
DMP: Deterministic Shared Memory Multiprocessing

Joseph Devietti, Brandon Lucia, Luis Ceze and Mark Oskin

University of Washington

May 2008

Abstract

Current shared memory multicore and multiprocessor systems are nondeterministic. Each time these systems execute
a multithreaded application, even if supplied with the same input, they can produce a different output. This frustrates
debugging and limits the ability to properly test multithreaded code, becoming a major stumbling block to the much-needed
widespread adoption of parallel programming.

In this paper we make the case for fully deterministic shared memory multiprocessing (DMP). The behavior of an ar-
bitrary multithreaded program on a DMP system is only a function of its inputs. The core idea is to make inter-thread
communication fully deterministic. Previous approaches to coping with nondeterminism in multithreaded programs have
focused on replay, a technique useful only for debugging. In contrast, while DMP systems are directly useful for debugging
by offering repeatability by default, we argue that parallel programs should execute deterministically in the field as well. This
has the potential to make testing more assuring and increase the reliability of deployed multithreaded software. We propose
a range of approaches to enforcing determinism and discuss their implementation trade-offs. We show that determinism
can be provided with little performance cost using our architecture proposals on future hardware, and that software-only
approaches can be utilized on existing systems.

1 Introduction

Developing multithreaded software has proven to be much more difficult than writing singlethreaded code. One

of the major challenges is that current multicores execute multithreaded code nondeterministically [13]: given

the same input, threads can interleave their memory and I/O operations differently in each execution.

Nondeterminism in multithreaded execution arises from small perturbations in the execution environment,

e.g., other processes executing simultaneously, differences in the operating system resource allocation, state of

caches, TLBs, buses and other microarchitectural structures. The ultimate consequence is a change in program

behavior in each execution. Nondeterminism complicates the software development process significantly. Defec-

tive software might execute correctly hundreds of times before a subtle synchronization bug appears, and when

it does, developers typically cannot reproduce it during debugging. In addition, nondeterminism also makes it

difficult to test multithreaded programs, as good coverage requires both a wide range of program inputs and

wide range of possible interleavings. Moreover, if a program might behave differently each time it is run with

the same input, it becomes hard to assess test coverage. For that reason, a significant fraction of the research on

testing parallel programs is devoted to dealing with nondeterminism.



While there were significant efforts in addressing the problem of nondeterminism, most of it has been on de-

terministically replaying multithreaded execution based on a previously generated log [9, 15, 16, 19, 23]. In con-

trast, this paper makes the case for fully deterministic shared memory multiprocessing. We show that, with hardware

support, arbitrary shared memory parallel programs can be executed deterministically with very little perfor-

mance penalty. In addition to the obvious benefits deterministic multiprocessing has for debugging, i.e., repeata-

bility, we argue that parallel programs should always execute deterministically in the field. This has the potential

to make testing more assuring, to allow a more meaningful collection of crash information, and to increase the

reliability of multithreaded software deployed in the field, since execution in the field will better resemble in-

house testing. Moreover, the same techniques we propose to enable efficient deterministic execution can also be

used to directly manipulate thread interleavings and allow better testing of multithreaded programs. Overall,

deterministic multiprocessing positively impacts both development and deployment of parallel programs.

This paper is organized as follows. We begin by providing a precise definition of what it means to execute

deterministically (Section 2). A key insight of this definition is that multithreaded execution is deterministic if

the communication between threads is deterministic. We then discuss what gives rise to nondeterminism and

provide experimental data that shows, as one would expect, that current shared memory multiprocessors are in-

deed highly nondeterministic. After that we describe how to build an efficient deterministic multiprocessor. We

propose three basic mechanisms (Section 3) for doing so: (1) using serialization to transform multithreaded exe-

cution into single-threaded execution; (2) restricting accesses to shared data to guarantee deterministic commu-

nication; and (3) using transactions to speculatively communicate between threads, rolling back if determinism

has been violated. Moreover, we propose a series of optimizations to further reduce the performance overheads

to a negligible amount. We discuss the trade-offs of hardware implementations and contrast them to software

implementations (Section 4). We then move on to describe our experimental infrastructure (Section 5), composed

of a simulator for the hardware implementation and a fully functional software-based implementation using the

LLVM [11] compiler infrastructure. We present performance and characterization results (Section 6) for both the

hardware and compiler-based implementations. We then discuss trade-offs and system issues such as interac-

tion with the operating system and debugger (Section 7). Finally, we discuss related work (Section 8) and then

conclude (Section 9).

2 Background

2.1 A Definition of Deterministic Parallel Execution

We define a deterministic shared memory multiprocessor (DMP) system as a computer system that: (1) executes

multiple threads that communicate via shared memory, and (2) will produce the same program output if given the

2



same program input. This definition implies that a parallel program running on a DMP system is as deterministic

as a single-threaded program.

The most direct way to guarantee deterministic behavior is to preserve the same global interleaving of in-

structions in every execution of a parallel program. However, several aspects of this interleaving are irrelevant

for ensuring deterministic behavior. It is not important which global interleaving is chosen, as long as it is always

the same. Also, if two instructions do not communicate, their order can be swapped with no observable effect

on program behavior. What turns out to be the key to deterministic execution is that all communication between

threads must be precisely the same for every execution. This guarantees that the program always behaves the

same way if given the same input.

Guaranteeing deterministic communication between threads requires that each dynamic instance of an in-

struction (consumer) read data produced from the same dynamic instance of another instruction (producer).

Producer and consumer need not be in the same thread, so this communication happens via shared memory.

Interestingly, there are multiple global interleavings that lead to the same communication between instructions,

they are called communication-equivalent interleavings, illustrated in Figure 1. In summary, any communication-

equivalent interleaving will yield the same program behavior. To guarantee deterministic behavior, then, we need

to carefully control only the behavior of load and store operations that cause communication between threads.

This insight is key to efficient deterministic execution.

flow of data

P0 P1
st A

st A

ld A

ld A

ld A

st B ld B
st W

st P

ld Q

ld Z

ld T

(a)
Parallel execution

ld Z

ld T

st A

st B

st A

st W

st P

ld Q

ld A

ld B

ld A

ld A

ld Z

ld T

st A

st B

st A

st W

st P

ld Q

ld A

ld B

ld A

ld A

(b)
Examples of communication-equivalent 

global interleavings

...

Figure 1: An illustration of a parallel execution (a) and two of its multiple communication-equivalent interleavings
(b). Solid markers represent communicating instructions, while hollow markers represent instructions that do not
communicate between threads.

2.2 Nondeterminism in existing systems

Current generation software and hardware systems are not built to behave deterministically. Multiprocessor sys-

tems execute programs nondeterministically because the software environment and the non-ISA microarchitec-

tural state change from execution to execution. These effects manifest themselves as perturbations in the timing

3



between events in different threads of execution, causing the final global interleaving of memory operations in

the system to be different. Ultimately, the effect on the application is a change in which dynamic instance of a

store instruction produces data for a dynamic instance of a load instruction. Once this occurs, program execution

behavior may diverge from previous executions at the ISA level, and, consequently, program output may vary.

2.2.1 Sources of nondeterminism

The following are some of the software and hardware sources of nondeterminism.

