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Abstract

Key Violations often occur in real-life datasets, especially in those integrated
from different sources. Enforcing constraints strictly on these datasets is not fea-
sible. In this paper we formalize the notion of soft-key constraints on probabilistic
databases, which allow for violation of key constraint by penalizing every violat-
ing world by a quantity proportional to the violation. To represent our probabilistic
database with constraints, we define a class of markov networks, where we can do
query evaluation in PTIME. We also study the evaluation of conjunctive queries on
relations with soft keys and present a dichotomy that separates this set into those
in PTIME and the rest which are #P-Hard.

1 Introduction
Soft constraints are emerging as a promising approach to cope with various kinds of
uncertainty in data, as found in many modern applications. Soft constraints have been
used to enhance the quality of information extraction [25], of object reconciliation [26,
18], in query optimization [16], and in data cleaning [13].

While discovering soft constraints is possible today given advances in machine
learning, using the soft constraints during query processing over large volumes of data
is much harder. Current approaches to probabilistic inference are based either on Monte
Carlo Markov Chain [22] or on message passing [6], and these do not scale to large
volumes of data. The main problem that prevents us from adopting soft constraints is
the lack of scalable query processing techniques in the presence of soft constraints.

In this paper we study soft key constraints, or soft keys in short, and examine the
query evaluation problem: evaluate a Boolean conjunctive query on a database given a
set of soft keys. We interpret soft keys using Markov Networks whose potential consists
of two parts, one that depends on individual tuples, and the other that depends only on
the number of tuples that have the same key; such potentials have been recently studied
in [15]. Our soft keys are in fact general cardinality constraints. We define query
evaluation as computing the marginal probability of the query, which is the common
semantics in probabilistic databases [2, 11, 4, 8]: this is different from computing the
most likely world, a problem studied in [15].



While general query evaluation on probabilistic database is known to be #P-hard,
even without soft keys [8], we identify two cases that are tractable and describe two
polynomial time algorithms for evaluating conjunctive queries in the presence of soft
key constraints: to our knowledge these are the first provably tractable algorithms in
the presence of any soft constraints. Our first algorithm applies to queries over a single
relation, in the presence of multiple soft keys. Our second algorithm applies to con-
junctive queries over multiple relations, with multiple soft keys. In both cases we also
establish a dichotomy: if our algorithms do not apply then we can show, under certain
assumptions, that the query is #P-hard.

Our analysis is similar in spirit to a previously known dichotomy result for query
evaluation on disjoint/independent probabilistic databases [8], which can be thought
of as probabilistic databases with hard key constraints. That result defines a syntactic
condition on the query, called safety, then proves that every safe query can be evaluated
in PTIME and that every unsafe query is #P-hard. In our work we also define a syntactic
safety condition for queries in the presence of soft keys. Then we show that a query
is safe in the presence of soft keys iff it remains safe after making every key either
hard, or removing it altogether, in all possible ways. The intuitive significance of this
connection is the following: by varying the weight attached to a soft key one can
either make it hard or remove it completely, and therefore any PTIME algorithm that
can handle soft keys needs to be able to handle these extremes. However, the PTIME
algorithm that we describe in this paper in the presence of soft keys is significantly
more difficult than the previous algorithm for safe queries. This is by necessity: even
one soft key makes query evaluation much more difficult, and the interaction between
multiple soft keys on the same table adds even more complexity.

1.1 Motivating Example
To motivate our work, we illustrate with a concrete problem: duplicate elimination in
dirty data. This occurs frequently in data integration because of different representation
conventions, or simply because of typos, and results in key violations: a person has
multiple addresses, a company has multiple CEO’s, a scientific paper has multiple years
of publication. Andritsos et al. [13] have proposed a probabilistic approach to answer
queries directly on the dirty data. They assign to each duplicate tuple a probability,
such that the probabilities for the same key sum up to 1. For example, consider a
relation Person(name, city), where we define name to be a key. If we find two
tuples with the same name, say (Joe, Seattle) and (Joe, Whistler) then
we have a key violation: the approach in [13] is to assign to each tuple a probability,
say 0.5, indicating that only one tuple may be present in a clean instance. While this
approach uses probabilities, the key constraint is hard: in each possible world only one
of the two tuples may be present.

With a soft key, we can relax the constraint, by allowing a possible world to contain
multiple occurrences of the same key, but by assigning a certain penalty for multiple
occurrences. There are two reasons why we need such a relaxation. First is that con-
straints are learned from training data, rather than stated by an administrator, and these
are always “soft”. For example, in the case of historical data, a person’s address is
not unique at all ! A machine learning tool may infer, for example, that people over
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Person:
Name City W

t1 Joe Seattle w1 = 4
t2 Joe Whistler w2 = 3
t3 Frank Seattle w3 = 0
t4 Frank Paris w4 = −2
t5 Frank Honolulu w5 = 1
t6 Sue Portland w6 = 0
t7 Sue Whistler w7 = −1
t8 Lisa Paris w8 = 3
t9 Lisa Milan w9 = −1
t10 Lisa Saint Malo w10 = −1

Figure 1: A probabilistic relation given by weights

SOFT KEY x ON Person(x,y)
SIZE 2 WEIGHT -4;

SOFT KEY ON Person(Frank,y)
SIZE 2 WEIGHT 4
SIZE 3 WEIGHT -3;

SOFT KEY x WHERE Income(x,z), z > 1M
ON Person(x,y)
SIZE 2 WEIGHT 3
SIZE s WHERE s > 2 WEIGHT -2*s

Figure 2: Soft key constraints for Person

50 years old typically have 6 addresses, because they moved in the past, while people
under 25 typically have 1 address. Such detailed statistical information about the data
can be represented using our notion of soft keys.

Second, by ignoring the “softness” of a key, we get wrong query answers. For ex-
ample, assume that most people have a single residence, but wealthy people may have
a second vacation home, and perhaps a third small apartment in a big city. Consider a
user who integrates Person(name, city)with Hobby(name, hobby), search-
ing for cities likely to host skiers:

q(y) :- Person(x,y), Hobby(x, ’Ski’)

Whistler is a popular ski resort in Canada, but very few people actually live there.
However, many wealthy people have a condo or a vacation home in Whistler. With
a hard key constraint, all these entries appear to the system to be wrong, and it will
decrease their probabilities: other cities will rank higher than Whistler, only be-
cause the system found fewer key violations for those cities. In fact, a probabilistic
database system that returns only the top k most likely answers [19] may not retrieve
Whistler at all.

Our approach is to use soft keys instead of hard keys; we illustrate it in Figure 1.
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Person is a probabilistic database [8], where instead of probabilities we indicate the
weight of each tuple1. As in [13], we can assign different weights to different tuples
to indicate our belief in the quality of the data that produced each tuple. However,
unlike [13] tuples with the same key are not disjoint: keys are “soft”. In our approach
the soft keys are specified separately, using a declarative language that is illustrated in
Fig 2. The first constraint says that two cities for the same person should be penalized
with a weight w = −4. The second constraint defines two soft keys. One says that
Frank is allowed to have two cities: its weight w = 4 cancels the weight of the first
soft key. The second penalizes with a weight -3 if 3 tuples are found with the key
Frank. The next soft key says that wealthy people are actually more likely to have
two homes, then gives a formula on how to decrease their weight as function of the
number of homes. Together, these soft keys capture our statistical knowledge about the
data, and need to be used during query evaluation. For example, the query q above will
return Whistler with a much higher probability, because the wealthy people that
have vacation homes are no longer considered errors by the system.

