Removal of code clones: remove the same types from lsd package

represents the number of added, deleted, and changed lines.
Hunk represents the number of blocks with consecutive
line changes, and % Touched represents the percentage of
files that programmers must inspect to examine the change
completely out of the total number of files in both versions.
It is computed as (# added files + # deleted files + 2 × #
changed files) / (total # files in both versions). The more
hunks there are and the higher the percentage of touched
files is, generally the harder it is to inspect a TD.

While the average TD for carol has over 1200 lines
of changes across 13 different files, LSD represents these
changes as roughly 10 rules and 20 facts. While the average
TD for dnsjava has over 1100 lines across 20 different files,
the average LSD has 8 rules and 34 facts. For our own
program, while the average TD has about 300 lines of
changes across 6 files, the average LSD has 1 rule and 13
facts. Overall, while an average textual delta consists of 997
lines of change scattered across 16 files, our LSD reports an
average of 7 rules and 27 facts, relatively smaller than an
equivalent textual delta.

The benefits of LSD appear to depend heavily on how
systematic the change is. (See Table 5). When changes are
structurally systematic—e.g., refactoring, feature addition
and removal, dependency addition and removal, constant
pool migration—LSDs contain only a few rules and facts
even if TDs contain a large number of hunks scattered
across many files. Consider the change in carol 429-430,
“Common methods go in an abstract class, Easier to ex-
tend/maintain/fix.” If a programmer intends to understand
whether this change is truly an extract superclass refactoring

and whether the refactoring was completed, she needs to
examine over 700 lines across 9 files. On the other hand,
LSD summarizes this change using only 12 rules and 7
facts and provides concrete information about the refactor-
ing—AbsRegistry was created by pulling up host related
fields and methods from the classes implementing NameSvc

interface except for LmiRegistry. Consider another change
in carol 128-129, “Bug fix, port number trace problem.” To
understand how the bug was fixed, a programmer needs
to read over 150 lines scattered across 10 files. Our
LSD represents the same change with only 1 rule and 4
facts—getPort methods were added to six different classes
and they were invoked from a tracer module, TraceCarol.
If a programmer examines the LSD before reading the TD,
upon inspecting one corresponding file, she can probably
skip five other files that include getPort.

When several different systematic changes are mixed with
many random non-systematic changes, LSDs tend to contain
many rules and facts. Despite a large amount of information
in those LSDs, we believe LSDs can still complement scat-
tered and verbose TDs by providing an overview of system-
atic changes, helping programmers focus on remaining non-
systematic changes instead. For instance, a programmer
may find the TD for carol 421-422 overwhelming since it
includes more than 4000 lines of changes across 14 files.
In this case, LSD rules can help programmers quickly
understand the systematic changes—modifying exception
handling to use NamingExceptionHelper and creating a
superclass AbsContext by extracting common methods from
Context classes—and focus on other changes instead.

In several cases, TD shows some changes but LSD is
empty because LSD does not model differences in comments,
control logic, and temporal logic. For example, the LSD
for dnsjava 0.9.2-0.9.3 is empty because the code change
includes only one added if statement and does not incur
changes in structural dependencies.

Overall, our comparison shows that the more systematic
code changes are, the smaller number of rules and facts
LSDs include. On the other hand, TDs may be scattered
across many files and hunks even if the change is structurally
homogeneous and systematic. We conjecture that LSDs
and TDs can complement each other since LSDs provide
an overview of systematic changes and TDs provide change
details at a line level.
Comparison with Change Description. Programmers
often write check-in comments or update a change log file
to convey their change intentions. To understand how
LSDs and change descriptions complement each other, we
compared LSDs with check-in comments (carol and LSD
tool) and change logs (dnsjava). For this comparison,
we examined and interpreted all LSD rules and facts and
then traced them to corresponding sentences in the change
description. Table 5 shows the comparison results. (It
includes only several versions due to limited space.)

