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Abstract
As memory transactions have been proposed as a language-level
replacement for locks, there is growing consensus that software
transactional memory (STM) implementations need to provide se-
mantic guarantees at least as strong as locks. In this paper, we in-
vestigate the implications of lock-based semantics for transactions.
We categorize safety properties imposed by these semantics into
two sets: (1) those that maintain proper ordering and (2) those that
prevent values from appearing out of thin air. As part of this, we de-
fine publication safety, the dual of privatization safety [16, 25, 23]
and a property most existing STMs violate. For Java, we argue
that an STM must respect all these properties to properly adhere
to its memory model and maintain safety and security guarantees.
Moreover, we also show that a weakly atomic, in-place update
STM [3, 1] cannot provide these guarantees. For C++, we reason
that only a subset of these properties need to be observed as the be-
havior of incorrectly synchronized programs can be left undefined.
However, we show that violations of others can still lead to non-
intuitive behavior in the presence of seemingly benign races and
requires STM to impose surprising restrictions on what program-
mers and compilers are allow to do.

Many in the community have proposed that a single global lock
semantics [16, 7], where transaction semantics are mapped to those
of regions protected by a single global lock, provide the most in-
tuitive model for programmers. In this paper, we present a weakly
atomic Java STM implementation that provides these semantics,
obeys all the above safety properties, and permits concurrent execu-
tion. We also propose and implement two alternative semantics that
loosen single lock requirements while still providing privatization
safety, publication safety, and other properties. We compare our
new implementations to previous ones, including a strongly atomic
STM. [23]

1. Introduction
Transactional memory (TM) offers a promising alternative to lock-
based synchronization as a mechanism for managing concurrent
access to shared data. Over the past decade, TM research has
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Initially data = 42, ready = false, val = 0
Thread 1 Thread 2
data = 1; atomic {
atomic { if(ready)
ready = true; val = data;
} }

Can val == 42?

Figure 1. A correctly synchronized publication example

demonstrated how implementers can automatically extract concur-
rency from declarative critical sections and provide performance
and scalability that are competitive with fine-grain locks.

The primary argument for TM, however, is that it eases concur-
rent programming. In order to scale, locks require programmers
to reason about details such as complex fine-grain synchroniza-
tion and deadlock avoidance. Moreover, locks provide only indirect
mechanisms for enforcing atomicity and isolation, placing a greater
burden on the programmer to ensure correctness. TM promises to
automate this process. Recent work has shown how TM can be
tightly integrated into mainstream languages such as C++, Java,
or C# and used as a replacement for lock-based synchronization.

In spite of this, in one respect TM has complicated multi-
threaded programming in these languages. In order to write cor-
rect multithreaded code, programmers must be able to reason about
what observable behaviors are allowable. Outside of TM, there has
been significant progress in the past two decades at simplifying
multithreaded shared memory programming. A consensus has de-
veloped around the notion of correctly synchronized programs. If
the programmer obeys certain conventions, the program is consid-
ered to be correctly synchronized, and the underlying system must
provide strong semantic guarantees. Formal memory models pro-
vide a contract between programmers on the one hand and compiler
and system implementers on the other. For languages such as Java
or C#, memory models also limit the behaviours of incorrectly syn-
chronized code to enable stronger safety and security guarantees.

When transactional memory is added to this mix, there is no
consensus on how it should impact the language memory model.
Many software implementations weaken the underlying memory
model in two ways. First, they might have a stricter notion of what a
correctly synchronized program means. As a result, a program that
is correctly synchronized with locks may no longer be if the lock
regions are replaced with transactions. Second, they often provide
fewer guarantees on incorrectly synchronized code. Programs with
innocuous data races in lock-based code can have surprising and
unexpected results in the corresponding transactional code.
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Initially data = 42, ready = false, val = 0
Thread 1 Thread 2

1: atomic {
2: tmp = data;
3: data = 1;
4: atomic {
5: ready = true;
6: }
7: if(ready)
8: val = tmp;
9: }

Can val == 42?

Figure 2. Publication with a seemingly benign race

Consider a simple publication idiom in Figure 1. The variable
data is initially private to Thread 1 and contains a value (42) that
should not be accessible by other threads. Thread 1 overwrites
this variable (with 1) and only then publishes that variable by
setting the shared variable ready inside a transaction. Thread 2,
inside a transaction, tests the ready variable before accessing the
now public data. If atomic is replaced with synchronized, this
program would be considered correctly synchronized in Java and in
emerging memory models for C and C++. Thread 2 should never
observe the private value 42.

Consider the slightly modified program in Figure 2. Thread 2
now reads data early into the private location tmp. However, that
value is only used if ready is set. Otherwise, tmp is dead and never
accessed again. If the transactions are replaced with locks, it is rea-
sonable to expect the program to run correctly. Nevertheless, most
STMs would produce the value 42 in Thread 2 given the interleav-
ing in Figure 2. As Thread 1 writes data outside a transaction, a
weakly atomic STM would not invalidate Thread 2’s read opera-
tion.

From a legalistic perspective, a C or C++ implementation may
consider this program incorrectly synchronized as, when Thread
2’s transaction is serialized first, there is a clear race on data.
However, from the programmer’s perspective, the value is never
used in this case, and the race should be benign. Java’s memory
model (assuming lock-based semantics) specifically disallows any
execution that produces 42 in Thread 2.

In fact, the situation is worse once we consider reordering in-
troduced by standard compiler optimizations or STM algorithms.
A reordering on a correctly synchronized program such as that
in Figure 1 can inadvertently introducing a race. A compiler may
transform Figure 1 into Figure 2 as part of standard code motion
(e.g., partial redundancy elimination [14] in a production com-
piler would do this if it is deemed safe and profitable). In fact, a
lazy versioning STM may essentially introduce an earlier read de-
pending upon its copy granularity. An STM that creates a shadow
object [28] upon a transactional write may direct later reads to the
copy instead of accessing shared memory.

A clear solution is to provide strong atomicity [3] 1, where non-
transactional memory accesses are analogous to single instruction
transactions and prevented from violating the isolation of trans-
actions. In this model, transactions are strictly more restrictive
than locks and, therefore, provide programmers with sufficiently
strong guarantees. However, strong atomicity typically requires ei-
ther specialized hardware support not available on existing sys-
tems, a sophisticated type system that may not be easily integrated
with languages such as Java or C++, or runtime barriers on non-

1 The term strong isolation is also used in the literature.

transactional reads or writes that can incur substantial cost on pro-
grams that do not use transactions.

An alternative approach in the literature is to provide weak
atomicity, where no general guarantee is made on non-transactional
code, but to augment it to allow idioms such as privatization. In
general, this approach is guided by the principle that, if a program-
ming idiom is correct for locks, it should also be correct for trans-
actions. More precisely, there is a notion that transactions should
behave as lock-based regions based upon a single global lock [16].

In this paper, we take this approach in a more systematic fash-
ion. We explore the impact of TM on data-race free programs and
define the issues that a weakly isolated TM implementation must
address in order to preserve the correctness of such programs. We
also study the impact of TM on incorrectly synchronized programs,
and we discuss how a TM implementation can remain coherent
with a single global lock semantics. In some cases, we discovered
surprising consequences of forcing TM to adhere to standard mem-
ory models. In particular, we make the following high-level contri-
butions in this paper:

• We show that a weak in-place update STM that supports roll-
back cannot adhere to the Java memory model. In particular, we
show that speculative execution can introduce data races into
otherwise race-free executions. We believe that a scalable STM
for Java must either buffer writes or support strong atomicity to
be consistent with its memory model.

