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Abstract

We present software solutions for enhancing spatial and/or tem-
poral resolution of videos. Our algorithm targets the emerging
consumer-level hybrid cameras that can capture video with inter-
mittent high-resolution stills. Our technique can best be described
as reconstructing the high-resolution spacetime videos using a few
high resolution images for rendering and a low-resolution video to
guide the reconstruction and the rendering. Our simple framework
integrates two existing algorithms, namely a high-quality optical
flow algorithm [Sand and Teller 2006] and a high-quality image-
based-rendering algorithm [Bhat et al. 2007] to enable a variety of
applications that were previously unavailable to the amateur pho-
tographer, such as the ability to automatically create videos with
high spatiotemporal resolution, to easily retime the flow of a video,
and shift a high-resolution still to nearby points in time to better
capture a missed event.

1 Introduction

Still cameras are capturing increasingly high-resolution images.
Video resolution, on the other hand has not increased at nearly
the same rate. Unfortunately, capturing high-resolution images at
a high frame rate is a difficult and expensive hardware problem.
Video produces enormous amounts of data, which must be captured
quickly using smaller exposure times and pushed onto the storage
device. The problem of capturing videos with high spatiotemporal
resolution is further compounded by the constant push in the con-
sumer market for miniaturization and integration with other prod-
ucts (e.g., cell phones, PDAs). Hence, high spatial resolution im-
agery is often incompatible with high frame rate imagery, especially
in the case of consumer level cameras. 1 In the face of these reali-
ties, we investigate software solutions that can increase the spatial
and/or temporal resolution of imagery captured by a combination
of low-resolution medium frame rate (15-30 fps) video and high-
resolution stills captured at very low frame rates ( 1-5 fps).

A few commercially available cameras (e.g., Sony HDR-HC7,
Canon HV10, and Canon MVX330), claim to allow people to cap-
ture videos while simultaneously capturing high-resolution stills;
however, the number of stills that they capture during a video ses-
sion is currently limited to three. In addition, from our research,
we found either the high-resolution stills or the video lacking in the
quality one would hope for with these cameras. Several researchers
have proposed and even built prototypes of such cameras [Cohen
and Szeliski 2006; Nagahara et al. 2005; Ben-Ezra and Nayar 2004]
to begin to explore this space and we can expect rapid advances
from manufacturers in this area.

Keeping such hybrid cameras in mind we propose a simple frame-
work that integrates two existing algorithms, namely a high-quality
optical flow algorithm [Sand and Teller 2006] and a high-quality
image-based-rendering algorithm [Bhat et al. 2007] to enable a va-
riety of applications that were previously unavailable to the amateur
photographer, including:

1High-end DSLR (Digital Single Lens Reflex) cameras capable of fairly

high frame rates for short burst durations are beginning to appear (e.g.,

Canon EOS-1D Mark-III).

• automatically producing high spatiotemporal resolution
videos using low-resolution, medium-frame-rate videos and
intermittent high-resolution stills,

• time shifting high-resolution stills to nearby points in time to
better capture a missed event,

• retiming of high-resolution videos for dramatic emphasis or
other artistic effects,

• and using retiming to explore the continuum between still im-
ages and videos with a new media type coined Cliplets.

We performed a user study to validate that users would indeed be
interested in at least some of these applications. Our subjects were
positive about the idea of a hybrid camera and using our technology
to capture better images and videos.

The contributions of this paper include the integration of optical
flow and (IBR) algorithms. We also describe a straightforward two
step flow algorithm that improves previous work on optical flow in
our setting. Finally, we identify a new set of consumer applications
as noted above that can leverage this work.

2 Related work

The problem of enhancing low-resolution images and video has re-
ceived a lot of interest in the past. In this section we review some
of the previous approaches to this problem.