Organization We give the basic definitions and the background on Markov Net-
works in Sec. 2, then study the query evaluation problem on a single relation in Sec. 3.
We show how to extend it to conjunctive queries over multiple relations and establish
the dichotomy in Sec. 4.

2 Definitions and Notations
We begin with a brief review of Markov networks (for a detailed description, we refer
to [17, 6]). Then, we define a particular kind of a Markov Network to interpret the soft
keys.

2.1 Markov Networks
A Markov Network is a concise presentation of a probability distribution of a set of
random variables X̄ = {t1, t2, . . . , tn}. A state is defined to be an assignment to the
variables in X̄ . In this paper we restrict to Boolean variables, and therefore we will
assimilate a state with a subset W ⊆ X̄ , and call it a world. The set of possible worlds
is W = 2X̄ . Thus, a probability distribution on the random variables X̄ is a finite
probability space (W, P ), where W = 2X̄ and P : W → [0, 1] s.t.

∑
W∈W P (W ) =

1; the atomic, exclusive events of the probability space are the possible worlds W ∈ W .
Typically, n is very large: in a probabilistic database each tuple corresponds to a

Boolean variable ti (hence we will refer to ti as a tuple) and a world corresponds to a
subset of tuples. Thus, n is the number of tuples in the probabilistic database. It is not
possible to enumerate all 2n values of P .

A Markov Network (MN) describes the function P more concisely. The MN is a
triple (X̄,K, (Φc)c∈K), where K is a set of subsets of X̄ , called cliques, and for each
c ∈ K, Φc : {0, 1}c → R+ is called a potential function. The probability distribution

1The weight w and the probability p are generally related through w = log p
1−p

, but see Examples 2.6
and 2.7.
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Figure 3: A Markov Network.

P : W → [0, 1] defined by the MN is P (W ) = 1
Z Φ(W ), where Φ(W ) is called the

weight of the world W and Z is a normalization factor, and are given by:

Φ(W ) =
∏
c∈K

Φc(W ∩ c)

Z =
∑

W∈W
Φ(W )

Thus, instead of having to enumerate 2n values for P , we can just enumerate 2|c| values
of each potential Φc. The basic assumption in Markov Networks is that each clique c
is small.

An MN defines an undirected graph with nodes X̄ , and with edges {(x, y) | ∃c ∈ K.x ∈ c, y ∈ c}.
Then each set c ∈ K is indeed a clique in the graph, justifying the terminology: in this
paper we allow the cliques in K to be non-maximal, which is a minor departure from
the standard definition. The importance of the graph is that edges correspond to corre-
lations: an edge (x, y) means that the variables x, y are correlated, while the lack of an
edge means that they are independent.

An MN is often represented as a log-linear model, as follows: each potential func-
tion is given by Φc(Wc) = exp(wcfc(Wc)), where wc ∈ R is a weight and fc is a
feature function. Thus, the weight of a world is:

Φ(W ) = exp

(∑
c∈K

wcfc(W ∩ c)

)

2.2 Size-Constrained Markov Networks (SCMN)
Our goal is to use a Markov Network to model soft keys. A clique will correspond
to a set of tuples violating the key constraint, and therefore can be large: the basic
assumption in Markov Networks that cliques are small no longer holds. On the other
hand, to model soft keys, the clique’s potential needs to be a function only of the
number of tuples violating the key constraint, and not the actual set of tuples. For
that purpose we introduce a restricted form of Markov Networks, which we call Size
Constrained MN, and represent as a log-linear model:

Definition 2.1 A Size-Constrained Markov Network (SCMN) is M = (X̄,K, (wi)i=1,n, (fc)c∈K),
where:

• X̄ = {t1, . . . , tn} is a set of Boolean variables. We refer to them as tuples.
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• K is a set of nonempty subsets of X̄ called cliques.

• wi ∈ R is called the weight of the tuple ti.

• For all c ∈ K, fc : {0, . . . , |c|} → R, s.t. fc(0) = 0.

An SCMN defines the following probability space onW = 2X̄ : P (W ) = 1
Z Φ(W ),

where

Φ(W ) = exp

(∑
ti∈W

wi +
∑
c∈K

fc(|W ∩ c|)

)
Z =

∑
W∈W

Φ(W )

Thus, like in [15], the potential in an SCMN has two parts: one that depends only
on the individual tuples, and one that depends only on the number of tuples in each
cliques.

Example 2.2 We illustrate a Size-Constrained Markov Network over five Boolean
variables X̄ = {t1, . . . , t5}. The graph of the MN is in Fig. 3 and says that the vari-
ables t1 and t2 are correlated, and so are t3, t4, t5, but that t1, t2 are independent from
t3, t4, t5. Define now the following SCMN:

M = (X̄,K, (wi)i=1,5, (Fc)c∈K)

where w1, . . . , w5 ∈ R are the weights, K = {c1, c2} and:

c1 = {t1, t2} fc1(1) = v1 fc1(2) = v2

c2 = {t3, t4, t5} fc2(1) = u1 fc2(2) = u2 fc2(3) = u3

Here v1, v2, u1, u2, u3 ∈ R. The probability function P (W ) multiplies the potentials
ewi for all ti ∈ W , then it examines the cardinalities of W ∩ c1 and of W ∩ c2 and
multiplies with the corresponding potential. For example, for the two worlds W =
{t2, t3, t4} and W ′ = {t1, t3, t4, t5} we have:

P (W ) =
1
Z
exp (w2 + w3 + w4 + v1 + u2)

P (W ′) =
1
Z
exp (w1 + w3 + w4 + w5 + v1 + u3)

2.3 Soft Keys
We now formalize the notion of soft keys and describe their semantics using an SCMN.

Syntax We start by defining a probabilistic relational schema:

Definition 2.3 A probabilistic relation is a relation schema R(A1, . . . , Ak,W ) with
a distinguished attribute W , called the weight.

6



A probabilistic database schema is R̄ = (R1, . . . , Rm), and a probabilistic instance
is simply an instance I for R̄: the term “probabilistic” refers to how we will interpret
the weights, as we show below. As usual, we denote RI

i the relation Ri of the instance
I .

Given a relation name R we denote Attr(R) the set of attributes without the weight
attribute. We consider in this paper conjunctive queries that refer only to attributes in
Attr(R); thus, a subgoal g on R means a predicate (with variables and/or constants)
over Attr(R), without the weight attribute. We denote vars(g) the set of variables
in g. For example, give a relation R(A,B,C, D, W ), a subgoal is g = R(x, a, y, x),
where vars(g) = {x, y}.

Definition 2.4 Let R be a relation name.