In many cases, although change descriptions hint at
systematic changes, they do not provide much detail. For
example, the check-in comment for carol 62-63—“a new sim-
plified configuration mechanism”—does not indicate which
classes implement the new configuration mechanism. LSD
rules show that CarolConfiguration added many fields to
be used by loadCarolConfiguration, and CarolDefault-

Values deleted all Properties type fields.
In some cases, change comments and LSDs agree on the

same information with a similar level of detail. For example,
in dnsjava 1.0.2-1.1, both the LSD and the change log
describe that sendAsync methods return Object instead of
int. In some other cases, LSDs and change descriptions
discuss different aspects of change; for instance, the change
comments for carol 480-481 refer to email discussions on the
design of new APIs and include code examples while LSD
provides implementation details such as the use of Iterator
instead of Enumeration.

Because change descriptions are free-form, they can con-
tain any kind of information at any level of detail; however,
it is often incomplete or too verbose. More importantly,
it is generally hard to trace back to a program. We believe
that LSDs can complement change descriptions by providing
concrete information that can be traced to code.
Comparison with a Fact-Level Difference (∆FB).
As we discussed in Section 3, although ∆FB represents a
structural difference between two versions, it is verbose and
it does not contain contextual information. Based on the
following three metrics, we measure the benefits of inferring
rules on all three fact-bases instead of using ∆FB.

• Coverage: the percentage of facts in ∆FB explained
by rules, represented as (# of facts matched by rules
/ ∆FB). For example, when 10 rules explain 90 facts
out of 100 facts in ∆FB, the coverage of rules is 90%.

• Conciseness: the measure of how concisely LSD ex-
plains ∆FB, represented as (∆FB / # rules + # facts).
For example, when 4 rules and 16 remaining facts
explain all 100 facts in ∆FB, LSD improves conciseness

Table 6: Comparison with ∆FB
FBo FBn ∆FB Rule Fact Cvrg. Csc. Ad’l.

Carol
Min 3080 3452 15 1 3 59% 2.3 0.0
Max 10746 10610 1812 36 71 98% 27.5 19.0
Med 9615 9635 97 5 16 87% 5.8 4.0
Avg 8913 8959 426 10 20 85% 9.9 5.5

dnsjava
Min 3109 3159 4 0 2 0% 1.0 0.0
Max 7200 7204 1500 36 201 98% 36.1 91.0
Med 4817 5096 168 3 24 88% 4.8 0.0
Avg 5144 5287 340 8 37 73% 8.4 14.9

LSD tool
Min 8315 8500 2 0 2 0% 1.0 0.0
Max 9042 9042 396 6 54 97% 28.9 12.0
Med 8732 8756 142 1 11 91% 9.8 0.0
Avg 8712 8783 172 2 17 68% 11.2 2.3

Med 6650 6712 132 2 17 89% 7.3 0.0
Avg 6632 6732 302 7 27 75% 9.3 9.7

by a factor of 5.

• Additional Information: the measure of how much
additional structural information was extracted from
outside of changed code fragments, represented as (#
facts in FBo and FBn that are mentioned by the
rules but are not contained in ∆FB). For example,
the second rule in Table 2 refers to two additional
facts that are not in ∆FB, subtype(“Car”,“BMW”) and
subtype(“Car”, “GM”).

Table 6 shows the results for the three data sets (m=3,
a=0.75, k=2). On average, the inferred rules cover 75%
of facts in ∆FB and also improve the conciseness measure
by a factor of 9.3. They contain an average of 9.7 additional
facts that are in FBo or FBn but not in ∆FB.
Impact of Input Parameters. The input parameters, m

(the minimum number of facts a rule must match), a (the
minimum accuracy), and k (the maximum number of literals
a rule can have in its antecedent) define which rules should
be considered in the output. To understand how varying
these parameters affect our results, we varied m from 1 to
5, a from 0.5 to 1 with an increment of 0.125, and k from 1
to 2. Table 7 shows the results in terms of average for the
carol data set.

When m is 1, all facts in ∆FB are covered by rules by
definition. As m increases, fewer rules are found and they
cover fewer facts in ∆FB.

As a increases, a smaller proportion of exceptions is
allowed per rule; thus, our algorithm finds more rules each
of which covers a smaller proportion of the facts, decreasing
the conciseness and coverage measures.