Spatial and temporal super-resolution using multiple low-

resolution inputs One class of these techniques aligns multiple
low-resolution images of a scene at sub-pixel accuracy to a ref-
erence view [Irani and Peleg 1991; Schultz and Stevenson 1996;
Elad and Feuer 1997]. The aligned images can then be used to re-
construct the reference view at higher resolution. Another class of
techniques perform temporal super-resolution by using sub-frame-
rate shifts across multiple low temporal resolution videos of a
scene [Shechtman et al. 2005; Wilburn et al. 2005]. (Schechtman et
al additionally perform spatial super-resolution.) These techniques
rely on the assumption that the low resolution inputs are under-
sampled and contain aliasing. However, most cameras usually ban-
dlimit the high frequencies in the scene to minimize such aliasing,
which severely limits the amount of resolution enhancement that
can be achieved using these techniques. Lin et al. [2004] study
and find that these reconstruction methods can enhance the spatial
super-resolution by a factor of at most 1.6 in practical conditions.
Also, the reliance of these methods on static scenes or multiple
video cameras currently limits the practicality of these methods.

Temporal resolution enhancement For temporal resolution en-
hancement, most techniques [Castagno et al. 1996; Cafforio et al.
Feb 1990; Wong and Goto 1995; Choi et al. 2000] compute mo-
tion correspondences and perform a weighted average of motion
compensated frames assuming linear motion between correspon-
dences. However, since the intermediate frame is generated as a
weighted average of the two warped images, any errors in the cor-
respondences can result in artifacts such as ghosting, blurring and
flickering in the final result. We use a similar technique for generat-
ing the correspondences, but employ a spacetime, gradient domain
compositing process to reduce these artifacts.
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Figure 1: Our system consists of two main components. We use a two step optical flow process to compute correspondences between pixels in a low-resolution frame and nearby

high-resolution stills. We employ the spacetime fusion algorithm of Bhat et al. to generate the final result.

Learning-based techniques These regression based techniques
learn a mapping between a patch of low-resolution pixels and
the corresponding high-resolution pixel at the center of the patch.
The high resolution image is synthesized using the patch of low-
resolution pixels surrounding every pixel in the input to infer the
corresponding high-resolution pixel. Often, the synthesis also in-
corporates some smoothness prior to avoid artifacts that commonly
arise from relying on regression alone. Freeman et al. [2000] and
Baker et al. [2002] were among the first to take this approach for
spatial resolution enhancement. Hertzmann et al. [2001] and Free-
man et al. [2002] used nearest neighbor based regression to enhance
the spatial resolution of images. Bishop et al. [2003] extended this
work to videos using temporal regression in addition to spatial re-
gression. Cheung et al. [2005] present a more general learning
based framework in the form of video epitomes, which can be used
for spatiotemporal resolution enhancement. In comparison to these,
our method takes advantage of excellent exemplars (high resolution
images taken nearby in space and time) and flow-based correspon-
dence when copying in higher resolution detail. All of these meth-
ods generally result in seams, which we mitigate through spacetime
gradient domain fusion.

Combining stills with videos Our technique can best be de-
scribed as reconstructing the high-resolution spacetime video using
a few high-resolution images for rendering and a low-resolution
video to guide the reconstruction and the rendering. Bhat et
al. [2007] proposed a similar approach to enhance low-resolution
videos of a static scene by using multi-view stereo to compute
correspondences between the low-resolution video and the high-
resolution images. In contrast, our method uses optical flow to com-
pute correspondences and can therefore handle dynamic scenes as
well and allows us to enhance temporal resolution also.

The method proposed by Watanabe et al. [2006] works on similar
input data as ours – a low-resolution video with high frame rate
and a high-resolution video with low frame rate. Each high reso-
lution frame is used to flow the high frequency information to the
low-resolution frames using a DCT fusion step. This method does
not flow the high frequencies in both directions for generating an
intermediate frame which is generally necessary to compensate for
imperfect motion correspondence. Nagahara et al. [2006] also take
a similar approach but use feature tracking instead of motion com-
pensation. These methods generate the frames separately and are
prone to temporal incoherence artifacts. These techniques only look
into increasing the temporal resolution upto the captured rate from
the hybrid camera. We go further in this work to enhance resolution
in both space and time by unconstrained factors.