• We introduce the notion of publication safety, the dual of priva-
tization. We provide general definitions of both relating to or-
dering constraints between transactional and non-transactional
memory operations. We argue that a Java STM must respect
both publication and privatization safety to maintain correct or-
dering rules.

• We argue that, while a C/C++ STM can avoid handling publi-
cation or speculation problems by leaving the semantics of racy
programs undefined, this approach requires cooperation and ac-
ceptance from programmers and compiler writers. In particular,
we show that seemingly benign data races under locks lead to
non-intuitive behavior under STM.

• We describe a weakly atomic Java STM implementation that
provides single global lock atomicity semantics for transactions.
Our implementation permits concurrency, but it only allows
executions that are consistent (under the Java memory model)
with a semantics where all transactions execute under a single
global lock. We compare this implementation with previous
unsafe weakly atomic and safe strongly atomic Java STMs.

• We describe and implement two weaker semantics: a disjoint
lock atomicity semantics and an asymmetric flow ordering se-
mantics. These semantics weaken the restrictions of single
global lock atomicity to allow greater concurrency. While these
semantics are not as intuitive, we believe that they still permit
a robust subset of programming idioms allowable under single
global lock atomicity including the publication safety example
in Figure 2.

2. Notions of Correctness
Sequential consistency was originally proposed by Lamport [15] as
an ideal model for the correct execution of concurrent programs.
A sequential consistent execution can be defined as one whose be-
havior is compatible with a total ordering over all operations on all
threads that also respects program order for individual threads. This
ordering specifies the behavior of conflicting memory accesses. For
example, a read from a memory location should return the most re-
cent value written into that location in the total ordering. From a
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Globally visible java.util.LinkedList list
Initially list == [Item{val1==0,val2==0}]

Thread 1 Thread 2
Item item; synchronized(list) {
synchronized(list) { if(!list.isEmpty()) {
item = (Item) Item item = (Item)
list.removeFirst(); list.getFirst();
} item.val1++;
int r1 = item.val1; item.val2++;
int r2 = item.val2; }

}
Can r1!=r2?

Figure 3. Thread 1 privatizes the previously shared object item.
Can we safely replace synchronized with atomic?

programmer’s point of view, sequential consistency is both simple
and intuitive.

However, hardware and systems generally consider sequential
consistency to be prohibitively expensive. It disallows even sim-
ple reordering of memory accesses and greatly limits the scope of
compiler and hardware optimization. Instead, researchers and im-
plementers have taken a more balanced approach of guaranteeing
correct behavior for only a subset of programs that are deemed to be
correctly synchronized. In the remainder of this section, we explore
two notions of correct synchronization in the context of STM.

2.1 Segregation
One common notion of correct synchronization for STM is that of
segregation. A program can be defined as segregated if all mutable
shared memory locations are accessed either exclusively inside or
exclusively outside a transaction. In this model, mutable shared
memory is essentially divided into two: a transactional memory and
a non-transactional memory.

For segregated programs, the problems of conflicting transac-
tional and non-transactional code disappears. Moore and Gross-
man [19] show that, under segregation, strong and weak atomic-
ity are in fact semantically equivalent. Languages such as STM
Haskell [9] can enforce segregation in the type system, and, in
such environments, a weakly atomic STM implementation essen-
tially provides strong guarantees.

However, for languages such as Java, C++, or C#, such type
systems are an open research question and don’t yet exist. In STM
implementations for such languages, it is typically the responsi-
bility of the programmer to ensure that the program is segregated.
From a practical standpoint, segregation is not a natural model of
correctness for these languages. First, it is not complete. It provides
no guidelines on correctness of conflicting non-synchronized code.
Second, it is more restrictive than what is allowed under lock-based
synchronization.

As an example, consider the well-known privatization id-
iom [16, 23, 25] in Figure 3. In this code, an item in a shared list is
accessed both inside and outside a synchronized region. However,
since the accesses cannot occur simultaneously, this idiom is con-
sidered correct in Java [18] and in emerging models for C++ [4, 26].
If transactions are to be a semantic improvement on locks, an STM
should provide a guarantee of correctness for a transactional ver-
sion of this idiom as well.

2.2 Data-Race Freedom
For imperative languages, memory models are being developed to
precisely specify ordering relations between synchronizing actions
such as lock acquires and releases or volatile reads and writes. Pro-
grammers can use these actions to constrain reordering of memory

accesses between different threads and, thus, restrict the set of pos-
sible executions. For any given execution, memory models define a
happens-before relation 2 between related synchronization actions
on different threads that, in conjunction with program order, transi-
tively establishes a partial ordering over all operations.

This order allows language designers to denote dangerous con-
flicting accesses in terms of a data race. Specifically, a sequential
execution contains a data race on a memory location loc if and only
if there exist two conflicting accesses on loc that are not ordered by
the happens-before relation. If an execution has no data race on any
location, it is a race-free execution. A program is considered data-
race free if and only if every valid sequential consistent execution
is data-race free. For example, the program in Figure 3 is data-race
free. For any valid sequential execution of the program, there is
a happens-before relation (via synchronization actions and single-
thread ordering) between conflicting field accesses of the item in
Threads 1 and 2. It is important to emphasize that data-race free-
dom is a dynamic property. Statically, the programs in Figures 1
and 3 may appear to be problematic, but, dynamically, no race oc-
curs in any valid execution.

There is an emerging consensus around data-race freedom as a
notion of correctness for imperative languages. More specifically,
recent language memory model work aims to guarantee that any
execution of a data-race free program will be sequentially con-
sistent. For compiler and hardware implementers, this offers con-
siderable flexiblity for program optimization while still preserving
strong correctness guarantees. From an STM standpoint, this pro-
vides significant challenges and surprising restrictions, as we shall
see in the next sections.

2.3 Correctness in the Presence of Data-Races
Language memory models differ significantly on the guarantees
they provide for incorrectly synchronized (i.e., non data-race
free) programs. In Java, concerns of type safety and security are
paramount, and, while there is no guarantee of sequential consis-
tency, there are still strong restrictions on behavior. In C++ and
other non-managed language environments [4, 26], there appears
to be a consensus towards a catch-fire semantics, where the pres-
ence of a single data race removes all guarantees and constraints
on behavior.

From an STM perspective, the practical consequence of this
is that implementations for “safe” (e.g., Java) and “unsafe” (e.g.,
C++) languages must offer fundamentally different guarantees. In
Section 3, we will highlight properties that STM’s must preserve
for both safe and unsafe code.

3. Safety Properties for STM
For STM implementations to provide semantic guarantees that are
at least as strong as locks, they must preserve sequentially consis-
tent semantics for data-race free programs. Additionally, Java im-
plementations must also make guarantees for racy programs.

In particular, Java makes two primary requirements. First, pro-
gram executions must respect both program order (within a sin-
gle thread) and synchronization order (across multiple threads).
This ordering requirement ensures correctness for properly syn-
chronized programs. Second, program executions must not create
values out of thin air. Informally, this ensures that a memory read
will return the value written by some memory write in that execu-
tion (where, to avoid cycles, that write itself was not control de-
pendent on the read). In this section, we will discuss how memory
transactions impact these requirements, and focus upon those issues
that are often problematic for STM implementations.