Software Sources. Several aspects of the software environment create nondeterminism: other processes execut-

ing concurrently and competing for resources; the state of memory pages, power savings mode, disk and I/O

buffers; and the state of global data structures in the OS. In addition, several operating system calls have inter-

faces with legitimate nondeterministic behavior. For example, the read system call can legitimately take a variable

amount of time to complete and return a variable amount of data.

Hardware Sources. A number of non-ISA-visible components vary from program run to program run. Among

them are the state of any caches, predictor tables and bus priority controllers, in short, any microarchitectural

structure. In fact, certain hardware components, such as bus arbiters, can change their outcome with each execu-

tion purely due to environmental factors; e.g., if the choice of priority is based on which signal is detected first,

the outcome could vary with differing temperature and load characteristics.

Collectively, current generation software and hardware systems are not built to behave deterministically. In

the next section, we measure how nondeterministically they behave.

2.2.2 Quantifying nondeterminism

We first show a simple experiment that illustrates how simple changes to the initial conditions of a multipro-

cessor system can lead to different program outcomes for a simple toy example. Then we measure how much

nondeterminism exists in the execution of real applications.

A simple illustration of nondeterministic behavior. Figure 2 depicts a simple program with a data-race where

two threads synchronize on a barrier and then write different values to the same shared variable. The table inside

the figure also shows the frequency of the outcome of 1000 runs on a Intel Core 2 Duo machine. For the “clear

cache” runs we had each thread set a 2MB buffer to zero before entering the barrier. As expected, the behavior is

nondeterministic and varies significantly depending on the configuration being run.

Measuring nondeterminism in real applications. As mentioned previously, nondeterminism in program exe-

cution occurs when a particular dynamic instance of a load reads data created from a different dynamic instance

of a store. To measure this degree of nondeterminism, we start by building a set containing all pairs of com-

municating dynamic instructions (dynamic store → dynamic load) that occurred in an execution. We call this

4



void thread0() {
  if ( doClearCache )
    clearCache();
  barrier_wait();
  race = 0;
}

void thread1() {
  if ( doClearCache )
    clearCache();
  barrier_wait();
  race = 1;
}

int race = -1; // global variable

yes 33.9%
no 83.2%

clear 
cache?

thread 0 
wins

Figure 2: Simple program with a data race between two threads and the outcome of the race with 1000 runs.

the communication set, or C. A dynamic memory operation is uniquely identified by its instruction address, its

instance number1, and the id of the thread that executed it. Assume there are two executions, ex1 and ex2, whose

communicating sets are Cex1 and Cex2, respectively. The symmetric difference between the communication sets,

Cex1 4 Cex2 = (Cex1 ∪ Cex2) − (Cex1 ∩ Cex2), yields the communicating pairs that were not present in both

executions, which quantifies the execution difference between ex1 and ex2. Finally, we define the amount of

nondeterminism between ex1 and ex2 as: NDex1,ex2 = |Cex14Cex2|
|Cex1|+|Cex2| (Eq. 1), which represents the proportion of

all communicating pairs that were not in common between the two executions. Note that this number correctly

accounts for extra instructions spent in synchronization, as they will form some communicating pair.

We developed a tool using PIN [14] that collects the communication sets for multithreaded program execu-

tions. The tool takes a single sample at an specified point in the execution. We cover the whole application by

running the tool multiple times at different points in each execution. Figure 3 shows two examples of the results

(barnes, ocean-contig) [22] running on an Intel Core 2 Duo machine. The plots show that programs have significant

nondeterministic behavior. Moreover, they reveal two interesting properties. First, both plots depict phases of

execution where nondeterminism drops to nearly zero. These are created by barrier operations that synchronize

the threads and then make subsequent execution more deterministic. Second, ocean-contig never shows 100%

nondeterminism, and, in fact, a significant fraction of pairs are the same, i.e., typically those from private data

accesses. These aspects of program execution can be exploited in designing a system that is actually deterministic.

3 Enforcing Deterministic Shared Memory Multiprocessing

In this section we describe how to build a deterministic multiprocessor (DMP) system. We focus on the key

mechanisms without discussing specific implementations, which we address in Section 4. We begin with a basic

naive approach, and then refine this simple technique into progressively more efficient organizations.

3.1 Basic Idea — DMP-Serial

As seen earlier, making multiprocessors deterministic depends upon ensuring that the communication between

threads is deterministic. The easiest way to accomplish this is to allow only one processor at a time to access mem-

1The instance number is obtained by keeping a per-thread counter of the number of dynamic memory operations executed by each
instruction pointer.

5



barnes

0 1M 2M 3M 4M 5M

Time (Insns.)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
on

-D
et

er
m

in
is

m

ocean-contig

0 1M 2M 3M 4M 5M

Time (Insns.)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
on

-D
et

er
m

in
is

m

Figure 3: Amount of nondeterminism over the execution of barnes and ocean-contig. The x axis is the position
in the execution where each sample of 100,000 instructions was taken. The y axis is ND (Eq. 1) computed for
each sample in the execution.

ory in a deterministic order. This process can be conceptualized as a memory access token being deterministically

passed among processors. We call this deterministic serialization of a parallel execution, shown in Figure 4(b). De-

terministic serialization guarantees that inter-thread communication is deterministic by preserving all pairs of

communicating memory instructions.

memory operation
happens-before 
synchronization

P0 P1

(a) 
Parallel

execution

(b) 
Deterministic serialized
execution at a fine-grain

(c) 
Deterministic serialized

execution at a coarse-grain

P0 P1 P0 P1

Figure 4: Deterministic serialization of memory operations.

The simplest way to implement such serialization is to have each processor obtain the memory access token

(henceforth called deterministic token) and, when the memory operation is completed, pass it to the next proces-

sor in the deterministic order. A processor blocks whenever it needs to access memory but does not have the

deterministic token.

Waiting for the token at every memory operation is likely to be expensive and will cause significant perfor-

mance degradation compared to the original parallel execution (Figure 4(a)). Performance degradation stems

from overhead introduced by waiting and passing the deterministic token and from the serialization itself, which

removes the benefits of parallel execution. Synchronization overhead can be mitigated by synchronizing at a

coarser granularity (Figure 4(c)), allowing each processor to execute a finite, deterministic number of instruc-

tions, or a quantum, before passing the token to the next processor. A system with serialization at the granularity

of quanta is called DMP-Serial. The process of dividing the execution into quanta is called quantum building: the

6



simplest way to build a quantum is to break execution up into fixed instruction counts (e.g. 10,000). We call this

simple quantum building policy QB-Count.

Note that DMP does not interfere (e.g., introduce deadlocks) with application-level synchronization. DMP of-

fers the same memory access semantics as traditional nondeterministic systems. Hence, the extra synchronization

imposed by a DMP system resides below application-level synchronization and the two do not interact.

3.2 Recovering Parallelism

Reducing the impact of serialization requires enabling parallel execution while preserving the same execution

behavior as deterministic serialization. We propose two techniques to recover parallelism. The first technique ex-

ploits the fact that threads do not communicate all the time, allowing concurrent execution of communication-free

periods. The second technique uses speculation to allow parallel execution of quanta from different processors,

re-executing quanta when determinism might have been violated.

3.2.1 Leveraging Communication-Free Execution — DMP-ShTab

The performance of deterministic parallel execution can be improved by leveraging the observation that threads

do not communicate all the time. Periods of the execution that do not communicate can execute in parallel with

other threads. Thread communication, however, must happen deterministically. With DMP-ShTab, we achieve

this by falling back to deterministic serialization only while threads communicate.