• A key schema for R is a pair σ = (x̄, g) where x̄ is a set of variables and g is
a subgoal on R, s.t. x̄ ⊆ vars(g). We denote Keyσ(R) ⊆ Attr(R) the set of
attributes in R that have in g either a constant or a x̄-variable.

• A soft key for R is a triple γ = (σ, s, w), where σ is a soft key schema, s ∈ N+

is called the size and w ∈ R is called the weight.

We write s = size(γ) and w = weight(γ) to indicate the size and the weight
of the soft key. We also use interchangeably σ and γ when clear from the context, e.g.
write Keyγ(R) instead of Keyσ(R).

Informally, the soft key says this. If there exists s tuples in R with the same values
x̄, then charge with a weight w. If w < 0 then that will penalize s occurrences of x
otherwise it will reward them.

Example 2.5 The first, second, and last soft key in Figure 2 are expressed as follows
in our formalism:

((x,Person(x, y)), 2,−4)
((∅,Person(Frank, y)), 2, 4)
((∅,Person(a, y)), s,−2s)

The last line represents a set of soft keys: there is one for each a that satisfies Income(a, z), z >
1M in the current database instance, and for each number s between 1 and the cardi-
nality Person. We will assume in this paper that the system performs automatically
the conversion from a use-friendly syntax as in Fig. 2 to formal soft keys.

Semantics Given an instance I and a set of soft keys Γ, its semantics is given by
the following SCMN:

M(Γ, I) = (X̄,K, (wi)i=1,n, (fc)c∈K)

• X̄ = {t1, . . . , tn} is the set of tuples in all probabilistic relations in I . That is,
X̄ =

⋃
j=1,m RI

j ; we assume the union to be disjoint.

• wi = ti.W (the weight of the tuple ti in I).
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• Let γ ∈ Γ be a soft key for a relation Rj , i.e. γ = (σ, s, w), where σ = (x̄, g),
and denote ȳ = vars(g) − x̄. Let ā, b̄ be tuples of constants with the same
arity as x̄ and ȳ respectively. Denote g[ā/x̄, b̄/ȳ] the ground tuple obtained by
substituting x̄ with ā and ȳ with b̄ in g. For any γ and ā, we define the following
set:

cγ,ā = {ti | ∃b̄ : g[ā/x̄, b̄/ȳ] = ti}

A set of the form cγ,ā consists of a subsets of tuples in RI
j that are affected by

the soft key γ. We define the set of cliques K to be all sets of this form, and the
feature functions fc to combine the weights of all soft keys that define the same
clique c:

K = {cγ,ā | cγ,ā 6= ∅}

fc(s) = exp

 ∑
γ∈Γ:(∃ā.cγ,ā=c)∧size(γ)=s

(
|c|
s

)
weight(γ)


We explain the definition through three examples. First, we examine a probabilistic

instance I without any soft keys: in this case the probability defined by M(∅, I) is
precisely a tuple-independent probabilistic database [8].

Example 2.6 Let I be an instance of the probabilistic relational schema R(A,B, W ):
I = {t1, . . . , tn}. Denote wi = ti.W the weight of tuple ti in I , and let pi = ewi/(1+
ewi). Consider the SCMN M(∅, I); then the probability P (W ) of a possible world
W ⊆ I is (see Def 2.1):

P (W ) =
1
Z
exp

(∑
ti∈W

wi

)
=

1
Z

∏
ti∈W

pi

1− pi
(1)

From
∑

W P (W ) = 1, through direct calculation we obtain Z = 1/
∏

i=1,n(1 − pi).
Thus, P (W ) =

∏
ti∈W pi ×

∏
ti 6∈W (1 − pi). This is precisely a tuple-independent

probabilistic database: every tuple ti appears in W independently, and its marginal
probability is P (ti) = pi.

Now we examine how soft keys affect the probability distribution, by introducing
correlations between tuples.

Example 2.7 Continuing the previous example, consider one soft key with schema:

σ = (x,R(x, y))

For concreteness, suppose the soft key has size 3 and weight−5.0, i.e. γ = (σ, 3,−5.0).
This says that three or more occurrences of the same value for A should be penalized
by −5.0. Suppose a world W contains three tuples (a, b1), (a, b2), (a, b3): then the
SCMN semantics penalizes P (W ) by multiplying Eq.(1) by e−5. Now suppose that
W contains n violations, (a, b1), . . . , (a, bn): then Eq.(1) is multiplied with e−5(n

3):
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every three distinct occurrences of a contribute with a weight of −5.0. This is a desir-
able behavior: the user says that three occurrences should be penalized by −5.0, and
therefore she expects the penalty to increase with n. Our particular choice of defining
this penalty, by multiplying with

(
n
3

)
, is somewhat arbitrary. Our choice was inspired

by Markov Logic [22]: this is precisely the semantics obtained in Markov Logic if one
assigns weight −5.0 to the formula:

∃y1.∃y2.∃y3.
∧
i

R(x, yi) ∧
∧
i 6=j

yi 6= yj

However, other choices are possible, for example one could multiply with n−3 instead
of
(
n
3

)
. The results in this paper are not affected by the particular choice of the feature

functions fc.
Clearly, by adding the soft key γ, we introduced correlations between tuples that

share the same value of A. But, in addition, the soft key changes the marginal prob-
ability of almost every2 tuple ti = R(a, b), even if it is unaffected by γ (e.g. if I has
no other tuples of the form R(a,−)), because Z changes. In example 2.6 the marginal
probability of a tuple ti was simply P (ti) = pi. Now it is unclear how to compute the
marginal probability of any tuple, even one that doesn’t violate the key constraint.

Finally, we examine the impact of several keys.

Example 2.8 We add a second key to the previous example:

γ′ = (∅, R(x, y), 1000,+3.5)

Now Γ = {γ, γ′}. Here γ′ rewards worlds that have at least 1000 tuples. In other
words, while γ encourages us to remove tuples that share the same key, γ′ penalizes
us if we remove too many globally: more precisely by rewarding worlds with over
1000 tuples it increases Z and thus penalizes worlds with less than 1000 tuples. This
illustrates that multiple soft keys may interact and further complicate the probability
space: with this new soft key it seems even more difficult to compute the marginal
probability of a tuple.

Proposition 2.9 The size of M(Γ, I) is bounded by a polynomial in the size of Γ and
I .

Proof: (Sketch) Let n = |I| and m = |Γ|. Consider a soft key γ ∈ Γ: the cliques it
generates, cγ,ā, are disjoint sets, hence γ generates at most n cliques. Thus there are at
most mn cliques in M(Γ, I). 2

2.4 Problem Definition
We fix the probabilistic relational schema R̄ and a Boolean conjunctive query q, and
study the following problem: given a set of soft keys Γ and an instance I for R̄, com-
pute the marginal probability P (q):

P (q) =
∑

W⊆I:W |=q

P (W ) (2)

2In particular all tuples of the connected component corresponding to tuples that are affected by soft key
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where P is the probability distribution defined by M(Γ, I). We call P (q) the value of
q on I given the soft keys Γ.