2 We use Java memory model terminology here. Other emerging memory
models provide a similar ordering relationship.
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Thread 1 Thread 2
1: atomic {
2: S1;
3: }
4: [synchronizing action]
5: S2;

Figure 4. A privatization safety template where a transaction and
synchronizing action are ordered and S1 and S2 conflict.

3.1 Maintaining Ordering
Java STM implementations must respect a happens-before relation
induced by the Java memory model between two operations. In
general, STMs do not directly affect ordering between two non-
transactional memory operations. Any ordering requirements be-
tween non-transactional accesses are left to existing Java mech-
anisms. STMs also are designed to properly handle interactions
between two transactional operations. If two transactional opera-
tions conflict, the STM will detect this and ensure that the trans-
actions are properly ordered. Unsurprisingly, difficulties typically
arise when non-transactional accesses are ordered with respect to
transactional accesses. We break down the corresponding ordering
guarantees into two categories.

3.1.1 Privatization Safety
The privatization problem [16, 24] is well-known among STM
researchers. Figure 3 illustrates the classical privatization problem
when synchronized is replaced by atomic. In this section, we
generalize this as follows.

We define privatization safety as the requirement that an STM
must respect a happens-before ordering relation from a transac-
tional access S1 to a conflicting non-transactional access S2.

Figure 4 illustrates an execution template for privatization safety
where Thread 1’s transaction is executed first, followed by Thread
2’s synchronizing action (e.g., another transaction), and then the
non-transactional operation S2. If the transaction and synchroniz-
ing action are ordered by our semantics, then there is clearly a
happens-before relation from S1 to S2. For example, if S1 is a write
to x, S2 is a read from x, and there is no intervening write to x, then
S2 must read the value written by S1.

Intuitively, the term privatization reflects how this idiom may be
used correctly in a data-race free program. The memory location
x is shared when accessed by S1 but private to Thread 2 when
accessed by S2. An intervening privatizing action ensures that the
location is not accessible by another thread. Figure 3 gives an
example of this where an item is removed from a shared list.

When STM implementations allow conflicting transactions to
overlap, they must take extra precautions to respect privatization
safety. In a write buffering STM, Thread 1’s transaction is ordered
before Thread 2’s transaction if they conflict and Thread 1 reaches
its linearization point (typically the point of final validation) first.
However, because stores are buffered, Thread 1’s modified values
are typically written after this linearization point. To avoid intro-
ducing a race, the STM must ensure that these writes are visible to
S2. In an optimistic in-place update STM, a similar ordering viola-
tion may occur, but now due to an aborted transaction. In this case,
Thread 1’s aborted transaction (and undo write) happens-before
Thread 2’s successful one (as it read earlier state), and there must be
an ordering between the undo write in Thread 1 and any conflicting
access in S2.

As these violations can occur in correctly synchronized pro-
grams (as in Figure 3), there is general consensus that STM im-
plementations must respect privatization safety for both unman-
aged languages such as C++ and managed languages such as Java.

Thread 1 Thread 2
1: S1;
2: [synchronizing action]
3: atomic {
4: S2;
5: }

Figure 5. A publication safety template where a synchronizing
action and transaction are ordered and S1 and S2 conflict.

A number of solutions have been recently proposed in the litera-
ture [24, 25, 27].

3.1.2 Publication Safety
We term the dual to privatization as publication. Just as an ordering
from a transactional access to a conflicting non-transactional access
must be respected, so too must the reverse.

We define publication safety as the requirement that an STM
must respect a happens-before ordering relation from a non-
transactional access S1 to a conflicting transactional access S2.

Figure 5 shows an execution template for publication safety
where S1 is executed first, followed by Thread 1’s synchronizing
action (e.g., a transaction), and then Thread 2’s transaction. If
the synchronizing action and transaction are ordered, there is a
transitive ordering from the non-transactional operation S1 to the
transactional operation S3.

As before, the term publication reflects how this idiom may be
used in practice. In this case, a memory location x may initially
be private when accessed by S1, published by the following trans-
action, and public when accessed by S2. Figure 2 shows a more
concrete example of publication safety and its potential violation.
Suppose we have an execution where Thread 1’s transaction is or-
dered before Thread 2’s. In this case, the execution is data-race
free as there is an ordering between Thread 1’s write to data and
Thread 2’s read. In this ordering, the final value of val must be 1.
However, an STM that allows Thread 2 to read data before Thread
1 begins can inadvertently introduce a race on data and let Thread
2 illegally read a private value (data == 42) from Thread 1 and
write it to val. This interleaving can affect both in-place update
and write buffering STM implementations.

With privatization, violations may occur because transactional
write operations can be delayed by an STM. With publication,
violations may occur because transactional read operations may be
speculated early. In the latter case, however, the program itself has
a data race. In Figure 2, an execution where Thread 2’s transaction
preceeds Thread 1’s has a race on data (albeit a seemingly benign
one if tmp is dead), and thus the program itself is not correctly
synchronized.

In contrast, the similar but correctly synchronized program in
Figure 1 does not suffer a publication problem with the same in-
terleaving. Because of this, an STM implementation can seemingly
ignore publication-safety, but only under the following conditions:

• The programming language does not guarantee correct execu-
tion in the presence of benign races. For example, it does not al-
low the programmer to speculatively read data above the con-
ditional as in Figure 2.

• The compiler does not speculatively hoist memory operations
onto new program paths inside a transaction (e.g., during code
motion or instruction scheduling). If it does, it could hoist the
correctly synchronized read of data in Figure 1 and introduce
a data race as in Figure 2.

• The STM itself does not introduce speculative reads of data in-
side a transaction. For example, STM implementations that cre-

4 2007/11/1



Initially x == y == z == 0
Thread 1 Thread 2 Thread 3

1: atomic {
2: atomic {
3: // open read x, y
4: x++;
5: if(x != y)
6: z = 1;
7: z = 2;
8: y++; *abort*
9: } }

Can z == 0?

Figure 6. A observable consistency example

ate shadow copies of an object or a cache line on write essen-
tially introduce early reads of non-written fields. In Figure 1, a
write to a different field above the conditional in Thread 2 must
not also introduce a speculative read of data that is later used
inside the conditional. This type of speculative read has been
previously referred to as a granular inconsistent read. [23]

The combination of these conditions prevent the early execution
of a read that can in turn lead to an ordering violation. This may
be acceptable in the context of emerging memory models for C or
C++. In the context of Java, however, the first condition is itself too
strict. The Java memory model clearly limits the effect of benign
data races. Moreover, in race-free executions of racy-programs (as
in Figure 2), sequential consistency is still expected. Thus, Java
STMs must explicitly disallow publication safety violations.

3.2 Preventing Values Out of Thin Air
In addition to respecting ordering constraints, STM implementa-
tions must avoid allowing values to appear out of thin air. Here, we
investigate three different safety properties that, when violated, can
lead to values appearing out of thin air. The first two properties are
essential to preserving the correctness of race-free programs and
should be respected by all STM implementations. The last is an is-
sue for incorrectly synchronized programs and leads to important
restrictions on Java STM implementations.

3.2.1 Observable Consistency
An STM observes observable consistency if it only permits side
effects to be observable by other threads if they are based upon a
consistent view of memory.

This condition is a standard STM requirement in unmanaged
platforms. In this context, an inconsistent memory access can lead
to a catastrophic fault (e.g., a read or write to protected memory)
that would never have occurred in a lock-based program. In this
section, we also argue that it is an essential requirement for preserv-
ing the correctness of race-free programs, and, thus, a strict safety
condition that managed STM implementations must also respect.