Figure 2: The high-resolution boundary frames are warped along flow lines and

composited along with the upsampled low-resolution frame using a graph-cut opti-

mization.

3 System overview

Figure 1 gives a visual description of our system for performing
spatial and/or temporal resolution enhancement of videos using
high-resolution stills when available.

3.1 Spatial resolution enhancement

Correspondences Using bicubic interpolation, the system up-
samples the low-resolution frames to match their frame size to that
of the high-resolution stills. Then, the system computes corre-
spondences between every low-resolution frame and its two nearest
high-resolution stills. Unfortunately, computing correspondences
between temporally distant images of a dynamic scene is a hard
problem. Most optical flow algorithms can compute correspon-
dences for motion involving only tens of pixels. In our case the sys-
tem needs to compute correspondences between a high-resolution
still and a low resolution frame that might contain objects that have
displaced over hundreds of pixels.

One approach is to compute compute optical flow between the high-
resolution boundary stills to each of the interval frames. This ap-
proach, however, can produce errors because of the differences in
image resolution. Alternatively, we could use the low-resolution
boundary frames instead of the high-resolution ones. This improves
matching, but, without good initialization, optical flow often fails
to find good correspondences between frames that are far apart in
time. We could also compute pairwise optical flow and sum the flow
vectors to estimate correspondence between distant frames. This
approach performs still better but flow errors tend to accumulate.

Our approach is to use a two step process. First we approximate the
overall motion by summing the flow between consecutive frames,
fi and fi+1. Then we use this sum as initialization for a second flow
computation between the low-resolution boundary frames, sright

and sleft, and intermediate frames, f1...i. Sright and Sleft are the
corresponding high-resolution boundary frames for sright and sleft.
To actually compute optical flow we use the algorithm proposed by
Sand et al. [2006].
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Spatial reconstruction Once the system has computed corre-
spondences from sleft to fi and sright to fi, it warps Sleft and
Sright to bring them into alignment with fi thus producing two
warped images, wleft and wright. Then it reconstructs fi using re-
gions from wleft and wright. We compute the reconstruction with
a multi-label graph-cut optimization with a metric energy function
[Boykov et al. 2001]. Each pixel in fi is given three candidate labels
– wleft, wright, and fi as shown in Figure 2. We use the standard
energy function used for graphcut compositing with a data cost that
is specialized for our problem and the smoothness cost proposed by
Kwatra et al. [2003]. Kwatra’s smoothness cost encourages the re-
construction to use large coherent regions that transition seamlessly
from one patch to another. Our data cost encourages the reconstruc-
tion to prefer labels that are likely to produce a high-resolution re-
construction while trying to avoid artifacts caused by errors in the
correspondences.

The formal definition of our data cost function D for computing the
cost of assigning a pixel p to a given label l is as follows:

D(p, l) =

8

<

:

c if l = fi

∞ if wl(p) undefined
Dc(p, l) · Df (p, l) · Dd(l, fi) otherwise

Dc(p, l) = ||wl(p) − fi(p)||

Df (p, l) = 1 − motion confidence(wl(p))

Dd(l, fi) =
|frame index(wl) − i|

n

Here, c is the default cost for assigning a pixel to the low-resolution
option (i.e, fi); wl is the warped image corresponding to the label
l; Dc encourages color consistency between a pixel and its label;
Df factors in the confidence of the motion vector that was used to
generate wl(p); and Dd favors labels that are closer in temporal
distance to the current frame number i. The data cost components
are normalized to 1 before taking the product. All examples in this
paper were generated by setting c to 0.3. The confidence of the mo-
tion vectors is generated by Sand’s optical flow algorithm [2006]in
the process of computing the correspondences.