Inter-thread communication occurs when a thread writes to shared (or non-private) pieces of data. In this

case, the system must guarantee that all threads observe that write at a deterministic point in their execution.

DMP-ShTab does precisely that. Figure 5 illustrates how this works. There are two important cases: (1) reading

data held private by a remote processor, and (2) writing to shared data (privatizing it). Case (1) is shown in

Figure 5(a): when quantum 2 attempts to read data that is held private by a remote processor P0, it blocks and

waits for the deterministic token. This is necessary to guarantee that quantum 2 always gets the same data, since

quantum 1 might still write to A before it completes executing. Case (2) is shown in Figure 5(b): when quantum

1 — which already holds the deterministic token — attempts to write to a piece of shared data, it must wait until

other processors reach a deterministic point in their execution, namely, the end of quantum 2. This is necessary

to guarantee that all processors observe the change of the state of A (from shared to privately held by a remote

processor) at a deterministic point in their execution.

To detect writes that cause communication, DMP-ShTab needs a global data-structure to keep track of the

sharing state of memory positions. A sharing table is a conceptual data structure that contains sharing information

for each memory position; it can be kept at different granularities, e.g., line or page. Figure 6 shows a flowchart of

how the sharing table is used. A thread can access its own private data without holding the deterministic token

7



memory operation
deterministic token passing

N deterministic order

atomic quantum

st A

P1P0

1

2

(a) 
P1 deterministically reading

 another thread's private data

(b) 
P0 deterministically 

writing to shared data 

...
ld A

ld A

(blocked)
ld A

P1P0

1 2

...
st A

st A

(blocked)

(blocked)

Initially A is private in P0 Initially A is shared

...
...

Figure 5: Recovering parallelism by overlapping
communication-free execution.

thread t about to 
access address A

A owned by t?Y

is A shared ?

N

Y N

is read ?
Y

proceed
with

access

N

set A private and 
owned by thread t

t waits for token 
and 

for all other threads 
to be blocked 

is write ?

set A shared

Y

N

1

2

4

3

5

Figure 6: Deterministic serialization of shared memory
communication only.

(1). It can also read shared data without holding the token (2). However, in order to write to shared data or read

data regarded as private by another thread, a thread needs to hold the token and wait until all other threads are

blocked also waiting for the token (3). This guarantees that the sharing information is kept consistent and its

state transitions are deterministic. When a thread writes to a piece of data, it becomes the owner of the data (4).

Similarly, when a thread reads data not yet read by any thread, it becomes the owner of the data. Finally, when a

thread reads data owned by another thread, the data becomes shared (5).

In summary, DMP-ShTab lets threads run concurrently as long as they are not communicating. As soon as

they attempt to communicate, the sharing table deterministically serializes communication.

3.2.2 Leveraging Support for Transactional Memory — DMP-TM and DMP-TMFwd

Executing quanta atomically and in isolation in a deterministic total order is equivalent to deterministic serial-

ization of memory operations. To see why, consider a quantum executed atomically and in isolation as a single

instruction in the deterministic total order, which is the same as DMP-Serial. Transactional Memory [5, 6] can

be leveraged to make quanta appear to execute atomically and in isolation. This, coupled with a deterministic

commit order, makes execution equivalent to deterministic serialization while recovering parallelism.

We use TM support by encapsulating each quantum inside a transaction, making it appear to execute atomi-

cally and in isolation. In addition, we need a mechanism to form quanta deterministically and another to enforce

a deterministic commit order. As Figure 7(a) illustrates, speculation allows a quantum to run concurrently with

other quanta in the system as long as there are no overlapping memory accesses that would violate the original

deterministic serialization of memory operations. In case of conflict, the quantum later in the deterministic total

8



order gets squashed and re-executed (2). Note that the deterministic total order of quantum commits is a key

component in guaranteeing deterministic serialization of memory operations. We call this system DMP-TM.

P0 P1
st A

ld B

st A

ld T

ld A

st C

st A

ld B

1

23

ld A

st C

(squash)

4

memory operation
deterministic token passing

N deterministic order

atomic quantum

uncommitted value flow

P0 P1
st A

ld B

st A

ld B

st C

ld A

st A

ld B

1 2

3 4

(a) 
Pure TM

(b)
TM w/ uncommitted value flow

Figure 7: Recovering parallelism by executing quanta as memory transactions (a). Avoiding unnecessary
squashes with un-committed data forwarding (b).

We can go further than just allowing quanta to execute atomically and in isolation in parallel with other

quanta. Having a deterministic commit order allows isolation to be selectively relaxed, enabling uncommitted

(or speculative) data to be forwarded between quanta. This can potentially save a large number of squashes in

applications that have more inter-thread communication. To do so, we allow a quantum to fetch speculative data

from another uncommitted quantum earlier in the deterministic order. This is illustrated in Figure 7(b), where

quantum 2 fetches an uncommitted version of A from quantum 1. Note that without support for forwarding,

quantum 2 would have been squashed. To guarantee correctness, if a quantum that provided data to other

quanta is squashed, all subsequent quanta must also be squashed since they might have consumed incorrect

data. We call a DMP system that leverages support for TM with forwarding DMP-TMFwd.

Another interesting effect of pre-defined commit ordering is that memory renaming can be employed to avoid

squashes on write-after-write and write-after-read conflicts. For example, in Figure 7(a), if quanta 3 and 4 execute

concurrently, the store to A in (3) need not squash quantum 4 despite their write-after-write conflict.

3.3 Exploiting the Critical Path — QB-SyncFollow, QB-Sharing and QB-SyncSharing

The most basic quantum building policy, QB-Count, produces quanta based on counting instructions and break-

ing a quantum when a deterministic, target number of instructions is reached. However, instruction-count based

quantum building does not capture the fact that threads do not have the same rate of progress. It also does

not capture the fact that multithreaded programs have a critical path. Intuitively, the critical thread changes as

threads communicate with each other via synchronization operations and data sharing.

We now describe how to exploit typical program behavior to adapt the size of quanta and lead to more

efficient progress on the critical path of execution. We devised three heuristics to do so. The first heuristic, called

QB-SyncFollow simply ends a quantum when an unlock operation is performed. As Figure 8 shows, the rationale

is that when a thread releases a lock (P0), other threads might be spinning waiting for that lock (P1), so the

9



deterministic token should be sent forward as early as possible to allow the waiting thread to make progress. In

addition, QB-SyncFollow passes the token forward immediately if a thread starts spinning on a lock.

lock L
memory operation
deterministic token passing

N deterministic order

atomic quantum

P1

unlock L

P0

1

3

2

lock L

4

...
spin

...

grab
 lock L

(a) 
Regular quantum break

P1P0
lock L

1

3

2

lock L
(grab)

4

(wasted
work)

unlock L

(b) 
Better quantum break

Figure 8: Example of a situation when better quantum breaking policies leads to better performance.

The second heuristic relies on information about data sharing in order to identify when a thread has poten-

tially completed work on shared data, and consequently ends a quantum at that time. It does so by determining

when a thread hasn’t issued memory operations to shared locations in some time — e.g. in the last 30 memory

operations. The rationale is that when a thread is working on shared data, it is expected that other threads will

access that data soon. By ending a quantum early and passing the deterministic token, the consumer thread

potentially consumes the data earlier than if the quantum in the producer thread ran longer. This not only has

an effect on performance in all DMP techniques, but also reduces the amount of work wasted by squashes in

DMP-TM and DMP-TMFwd. We call this quantum building heuristic QB-Sharing.