Notice that the soft keys Γ are part of the input; this is because we insist on evalu-
ating q using an algorithm that is generic in the sizes and weights in Γ.

In this paper we restrict our discussion to conjunctive queries without self-joins,
i.e. where every relation name occurs at most once in the query. For example the two
queries R(x, y), S(y, a, z) and R(a, x, x), S(x, y, y, b), T (x, z) are without self-joins,
while the query R(x, y), R(y, z) has a self-join. This restriction is similar to other
complexity results for the query evaluation on probabilistic databases [9, 20, 8, 21].
Queries that have self-joins are significantly harder to analyze: the only case that has
been studied is that of queries over tuple-independent databases [7], and that turned out
to be significantly harder.

3 Single Subgoal Queries
We start our investigation by studying the complexity of queries consisting of a single
subgoal. Examples include q : −R(x, a, y), or q : −R(x, x, x) or q : −R(x, y, z).
These are select-project queries, and we call them in this section disjunctive queries.
In the presence of soft keys, even such queries can be hard:

Proposition 3.1 Consider a relation R(A,B,W ) and the query q : −R(x, y) (which
simply checks if R is non-empty). Consider two key schemas: σ1 = (x,R(x, y)) and
σ2 = (y, R(x, y)). Then the problem: for inputs I , w1, w2, compute the value of q on
I given the soft keys (σ1, 2, w1) and (σ2, 2, w2) is #P -hard.

Proof: We will first prove hardness for w1 = w2 = −∞, then show how to extend the
proof to w1, w2 ∈ R. We use a reduction from the IMPERFECT MATCHING (IPM)
problem, which is: given a bipartite graph G = (U, V,E), with E ⊆ U × V , compute
the number of matches(full or partial). A match is a M ⊆ E s.t. every u ∈ U occurs
at most once, and every v ∈ V occurs at most once in M . IPM is #P-hard as shown in
[27]. Given a graph G = (U, V,E) for the IPM problem, we reduce it to an instance I
over the schema R(A,B, W ) as follows: I = {(u, v, 0)|(u, v) ∈ E}. Thus, each tuple
has weight 0. A world W ∈ W corresponds to a subset of edges M ⊆ E. Denote W1

the set of worlds that are matches, and W0 = W −W1. If W ∈ W1 then Φ(W ) = 1,
and if W ∈ W0 then Φ(W ) = 0 (because either γ1 or γ2 are violated and their weights
are −∞). Denote m = |W1| the number of partial matches in G. We have:

Z =
∑

W∈W
Φ(W ) = m

Φ(q) =
∑

W∈W,W |=q

Φ(W ) = Z − 1

because the only world inW that does not satisfy q is ∅, which is also a partial match. It
follows that P (q) = Φ(q)/Z = (m−1)/m, hence m = 1/(1−P (q)). This completes
the reduction, and shows that computing P (q) is #P-hard when w1 = w2 = −∞.
Now we prove hardness assuming that w1, w2 are in R, and part of the input. Define
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w1 = w2 = w; we choose w later. Denoting ε =
∑

W∈W0
Φ(W ) we have Z = m + ε

and Φ(q) = Z − 1, hence m = 1/(1 − P (q)) − ε. We choose w small enough to
ensure ε ≤ 1/2: this allows us to compute m as b1/(1 − P (q))c. Namely, choose
w s.t. ew ≤ 1/2|E|+1, thus ∀W ∈ W0, Φ(W ) ≤ 1/2|E|+1, which implies ε ≤ 1/2
because there are only |E| possible worlds. 2

Thus, the interaction between soft keys on the same relation can make even a dis-
junctive query hard. We show, however, that if the soft keys are “hierarchical”, then
any disjunctive query can be computed in polynomial time.

Definition 3.2 Let γ1, γ2 be two soft keys on a relation R. We say that they are hierar-
chical if either (1) Keyγ1(R) ⊆ Keyγ2(R) or (2) Keyγ1(R) ⊇ Keyγ2(R) or (3) the
subgoals g1, g2 of γ1 and γ2 are incompatible (i.e. non-unifiable): we write g1∩g2 = ∅
to indicate that g1, g2 are incompatible.

Let Γ be a set of soft keys on R. We say that Γ is hierarchical if ∀γ1, γ2 ∈ Γ, the
pair γ1, γ2 is hierarchical.

For example, consider the following soft keys on R(A,B,C,W) (we show only the
key schemas: the sizes and weights are not used in the definition):

γ1 = (y1, R(x1, a1, y1))
γ2 = (y2, R(y2, a2, x2))
γ3 = ((y3, y4), R(x3, y3, y4))

• γ1, γ2 are hierarchical (assuming a1 6= a2). This is because R(b1, a1, y1) and
R(y2, a2, b2) are incompatible: in our notation, R(b1, a1, y1) ∩ R(y2, a2, b2) =
∅.

• γ2, γ3 are non-hierarchical: Keyγ2(R) = {A,B}, Keyγ3(R) = {B,C}, and
their subgoals are compatible.

• γ1, γ3 are hierarchical because Keyγ3(R) = {B,C} and Keyγ1(R) = {B,C}.

We prove two results in this section:

Theorem 3.3 If Γ is hierarchical, then any disjunctive query on R can be evaluated in
time O(n1+arity(R)).

Theorem 3.4 If Γ is non-hierarchical and contains no constants, then every disjunc-
tive query on R is #P-hard.

3.1 A PTIME Algorithm for Hierarchical SCMN’s
We prove here Theorem 3.4. In fact, we will prove a more general result. Fix any
SCMN M = (X̄,K, (wi)i=1,n, (fc)c∈K), and assume w.l.o.g. that ∀c ∈ K, |c| ≥ 2.
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Definition 3.5 M is hierarchical if ∀c1, c2 ∈ K either c1 ∩ c2 = ∅ or c1 ⊆ c2 or
c1 ⊇ c2. The height of the hierarchy is the largest number h s.t. there exists h cliques
in K s.t. c1 ⊃ c2 ⊃ . . . ⊃ ch 6= ∅.

Theorem 3.6 Let M be hierarchical SCMN of height h and Q ⊆ X̄ a set of tuples.
Then the probability P (Q) defined as:

P (Q) =
∑

W⊆W:Q∩W 6=∅

P (W )

can be computed in time O(nh+1), where n = |X̄|.

Theorem 3.6 proves Theorem 3.3: this is because if Γ is hierarchical then for every
I the SCMN M(Γ, I) is hierarchical and its height is ≤ arity(R). Moreover, on the
probabilistic instance I , the query q is equivalent to a fixed set of tuples Q. More
precisely, defining Q ⊆ I (note that here X̄ = I) to be the set of tuples that match the
subgoal q, then we have for every world W ⊆ I: W |= q iff W ∩Q 6= ∅.

In the remainder of this section we prove Theorem 3.6.
The proof of the theorem is given by the Algorithm 3.1, which computes P (Q)

using dynamic programming. We first describe the notations used by the algorithm and
explain it, then prove its correctness and running time.