Consider the program in Figure 6. It is clear that, outside Thread
1’s transaction, the values for x and y should always be equivalent.
Consider, however, an execution by an optimistic in-place update
STM with weak isolation. [1, 10]. In the illustrated interleaving,
Thread 2 records version numbers for x and y without locking those
locations. Thread 1 then locks and writes x. Thread 2 then continues
with the updated x and original y and writes z. The condition
succeeds and the write to z happens only becauses Thread 2 is
viewing an inconsistent state of memory. Thread 2 will eventually
abort when the transaction validates and undo its write to z.

For an unmanaged platform, this is already insufficient. The
write to z could result in a program fault, and it never would

Initially x.g==0
Thread 1 Thread 2

1: atomic {
2: x.f=1;
3: x.g=1;
4: }

Can x.g==0?

Figure 7. A granular safety violation.

have occurred in a non-speculative execution. Recent STMs for
unmanaged platforms prevent this by enforcing a consistent view
of memory before a transactional access. [27]

For a managed platform, faults are not problematic. An error
due to an invalid memory access or execution of an illegal operation
is converted into an exception that an managed STM can lazily
validate and recover from. Nevertheless, inconsistent writes are
problematic. The definition of a correctly synchronized program
is dynamic, and, even though Thread 2 contains an access to z,
it can never occur in a sequentially consistent execution. Thus,
this program is correctly synchronized by the standard definition
of data-race freedom. In this example, our execution introduces a
data-race on z with Thread 3 and can lead to incorrect results.

Because of this, Java STM implementations must ensure that
transactional writes are only observable by other threads if they
reflect a consistent view of memory.

3.2.2 Granular Safety
Granular safety is a well-understood issue in STM implementa-
tions [23]. Granular safety requires that transactional accesses to
one location do not adversely affect non-transactional accesses to
an adjacent location by essentially inventing writes to those loca-
tions out of thin air. If an STM implementation’s granularity of
buffering or logging subsumes multiple fields, it must avoid ob-
servable writes to fields not explicitly written to in the original pro-
gram.

Figure 7 illustrates an example of a granular lost update taken
from Shpeisman et al. [23]. In a buffering implementation, Thread
1 must not overwrite x.g on commit. In an in-place update STM,
Thread 1 must not revert x.g on abort. In either case, failure may
result in losing Thread 2’s update.

Granular safety is clearly a requirement to handle correctly syn-
chronized programs and should be respected by all STM imple-
mentations.

3.2.3 Speculation Safety
The last property that protects against out-of-thin-air values is spec-
ulation safety. Violations of this property lead to speculative dirty
reads and speculative lost updates [23]. In some cases, this leads to
data races in otherwise race-free executions.

Consider the program in Figure 8 executed by an in-place-
update STM. The transaction in Thread 2 initially reads a value
of 0 in x, and updates the value of y. This transaction, however, is
later aborted and restarted. In the process, however, it may clobber
the write of y in Thread 3 and set the value back to 0. On the
second execution, it sees that x == 1, and it writes z = 1 instead
and commits.

Note that there is no valid sequential execution where Thread 2
writes both y and z. The result z = 1 is therefore only consistent
with a race-free execution where no race exists on z. The specula-
tion in Thread 2, however, created a new value (a write of 0) out of
thin air. To be consistent with the Java memory model, an STM im-
plementation must guarantee speculation safety to avoid creating a
data race in a race-free execution.
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Initially x == y == z == 0
Thread 1 Thread 2 Thread 3

1: atomic {
2: atomic {
3: if(x == 0)
4: y = 1;
5: else y = 2;
6: z = 1;
7: x = 1;
8: }
9: *abort*
10: }

Can z == 1 and y == 0?

Figure 8. A speculation safety example

Note, however, that this program is not a race-free program even
though the considered execution does not contain a race. For mem-
ory models that provide no guarantees on a race-free program, there
is no need to respect speculation safety. Any bad behavior can in-
stead be attributed to some racy execution. In contrast, Java’s strong
guarantees still disallow any execution where, for our example, z
== 1 and y == 0.

Speculation safety is not an issue for data-race free programs in
an STM that enforces observable consistency. Informally, we make
the following argument. Because of consistency, a racy access in-
troduced by speculation must be part of some valid execution of
that transaction. Suppose, after the speculative execution of that
racy access, we suspend all other transactions. In our new execu-
tion, the speculative transaction should commit and complete. If the
transactional access was racy in the original execution, however,
it it is still racy in the modified execution. Thus, with observable
consistency, if a speculative execution introduces a data race, the
program must not be data-race free.

3.3 Discussion
We argue that all of the safety properties discussed in the section
must be preserved by a Java STM. To date, the only scalable STM
implementations that meet this criteria are strongly atomic [23]. In
Section 5, we will present a weakly atomic write-buffering STM
that also respects these properties. A important consequence of the
discussion here is that a weakly-atomic in-place-update STM is not
compatible with the requirements of the Java memory model.

If C and C++ communities indeed converge to memory models
are allowed to catch fire on racy programs, then the correspond-
ing restrictions on STM implementations for these languages is
much weaker. Speculation safety is optional (for reasons discussed
above), and publication safety is optional (with the caveats listed
above). A STM implementation that respects observable consis-
tency, granular safety, and privatization safety would be sufficient
for these languages.

4. Transactional Semantics
While the safety properties in the previous section are generally ap-
plicable to STMs, we have left open the exact semantics of memory
transactions, especially with respect to ordering, until here. Precise
ordering rules are necessary, for example, to determine whether a
publication or privatization safety violation occurred. In the context
of Figures 4 and 5, these rules tell us when a transaction must be or-
dered with respect to another transaction (or synchronizing action).
If the semantics requires no ordering, there is no corresponding pri-
vatization or publication safety constraint.

Initially data = 42, ready = false, val = 0
Thread 1 Thread 2

1: atomic {
2: tmp = data;
3: data = 1;
4: atomic { }
5: ready = true;
6: if(ready)
7: val = tmp;
8: }

Can val == 42?

Figure 9. Publication via empty transaction

Initially data = 42, ready = false, val = 0
Thread 1 Thread 2

1: atomic {
2: tmp = data;
3: data = 1;
4: atomic {
5: test = ready;
6: }
7: ready = true;
8: val = tmp;
9: }

Can test == false and val == 42?

Figure 10. Publication via anti-dependence

As examples, consider Figures 9 and 10. In either case, the
transaction in Thread 1 is only part of a publishing action if that
transaction must be ordered with the one in Thread 2.

Other researchers [16, 8, 7] have proposed various semantics
for transactions and how they interact with existing language fea-
tures. In this section, we consider a few different proposals and
introduce a new semantics that is weaker than locks.

4.1 Single Global Lock Atomicity (SGLA)
The simplest and most intuitive semantics is to consider transac-
tions as if executed under a single global lock. [16, 7] We refer to
this semantics as single global lock atomicity (SGLA). With this
model, we can define the semantics of a transactional program to
be equivalent to a corresponding non-transactional program where
every transactional region is converted as follows:

atomic { S; } → synchronized (global lock) { S; }

SGLA is appealing for a number of reasons. First, it matches
our natural understanding of transactions. It provides complete iso-
lation and serializability over all transactions. Second, it provides
sequentially consistent semantics for correctly synchronized code.
It supports correct behavior for race-free idioms in Figure 1 and
3. Third, combined with the strong guarantees of the Java memory
model, it provides an intuitive behavior for programs with races.
For example, it tolerates the benign race in Figure 2 and prevent the
private value from leaking to another thread. Finally, it leverages
years of research into the semantics of lock-based synchronization.