Changing k from 1 to 2 allows our algorithm to find more
rules and improves the additional information measure from
0.4 to 5.5 by considering code fragments that are further
away from changed code. With our current tool, we were
not able to experiment with k greater than 2 because the
large rule search space led to a very long running time. In
the future, we plan to explore using Alchemy—a state-of-the-
art first order logic rule learner developed at the University
of Washington [21]—to find rules more efficiently.
Threats to Validity. Although our evaluation provides a
valuable illustration of how LSD can complement existing
uses of textual deltas and change descriptions, our findings
may not generalize to other data sets. We need further
investigations into how LSD results are affected by other

Table 7: Impact of Varying Input Parameters
Rule Fact Cvrg. Csc. Ad’l. Time(Min)

1 39.6 0 100% 7.4 10.1 2.0
2 14.6 13.1 92% 10.6 7.4 11.2

m 3 9.9 20.4 85% 9.9 5.5 9.1
4 7.7 25.7 82% 9.1 5.4 8.7
5 5.7 30 80% 8.5 3.5 7.8
0.5 11.1 15.6 89% 10.6 2.1 6.8
0.625 9.7 17.2 88% 11.0 4.0 7.3

a 0.75 9.9 20.4 85% 9.9 5.5 9.0
0.875 10.8 24.2 78% 8.6 9.1 12.7
1 13.3 26.2 78% 7.9 12.5 16.5

k 1 7.5 33.8 78% 7.2 0.4 0.7
2 9.9 20.4 85% 9.9 5.5 9.1

factors such as the size of a program and the gap between
program versions. In terms of internal validity, when com-
paring LSDs with textual deltas and change descriptions,
the investigator’s familiarity with LSD rules may have
influenced qualitative assessments. In addition, the rules
found by our algorithm depend on both input parameter
settings and the rule styles supported by our algorithm. We
plan to carry out further investigations to understand what
kinds of systematic changes are frequent yet not captured
by our current algorithm.

6. APPLICATIONS OF LOGICAL STRUC-
TURAL DELTA

Based on example LSDs found in our study, we believe
that LSD can serve as a basis for many tools that can benefit
from explicit logical structure in code change.
Dependency Creation or Removal Checker. When
team leads review a patch, they often wonder whether a new
dependency is unexpectedly introduced or whether existing
dependencies are completely removed as intended. In our
study, we have found many LSD rules that clearly show such
dependency creation and removal; for example, the following
two rules show that all call dependencies to NamingHelper

are newly introduced and that all accesses to JNI.URL in the
old version are completely removed.
current calls(m1,“NamingHelper()”) ⇒ added calls(m1,“Nam-
ingHelper()”)
past accesses(“JNI.URL”, m)⇒deleted accesses(“JNI.URL”, m)
In addition to examining inferred rules, team leads can
manually write and check rules using our tool, as it provides
a rule vocabulary to state a high-level systematic change and
a checker to evaluate a rule.
Identifying Related Changes. Programmers often need
to sort out mixed logical changes because some programmers
commit unrelated changes together. LSDs can help identify
related changes by showing structural dependencies and
further identifying their common characteristics. Consider
dnsjava release 0.6-0.7; there are two added classes, Cache
and CacheResponse, and three added methods in RRSet.
Despite its change comment,“DNS.dns uses Cache,” it is not
clear whether all added code fragments implement the cache
feature. The following rule shows that the three methods are
indeed a part of cache feature because Cache.addRRSet calls
them.
current calls(“Cache.addRRSet”, m)⇒added method(m,“RRset”)
Incomplete Change Detection. We believe that LSD
rules can help programmers identify incomplete change by
noting exceptions to systematic changes. For example, the
following rule found in dnsjava 0.4-0.5 can help programmers

raise a suspicion about why the three rrToWire methods did
not change similarly.
past method(m, “rrToWire”, t)⇒deleted calls(m, “toArray”)
(12 matches, 3 exceptions)

In addition to these tools, many rules found in our evaluation
suggest promises of using LSD to locate crosscutting con-
cerns and to identify high-level refactorings such as pull-up
method, collapse hierarchy, extract superclass, etc. Further-
more, LSD can be also used for mining software repository
research that focuses on code change by complementing
textual deltas and change descriptions.