Spacetime fusion When each individual frame in the video
f1...n is reconstructed using the graph-cut compositing step just de-
scribed, the resulting video has high spatial resolution, but it suf-
fers from the types of artifacts common to videos reconstructed us-
ing pixel regions – that is, the spatial and temporal seams between
the regions tend to be visible in the result. These spatial seams
can often be mitigated using the 2D gradient domain compositing
technique described by Pérez et al. [2003]. However, the tempo-
ral seams that arise due to errors in the motion vectors and expo-
sure/lighting differences in the high-resolution stills can be difficult
to eliminate. We use spacetime fusion [Bhat et al. 2007], a 3D
gradient domain compositing technique to eliminate both the spa-
tial and temporal seams. Spacetime fusion tries to maintain the
spatial gradients of the high-resolution reconstruction and the tem-
poral gradients along the computed flow lines of the original in-
put video. Thus, the temporal coherence seen in the low-resolution
video is reproduced in the final high resolution result. We can as-
sign relative weights to the spatial and temporal gradients. Using
only spatial gradients leads to high spatial but poor temporal qual-
ity. Using only temporal gradients leads to too much blurring in the
spatial domain. All of our results have been generated using a rel-
ative weight of 0.85 between spatial and temporal gradients, which
we found experimentally. The reader is referred to the spacetime
fusion paper [Bhat et al. 2007] for the low-level details.

3.2 Temporal resolution enhancement

To increase the temporal resolution of a video we insert the appro-
priate number of intermediate frames between existing frames. To
create a frame between two existing frames the system assumes the
motion between the corresponding pixels is linear. The system first
computes forward and reverse optical flow between the two frames.
Then the two frames are warped to the appropriate point in time
and composited using a graph-cut optimization as described in Sec-
tion 3.1 to construct the intermediate frame. Occlusions will cause
holes in the reconstruction. Previously, we used the low-resolution
frames, fi, to fill these holes. Here, we force a complete label-
ing of the composite frame, but this causes artifacts. However, the
spacetime fusion step helps to mitigate these artifacts. We generate
temporal gradients for spacetime fusion by sampling the temporal
gradients between the original frames.

3.3 Performance

The current processing speed of our system is quite slow with six
minutes of processing for each video frame (resolution: 800 x 450);
where five minutes are spent on the optical flow computation, and
the last minute is spent on IBR. Since runtime performance was not
our primary focus, our unoptimized research code can be improved.
The optical flow computation time can be decreased by an order of
magnitude using GPU acceleration and a multi-grid solver as shown
by Bruhn et al. [2005]. Our implementation of the spacetime fusion
algorithm, which uses a simple software based conjugate gradient
solver, can be significantly faster with GPU acceleration and a pre-
conditioner similar to the one proposed by Szeliski [2006].

4 Applications and results

Combining low-resolution video with high-resolution stills to pro-
duce a high-resolution spatiotemporal video will enable a number
of applications previously unavailable to the amateur photographer.

4.1 Spatial resolution enhancement

We demonstrate our approach on a number of complex scenes
that include non-rigid and fast motion, deformations, and changing
lighting effects. Since hybrid cameras do not yet generate the type
of quality we would like, we simulate their output by downsampling
a high-resolution video and keeping high-resolution frames from
the original video at even intervals. Figure 3 shows three examples.
Please see the supplementary video for additional examples.

As discussed in Section 3.1 there are a number of techniques for
computing the motion correspondences between the boundary and
intermediate frames. We show a comparison between our two-step
approach and the three alternatives in Figure 4. We also compare
our graph-cut compositing step to a naive morphing composite. Our
approach, although not perfect, has fewer artifacts than any of the
others.