On the other hand, SGLA arguably imposes ordering in situa-
tions where a programmer might not actually expect one. Revisiting
our two examples in Figures 9 and 10, SGLA restrictively imposes
an ordering between the transactions on the left and on the right in
both cases.
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4.2 Disjoint Lock Atomicity (DLA)
An alternative model is to only impose an ordering between trans-
actions that conflict. We refer to this semantics as disjoint lock
atomicity (DLA). With this semantics, we denote two transactions
as conflicting if there exists some memory location loc where one
transaction writes to loc and the other either reads or writes to it.
If no such conflicting access exists, the transactions do not have to
be ordered with respect to each other. If a conflict exists, the trans-
actions are ordered, and a happens-before relation exists from the
end of the first to the beginning of the second. Similar semantics
are suggested by Harris and Fraser [8] and Manson, et al. [7]. 3

Intuitively, under DLA, any transactional execution has a se-
mantically equivalent lock-based one where each transaction is pro-
tected by some minimal set of locks such that two transactions
share a common lock if and only if they conflict. From an order-
ing perspective, all locks are acquired in some canonical order (to
avoid deadlock) at the beginning of a transaction and released at
the end.

DLA is somewhat more difficult to reason about than SGLA.
In contrast to SGLA, we cannot statically construct an equivalent
lock-based program with DLA. First, our semantics are dynamic.
The disjoint “locks” must be determined at runtime to reflect the
data accessed in a given execution. Two different executions of the
same transaction may touch completely different locations. Sec-
ond, our semantics are prescient. The “locks” must be acquired
in some canonical order at the beginning of the transaction to (a)
avoid deadlock and (b) ensure that conflicting transactions do not
overlap from the perspective of external observers (e.g., via non-
transactional memory accesses). In practice, for non-trival transac-
tional regions, it is undecidable to determine what data and locks
would be required ahead of time.

Nevertheless, we believe that DLA is still relatively intuitive for
programmers to reason about. As with SGLA, it provides familiar
guarantees for programmer familiar with locks and leverages years
of research into the semantics of locks. We believe that for race-free
programs, SGLA and DLA allow for the same set of observable
behaviors. On the other hand, DLA provides weaker guarantees in
the presence of races. For example, it allows the results prohibited
by SGLA in Figure 9. But, it provides equivalent guarantees for the
racy programs in Figures 2 and 10.

4.3 Weaker Than Locks
Manson et al. [7] propose two different semantics for transactions
that are weaker than DLA or SGLA. In their first proposal, which
they label a write →hb read semantics, two transactions are or-
dered by a happens-before relationship only if the first writes a
value read by the second. Intuitively, transactions are only ordered
if a data may flow from the first to the second. In this way, trans-
actions behave similarly to volatile accesses, where a volatile write
can only be source of a happens before relation, and a volatile read
can only be the target. In their second proposal, they strengthen
these semantics with an additional prewrite rule that prohibits cer-
tain executions. Unlike DLA or SGLA, neither semantics require an
implementation to disallow the results shown in Figure 10. Under
these semantics, a read-only transaction cannot act as publishing
action, and, as far as we are aware, this is consistent with common
usage.

On the other hand, both semantics appear to allow nonintuitive
results for privatization. In Figure 3, Thread 2 executes before
Thread 1, and both have conflicting accesses to list. However,
Thread 2 only reads list to access its first item. In both of the
weaker semantics proposed by Manson et al., there is no happens-

3 DLA is essentially the same as the weakest “conflicting regions” semantics
defined by Manson, et al.

before relation between the two transactions, and Thread 1 cannot
assume private access to item once it is removed from the list.
Because of this, we do not believe these semantics are strong
enough for languages such as C or Java that allow privatization
under locks.

4.3.1 Asymmetric Flow Ordering (AFO)
The above semantics provide generally uniform ordering rules for
memory access operations regardless of whether they are transac-
tional or non-transactional. Transaction boundaries are used to es-
tablish happens-before and other relations between accesses, but
once this is done, the ordering constraints are the same regardless
of whether an access is transactional. Moreover, the corresponding
restrictions on the values a read operation may observe are the same
regardless of whether the read is transactional. Because of this, se-
mantics that weaken publication ordering (and the values read by
corresponding transactional reads) also inadvertantly weaken pri-
vatization ordering (and the values of non-transactional reads).

We can avoid the problem above by introducing different rules
on observable values for transactional and non-transactional read
operations. We refer to these semantics as asymmetric flow order-
ing (AFO). Informally, these semantics are similar to DLA, but
weakens the constraints on transactional reads to permit them to
see earlier values under certain conditions.

More formally, we can define AFO in terms of the happens-
before (→hb) and prewrite (→pw) relations defined by Manson et
al. [7] for their prewrite ordering semantics discussed above. In
contrast to prewrite ordering, however, we enforce stricter rules
on observable values for non-transactional reads. Under AFO, a
non-transactional read r may observe a write w unless r(→hb

∪ →pw)w or there exists a w′ such that w(→hb ∪ →pw)w′(→hb

∪ →pw)r. On the other hand, a transactional read r may observe
a write w unless r(→hb ∪ →pw)w or there exists a w′ such that
w(→hb ∪ →pw)w′ →hb r.

From a practical perspective, this allows a transactional read to
observe the value of an earlier write w and ignore an intervening
w′ under certain conditions. More generally, this does not allow a
read-only transaction to act as a publishing action as suggested by
Figure 10, but does support the publication idioms in Figures 1 and
2 as well as all privatization idioms.

As far as we are aware, there are no other published semantics
that are weaker than DLA yet strong enough to support common
privatization idioms. While AFO is admittedly more complex than
DLA or SGLA, it appears to correctly handle idioms that reflect
common usage with fewer additional constraints. In the next two
sections, we will discuss how this affects the scalability of STM
implementations.

4.4 Interactions in the Language
4.4.1 Native methods, I/O, and Irrevocable Actions
Lock-based semantics provide a natural semantics for native meth-
ods, I/O, or other difficult-to-undo actions inside transactions,
should we choose to allow them. Implementing semantics for such
actions, however, may require falling back onto a single global lock
or other specialized behavior. [2] These are largely orthogonal to
the issues discussed in the paper, and we do not explore this further
here.

4.4.2 Volatiles and visibility
Lock-based semantics do give us flexibility when considering in-
teractions with other synchronization constructs. For example, the
values of volatile writes are typically made immediately visible
to other threads. When volatile writes are embedded inside trans-
actions, it is not clear whether visibility of the volatile should
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Initially x=y=0, x,y are volatiles
Thread 1 Thread 2
atomic {
S1: x=1; S2: while (x == 0) {}
S4: while (y == 0) {} S3: y = 1;
}

Figure 11. Volatiles in transactions: is it legal for this program to
deadlock?

take precedence over the isolation of the transaction from non-
transactional code; see Figure 11. The Java memory model makes
no fairness guarantees, however, and it is thus legal to publish
volatile writes only when the transaction commits.

Alternatively, we can treat volatile accesses as I/O operations as
discussed above. In this case, volatile writes may become imme-
diately visible, but at the cost of limiting concurrent execution of
other transactions.