In addition, we explore a combination of QB-SyncFollow and QB-Sharing, which we refer to as QB-SyncSharing.

This quantum building strategy monitors synchronization events and sharing behavior. QB-SyncSharing deter-

mines the end of a quantum whenever either of the other two techniques would have decided to do so.

4 Implementation Issues

As seen in the previous section, implementing a DMP system requires a mechanism to deterministically break

the execution into quanta and mechanisms to guarantee the properties of deterministic serialization. A DMP

system could have all these mechanisms completely in hardware, completely in software or even as a mix of

hardware and software components. The trade-off is one of complexity versus performance. A hardware-only

implementation offers better performance but requires changes to the multiprocessor hardware. Conversely, a

software-only implementation performs worse but does not require special hardware. In this section, we discuss

the relevant points in each implementation.

10



4.1 Hardware-Only Implementation

Quantum Building: The simplest quantum building policy, QB-Count, is implemented by counting dynamic

instructions as they retire and placing a quantum boundary when the desired quantum size is reached. QB-

SyncFollow requires access to information about synchronization, which is obtained by a compiler or annotations

in the synchronization libraries. QB-Sharing requires monitoring memory accesses and determining whether

they are to shared data or not, which is done using the sharing table (Section 3.2.1), discussed later in this sec-

tion. Finally, QB-SyncSharing is exactly a logical OR of the decision made by QB-SyncFollow and QB-Sharing.

Regardless of the quantum building policy used, depending upon the consistency model of the underlying hard-

ware, threads must perform a memory fence at the edge of a quantum. It is at these points that inter-thread

communication occurs.

Hw-DMP-Serial: DMP-Serial is implemented in hardware with a token that is passed between processors in the

deterministic order. The hardware supports multiple tokens, allowing multiple deterministic processes at the

same time — each process has its own token.

Hw-DMP-ShTab: The sharing table data-structure used by DMP-ShTab keeps track of the sharing state of data

in memory. Our hardware implementation of the sharing table leverages the cache line state maintained by a

MESI cache coherence protocol. A line in exclusive or modified state is considered private by the local processor

so, as the flowchart in Figure 6 shows, it can be freely read or written by its owner thread without holding the

deterministic token. The same applies for a read operation on a line in shared state. Conversely, a thread needs to

acquire the deterministic token before writing to a line in shared state, and moreover, all other threads must be at

a deterministic point in their execution, e.g., blocked. The state of the entries in the sharing table corresponding to

lines that are not cached by any processor is kept in memory and managed by the memory controller, much like

a directory in directory-based cache coherence. Note, however, that we do not require directory-based coherence

per se. This state is transferred when cache misses are serviced. Nevertheless, directory-based systems can

simplify the implementation of Hw-DMP-ShTab even further.

We now address how the state changes of the sharing table happen deterministically. There are three re-

quirements: (1) speculative instructions cannot change the state of the sharing table; (2) a coherence request that

changes the state of a cache line can only be performed if the issuer holds the deterministic token; and (3) all

nodes need to know when the other nodes are blocked waiting for the deterministic token — this is necessary to

implement step (3) in Figure 6. To guarantee (1), speculative instructions that need to change the sharing table

can only do so when they are not speculative anymore. To guarantee (2), a coherence request carries a bit that

indicates whether the issuer holds the deterministic token: if it does, the servicing node processes the request; if

it does not, the servicing node nacks the request if it implies a change in its cache lines, e.g., a downgrade. Finally,

11



(3) is guaranteed by having all processors broadcast when they block or when they unblock.

Alternatively, sharing table implementations can use memory tagging, where the tags represent the sharing

information. Moreover, our evaluation (Section 6.2) shows that tracking sharing information at a page granularity

does not degrade performance excessively. This suggests a page-level implementation, which is simpler than a

line-level implementation.

Hw-DMP-TM and Hw-DMP-TMFwd: On top of standard TM support, a hardware implementation of DMP-TM

needs a mechanism to enforce a specific transaction commit order — the deterministic commit order of quanta

encapsulated inside transactions. Hw-DMP-TM does that by allowing a transaction to commit only when the

processor receives the deterministic token. After a single commit, the processor passes the token to the next

processor in the deterministic order. DMP-TMFwd requires more elaborate TM support to allow speculative

data to flow from uncommitted quanta earlier in the deterministic order. This is implemented by making the

coherence protocol be aware of the data version of quanta, very similarly to versioning protocols used in Thread-

Level Speculation (TLS) systems [3]. One interesting aspect of Hw-DMP-TM is that, if a transaction overflow

event is made deterministic, it can be used as a quantum boundary, making a bounded TM implementation

perfectly suitable for a DMP-TM system. Making transaction overflow deterministic requires making sure that

updates to the speculative state of cache lines happen strictly as a function of memory instruction retirement, i.e.,

updates from speculative instructions cannot be permitted. In addition, it also requires all non-speculative lines

to be displaced before an overflow is triggered, i.e., the state of non-speculative lines cannot affect the overflow

decision.

The implementation choices in a hardware-only DMP system also have performance versus complexity trade-

offs. DMP-TMFwd is likely to offer better performance, but it requires mechanisms for speculative execution,

conflict detection and memory versioning, whereas DMP-ShTab performs a little worse but does not require

speculation.

4.2 Software-Only Implementation

A DMP system can be implemented using a compiler or a binary rewriting infrastructure. The implementation

details are largely similar to the hardware implementations. The compiler builds quanta by sparsely inserting

code to track dynamic instruction count in the control-flow-graph — quanta need not be of uniform size as long

as the size is deterministic. This is done at the beginning and end of function calls, and at the tail end of CFG

back edges. The inserted code tracks quantum size and when the target size has been reached, it calls back to

a runtime system, which implements the various DMP techniques. Sw-DMP-Serial is supported in software by

implementing the deterministic token as a queuing lock. For Sw-DMP-ShTab and Sw-DMP-TM, the compiler

instruments every load and store to call back to the runtime system. For Sw-DMP-ShTab, the runtime system

12



implements the logic shown in Figure 6 and the table itself is kept in memory. Sw-DMP-TM is a direct analog of

Hw-DMP-TM except that it uses software-transactional memory (STM), which is part of the runtime system.

5 Experimental Setup

We evaluate both hardware and software implementations of a DMP system. We use SPLASH2 [22] and PAR-

SEC [2] benchmark suites and run the benchmarks to completion. Some benchmarks were not included due to

infrastructure problems such as out of memory errors and other system issues (e.g., lack of 64-bit compatibility).

Note that the input sizes for the software implementation experiments are typically larger than the ones used

in the simulation runs due to simulation time constraints. We ran our native experiments on a machine with 2

Quad-Core 2.66 GHz 64-bit processors, with 4GB of memory running Linux. In the sections below we describe

the evaluation environment for each implementation category.