We also perform a quantitative analysis of our spatially enhanced
results by measuring the overall peak signal-to-noise ratio (PSNR)
of the result video with respect to the original high-resolution video
(Figure 5). PSNR is the ratio between the maximum possible power
of a signal and the power of corrupting noise that affects the fidelity
of its representation. It is widely used as a compression quality
metric for images and videos. For this analysis we use the dolphin
sequence shown in Figure 4. We explore PSNR variation with re-
spect to the downsampling factor we use to simulate the hybrid in-
put (Figure 5A) and the sampling of the high resolution stills (Fig-
ure 5B). Figure 5A shows that as the resolution of the input video
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downsampling factor : 8, high-res sampling : 3 fps 

downsampling factor : 4, high-res sampling : 3 fps 

downsampling factor : 3, high-res sampling : 3 fps 

Figure 3: The left column shows the low-resolution input video frame. The right

column shows our result. We suggest zooming in to see improvements at the actual

scale of the images.

decreases the PSNR also decreases. This is not surprising as the
resolution of the input will invariably affect the quality of the out-
put. Figure 5B shows that as the sampling of the high-resolution
stills increases, i.e., there are more high resolution stills, the PSNR
also increases. The figures also show two additional methods. The
morphing approach uses our motion correspondence method and
then computes a weighted average of the boundary frames. We
also compare to our intermediate results before the spacetime fu-
sion step. Spacetime fusion has a considerable effect, as it guides
the resulting video based on the temporal information in the initial
low resolution video and thus removes many of the artifacts and
noise present in the high-resolution composites.

4.2 Time shift imaging

Although advances in digital cameras have made it easier to capture
aesthetic images, photographers still need to know when to press
the button. Capturing the right instant is often elusive, especially
when the subject is an exuberant child, a fast-action sporting event,
or an unpredictable animal. Shutter delay only exacerbate the prob-
lem. As a result, users will often capture many images or use the
motor drive setting of their cameras.

When the user “takes a picture” with a hybrid camera, the cam-
era stores the video interval between the last and next high resolu-
tion still and also three high-resolution stills (two periodic captures
and the one clicked by the user). Using our spatial enhancement
approach, we can propagate the high-resolution information from
the high-resolution stills to the surrounding low-resolution frames,
thus producing a very short high-resolution video around the high-
resolution still captured by the user. This high-resolution image
collection enables users to choose a different frame as their still
image than the one originally captured. We expect that this abil-
ity to shift a still backward or forward in time will make it easier

A B C D E

low-resolution frame result frame

Figure 4: We compare our approach to existing alternatives. (A) Computing flow

directly between the high-resolution boundary frames and low-resolution intermedi-

ate frames produces ghosting and blurring artifacts. (B) Computing flow between the

lower resolution boundary frames and intermediate frames still results in similar arti-

facts due to long range motion. (C) Summed up pairwise optical flow to estimate the

motion between distant frames still has artifacts such as motion trails. (D) Morphing

the boundary frames to composite the intermediate frames results in tearing artifacts.

(E) Our approach produces a video that is visually consistent and has relatively few

artifacts. We suggest zooming in to see improvement at the actual scale of the images.

Note that (A)-(C) and (E) use our graph-cut spacetime fusion system.
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Figure 5: Our approach produces better images as compared to other approaches

using peak signal-to-noise ratio (PSNR).

to capture that “blowing out the candles” moment, or that “perfect
jumpshot.” Figure 6 shows a result for this application.

To confirm whether users would be interested in shifting their im-
ages forward or backward in time, we performed a user study. We
recruited 17 students from our university for a 30 minute user study
on new digital camera design. The study had three parts. The sub-
jects first completed a survey on their current image and video cap-
ture practices. Then, they were presented with a software applica-
tion that simulates a camera interface. The application plays videos
in the camera’s display. The user then “takes pictures” by press-
ing a button, just as they would if they were holding a real camera.
The participants were shown 22 video sequences and asked to take
representative pictures of the scene. They were instructed to take
pictures as they do typically. In the last phase of the experiment the
subjects were asked to go through and “edit” the photographs they
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A B

C D

Figure 6: Images (A) and (B) show the high-resolution frames captured by the

hybrid camera. The eyes of the baby are closed in (A), and the dog’s snout is far away

in (B). A better photograph may be (C), where the eyes are open and the snout is close

to the face. Our system generates a high spatial resolution frame for (C) as shown in

(D) by flowing and compositing high-resolution information from (A) and (B).

had captured. To edit the photographs the subjects were allowed to
replace the captured shot with a frame from a buffer of 10 frames to
either side of the one they originally chose. Their stated goal was
to select their favorite frame in the sequence around their originally
captured image. The subjects did not know how they were going to
“edit” their photographs until they got to the third phase. Finally,
we concluded the study with a discussion about this new camera
model.