We start by defining the following forest T :

Nodes(T ) = K ∪ {{ti} | ti ∈ X̄}
Edges(T ) = {(c, c′) | c ⊃ c′ ∧ ¬∃c′′.(c ⊃ c′′ ⊃ c′)}

The leaves of this forest correspond precisely to the tuples t1, . . . , tn. Define an order-
ing on the leaves of the forest: t1, t2, . . . , tn. The ordering should ensure that the leaves
of any tree appear contiguously in the order of their left-right or right-left traversal in
the tree. This ensures that all the tuples belonging to any of our cliques appear as a
contiguous substring in our ordering, and this was possible because of the hierarchical
nature of our cliques.

We now define O((n + 1)h+1) subsets of W . For k = {0, . . . , n}, denote:

• X̄k = {t1, . . . , tk} (the first k tuples).

• hk = the number of cliques containing tk (for k = 0, we set hk = 0). Note that
hk ≤ h.

• c1 ⊃ c2 ⊃ . . . ⊃ chk
⊃ {tk} the longest path in T ’s to tk.

Definition 3.7 Let k ∈ {0, . . . , n} and s̄ = (s1, . . . , shk
), where s1, . . . , shk

∈ {0, . . . , n}.
Define:

Wk
s̄ = {W | W ⊆ X̄k ∧ ∀i ∈ [hk].|W ∩ ci| = si}

Qk
s̄ = {W | W ∈ Wk

s̄ ∧W ∩Q 6= ∅}

12



Algorithm 3.1 Computing P (Q) on a hierarchical SCMN

1: Inputs: SCMN (X̄,K, (wi)i=1,n, (fc)c∈K), query Q ⊆ X̄ .
2: Outputs: P (Q).
3: Let Z0

ε = 1 S0
ε = 0

4: for k = 1, n do
5: for s1, . . . , shk

∈ {0, . . . , k}hk do
6: Let s̄ = (s1, . . . , shk

)
7: Let c1 ⊃ . . . ⊃ cL the common ancestors of k − 1, k
8: if

∧hk

i=L+1(si = 0) then
9: Let U =

∑
s̄′:s̄′

L=s̄L
Zk−1

s̄′ and R =
∑

s̄′:s̄′
L=s̄L

Sk−1
s̄′

10: else
11: U = R = 0
12: end if
13: if

∧hk

i=L+1(si = 1) then
14: Let F = exp(wk +

∑
i=1,L (fci

(si)− fci
(si − 1)))

15: V = F
∑

s̄′:s̄′
L=s̄L−1 Zk−1

s̄′

16: if tk ∈ Q then
17: T = V
18: else
19: T = F

∑
s̄′:s̄′

L=s̄L−1 Sk−1
s̄′

20: end if
21: else
22: Let T = V = 0
23: end if
24: Let Zk

s̄ = U + V and Sk
s̄ = R + T

25: end for
26: end for
27: Let Φ(Q) =

∑
s̄ Sn

s̄ and Z =
∑

s̄ Zn
s̄

28: Return P (Q) = Φ(Q)/Z.

In other words, Wk
s̄ consists of all worlds that (a) use only the first k tuples, and (b)

their intersection with the cliques c1, . . . , chk
have cardinalities s1, . . . , shk

. Note that
have the following:

W 0
ε = {∅}
W =

⋃
s̄

Wn
s̄

The algorithm computes iteratively O((n + 1)h+1) quantities:

Zk
s̄ =

∑
W∈Wk

s̄

Φ(W ) Sk
s̄ =

∑
W∈Qk

s̄

Φ(W )
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Then Z =
∑

s̄ Zn
S̄

, and Φ(Q) =
∑

s̄ Sn
s̄ , which allows us to compute P (Q) =

Φ(Q)/Z. We still need to introduce a few notation used by the algorithm. Given
s̄ = (s1, s2, . . . , sd) denote:

s̄− 1 = (s1 − 1, s2 − 1, . . . , sd − 1)
s̄L = (s1, s2, . . . , sL) for L ≤ d

Given two consecutive leaves tk−1, tk in the forest T , we denote with c1 ⊃ c2 ⊃ . . . ⊃
cL all their common ancestors.

We now prove the correctness of the algorithm.
Consider a world W ∈ Wk

s̄ . There are two cases. The first case is when tk 6∈ W ;
then W contains at most the tuples t1, . . . , tk−1. Recall that c1 ⊃ . . . ⊃ cL are the
common ancestors of tk−1 and tk, thus W ∈ Wk−1

s̄′ for some s̄′ s.t. s′1 = s1, . . . , s
′
L =

sL. Let cL+1 ⊃ . . . ⊃ chk
be the rest of the path to tk: in all these cliques, tk is the

smallest element, hence W cannot contain any tuples from these cliques. We therefor
must have sL+1 = . . . = shk

= 0. This completes the analysis of the first case.
The second case is when tk ∈ W : then we must have W − {tk} ∈ Wk−1

s̄′ , where
s′1 = s1 − 1, . . . , s′L = sL − 1 (since we removed tk), we can argue similarly that
sL+1 = . . . = shk

= 1. This allows us to derive a recursive formula for Wk
s̄ . We can

derive a similar one for Qk
s̄ : the only extra wrinkle here is that, when tk ∈ W then we

also need to check if tk ∈ Q: if not then we recur with Qk
s̄′ ; if yes, then we recur with

Zk
s̄′ . We state the resulting recurrence formally. In the lemma below we denoteA∪{t}

the set {W ∪ {t} | W ∈ A} for a set of worlds A ⊆ W and a tuple t:

Lemma 3.8 Wk
s̄ = Uk

s̄ ∪ Vk
s̄ , where

Uk
s̄ =

{ ⋃
s̄′:s̄′

L=s̄L
Wk−1

s̄′ if
∧hk

i=L+1 si = 0
∅ otherwise

Vk
s̄ =

{ ⋃
s̄′:s̄′

L=s̄L−1W
k−1
s̄′ ∪ {tk} if

∧hk

i=L+1 si = 1
∅ otherwise

If tk ∈ Q then Qk
s̄ = Rk

s̄ ∪ Vk
s̄ and if tk 6∈ Q then Qk

s̄ = Rk
s̄ ∪ T k

s̄ , where:

Rk
s̄ =

{ ⋃
s̄′:s̄′

L=s̄L
Qk−1

s̄′ if
∧hk

i=L+1 si = 0
∅ otherwise

T k
s̄ =

{ ⋃
s̄′:s̄′

L=s̄L−1Q
k−1
s̄′ ∪ {tk} if

∧hk

i=L+1 si = 1
∅ otherwise

We can now prove:

Proposition 3.9 Algorithm 3.1 correctly computes the probability P (Q) of a disjunc-
tive query Q over a hierarchical SCMN.