4.4.3 Advanced Transactional Features
Unsurprisingly, lock-based semantics do not provide a natural se-
mantics for transactional language constructs beyond atomic. For
example, they define no intuitive semantics for explicit rollback
(e.g., retry and orelse [9]) or for selective violation of trans-
actional isolation (e.g., open nesting [20]). For now, we leave these
features to future work.

5. A Weakly Atomic Implementation
In this section, we present a weakly atomic Java STM system
that enforces lock-based semantics for both correctly and incor-
rectly synchronized programs. Our TM implementation builds
upon an earlier software stack [1, 23] that provides both weakly
and strongly isolated update-in-place transactional memory imple-
mentations. As with those implementations, we rely on optimistic
read versioning, encounter time 2-phase locking for writes, read-
set validation prior to commit, and conflict detection at either an
object or block granularity. However, we fundamentally altered our
new TM implementation to enforce the safety properties discussed
in the previous section.

5.1 Write Buffering
Our weakly atomic implementation is a canonical write-buffering
STM similar to those described by Harris and Fraser [8] and in
TL2 [5]. Each transactional write is buffered into thread local data
structures. A transactional read must check these data structures
before accessing the shared heap to ensure that it obtains the correct
value. Writes acquire a lock at encounter time and record that
fact. Reads add a new entry to the transactional read set. Before a
transaction commits, it must validate the read set. If the transaction
is valid, it copies all buffered data into the shared heap and releases
all write locks. Note, to provide granular safety, only modified
locations are written to the heap. If the transaction is invalid, it
discards its local buffer and restarts the transaction.

As in TL2 [5], we use a global linearization timestamp, and
we generate a local timestamp for each transaction immediately
prior to validation by incrementing the global one. TL2 assumes a
segregated memory (as described in Section 2), and in this case, the
local timestamp ordering directly reflects the serialization order of
the transactions. The point at which a transaction generates its local
timestamp is sometimes referred to as its linearization point.

Unlike TL2, we do not use this timestamp to enforce observable
consistency prior to potentially unsafe operations (such as reads
or writes to the heap). In Java, this is unnecessary as exception

handling allows us to trap all faults (i.e., no faults are catastrophic),
and we can rely on buffering of writes to delay those operations
until the state is consistent. Instead, we use timestamps to enforce
publication and privatization safety, as discussed below.

We use a commit log to buffer writes. To ensure that field reads
within transactions see the correct values, we must also add code
that checks the commit log for any writes to the same address.
Because we use encounter-time locking, this only needs to be done
when we read data that we’ve already locked.

Our basic write buffering implementation guarantees that values
do not appear out of thin air. It maintains observable consistency,
granular safety, and speculation safety. Below, we discuss how we
augment our implementation to enforce ordering properties.

5.2 STM Barriers for Volatiles and Locks
As in Harris and Fraser [8], we enforce ordering on non-transactional
volatile and lock operations by essentially treating them as single
operation transactions. For example, to execute a non-transactional
synchronized region, we acquire the lock as a transaction, execute
the body non-transactionally, and release the lock as a transaction.

Initially x=y=0, y is volatile
Thread 1 Thread 2
atomic {
x=1; if (y == 1)
y=1; t=x;
}

Is t==0 legal?

Figure 12. Privatization via a volatile

Treating all synchronizing actions as transactions simplifies our
implementation and, below, our enforcement of publication and
privatization safety. Figure 12 illustrates a privatization example
where ordering is imposed by Thread 2’s volatile read of y. Because
we treat this read as, essentially, a small transaction, it matches our
template in Figure 4 and is handled by our solution below.

5.3 Commit Linearization for Privatization
In a write buffering STM, writes are performed after the lineariza-
tion point. Unless we prevent it, these transactional writes can in-
advertantly race with non-transactional accesses on another thread
leading to privatization safety violations. For example, in Figure 3,
Thread 2’s writes to item.val1 and item.val2 are made vis-
ible after the linearization point and, thus, may race with non-
transactional reads in Thread 1.

Privatization solutions for write buffering have been proposed
in the literature [25]. Solutions that avoid non-transactional barri-
ers essentially implement commit linearization, a simple form of
quiescence that ensures that transactions complete in linear order.

In our implementation, shown in Figure 13, we adopt this ap-
proach by recording when a transaction has reached its lineariza-
tion point in a shared data structure (commitStampTable). After a
transaction has published all its buffered values to shared memory,
it signals that it is done by setting its entry to MAXVAL, it releases
its locks, and it iterates over other threads in the system waiting
for their completion. On abort, it does not have to wait as no trans-
actional writes are actually published, and there is no ordering to
enforce.

Commit linearization enforces privatization safety by creating
an explicit ordering from the end of a transaction to any follow-
ing synchronizing action on another thread (i.e., the privatizing ac-
tion), and transistively, from a transactional write (performed be-
fore transaction end) and a non-transaction read (performed after
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TxnCommit(desc){
mynum = getTxnNextLinearizationNumber();
commitStampTable[desc->threadid] = mynum;

if(validate(desc)) {
// commit: publish values to shared memory
...
commitStampTable[desc->threadid] = MAXVAL;
// release locks
...
Quiesce(commitStampTable, mynum);

} else {
commitStampTable[desc->threadid] = MAXVAL;
// abort : discard & release
...

}
}

Quiesce(stampTable, mynum) {
for(id = 0; id < NumThreads; ++id)
while(stampTable[id] < mynum)

yield();
}

Figure 13. Commit linearization

TxnStart(Descriptor* desc) {
mynum = getTxnNextStartNumber();
startStampTable[desc->threadid] = mynum;
...

}

TxnCommit(desc){
startStampTable[desc->threadid] = MAXVAL;
Quiesce(startStampTable, mynum);
...

}

Figure 14. Start linearization

the privatizing action). Because we treat volatiles and lock opera-
tions transactionally, our approach safely covers any ordering ac-
tion.

5.4 Start Linearization for Publication Safety
In a write buffering STM, read operations are performed before the
linearization point. Although they are validated afterward, a weakly
atomic STM’s validation process will not detect conflicts due to
non-transactional accesses. For example, Thread 1’s transactional
read of data in Figure 2 is performed before Thread 1’s transaction
(which linearizes first), but validation will not detect the conflict
with Thread 1’s non-transactional write of the same field.

To enforce publication safety, we implement start linearization.
As above, start linearization is another form of quiescence. In this
case, however, we ensure that start order matches linearization
order. We set the linearization timestamp when a transaction begins.
When a transaction reaches its linearization point, it must wait its
turn to proceed. This ensures that it will not indirectly publish
the result of a non-transactional write. In Figure 2, Thread 1’s
transaction will wait on Thread 2’s transaction before it linearizes,
which, in turn, prevents Thread 2 from reading an updated value
from ready (which would still be in Thread 1’s buffer).

Figure 14 provides high-level pseudocode for start linearization.
Start linearization enforces publication safety by creating an ex-
plicit ordering from a synchronizing action (i.e., the publishing ac-
tion) on one thread and the start of a transaction on another. This,
in turn, enforces a runtime ordering between a non-transactional
access (before the publishing action) and a following conflicting
transactional access (after transaction start).

5.5 Enforcing Disjoint Lock Atomicity
We argue that the above mechanisms provide disjoint lock atomic-
ity semantics for transactional Java programs. Write buffering en-
sures that values are never created out of thin air. Commit and start
linearization enforce privatization and publication safety and avoid
ordering violations.