7. RELATED WORK
Canonical Systematic Change. Several kinds of canon-
ical systematic changes are well understood and studied in
software engineering community, and many have built tools
that automatically identify such systematic changes.

Refactorings are systematic changes that are intended to
preserve program semantics [7]. There are several tools
that automatically infer refactorings by comparing two
program versions. Many of these tools are summarized
elsewhere [17, 18]. While most tools as well as our
previous work [18] focused on simple refactorings such as
renaming, moving, and API signature change, LSD can help
identify high-level refactorings such as extract superclass
by considering structural dependencies. Using LSD for
inferring refactorings has two strengths: (1) Our approach
does not require pre-defined refactoring patterns, which
makes refactoring inference both more flexible and easier,
and (2) it is robust to the situations when refactoring is
incomplete or when it is mixed with other changes.

Crosscutting concerns represent secondary design deci-
sions—for example, performance, error handling, and syn-
chronization—that are generally scattered throughout a
program [16, 27]. Aspect-oriented programming languages
provide language constructs that allow concerns to be
updated in a modular fashion [15]. A number of other
approaches instead leave the crosscutting concerns in a
program while providing mechanisms to manage related
but dispersed code fragments. Griswold’s information
transparency techniques use naming conventions, formatting
styles, and ordering of code in a file to provide indications
about code that should change together [10]. Dagenais et
al. [6] automatically infer structural patterns among the
participants of the same concern and represent such concern
using a rule syntax. The inferred rules were used to trace
concerns over program versions. Breu et al. [3] mine aspects
from version history by grouping method calls that are
added together.

Code clones—code snippets that are syntactically or se-
mantically similar—often change similarly; consistent main-
tenance of code clones is another kind of systematic change.
Simultaneous editing [24] and linked editing [28] provide a
programmer with mechanisms to characterize similar code
fragments and to edit them with a single stream of editing
commands. In our clone genealogy analysis [19], we built a
tool that automatically identifies several types of systematic
changes on clones (e.g., consistent update, inconsistent
update) and studied clone evolution.
Code Change Analysis. Several approaches represent the
difference between two versions as a set of atomic changes
to allow for more semantic analysis on code change. Change

Distiller [8] compares two versions of abstract syntax trees
to compute tree-edit operations and then maps each tree-
edit to an atomic AST-level change type (e.g., parameter
ordering change). Crisp [4] models code change using
several different types of coarse grained changes and their
syntactic inter-dependencies such as def-use relationships.
Robbes’ approach [26] captures AST-level changes from
IDE and groups them to a higher-level change such as a
refactoring recorded in IDE. None of these automatically
infer systematic changes from a set of atomic changes.
Delta Representation. Representing deltas between
entities—files, programs, databases, video sequences—is
a long-standing and rich research area. Most of the
work focuses on the time and or space efficiency of these
representations: Hunt et al. performed an empirical analysis
of a set of algorithms for computing deltas [13]. Conradi and
Westfechtel [5] surveyed delta representations pertinent to
software configuration management. Horwitz used program
dependence graphs to compute program deltas and classified
changes as either semantic or textual [12]. SmPL is a
program delta description language designed to ease API
evolution [25]. Mehra et al. [22] presented a collaborative
and visual approach to differencing diagrams as opposed
to text. Westfechtel earlier discussed generalized support
for merging arbitrary structure-oriented documents [29]. To
the best of our knowledge, neither these nor other related
approaches compute rule-based deltas.