Proof: We need to show that the quantities Zk
s̄ and Sk

s̄ are computed correctly. This
follows immediately from the previous lemma, observing that the values denoted U ,
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V , R, T in the algorithm are precisely Φ(Uk
s̄ ), Φ(Vk

s̄ ), Φ(Rk
s̄), Φ(T k

s̄ ) The crux of the
correctness proof relies in examining the case tk ∈ W : then Φ(W ) = Φ(W −{tk})F ,
where the factor F is exp(wk +

∑
i=1,L fci

(si) − fci
(si − 1)): this is because W

contributes in addition to W − {tk} with the weight wk for the tuple tk and with the
weight fci

(si) for the clique ci: on the other hand W −{tk} contributes with a weight
fci(si − 1) for that clique, which justifies the formula for F . 2

3.2 Hardness of Non-hierarchical Keys
In this section we prove Theorem 3.4. For that we first extend Proposition 3.1:

Proposition 3.10 Consider the relation R(A,B,W ) and the key schemas σ1 = (x, R(x, y)
and σ2 = (y, R(x, y)) as in Proposition 3.1. Consider the following four queries:

q1 : − R(x, y)
q2 : − R(x, x)
q3 : − R(a, y)
q4 : − R(a, b)

where a, b are constants. Then, for each of the queries qi, i = 1, 2, 3, 4, the problem:
for inputs I , w1, w2, compute the value of qi on I given the soft keys (σ1, 2, w1) and
(σ2, 2, w2) is #P -hard.

Note that this extends Proposition 3.1 from q1 to q2, q3, and q4.

Proof: Recall the proof of Proposition 3.1 and in particular the reduction. Using the
same reduction R(a, y) can be used to calculate

R(a, y) =
#matchings containing a particular vertex

#matchings
(3)

in any bipartite graph. Let us start with the bipartite graph G(U, V,E). Let |U | =
|V | = n. Define Gk = G(U ′, V, E′), where U ′ = U − {ui|1 ≤ i < k} and similarly
for E′. Note that G1 = G. Let Mi be the number of matchings of G in which no
uj , j < i is present and there is an edge containing ui. Clearly #matchings in G =
M = 1 +

∑n
i=1 Mi. Using Equation 3 on all Gi’s, we can calculate Ai’s :

Ai =
Mi

M −
∑i−1

j=1 Mj

(4)

from which we get

Mi = Ai

i−1∏
j=1

(1−Aj)M (5)

and then using that M = 1 +
∑n

i=1 Mi, we get

M = 1 + P (A1, . . . , An)M

M =
1

1− P (A1, . . . , An)
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∴ R(a, y) must be #P-hard. Showing that R(a, b) is hard is trivial since R(a, b) can be
used to calculate

R(a, b) =
#matchings containing an edge

#matchings
(6)

Then consider any vertex v, you can calculate the quantity in Equation 3 by just sum-
ming up Equation 6 for all neighbours of v. Hence R(a, b) must be hard as well.
Hardness of R(x, x) follows since it can be used to calculate the quantity in Equation
6, by keeping only one tuple of the form (x, x). 2

Now we can prove Theorem 3.4 by reduction from one of the three queries in
Proposition 3.10. Let Γ be a set of soft keys without constants. Since it is non-
hierarchical there exists two soft keys γ1, γ2 s.t. Keyγ1(R) and Keyγ2(R) are in-
comparable sets. (Note that case (3) of Definition 3.2 cannot happen because there are
no constants). Thus, there exists two attributes A,B s.t. A ∈ Keyγ1(R)−Keyγ2(R)
and B ∈ Keyγ2(R)−Keyγ1(R). We examine now the query q on these two attributes
(recall that q is a single subgoal): it can have two distinct variables, the same variable,
a variable and a constant, or two constants. We then do a reduction from the corre-
sponding query qi in Proposition 3.10, by setting the weights of all soft keys other than
γ1, γ2 to 0.

4 Query Evaluation with hierarchical soft key constraints
Consider a relational schema R̄ with probabilistic relations R1, . . . , Rm. Let Γ =
{γ1 ∪ . . . ∪ γm} be the set of soft keys s.t. the soft key γi applies to Ri. Thus,
each relation Ri has only one soft key defined on it. In this section we impose a
restriction on the soft keys. Their subgoals may have no repeated variables: e.g. we
allow ((x, y), R(y, a, z, b, x)) but not (x,R(x, x, y, y)).

Definition 4.1 Let g be a subgoal over R whose soft key has schema γ = (x̄, g′). We
define the set Key(g) ⊆ V ars(g), as follows. First, if g ∩ g′ = ∅ (see Def. 3.2) then
Key(g) = V ars(g); otherwise Key(g) consists of all variables in g that occur on a
position where g′ has a key variable.

For example, consider the relation R(A,B,C, W ) with soft key γ = (x, R(a, x, y)).
Then

Key(R(a, y, z) = {y}
Key(R(b, y, z) = {y, z}
Key(R(x, b, z) = ∅

For a variable x ∈ V ars(q) we denote Sg(x) = {g | x ∈ Key(g)}. Thus, Sg(x)
contains all subgoals in which x occurs in a key position.

Definition 4.2 (Safe queries) Let q be a boolean conjunctive query without self-joins.
q is safe for soft keys Γ if one of the following holds:
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1. Base case: q := g, where g is a single subgoal.

2. Disconnected components: q = q1q2 where V ars(q1) ∩ V ars(q2) = ∅, and
q1 and q2 are both safe.

3. Projectable Variable: ∃x ∈ V ars(q), such that (a) ∀g ∈ Sg(q), x ∈ V ars(g)
(i.e. x appears in all subgoals), (b) ∀y ∈ V ars(q), Sg(y) ⊆ Sg(x) and (c) for
every constant a, q[a/x] is safe.

The last condition says that x must occur in all subgoals; while it does not have
to occur everywhere in key positions, the set of subgoals where it does occur in key
positions must be maximal. Note that the safety for q[a/x] is independent of the choice
of the constant a.

Example 4.3 We illustrate with two queries, and underline in each subgoal g the
variables in Key(g): thus, R(x, y) means that there exists a soft key with schema
(x, R(x, y)), while S(y) means there exists a soft key (∅, S(y)):

q1 = R(x, y), S(x)
q2 = R(x, y), S(y)

q1 is safe: x occurs everywhere, and Sg(x) = {R} while Sg(y) = ∅. On the other
hand q2 is unsafe: x does not occur everywhere. While y does occur everywhere,
Sg(y) = ∅, while Sg(x) = {R}.

Theorem 4.4 Let Γ be a set of soft keys, with one key per relation. Let q be a conjunc-
tive query q without self-joins. If q is safe for Γ then it can be evaluated in PTIME. If
the query is unsafe for Γ, then it is #P-hard.

In the remainder of this section we prove the theorem.

4.1 Hardness of unsafe queries
We start by proving that every unsafe query is #P-hard. We use a result in [8] that es-
tablishes a dichotomy of conjunctive queries without self-joins on disjoint-independent
probabilistic databases. We briefly review that result, using the terminology in our pa-
per.

Definition 4.5 A soft key γ = (σ, s, w) on a relation R is called a hard key if s = 2
and w = −∞.

A hard key is called a standard key if its subgoal g has no constants.
A standard key is called a trivial key if x̄ = V ars(g).