5.1 Hw-DMP

We assess the performance trade-offs of the different hardware implementations of a DMP systems with a simu-

lator written using PIN [14]. The model includes the effects of serialized execution2, quantum building, memory

conflicts, speculative execution squashes and buffering for a single outstanding transaction per thread in the

transactional memory support. Note that even if execution behavior is deterministic, performance may not be

deterministic. Therefore we run our simulator multiple times, average the results and provide error bars show-

ing the 90% confidence interval for the mean. While the model simplifies some microarchitectural details, the

specifics of the various Hw-DMP system implementations are modeled in detail. To reduce simulation time, our

model assumes that the IPCs (including squashed instructions) of all the different DMP modes are the same. This

reasonable assumption allows us to compare performance between different Hw-DMP schemes using our infras-

tructure. Note that the comparison baseline (nondeterministic parallel execution) also runs on our simulator.

5.2 Sw-DMP

We evaluate the performance impact of a software-based DMP system by using a compiler pass written for LLVM

v2.2 [11]. Its main transformations are described in Section 4.2. The pass is executed after all other compiler

optimizations. Once the object files are linked to the runtime environment, LLVM does another complete link-

time optimization pass to inline the runtime library with the main object code.

The runtime environment linked to the executable is specific to each Sw-DMP implementation: Sw-DMP-

Serial, Sw-DMP-ShTab, Sw-DMP-TM. The runtime system also provides a custom pthread-compatible thread

management and synchronization API. Finally, the runtime system allows the user to control the maximum

quantum size. Our Sw-DMP experiments run on real hardware, so we took multiple runs, averaged their running

2Note that the simulation actually serializes quanta execution functionally, which affects how the system executes the program. This
accurately models the effects of quanta serialization on application behavior.

13



time and provided error bars in the performance plot showing the 90% confidence interval for the mean.

6 Evaluation

We first show the scalability of our hardware proposals: in the best case, Hw-DMP-ShTab has negligible overhead

compared to nondeterministic parallel execution with 16 threads, while the more aggressive Hw-DMP-TMFwd

reduces Hw-DMP-ShTab’s overheads by 20% on average. We then examine the sensitivity of our hardware pro-

posals to changes in quantum size, conflict detection granularity, and quantum building strategy, presenting only

a subset of benchmarks (and averages) for space reason. Finally, we show the scalability of our software-only

proposals: Sw-DMP-ShTab has an average slowdown of 2.5x with 8 threads. We believe that Hw-DMP-ShTab

represents a good trade-off between performance and complexity, and that Sw-DMP-ShTab is fast enough to be

useful for debugging and, depending on the application, deployment purposes.

6.1 Hw-DMP: Performance and Scalability

Figure 9 shows the scalability of our techniques compared to the nondeterministic, parallel baseline. We ran each

benchmark with 4, 8 and 16 threads, and QB-SyncSharing producing 1,000-instruction quanta. As one would

expect, Hw-DMP-Serial exhibits slowdown nearly linear with the number of threads. The degradation can be

sublinear because DMP affects only the parallel behavior of an application’s execution. Hw-DMP-ShTab has

38% overhead on average with 16 threads, and in the few cases where Hw-DMP-ShTab has larger overheads

(e.g. lu-nc), Hw-DMP-TM provides much better performance. For an additional cost in hardware complexity,

Hw-DMP-TMFwd, with an average overhead of only 21%, provides a consistent performance improvement over

Hw-DMP-TM. Hw-DMP-ShTab and the TM-based schemes all scale sub-linearly with the number of processors.

The overhead for TM-based schemes is flat for most benchmarks, suggesting that a TM-based system would be

ideal for larger DMP systems. Thus, with the right hardware support, the performance of deterministic execution

can be very competitive with nondeterministic parallel execution.

4 8
barnes

  16        4   8
cholesky

     16                 4      8
fft(P)

        16                          4         8
fmm

           16                                   4            8
lu-nc

              16                                            4               8
ocean-c(P)

                 16                                                     4                  8
radix(P)

                    16                                                              4                     8
vlrend

                       16                                                                       4                        8
water-sp

                          16                                                                                4                           8
SPLASH
gmean

                             16                                                                                         4                              8
blacksch

                                16                                                                                                  4                                 8
bodytr

                                   16                                                                                                           4                                    8
fluid

                                      16                                                                                                                    4                                       8
strmcl

                                         16                                                                                                                             4                                          8
PARSEC
gmean

                                            16                                                                                         1.0

1.5

2.0

2.5

3.0

ru
nt

im
e 

no
rm

al
iz

ed
 to

 
no

n-
de

te
rm

in
is

tic
 p

ar
al

le
l e

xe
cu

tio
n

 3.7
 6.2
10.7

 3.4

 3.6
 6.1
10.2

 3.1
 3.8

 3.6
 6.8
10.3

 3.8
 7.0
11.0

 3.1
 5.2
 8.4

 3.2
 5.6

 4.3
 6.4

 3.8
 7.0
12.1

 3.2

 3.3
 4.4

 3.8
 6.9
11.8

 4.6
 6.7

Hw-DMP-TMFwd Hw-DMP-TM Hw-DMP-ShTab Hw-DMP-Serial

Figure 9: Runtime overheads with 4, 8 and 16 threads. (P) indicates page-level conflict detection; line-level otherwise.

14



6.2 Hw-DMP: Sensitivity Analysis

Figure 10 shows the effects of changing the maximum number of instructions included in a quantum. Again,

we use the QB-SyncSharing scheme, with line-granularity conflict detection. Increasing the size of quanta con-

sistently degrades performance for the TM-based schemes, as larger quanta increase the likelihood and cost of

aborts since more work is lost. The ability of Hw-DMP-TMFwd to avoid conflicts helps increasingly as the quanta

size gets larger. With Hw-DMP-ShTab, the effect is more application dependent: most applications (e.g. vlrend)

do worse with larger quanta, since each quantum holds the deterministic token for longer, potentially exclud-

ing other threads from making progress. For lu-nc, however, the effect is reversed: lu-nc has relatively large

communication-free regions per quantum, allowing each thread to make progress without holding the determin-

istic token. Smaller quanta sizes force a thread to wait for the deterministic token sooner, lessening this effect. On

average, however, Hw-DMP-Serial is less affected by quantum size.

2 X
lu-nc

  C        2   X
vlrend

     C                 2      X
SPLASH
gmean

        C                          2         X
strmcl

           C                                   2            X
PARSEC
gmean

              C                             -100%

-80%

-60%

-40%

-20%

0%

20%

40%

%
 s

pe
ed

up
 o

ve
r 

1,
00

0-
in

sn
 q

ua
nt

a Hw-DMP-TMFwd
Hw-DMP-TM
Hw-DMP-ShTab
Hw-DMP-Serial

Figure 10: Performance of 2,000 (2), 10,000 (X) and
100,000 (C) instruction quanta, relative to 1,000 instruc-
tion quanta.

fft  lu-nc
  ocean-c

   radix
    

vlrend

     
SPLASH

gm
ean

      
bodytr

       
fluid

        
strm

cl

         

PARSEC
gm

ean

          

-100%
-50%

0%
50%

100%
150%
200%
250%
300%
350%
400%
450%
500%

%
 s

pe
ed

up
 o

ve
r 

w
or

d-
gr

an
ul

ar
ity Hw-DMP-TMFwd

Hw-DMP-TM
Hw-DMP-ShTab

Figure 11: Performance of page-granularity conflict de-
tection, relative to line-granularity.