More subtly, transactions that conflict are properly ordered. For
these transactions, the start order, linearization order, and com-
mit order are the same. To understand this, consider the point
in TxnCommit immediately after a transaction quiesces on the
startStampTable but before it acquires a linearization number.
If one transaction starts before the second but commits after it, due
to start and commit linearization, both transactions must have si-
multaneously been at this point. In other words, the first transac-
tion quiesced first on startStampTable, but the second overtook
it acquire an earlier linearization number. However, if two transac-
tions conflict then a record in the write set of one must be in either
the write set of the other (which cannot happen simulataneously) or
the read set of the other (which will trigger a validation failure and
abort).

The start and linearization numbers for transactions combine
to define a partial ordering. If the start number and linearization
number of one transaction are less (greater) than the corresponding
start number and linearization number of another, then the first
is ordered before (after) the second. If the start and linearization
orders do not match, the transactions are not ordered with respect
to each other and, as argued above, cannot conflict.

In a race-free program, our implementation ensures sequential
consistency. Intuitively, our base STM ensures that no data conflicts
exist between overlapping transactions. Additionally, it ensures that
start, linearization, and commit points are already in the properly
order for conflicting transactions. Thus any interleaved execution
can be transformed to an equivalent non-interleaved execution that
respects the partial order above. This transformation can be accom-
plished by a series of transpositions of adjacent operations. The
adjacent operations that must be swapped are guaranteed to be in-
dependent (by the STM if transactional and by data-race freedom
if not) and, thus, the transformation does not alter the semantics of
the original execution.

In a racy program, our implementation still observes the Java
memory model. By similar reasoning, we can again convert an in-
terleaved execution to an equivalent non-interleaved one. In this
case, however, the Java memory model [18] gives us the flexibil-
ity to transpose conflicting memory accesses without altering the
values that they read or write when the accesses race. In other
words, a read may return the value of any write with which it has
no happens-before relationship; it is not restricted to the value of
the last write in the execution.

5.6 Enforcing Single Global Lock Atomicity
The mechanisms described above are not sufficient to enforce sin-
gle global lock atomicity. Consider the example in Figure 15. Since
the transactions are independent, then, as described above, Thread
1’s transaction may start after Thread 2’s, but complete before. As
a transaction’s reads occur before the linearization point and writes
occur after, this can effectively lead to the interleaving shown in
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Initially x = y = 0
Thread 1 Thread 2

1: atomic {
2: t1 = x;
3: x = 1;
4: atomic { z = 1;}
5: t2 = y;
7: y = 1;
8: }

Can t1 == 0 and t2 == 0?

Figure 15. Disjoint lock atomicity != Single global lock atomicity

TxnStart(Descriptor* desc) {
mynum = getTxnNextLinearizationNumber();
startStampTable[desc->threadid] = mynum;
...

}

TxnCommit(desc){
mynum = startStampTable[desc->threadid];
startStampTable[desc->threadid] = MAXVAL;
Quiesce(startStampTable, mynum);
commitStampTable[desc->threadid] = mynum;

if(validate(desc))
...

}

Figure 16. Total linearization: start and commit linearization are
interlocked

Figure 15. This interleaving is allowed by DLA but disallowed by
SGLA.

To enforce SGLA, we make a simple modification to tightly
couple start and commit linearization, as shown in Figure 16. We
refer to this as total linearization. In this case, we use a single lin-
earization number and require that all transactions start, linearize,
and complete in the same order regardless of whether they conflict.
The arguments for race-free programs (sequential consistency) and
racy programs (consistency with Java’s memory model) are essen-
tially the same as before, but we now have a total order over all
transactions.

In contrast to an implementation that explicitly uses single
global locks, our SGLA implementation allows concurrent exe-
cution of transactions in a staggered, pipelined fashion.

5.7 Enforcing Asymmetric Flow Ordering
For DLA and SGLA semantics, start linearization provides a con-
servative mechanism to enforce publication safety. From an imple-
mentation standpoint, read-only publishing actions force a conser-
vative approach. In most scalable STM systems, read operations
are invisible. When a transaction reads a value, it does not acquire
a shared lock or otherwise communicate its read operation to other
threads. Under DLA or SGLA, however, read operations (as in Fig-
ure 10) can serve as publishing actions and invalidate transactional
accesses on another thread. Start linearization prevents ordering vi-
olations by forcing threads to wait.

Under asymmetric flow ordering semantics, however, a read op-
eration cannot serve as a publishing action. As a result, an AFO im-
plementation can rely upon a lighterweight mechanism to enforce
publication safety. Figure 17 illustrates how we modified our DLA
implementation to provide AFO semantics instead by performing

TxnStart(Descriptor* desc) {
desc->startTimestamp = getTxnNextStartNumber();
...

}

TxnOpenForRead(Descriptor* desc, TxnRec * txnRec) {
if (txnRec->isTimeStamp() &&

txnRec > desc->startTimestamp) {
txnAbort(desc);

else {
...

}
}

TxnOpenForWrite(Descriptor* desc, TxnRec * txnRec) {
if (txnRec->isTimeStamp() &&

txnRec > desc->startTimestamp) {
txnAbort(desc);

else {
...

}
}

TxnCommit(Descriptor* desc){
mynum = getTxnNextLinearizationNumber();
commitStampTable[desc->threadid] = mynum;

if(validate(desc)) {
// commit: publish values to shared memory
...
commitStampTable[desc->threadid] = MAXVAL;
// release locks
for (all txnRec in write set)
txnRec = desc->startTimestamp;

...
Quiesce(commitStampTable, mynum);

} else {
commitStampTable[desc->threadid] = MAXVAL;
// abort : discard & release
...

}
}

Figure 17. Lazy start linearization for AFO

lazy start linearization. First, to support lazy start linearization, we
must directly record global timestamps on transactions records (as
in TL2 [5]) instead of independent data-specific version numbers.
On commit, a transaction records its unique start timestamp on all
data it has written. Second, on a read or write operation, a trans-
action must check that the corresponding transaction record does
not contain a timestamp for a transaction that started after it did.
Under AFO, a publication violation can only occur if a transaction
record contains a newer timestamp. Due to the check on read and
write operations, no further quiescence is required on commit for
start linearization. As privatization constraints are unchanged, qui-
escence for commit linearization is still performed.

6. Experiments
In this section, we evaluate our new weakly atomic implementation
and compare it to our earlier implementations of weak and strong
atomicity [1, 23] in a Java system. We performed our experiments
on an IBM xSeries 445 machine running Windows 2003 Server
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Enterprise Edition. This machine has 16 2.2GHz Intel R© Xeon R©
processors and 16GB of shared memory arranged across 4 boards.
Each processor has 8KB of L1 cache, 512KB of L2 cache, and
2MB of L3 cache, and each board has a 64MB L4 cache shared by
its 4 processors. In all experiments, we use an object-level conflict
detection granularity in our STM. We also do not use any offline
whole program optimizations [23].

We evaluate eight different variants altogether:

• Synch represents the original lock-based version using Java
synchronized with no transactions or STM barriers.

• WeakEager is our weakly atomic, in-place update STM.[1] It
provides granular safety, but no other safety properties.

• WeakLazy is our baseline write buffering STM described in
Section 5.1. In addition to granular safety, it also provides
observable consistency and speculation safety.

• WeakLazyCL adds privatization safety to the above via com-
mit linearization, as describe in Section 5.3.

• WeakLazySGL adds publication safety to the above via start
linearization, as described in Section 5.4, and interlocks the two
to provide single global lock semantics as discussed in Section
5.6.

• WeakLazyDL weakens the above to provide disjoint lock se-
mantics, as described in Section 5.5.