We illustrate with the three keys on R(A,B,C, W ):

γ1 = ((x,R(x, a, y)), 2,−∞)
γ2 = ((x,R(x, y, z)), 2,−∞)
γ3 = (((x, y, z), R(x, y, z)), 2,−∞)

γ1 is hard, γ2 is standard (it says that A is a key), and γ3 is trivial (it says that A,B,C
are a key, which is the same as not giving any key for R).

17



Definition 4.6 A disjoint-independent probabilistic database instance is an instance I
together with a set of standard keys Γ.

We now review the definition of safe queries over disjoint-independent probabilis-
tic databases, which we call here h-safe queries to distinguish them from ours, and re-
view the dichotomy result on disjoint-independent probabilistic databases. Recall that
Key(g) denotes the set of variables that appear in a key position; denote NKey(g) the
set of variables that appear in a non-key position in g. These sets are not necessarily
disjoint, because variables may be repeated.

Definition 4.7 [8] A Boolean conjunctive query is h-safe for a set of keys Γ if:

1. Base case q := g where g is a single subgoal.

2. Disconnected components q = q1q2 where V ars(q1) ∩ V ars(q2) = ∅ and
q1, q2 are both safe.

3. Independent project ∃x ∈ V ars(q) s.t. ∀g ∈ Sg(q), x ∈ Key(g), and for any
constant a, q[a/x] is safe. Thus, x must occur in a key position in every subgoal.

4. Disjoint project ∃g ∈ Sg(q) s.t. Key(g) = ∅ and ∃y ∈ NKey(g) s.t. q[a/y] is
safe. Thus, y must occur in a non-key position in g and g has no key variables.

The dichotomy for disjoint-independent databases is:

Theorem 4.8 [8] Let Γ be a set of hard keys. If a query q is h-safe for Γ, then it can
be computed in PTIME. If it is not h-safe, then it is #P-hard.

Now consider a set of soft keys Γ without variables for the relations R̄. A hardening
of Γ is a set of keys Γh obtained by either hardening or trivializing every soft key in Γ:
that is, for every key (σ, s, w) in Γ there is a key (σ, 2, w) in Γh where w = −∞ or
w = 0. We prove the following:

Proposition 4.9 Let Γ be a set of soft keys without variables and q be a query. Then q
is safe w.r.t. Γ iff for every hardening Γh of Γ q is h-safe w.r.t. Γh.

Proof: We prove “only if” by induction on the structure of the query. The interesting
case is given by condition 3: the others are straightforward. Let x occur in all subgoals.
If x occurs in each subgoal in a key position, then the independent project case applies
and we conclude that q is h-safe. So suppose x occurs in some subgoal g only on
non-key positions. Then no variable y can occur in g on a key position, otherwise
sg(y) 6⊆ sg(x). So Key(g) = ∅, hence x appears in a non-key position and we apply
a disjoint project on x, hence q is h-safe.

We now prove the “if” direction. Here we also consider condition 3 of the safety
definition, and assume that it fails. Then we “harden” the key constraints as follows.
Let G1 = {g | Key(g) = ∅} and G2 = {g | Key(g) 6= ∅}. For all g ∈ G1 we
trivialize its key, hence Keyh(g) = V ars(g). For all g ∈ G2 we harden the key, hence
Keyh(g) = Key(g). We prove that the resulting query is h-unsafe. Indeed, a disjoint
project is not possible, since we trivialized all keys in G1 where such a project would
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Algorithm 4.1 Computing P (q) over R̄ and Γ̄
1: Inputs: CQ q without self join on R̄ with soft key Γ
2: Outputs: P (q)
3: Let q = g1 · · · g|q|
4: for k = i, |q| do
5: Let Ā be the attribute positions corresponding to ones where Gi has key vari-

ables and gi has constants ā.
6: Rt

i = σĀ=āRi

7: end for
8: Let S = ΦR̄t,ε(q), Z = ZR̄t,ε(q).
9: Return S/Z

have been possible. Suppose an independent project is possible on some variable x.
We show that x is a projectable variable by checking condition 3. Clearly it occurs in
all subgoals. In addition sg(x) = G2. Moreover, for any variable y, sg(y) ⊆ G2, since
no variables occur in key positions in G1. Contradiction. 2

Recall the query q1 = R(x, y), S(x) in Example 4.3. There are four ways to
harden it: in each subgoal g either keep Key(g) unchanged, or include all variables.
Each of these is h-safe. For example q1 is h-safe because we do a disjoint project on y;
R(x, y), S(x) is h-safe because we do an independent project on x. On the other hand
q2 is not safe, because the hardening R(x, y), S(y) is h-unsafe.

We use this to prove:

Corollary 4.10 If a query q is unsafe for a set of soft keys Γ then q is #P-hard.

For the proof, we first use Prop.4.9 to harden the keys s.t. q is h-unsafe w.r.t. Γ.
Next, we observe that we can remove the constants in these hard keys by eliminating
the corresponding attribute in the relation: the new query (over a new schema) is still
h-unsafe, but now all keys are standard: thus the new query is #P-hard by Theorem 4.8.
Finally, use the same technique as in Proposition 3.1 to replace weights −∞ with
weights w ∈ R.

4.2 Algorithm for safe queries
We explain and prove the algorithm with the following sequence of definitions and

proofs.

Definition 4.11 One-Clique Property : A relation R with a soft-key γ is said to obey
one-clique property if the corresponding SCMN has at most one non-trivial3 clique for
all instances of R and exactly one non-trivial clique for at least one instance.

Consider a CQ q = g1 . . . g|q| over R̄. Since the query has no self join we can
assume gi is over Ri with soft key Γi = ( , Gi).

3A non-trivial clique means the clique must have at least two nodes

19



Algorithm 4.2 Computing ΦR̄,s̄(q), ZR̄,s̄(q)

1: Inputs: CQ q, over R̄. s̄ ∈ {N ∪ 0}L, where 0 ≤ L ≤ |q|. Ri, 1 ≤ i ≤ L satisfy
one-clique property.

2: Outputs: ΦR̄,s̄(q), ZR̄,s̄(q)
3: if ∃i s.t. si > |Ri| then
4: Return 0,0
5: end if
6: if q is a single subgoal query then
7: Use Algorithm 3.1
8: end if
9: if q = q1q2 and V ars(q1) ∩ V ars(q2) = ∅ then

10: Calculate the components corresponding to q1 and q2 separately and then mul-
tiply them

11: end if
12: if ∃ Projectable Variable x then
13: Let Sg(x) = qI and qD = q − qI

14: if L < |qD| then
15: Let |qD| = L′

16: Return
∑

|s′|=L′,s′
L=sL

ΦR̄,s̄′(qDqI), similarly for Z

17: else
18: Use Algorithm 4.3 with variable x
19: end if
20: end if

Definition 4.12 Let s̄ = (s1, . . . , sm) with si ∈ {N ∪ {0}} and 0 ≤ m ≤ |q|. Define:

WR̄,s̄ = {W | W ⊆ R̄ ∧ ∀i|W ∩Ri ∩Gi| = si}
QR̄,s̄ = {W | W ∈ WR̄,s̄ ∧W |= q}

ZR̄,s̄ =
∑

W∈Wk
R̄,s̄

Φ(W )

ΦR̄,s̄ =
∑

W∈Qk
R̄,s̄

Φ(W )

So WR̄,s̄ is the set of all worlds of R̄ s.t. for 1 ≤ i ≤ m,the number of tuples from
Ri that are influenced by the soft key are exactly si. Hence m = 0 means the set of
all worlds from R̄. QR̄,s̄ is the subset of WR̄,s̄, where query is true. ZR̄,s̄ and ΦR̄,s̄

are respectively the sum of potentials of all these worlds. Now we are ready to show
that Algorithm 4.1 works assuming Algorithm 4.2 does. For that it suffices to show
that computing q over R̄t gives the same answer as over R̄, since the rest follows from
definitions. For that consider the SCMN corresponding to (Ri,Γi). It is composed
of independent cliques and Rt

i contains all those cliques which contain tuple that can
make gi true, i.e. they can have a influence on the query q. Since these set of cliques is
independent of those in Ri −Rt

i , P (q) can be computed just over R̄t.

20



Algorithm 4.3 Helper function to compute ΦR̄,s̄(qDqI), ZR̄,s̄(qDqI) with projectable
variable x given

1: Inputs: CQ q = qDqI , over R̄ = R̄D ∪ R̄I . Each relation in R̄D satisfies One-
Clique property and none in R̄I do. s̄ ∈ {N ∪ 0}L, where L = |qD|. qD or qI can
be ∅. x is a projectable var in q.

2: Outputs: ΦR̄,s̄(qDqI), ZR̄,s̄(qDqI)
3: if ∃is.t.si > |RDi| then
4: Return 0,0
5: end if
6: Let Z0

s̄ = 1 if s̄ = 0̄ else 0
7: Let S0

s̄ = 0 ∀s̄
8: Let m = |qD|
9: Let Ai ∈ Attr(RDi) be the attribute corresponding to x in RDi.

10: Let dom(
⋃

Ai) = {a1 . . . an}
11: for k = 1, n do
12: Let q′ = q[ak/x]
13: sumS = 0
14: sumZ = 0
15: Let R′

i = {t ∈ Ri|t.Ai = ak}
16: Let d̄ = (min (|R′

1 ∩G1|, s1) , . . . ,min (|R′
m ∩Gm|, sm))

17: for ī = 0m, d̄ do
18: Let F = exp

(∑
p=1,m (fp(jp)− fp(jp − ip))

)
19: Let Pk = ΦR̄′ ,̄i(q′)
20: Let Zk = ZR̄′ ,̄i(q′)
21: Let U = Zk−1

s̄−ī
Pk

22: Let V = Sk−1
s̄−ī

(Zk − Pk)
23: Let R = Zk−1

s̄−ī
Zk

24: sumS = sumS + F (U + V )
25: sumZ = sumZ + FR
26: end for
27: Sk

j̄
= sumS

28: Zk
j̄

= sumZ
29: end for
30: Return Sn

s̄ , Zn
s̄

Proposition 4.13 If x is a projectable variable then ∀i :

• If x ∈ Key(gi), then tuples with different values over the attribute corresponding
to var x, from Rt

i are independent.

• If x /∈ Key(gi), then (Rt
i,Γi) satisfy the One-Clique Property. In particular the

one clique corresponds to the set of tuples in Rt
i that satisfy Gi.

Proposition 4.14 If (R, γ) satisfy one-clique property, then so does (R′, γ) where
R′ ⊂ R.

21



Now we prove that Algorithm 4.2 works. Assuming the query is safe either Join
condition occurs or there is a projectable variable x. In case of former the query can
be split into two independent halves and the computation can be carried out for both
separately. In the latter case, by Proposition 4.13, every relation corresponding to qD

satisfies one-clique property and those corresponding to qI don’t. So it suffices to prove
that Algorithm 4.3 works.

Algorithm 4.3 is very similar to the algorithm 3.1. We denote by fp the weight
function for the one-clique property holding relations Rp. The recursion uses exactly
the same logic as algorithm 3.1, but now the vector s̄ we need, is the number of tu-
ples from the one-cliques, since their number determines the weight added due to soft
keys between q[ai/x] and q[aj/x]. Assuming then that recursion on q[ak/x] works
correctly, this algorithm follows from the correctness of algorithm 3.1. The recursion
works thanks to Proposition 4.14 and the correctness of Algorithm 4.2.

5 Related Work
Query evaluation over probabilistic databases is a well studied problem. Methods for
query evaluation can broadly be classified into two categories: Intensional ([3, 1, 12,
23]) and Extensional ([5, 9, 20, 10]). Our approach belongs to the extensional category.

Intensional methods work by associating with each boolean query a symbolic event.
Query evaluation is then performed by manipulating expressions over these symbolic
events. For example, in [3], lineage is used for defining the symbolic events. In prin-
ciple, intensional methods can evaluate any given query over a probabilistic database
with arbitrary correlations among tuples. However, as the correlations and/or queries
become complicated, the symbolic expressions become very large making query eval-
uation intractable.

On the other hand, extensional methods use efficient operators over real num-
bers for query evaluation. They work for a restricted set of correlations and queries.
Prior work for extensional methods assume very simple correlations like indepen-
dence ([5, 9]) or exclusions ([2, 20, 10]). As per our knowledge, this is the first paper
that uses extensional approach to handle more complicated correlations involving soft
constraints.

Query evaluation is closely connected to the inference problem in AI. Many meth-
ods proposed in AI literature have been adapted for query evaluation. Deshpande et.
al. [24] proposed the use of Markov Networks to represent tuple correlations. In partic-
ular, Size-Constrained Markov Networks used in this paper are a subset of correlations
they consider. However, they propose an intensional method of query evaluation that
makes query evaluation intractable even for safe queries on Size-Constrained Markov
Networks. In [15], Gupta et. al. solve an inference problem for Markov Networks
that use cardinality based potential functions similar to Size-Constrained Markov Net-
works. However, they solve the simpler MAP problem that amounts to finding the most
likely world among the set of all possible worlds. Query evaluation requires finding
the sum of the probabilities of all worlds for a given set of worlds that satisfy a query.
Intuitively, the latter is harder because it has to deal with all possible worlds, while the
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former can make a greedy choice in the selection of its worlds.
For a look at some more recent work on modeling probabilistic databases with

graphical models, we refer the reader to [14]. They describe how to represent relational
data with Bayesian Networks according to both possible-worlds and domain-frequency
semantics. Our way of representation is different though, as we do not keep a random
variable for every attribute of every tuple. Our representation closely resembles that
of Markov Logic Networks(MLNs)[22]. An MLN is just a collection of relations and
a set of first-order formulas over them with real weights. It gives semantics to these
formulas by representing them as features in a markov network over the relations. Our
model corresponds to MLNs with formulas like key constraint. But MLNs are a very
general model where inference can be very expensive, hence our work also helps to
identify some subsets where inference is tractable.
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