Figure 11 compares conflict detection at cache line (32-byte) and page (4096-byte) granularity. Increasing the

conflict detection granularity decreases the performance of the TM-based schemes, as they suffer more (likely

false) conflicts. The gap between Hw-DMP-TMFwd and Hw-DMP-TM grows as the former can avoid some of

the conflicts by forwarding values. Hw-DMP-Serial is unaffected, because it does no conflict detection. With

Hw-DMP-ShTab, a coarser granularity can lead to more blocking (e.g. lu-nc and streamcluster) but can

also, surprisingly, improve performance by making it faster to privatize or share large regions of memory (e.g.

radix, ocean-c). This suggests a pro-active privatization/sharing mechanism to improve the performance of

Hw-DMP-ShTab. On average, our results show that exploiting existing virtual memory support to implement

Hw-DMP-ShTab could be quite effective.

Figure 12 shows the performance effect of different quantum building strategies. Smarter quantum builders

generally do not improve performance much over the QB-Count 1,000-instruction baseline, as QB-Count pro-

duces such small quanta that heuristic breaking cannot substantially accelerate progress along the application’s

15



s sf
barnes

  ss        s   sf
radix(P)

     ss                 s      sf
SPLASH
gmean

        ss                          s         sf
bodytr

           ss                                   s            sf
strmcl

              ss                                            s               sf
PARSEC
gmean

                 ss                                   -40%

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%
%

 s
pe

ed
up

 o
ve

r 
Q

B
-C

ou
nt

Hw-DMP-TMFwd
Hw-DMP-TM
Hw-DMP-ShTab
Hw-DMP-Serial

Figure 12: Performance of QB-Sharing (s), QB-
SyncFollow (sf) and QB-SyncSharing (ss) quantum
builders, relative to QB-Count, with 1,000-insn quanta.

s
      barnes

 sf   ss     s
      radix(P)

    sf         ss           s
      SPLASH
      gmean

       sf               ss                 s
      bodytr

          sf                     ss                       s
      strmcl

             sf                           ss                             s
      PARSEC
      gmean

                sf                                 ss                                   -40%

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

%
 s

pe
ed

up
 o

ve
r 

Q
B

-C
ou

nt

Hw-DMP-TMFwd
Hw-DMP-TM
Hw-DMP-ShTab
Hw-DMP-Serial

Figure 13: Performance of quantum building schemes,
relative to QB-Count, with 10,000-insn quanta.

critical path. With 10,000-instruction quanta (Figure 13), the effects of the different quantum builders are more

pronounced. In general, the quantum builders that take program synchronization into account (QB-SyncFollow

and QB-SyncSharing) outperform those that do not. Hw-DMP-Serial and Hw-DMP-ShTab perform better with

smarter quantum building, while the TM-based schemes are less affected, as TM-based schemes recover more

parallelism. QB-Sharing works well with Hw-DMP-ShTab and PARSEC, and works synergistically with syn-

chronization-aware quantum building: QB-SyncSharing often outperforms QB-SyncFollow (as with barnes).

6.3 Hw-DMP: Characterization

Table 1 provides more insight into our sensitivity results. For Hw-DMP-TM, with both line- and page-level con-

flict detection, we give the average read- and write-set sizes (which show that our TM buffering requirements

are modest), and the percentage of quanta that suffer conflicts. The percentage of conflicts is only roughly cor-

related with performance, as not all conflicts are equally expensive. For the Hw-DMP-ShTab scheme, we show

the amount of overlap of a quantum, as a percentage of the average quantum size. This metric is highly corre-

lated with performance: the more communication-free work exists at the beginning of each quantum, the more

progress a thread can make before needing to acquire the deterministic token. Finally, we give the average quan-

tum size and the percentage of quanta breaks caused by the heuristic of each of the quantum builders, with a

10,000-instruction maximum quanta size. The average quantum size for QB-Count is uniformly very close to

10,000 instructions, so we omit those results. Since the average quantum size for QB-SyncFollow is generally

larger than that for QB-Sharing, and the former outperforms the latter, we see that smaller quanta are not always

better: it is important to choose quantum boundaries well, as QB-SyncFollow does.

6.4 Sw-DMP: Performance, Scalability and Characterization

Figure 14 shows the performance and scalability of Sw-DMP-ShTab and Sw-DMP-Serial compared to the paral-

lel baseline. As expected, the performance of Sw-DMP-Serial degrades with the number of threads. With the

16



Hw-DMP Implementation – 1,000-insn quanta QB Strategy – 10,000-insn quanta†
TM ShTab

Line Page Line Page SyncFollow Sharing SyncSharing
R/W % R/W % % Q % Q Avg. % Avg. % Avg. %

set conf. set conf. overlap overlap Q sync Q shr. Q sync
Benchmark sz. sz. sz. brk. sz. brk. sz. brk.

barnes 27/9 37 9/2 64 47 46 5929 42 4658 67 5288 54
cholesky 14/6 23 3/1 39 31 38 6972 30 3189 94 6788 35

fft 22/16 25 3/4 26 19 39 9822 1 3640 62 4677 49
fmm 30/6 51 7/1 69 33 29 8677 15 4465 65 5615 50
lu-nc 47/33 71 6/4 77 14 16 7616 24 6822 37 6060 42

ocean-c 46/15 28 5/2 34 5 46 5396 49 3398 73 3255 73
radix 16/20 7 3/7 13 31 42 8808 15 3346 71 4837 57

vlrend 27/8 38 7/1 50 41 39 7506 28 7005 45 6934 38
water-sp 32/19 19 5/1 45 40 37 7198 5 5617 30 6336 20

SPLASH amean 30/16 31 5/2 44 29 35 7209 27 4987 57 5363 48

blacksch 28/9 8 14/1 10 48 48 10006 <1 9163 10 9488 7
bodytr 11/4 16 3/2 28 39 19 7979 25 7235 31 6519 37
fluid 41/8 76 8/2 75 43 40 871 98 2481 95 832 99

strmcl 36/5 28 10/2 91 60 12 9893 1 1747 79 2998 77

PARSEC amean 29/6 36 9/1 51 45 30 7228 19 5156 54 3880 64

Table 1: Characterization of hardware-DMP results. † Same granularity as used in Figure 9

exception of lu-nc, all benchmarks recovered enough parallelism to overcome the overhead of tracking mem-

ory references. Interestingly, for Sw-DMP-ShTab, we see two classes of trends, slowdowns that increase with

the number of threads (e.g. lu-nc) and slowdowns that don’t increase much with the number of threads (e.g.

radix). Broadly, these classes come from the sharing pattern of the benchmarks and the change in communica-

tion to computation ratio as the number of processors increase. In Table 2, we show the percentage of determinis-

tic token rounds that had quanta running in parallel, which is a measure of parallelism recovery. These numbers

vary greatly between applications (3-98%), and, intuitively, are correlated with the performance degradation of

Sw-DMP-ShTab — the more quanta parallelism, the lower the performance impact.

1
      lu-nc

 2   4     8       1
      water-sp

     2           4             8                       1        2
      water-ns
          4                     8                       1

      fft
             2                           4                             8                               1

      radix
                 2                                   4                                     8                                       1

      cholesky
                     2                                           4                                             8                                               1

      lu-c
                         2                                                   4                                                     8                                                       1

      fmm
                             2                                                           4                                                             8                                                               1

      barnes
                                 2                                                                   4                                                                     8                                                                       1

      gmean
                                     2                                                                           4                                                                             8                                                                               0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

ru
nt

im
e 

no
rm

al
iz

ed
to

 n
on

-d
et

er
m

in
is

tic
pa

ra
lle

l e
xe

cu
tio

n Sw-DMP-ShTab
Sw-DMP-Serial

Figure 14: Runtime of Sw-DMP with 1,2,4 and 8 threads relative to
nondeterministic parallel execution.