• WeakLazyAFO weakens the above further to provide asym-
metric flow ordering semantics by combining commit lineariza-
tion with lazy start linearization, as described in Section 5.5.

• StrongEager is our strongly atomic, in-place update STM.[23]
It provides all of the above safety properties as well as strong
isolation between transactional and non-transactional code via
non-transactional barriers.

Of these variants, only WeakLazySGL and StrongEager provide
semantics at least as strong as a single global lock while enforce
safety properties. Additionally, WeakLazyDL and WeakLazyAFO
show the potential performance effects of weaker semantics that
still provide some measure of safety. We compare these variants on
the following workloads.

Figures 18,19 and 20 show the results of our experiments.

6.1 TSP
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Figure 18. Tsp execution time over multiple threads

TSP is a travelling salesman problem solver. Threads perform
their searches independently, but share partially completed work.
The workload is fine-grained and already scales with locks. In-
terestingly, the workload contains a benign race where a shared

variable representing the current minimum is monotonically decre-
mented in a transaction, but read outside. As far as we can tell, our
weak implementations execute correctly, even though our weakest
implementation may cause threads to inadvertantly see this variable
increase (due to speculation and rollback).

The overhead of weakly atomic implementations is low as rela-
tively little time is spent inside of transactions. However, our Weak-
Lazy implementation does not scale quite as well. The additional
cost of commit linearization and start linearization is neglible. Our
StrongEager implementation suffers from significant overhead on
a single thread, but scales well and actually provides slightly better
performance than WeakLazySGL at 16 processors.

6.2 java.util.HashMap
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Figure 19. HashMap execution time over multiple threads

HashMap is a hashtable data structure from the Java class li-
brary. We test it using a driver execution 10,000,000 operations
over 20,000 elements with a mix of 80% gets and 20% puts. The
work is spread over the available processors, and little time is spent
outside a transaction. The workload is coarse-grained; the synchro-
nized version uses a single lock on the entire data structure and
does not scale at all.

As most of the time is spent inside a transaction, the overhead of
strong atomicity is minimal. The differences between our WeakEa-
ger, WeakLazy, and StrongEager are fairly small. All scale well to
16 processors. However, the cost of commit and start linearization
is significant as the number of processors increases. At 16 proces-
sors, our WeakLazySGL implementation is significantly worse than
StrongEager and even Synch. Although WeakLazyDL weakens the
constraints of WeakLazySGL, it provides no performance benefit.
In contrast, WeakLazyAFO is at least competitive with Synch and
demonstrates the benefit of lazy start linearization. Nevertheless, it
too does not scale well due to commit linearization.

6.3 java.util.TreeMap
TreeMap is a red-black tree from the Java class library. We use the
same driver and parameters as above. In comparison to HashMap,
transactions are larger as individual puts and get are O(log(n))
rather than O(1). Figure 20 shows the results for this bechmark.
Qualitatively, the results are similar. However, in this case, Weak-
LazyCL and WeakLazySGL scale well to 4 processors and degrade
quickly afterward. As before, our WeakLazySGL implementation
is significantly worse than StrongEager and Synch at 16 processors.
In this case, both WeakLazyDL and WeakLazyAFO decay notice-
ably more slowly than WeakLazySGL. Both are faster than Synch
at 16 processors.
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Figure 20. TreeMap execution time over multiple threads

6.4 Discussion
Our two safe implementations (WeakLazySGL and StrongEa-
ger) both impose significant costs to provide safety guarantees.
However, the two variants show complementary strengths and
weaknesses. StrongEager suffers from significant single thread
overhead, but scales quite well with multiple processors. Weak-
LazySGL provides more reasonable single thread performance,
but, when stressed with a constant stream of transactions, suffers
from serious scalability issues due to commit and start lineariza-
tion. While weakening the semantics (via WeakLazyDL or Weak-
LazyAFO) alleviates these concerns, it does not remove them.

7. Related Work
The concepts of transactional memory (TM) and software transac-
tional memory (STM) were introduced by Herlihy and Moss [13]
and Shavit and Touitou [22] respectively. As the research in STM
matured, a new focus was placed on language integration. Harris
and Fraser [8] present a thorough discussion of how transactions
in their system should interact with existing Java language mech-
anisms, including native methods, existing synchronization con-
structs and the Java memory model. However, in their system they
only provide consistency guarantees for programs that are correctly
synchronized: all data accesses to shared locations must be either
guarded by transactions or by mutexes, or locations must be marked
as volatile. As far as we are aware, they did not address issues such
as privatization or publication. Similarly, Welc et al. [28], in their
attempt to reconcile differences between transactional semantics
and the semantics of mutual-exclusion locks, restrict the set of pro-
grams their system would execute correctly to those that satisfy a
set of safety criteria, including race-freedom. Other work [17] has
investigated atomicity semantics from an architectural standpoint.

An alternate approach has been to integrate STM into a lan-
guage whose type system can be leveraged to precisely control in-
teractions between transactional and non-transactional code – an
example of such integration in the context of Haskell has been
presented by Harris et al. [9]. Moore and Grossman [19] demon-
strate that such systems provides strong guarantees. Other alter-
native approaches include STM systems having segregated (into
transactional and non-transactional) view of shared data [5] or im-
plemented as language-level libraries [12] where issues such as
treating transaction boundaries as memory fences do not appear at
all.

The notions of weak and strong atomicity were introduced by
Blundell et al. [3], who also demonstrated that standard software
implementations of STM provided different semantics than locks.

Shpeisman et al. [23] described the first scalable STM system
supporting strong atomicity. In a similar vein, privatization [16] has
been recognized as a serious problem in weakly atomic systems
allowing interactions between transactional and non-transactional
code – techniques close to our commit linearization have been
proposed [25, 27, 23] as a solution to the privatization problem.
As far as we know, there has been no similar work for publication.

Different STM implementation techniques have significant im-
pact on what types of guarantees these systems provide with re-
spect to interaction between transactional and non-transactional
code. Buffered STMs [8, 5, 29, 28, 6, 11] provide speculation safety
by limiting visibility of transactional writes until commit time. In-
place update STMs [23, 10, 21] obtain lower performance over-
heads at the cost of weaker guarantees for non-transactional code.

8. Conclusions
In this paper, we have discussed the implications of lock-based se-
mantics for software transactional memory. We have presented a
systematic categorization of safety properties that STMs often vio-
late. We have presented a weakly atomic Java STM that implements
a single global lock semantics, and we have evaluated it against a
strongly atomic Java STM.

We argue that, for unmanaged languages such as C++, an ap-
proach that enforces only observable consistency, privatization
safety, and granular safety is sufficient. In particular, if an STM
is observably consistent, we have shown that speculation safety
is only an issue for incorrectly synchronized programs. However,
programmers and compiler writers must be educated on the impli-
cations of STM and understand that even benign races are harmful.
Moreover, ordering interactions between transactions and legacy
synchronization (e.g., volatiles and locks) need to be better under-
stood.

For Java and other managed languages that enforce strong guar-
antees for even incorrectly synchronized program, we demonstrate
that a weakly atomic in-place update STM is insufficient. While
we show that safety properties can be preserved in a weakly atomic
write buffering STM, there are significant costs. Our results sug-
gest that more research is needed to improve the performance of
both strong and weak atomicity and on acceptable weaker seman-
tics that provide the desired safety and security guarantees of man-
aged languages while allowing aggressive STM implementations.
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