The overall user feedback was positive. Fifteen of the seventeen
participants were eager to use a hybrid camera and our framework
for enhancing images and video. One subject said, “If the adja-
cent frames are hi-res, I would totally love this. Sometimes I was
just a few frames off. Other times I was way off. If you can
time shift, that’s awesome!” Our original hypothesis was that users
would more often select frames preceding the one originally cap-
tured due to the delay between seeing what they wanted and click-
ing the “shutter”. However, Figure 7 shows a roughly normal dis-
tribution of finally selected frames around the original one. Perhaps
users over-anticipate the right instant as much as they “miss it.”

4.3 Temporal resolution enhancement

To enhance the temporal resolution of a video an algorithm would
ideally compute perfect motion correspondences and then simply
morph the frames to generate the right result. Unfortunately, com-
puting perfect correspondences for most real world videos is hard.
Imperfect motion correspondences result from hardware constraints
(e.g., inability to capture fast motion at an appropriate frequency)
and the complexity of natural scenes (e.g., textureless regions and
occlusions). Existing techniques [Vatolin and Grishin 2006] use
weighted averaging of warped images to hide artifacts resulting
from bad correspondences. In comparison, our method (i.e., graph-
cut compositing plus spacetime fusion) focuses on preserving the
overall shape of objects and hence leads to stroboscopic motion
in regions where the motion correspondences are extremely bad.
Therefore, the artifacts of our technique are different from those of
previous techniques. Our technique may be preferred for enhancing
videos that involve objects like human faces where distortion and
tearing artifacts would be jarring. On the other hand, the distortion
and tearing artifacts of previous methods look like motion blur for
certain objects, which in turn makes their results look temporally
smoother for some videos. Like most morphing-based methods,
our method is unable to get rid of motion blur present in the in-
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Figure 7: This graph shows users’ preferences for the frames around the frame they

actually capture in the user study.

put for fast moving objects, which can seem perceptually odd when
seen in slow motion.

We combine the spatial and temporal steps of our approach to pro-
duce spatiotemporally enhanced videos. We show examples of this
type of enhancement in the supplementary video.

4.4 Video retiming and cliplets

Dynamic retiming is an effective method for enhancing the sus-
pense or meaning in a scene. With our framework, we can create
retimed videos simply by varying the temporal resolution. To en-
able users to create their own retimed videos, we created a simple
curve editor that allows users to specify the video retiming and pre-
view an approximate result in real time using simple frame averag-
ing. Once the user is happy with the flow of the retimed video, our
system generates the high quality retimed video.

Cohen and Szeliski [2006] proposed the idea of cliplets as a media
between stills and videos to enhance the perceptual experience of a
moment. Cliplets are described by a still frame, a very short seg-
ment of motion, and another still frame. Cliplets are simply a spe-
cial case of retiming, and users can generate them with our curve
interface.

5 Conclusions

We have demonstrated the power of combining optical flow with
graph-cut-based optimization and spacetime fusion to achieve a
number of enhancements to the spatial and temporal resolution of
captured imagery. We hope that our work will encourage camera
manufacturers to provide more choices of hybrid video and still
cameras. The combination of good image capture and appropriate
software can provide amateur photographers and videographers a
wide variety of new applications. Currently the capabilities of our
framework depend on the quality of motion correspondence. As
motion correspondence algorithms improve, we will be able to ap-
ply our framework to a broader set of scenarios, such as videos with
large and fast motion. We envision using our framework to generate
high spatiotemporal videos from motor-drive imagery. Addition-
ally, capability to generate high spacetime resolution videos from
hybrid input could possibly be used to improve video compression
systems.
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