Avg. % Parallel Q
Benchmark 2 thds. 4 thds. 8 thds.

lu-nc 94.8 81.5 79.4
water-sp 94.8 93.8 94.1
water-ns 91.9 99.2 98.3

fft 97.6 96.4 95.8
radix 60.3 59.9 79.8

cholesky 83.6 64.5 42.7
lu-c 93.4 89.6 85.1

barnes 72.1 22 2.6
fmm 76.9 50.3 28.1

SPLASH amean 85.04 73.02 67.3

Table 2: Characterization of Sw-
DMP-ShTab results.

The performance of Sw-DMP-TM was extremely poor, and omitted from Figure 14 to make reading the Sw-

DMP-ShTab and Sw-DMP-Serial bars possible. For example, fft incurs a performance impact between 25 and

35X from 2-8 threads, and lu-nc between 45-152X with Sw-DMP-TM, while the Sw-DMP-ShTab overhead is

only 2-3X, and 2.5-5.5X respectively. This significant difference is due to the software overhead of our particular

TM implementation. All loads and stores must be privatized, and all threads must be stopped while updates to

memory are posted during commit. Neither of these limitations apply to hardware-based TM systems. We are

17



currently working on re-architecting our STM to improve its performance.

7 Discussion

Our evaluation of the various DMP schemes leads to several conclusions. At the highest level, the conclusion

is that deterministic execution in a multiprocessor environment is achievable on future systems with little, if

any, performance degradation. The simplistic Hw-DMP-Serial has a geometric mean slowdown of 6.5X on 16

threads. By orchestrating communication with Hw-DMP-ShTab, this slowdown reduces to a geometric mean of

37% and often less than 15%. By using speculation with Hw-DMP-TM, we were able to reduce the overhead to

a geometric mean of 21% and often less than 10%. Through the addition of forwarding with Hw-DMP-TMFwd,

the overhead of deterministic execution is less than 15% and often less than 8%. Finally, software solutions can

provide deterministic execution with a performance cost suitable for debugging on current generation hardware,

and depending upon the application, deployment.

Now that we have defined what deterministic shared memory multiprocessing is, shown how to build ef-

ficient hardware support for it, and demonstrated that software solutions can be built for current generation

hardware, we now discuss several additional points. These are: (1) performance, complexity and energy trade-

offs; (2) support for debugging; (3) interaction with operating system and I/O nondeterminism; and (4) making

deterministic execution portable for deployment.

Implementation Trade-offs. Our evaluation showed that using speculation in the hardware-based implementa-

tion pays off in terms of performance. However, speculation potentially wastes energy, requires complex hard-

ware and has implications in system design, since some code, such as I/O and parts of an operating system,

cannot execute speculatively. Fortunately, DMP-TM, DMP-ShTab and DMP-Serial can coexist in the same sys-

tem. One easy way to co-exist is to switch modes at a deterministic boundary in the program (e.g., the edge of

a quanta). More interestingly, a DMP system can be designed to support multiple modes co-existing simultane-

ously. This allows a DMP system to use the most convenient approach depending on what code is running, e.g.,

using speculation (DMP-TM) in user code and avoiding it (DMP-ShTab) in kernel code.

DMP systems could also be built in a hybrid hardware-software fashion, instead of a purely hardware or

software implementation. A hybrid DMP-TM system, for example, could leverage modest hardware TM support

while doing quantum building and deterministic ordering more flexibly in software with low performance cost.

A hybrid DMP-ShTab system could efficiently implement the sharing table by leveraging modern cache coher-

ence protocols; exposing coherence state transitions could enable a simple high performance hybrid DMP-ShTab

implementation in the near future.

Supporting Debugging Instrumentation. In order to enable a debugging environment in a DMP system, we

18



need a way of allowing the user to instrument code for debugging while preserving the interleaving of the

original execution. To accomplish this, implementations must support a mechanism that allows a software de-

velopment system to mark code as being inserted for instrumentation purposes only; such code will not affect

quantum building, and thus preserves the original behavior.

Dealing with nondeterminism from the OS and I/O. There are many sources of nondeterminism in today’s

systems, as we discussed in Section 2.2.1. A DMP system hides most of them, allowing many multithreaded

programs to run deterministically. Besides hiding the nondeterminism from the microarchitecture structures, a

DMP system also hides the nondeterminism of OS thread scheduling by using the deterministic token to provide

low-level deterministic thread scheduling. This causes threads to run in the same order on every execution.

Nevertheless, challenging sources of nondeterminism remain.

One challenge is that parallel programs can use the operating system to communicate between threads. A

DMP system needs to make that communication deterministic. One way to address the problem is to execute OS

code deterministically, which was discussed earlier in this section. Alternatively, a layer between the operating

system and the application can be utilized to detect communication and synchronization via the kernel and

provide it within the application itself. This is the solution employed by our software implementation.

Another challenge is that many operating system API calls allow nondeterministic outcomes. System calls

such as read may lead to variations in program execution from run to run, as their API specification itself permits

such variation. There are two ways to handle nondeterministic API specifications: ignore them — any variation

in outcome could also have occurred to sequential code; or fix them, by providing alternative APIs that are

deterministic. With read, a solution is to always return the maximum amount of data requested until EOF.

The final, and perhaps most difficult challenge is that the real world is simply nondeterministic. Ultimately,

programs interact with remote systems and users, which are all nondeterministic and might affect thread inter-

leaving. It may appear, then, that there is no hope for building a deterministic multiprocessor system because of

this, but that is not the case. When multithreaded code synchronizes, that is an opportunity to be deterministic

from that point on, since threads are in a known state. Once the system is deterministic and the interaction with

the external world is considered part of the input, it is much easier to write, debug and deploy reliable software.

This will likely encourage programmers to insert synchronization around I/O, in order to make their applications

more deterministic, and hence more reliable.

Support for deployment. We contend that deterministic systems should not just be used for development, but

for deployment as well. We believe systems in the field should behave like systems used for testing. The reason

is twofold. First, developers can have a higher confidence their programs will work correctly once deployed.

Second, if the program does crash in the field, then deterministic execution provides a meaningful way to collect

19



and replay crash history data. Supporting deterministic execution across different physical machines places

additional constraints on the implementation. Quanta must be built the same across all systems. This means

machine-specific effects cannot be used to end quanta (e.g., micro-op count, or a full cache-set for bounded TM-

based implementations). Furthermore, passing the deterministic token across processors must be the same for all

systems. This suggests that DMP hardware should provide the core mechanisms, and leave the quanta building

and scheduling control up to software.

8 Related Work

One way to obtain a deterministic parallel program is to write it using a deterministic parallel programming

model, like stream programming languages such as StreamIt [21] and implicitly parallel languages such as

Jade [18]. In fact, the need to improve multiprocessor programmability due to the shift to multicore architec-

tures is causing renewed interest in deterministic implicitly parallel programming models [8]. However, several

of these models tend to be domain-specific. For generality, our focus is on dealing with nondeterminism in

arbitrary shared memory parallel programs.