Analogous to finding contextual information from FBo

and FBn, several different enhancements to diff provide
additional contextual information. The most basic enhance-
ment is diff’s ‘-c’ flag, which shows a fixed number of
unchanged lines around each hunk of changed text. Other
tools post-process diff’s output and provide side-by-side
visualization of differences or markup differences to aid in
understanding textual deltas.
Rule-based Change Representation. In our previous
work [18], we developed a rule-based change representation
that expresses a high-level semantics-preserving transforma-
tion (e.g., moving a group of related classes and renaming a
set of related APIs) and built an algorithm that automati-
cally infers high-level refactoring rules. In both efforts, we
represent systematic changes using logic rules and infer such
rules using machine learning techniques. LSD differs from
our previous work in several ways. First, the goal of our
previous work was to match code elements across program
versions to enable program analysis over multiple versions,
while LSD aims to explicitly represent logical structure in
code change. Second, while our previous work focused on
semantics-preserving changes above the level of method-
headers, LSD focuses on changes in structural dependencies.
Finally, from a machine learning technique perspective, our
previous algorithm learns rules in an open system because
there is no ground truth for a code matching problem.
On the other hand, our current algorithm learns rules
in a closed system—the three fact-bases—by enumerating
all rules within the rule search space set by the input
parameters.
Mining Association Rules From Version History.
Association rule learning discovers rules that relate elements
that co-occur frequently within a data set [1]. This technique
has been applied to version history to discover which
code elements frequently change together. While previous
research on co-change reports only what changed together [9,

31, 32], LSD can help answer what, how, and why questions
by hinting at the common structural characteristics of co-
changed code and their common transformation, e.g., all
methods that access c’s fields deleted a call to m.
Logic-based Program Representations. In software
engineering community, there has been a long tradition
of representing a program as a logic-base (or database).
JQuery [14] and CodeQuest [11] allow programmers inves-
tigate a program’s structure by formulating a logic query
in a language like Prolog. Wuyts et al.’s approach [30]
uses logic rules to describe software architecture and design
patterns and checks their conformance on a fact-base. Mens
et al. [23] allow programmers to specify a group of related
code fragments that address the same concern using logic
rules (e.g., all methods that access the same variable).
Our work differs from these—and the many other logic-
based representations of programs—in focusing on explicitly
representing the difference between two programs.

8. CONCLUSIONS AND FUTURE WORK
Our approach is the first to represent the difference

between two program versions using logic rules and facts
by automatically inferring rules. Each rule in a logical
structural delta concisely explains a group of atomic changes
that share similar structural characteristics; thus, LSD
can complement textual deltas by providing structural
information and explicitly presenting its systematic nature.
We believe LSD can serve as a basis for many software
engineering tools that focus on code change—mining aspects
based on change history, automatic identification of refactor-
ings, checking dependency removal and creation, detection
of incomplete or inconsistent changes, etc.

As future work, we plan to investigate effective clustering
algorithms for grouping LSD rules because often several
rules together form a higher-order change pattern. Further-
more, we believe that visualization of textual deltas can be
improved by filtering out or regrouping line-level differences
using the structure found by LSD. To assist programmers in
interpreting LSD rules, we plan to build an automatic rule
translator since it is fairly mechanical to translate first order
logic rules to English sentences.

Acknowledgment.
We especially thank Kris De Volder for providing JQuery

and Rob DeLine for sharing motivating examples from his
observational study of programmers. We thank Marius
Nita, Noah Snavely, Vibha Sazawal, and Alan Ho for their
comments on our draft.

9. REFERENCES
[1] R. Agrawal, T. Imieliński, and A. Swami. Mining

association rules between sets of items in large
databases. In SIGMOD ’93, pages 207–216, 1993.

[2] E. Balas and M. Padberg. 1976. Set Partitioning: A
Survey. SIAM Review, 18:710–760.

[3] S. Breu and T. Zimmermann. Mining aspects from
version history. In International Conference on
Automated Software Engineering, pages 221–230, 2006.

[4] O. Chesley, X. Ren, and B. Ryder. Crisp: A
Debugging Tool for Java Programs. International
Conference on Software Maintenance, pages 401–410,
2005.

[5] R. Conradi and B. Westfechtel. Version models for
software configuration management. ACM Computing
Surveys (CSUR), 30(2):232–282, 1998.

[6] B. Dagenais, S. Breu, F. W. Warr, and M. P.
Robillard. Inferring structural patterns for concern
traceability in evolving software. In International
Conference on Automated Software Engineering, 2007.

[7] M. Flowler. Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

[8] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall.
Change distilling—tree differencing for fine-grained
source code change extraction. IEEE Transactions on
Software Engineering, 33(11):18, November 2007.