Past work on dealing with nondeterminism in shared memory multiprocessors has focused primarily on

deterministically replaying an execution for debugging. The idea is to record a log of the ordering of events

that happened in a parallel execution and later replay the execution based on the log. There are several previ-

ously proposed software-based systems [9, 12, 19] for recording and replaying a multithreaded execution. The

software-based approaches typically suffer from high overheads or limitations on the types of events recorded

— for example, synchronization events only, which is not enough to reproduce the outcome of races. Several re-

searchers have addressed these limitations and overheads by devising hardware-based record and replay mech-

anisms [1, 17, 23]. Hardware based approaches actually record memory events at the level of memory operations

more efficiently, allowing more accurate and faster record and replay functionality.

Most of the follow-up research has been on further reducing the log size and performance impact of deter-

ministic replay. Examples of such efforts are Strata [16] and FDR2 [24], which exploit redundancy in the memory

race log. Very recent advances are ReRun [7] and DeLorean [15], which aim at reducing log size and hardware

complexity. ReRun is a hardware memory race recording mechanism that records periods of the execution with-

out memory communication (the same phenomenon leveraged by DMP-ShTab). This new strategy requires little

hardware state and produces a small race log. In DeLorean, instructions are executed as blocks (or chunks), and

the commit order of blocks of instructions is recorded, as opposed to each instruction. In addition, DeLorean

uses pre-defined commit ordering (albeit with chunk size logging in special cases) to further reduce the memory

ordering log.

20



DMP makes memory communication deterministic, therefore it completely eliminates memory communication

logging, and consequently does not need to provide hardware to record and replay execution at all — execution

will always be the same as long as the inputs are the same. Since DeLorean attempts to control nondeterminism

to reduce log size to a minimum, it is similar in spirit to our work. However, DeLorean still has a log and

requires speculation, whereas DMP-ShTab, for example, has no need for speculation. Finally, while a chunk in

DeLorean and a quantum in DMP are a similar concept, in DeLorean chunks are created blindly, whereas in

DMP we propose to create quanta more intelligently to better match application sharing and synchronization

characteristics.

Some of the mechanisms used in DMP-TM (and DMP-TMFwd) are similar to mechanisms employed in

Thread-Level Speculation [4, 10, 20] systems, though DMP employs them for almost the opposite purpose. These

mechanisms are: ordered quantum commits in DMP-TM, and the speculative value forwarding optimization in

DMP-TMFwd. TLS starts with a (deterministic) sequential program and then speculatively executes it in parallel

while guaranteeing the original sequential semantics of the program. DMP-TM does the opposite: it starts with

a (nondeterministic) explicitly parallel program, effectively serializes (making it deterministic) and then uses

speculative execution to efficiently recover parallelism while preserving deterministic behavior.

In summary, DMP is not a record and replay system, it provides fully deterministic shared memory commu-

nication. As such, it can be used for debugging because it offers repeatability by default. We argue, however, that

deterministic execution is useful for more than just debugging, it can be deployed as well.

9 Conclusion

In this paper we made the case for fully deterministic shared memory multiprocessing (DMP). After quantita-

tively showing how nondeterministic current systems are, we have shown that the key requirement to support

deterministic execution is deterministic communication via shared memory. Fortunately, this requirement still

leaves room for efficient implementations. We described a range of implementation alternatives, in both hard-

ware and software, with varying degrees of complexity and performance cost. Our simulations show that a

hardware implementation of a DMP system can have negligible performance degradation over nondeterministic

systems. We also described our compiler-based software-only DMP system and show that while the performance

impact is significant, it is quite tolerable for debugging.

While the benefits for debugging are obvious, we suggest that parallel programs should always run determin-

istically. Deploying deterministic execution in the field has the potential to increase reliability of parallel code, as

the system in the field would behave similarly to in-house testing environments, and to allow a more meaningful

collection of crash information.

21



In conclusion, we have shown that, perhaps contrary to popular belief, a shared memory multiprocessor

system can execute programs deterministically with little performance cost. We believe that there is much to be

explored towards deterministic systems, as they, besides yielding several interesting research questions, abstract

away several difficulties in writing, debugging and deploying parallel code.

References
[1] D. Bacon and S. Goldstein. Hardware-Assisted Replay of Multiprocessor Programs. In Workshop on Parallel and Distributed Debugging,

1991.

[2] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC Benchmark Suite: Characterization and Architectural Implications. Technical
report, Princeton University, January 2008.

[3] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative Versioning Cache. In HPCA, 1998.

[4] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support for a Chip Multiprocessor. In ASPLOS, October 1998.

[5] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun.
Transactional Memory Coherence and Consistency. In ISCA, 2004.

[6] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for Lock-Free Data Structures. In ISCA, 1993.

[7] D. Hower and M. Hill. Rerun: Exploiting Episodes for Lightweight Memory Race Recording. In ISCA, 2008.

[8] W. Hwu, S. Ryoo, Sain-Zee Ueng, J.H. Kelm, I. Gelado, S.S. Stone, R.E. Kidd, S.S. Baghsorkhi, A.A. Mahesri, S.C. Tsao, N. Navarro, S.S.
Lumetta, M.I. Frank, and S.J. Patel. Implicitly Parallel Programming Models for Thousand-Core Microprocessors. In DAC, 2007.

[9] J. Choi and H. Srinivasan. Deterministic Replay of Java Multithreaded Applications. In SIGMETRICS SPDT, 1998.

[10] V. Krishnan and J. Torrellas. A Chip-Multiprocessor Architecture with Speculative Multithreading. IEEE TOC, September 1999.

[11] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In CGO, 2004.

[12] T.J. Leblanc and J.M. Mellor-Crummey. Debugging Parallel Programs with Instant Replay. IEEE TOC, April 1987.

[13] E. A. Lee. The problem with threads. IEEE Computer, May 2006.

[14] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Janapa Reddi, and K. Hazelwood. PIN: Building Customized
Program Analysis Tools with Dynamic Instrumentation. In PLDI, 2005.

[15] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and Deterministically Replaying Shared-Memory Multiprocessor Execu-
tion Efficiently. In ISCA, 2008.

[16] S. Narayanasamy, C. Pereira, and B. Calder. Recording Shared Memory Dependencies Using Strata. In ASPLOS, 2006.

[17] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously Recording Program Execution for Deterministic Replay Debugging.
In ISCA, 2005.

[18] M. Rinard and M. Lam. The design, implementation, and evaluation of jade. ACM TOPLAS, May 1988.

[19] M. Ronsee and K. De Bosschere. RecPlay: A Fully Integrated Practical Record/Replay System. ACM TOCS, 1999.

[20] G. S. Sohi, S. E. Breach, and T. N. Vijayakumar. Multiscalar Processors. In ISCA, June 1995.

[21] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A Language for Streaming Applications. In CC, 2002.

[22] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2 Programs: Characterization and Methodological Considerations. In
ISCA, 1995.

[23] M. Xu, R. Bodik, and M. Hill. A ”Flight Data Recorder” for Enabling Full-System Multiprocessor Deterministic Replay. In ISCA, 2003.

[24] M. Xu, M. Hill, and R. Bodik. A Regulated Transitive Reduction (RTR) for Longer Memory Race Recording. In ASPLOS, 2006.

22