[9] H. Gall, K. Hajek, and M. Jazayeri. Detection of
logical coupling based on product release history. In
International Conference on Software Maintenance,
page 190, 1998.

[10] W. Griswold. Coping with crosscutting software
changes using information transparency. Reflection
2001: The Third International Conference on
Metalevel Architectures and Separation of Crosscutting
Concerns, pages 250–265, 2001.

[11] E. Hajiyev, M. Verbaere, and O. de Moor. Codequest:
Scalable source code queries with datalog. In
D. Thomas, editor, European Conference on
Object-oriented Programming, volume 4067, pages
2–27, 2006.

[12] S. Horwitz. Identifying the semantic and textual
differences between two versions of a program. In
Programming Language Design and Implementation,
pages 234–245, 1990.

[13] J. J. Hunt, K.-P. Vo, and W. F. Tichy. Delta
algorithms: an empirical analysis. ACM Trans. Softw.
Eng. Methodol., 7(2):192–214, 1998.

[14] D. Janzen and K. D. Volder. Navigating and querying
code without getting lost. In International Conference
on Aspect Oriented Software Development, pages
178–187, 2003.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ.
Lecture Notes in Computer Science,
2072(327-355):110, 2001.

[16] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In European
Conference on Object-oriented Programming, volume
1241, pages 220–242. 1997.

[17] M. Kim and D. Notkin. Program element matching for
multi-version program analyses. In Proceedings of the
International Workshop on Mining Software
Repositories, pages 58–64, 2006.

[18] M. Kim, D. Notkin, and D. Grossman. Automatic
inference of structural changes for matching across
program versions. In International Conference on
Software Engineering, pages 333–343, 2007.

[19] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy.
An empirical study of code clone genealogies. In
ESEC/SIGSOFT FSE ’05, pages 187–196, 2005.

[20] A. J. Ko, R. DeLine, and G. Venolia. Information
needs in collocated software development teams. In
International Conference on Software Engineering,
pages 344–353, 2007.

[21] S. Kok and P. Domingos. Learning the structure of
Markov logic networks. Proceedings of 22nd
International Conference on Machine Learning, pages
441–448, 2005.

[22] A. Mehra, J. Grundy, and J. Hosking. A generic
approach to supporting diagram differencing and
merging for collaborative design. In International
Conference on Automated Software Engineering, pages
204–213, 2005.

[23] K. Mens, T. Mens, and M. Wermelinger. Maintaining
software through intentional source-code views.
International Conference oln Software Engineering
and Knowledge Engineering, pages 289–296, 2002.

[24] R. C. Miller and B. A. Myers. Interactive
simultaneous editing of multiple text regions. In
USENIX Annual Technical Conference, General
Track, pages 161–174, 2001.

[25] Y. Padioleau, J. Lawall, and G. Muller. SmPL: A
Domain-Specific Language for Specifying Collateral
Evolutions in Linux Device Drivers. Electronic Notes
in Theoretical Computer Science, 166:47–62, 2007.

[26] R. Robbes. Mining a change-based software repository.
In International Workshop on Mining Software
Repositories, page 15, 2007.

[27] P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr. N
degrees of separation: multi-dimensional separation of
concerns. pages 107–119, 1999.

[28] M. Toomim, A. Begel, and S. L. Graham. Managing
duplicated code with linked editing. In Visual
Languages and Human Centric Computing, pages
173–180, 2004.

[29] B. Westfechtel. Structure-oriented merging of revisions
of software documents. In Proceedings of the 3rd
international workshop on Software configuration
management, pages 68–79, 1991.

[30] R. Wuyts. Declarative reasoning about the structure
of object-oriented systems. In TOOLS ’98:
Proceedings of the Technology of Object-Oriented
Languages and Systems, pages 112–124, 1998.

[31] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll.
Predicting source code changes by mining change
history. IEEE Transactions on Software Engineering,
30(9):574–586, 2004.

[32] T. Zimmermann, P. Weisgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In International Conference on Software
Engineering, pages 563–572, 2004.

