
A Perceptually-Motivated Optimization-Framework

for Image and Video Processing

Pravin Bhat1 C. Lawrence Zitnick2 Michael Cohen1,2 Brian Curless1

1University of Washington 2Microsoft Research

(a) Input image (b) Saliency sharpening filter (c) Pseudo relighting filter (d) Painterly rendering filter

(e) Compressed input image (f) Improved de-blocking filter (g) User input for colorization (h) Improved colorization filter

Figure 1: The figure shows some of the image enhancement filters we have created or improved upon using our optimization framework for
image processing. Our formulation is designed for expressing image and video processing applications that can account for certain perceptual
biases of the human vision system (HSV).

Abstract

We present an optimization framework for expressing image pro-
cessing applications that can account for certain perceptual biases
of the human vision system (HVS). Perception literature is ripe with
studies demonstrating the HVS to be more sensitive to pixel gradi-
ents than absolute pixel values, which has led to some important
work in gradient domain image filtering. Inspired by this work, our
optimization framework allows image and video processing appli-
cations to easily specify both zeroth order constraints (i.e., desired
pixel values) and first order constraints (i.e., desired pixel gradients
in space and time) in the optimization. We introduce a spatially-
varying weighting scheme for these constraints that produces per-
ceptually pleasing results by approximating the more robust L1-
norm even when using a simple weighted least squares optimiza-
tion. We also demonstrate that edge length in addition to local
gradient magnitude is a useful measure of local gradient saliency.
Our saliency measure is inspired by perception studies that show
long coherent edges in an image, even when faint, are perceptually
salient to the HVS.

Finally, we demonstrate the utility of our formulation in creating
effective yet simple to implement solutions for common image pro-
cessing tasks. To exercise our formulation we have created a new
saliency-based sharpen filter and a pseudo image relighting appli-
cation. We also revisit and improve upon filters previously defined
by the gradient domain community – filters like painterly render-
ing, image de-blocking, and sparse data interpolation over images
(e.g., colorization using optimization).

1 Introduction

To be effective image processing algorithms should account for the
perceptual biases of the human visual system (HVS). In fact, most

image enhancement applications in the graphics community can be
binned into one of three broad categories based on the perceptual
task they perform:

Content enhancement: Applications in this category enhance image
content in a manner that is either beneficial or pleasing to the HVS.
Examples include: sharpening, selective emphasis/de-emphasis of
content in order to draw attention to the subject matter [Su et al.
2005], aesthetic enhancements such as non-photorealistic styliza-
tion [Orzan et al. 2007], and so on.

Artifact suppression: These image filters are used to hide artifacts
that are distracting to the HVS. Examples include denoising, de-
blurring, video deflickering, suppression of compression artifacts,
and hiding transition seams in image mosaics [Pérez et al. 2003].

Content preserving transformations: Image filters in this category
involve transforming an image while preserving perceptual char-
acteristics that are important to the HVS. For example, tone map-
ping [Fattal et al. 2002] involves transforming HDR images to LDR
while preserving local contrast. The Color2Gray algorithm intro-
duced by Gooch et al. [2005] transforms color images to grayscale
by removing color from images while preserving color contrast.

In this paper, we present an optimization framework for expressing
image processing applications that can account for certain percep-
tual biases of the human vision system (HVS). Our formulation is
greatly inspired by the recent work on gradient domain image fil-
tering where direct manipulation and use of image gradients has
played a central role. These methods rely on the fact that gradients
are integral to the way in which we perceive images. Research in
human perception indicates that the HVS has lower sensitivity to
absolute pixel values, and instead relies upon local contrast (edges)
and ratios [Attneave 1954; Barten 1999], which more directly cor-
relate with gradients in an image. Inspired by this body of work, our
optimization framework allows image and video processing appli-

cations to easily specify both zeroth order constraints (i.e., desired
pixel values) and first order constraints (i.e., desired pixel gradients
in space and time) in the optimization.

In addition, we present a new measure for local gradient saliency
inspired by perception studies that have shown long coherent edges
in an image, even when faint, are perceptually salient to the
HVS [Beaudot and Mullen 2003; Elder and Goldberg 2001]. In pre-
vious methods the saliency of a local gradient is often approximated
by its magnitude as in Lischinski et al. [2006] or by a response to
a local filter as in Levin et al. [Levin et al. 2004]. However, certain
pixel gradients, even when faint, give rise to long coherent edges
which demarcate object boundaries, shadows, surface creases, re-
flectance changes, and other significant visual events. To account
for the perceptual importance of such gradients, our framework pro-
vides applications with the length of underlying dominant edge at
each pixel and its local orientation. Thus we encourage applications
to use this edge-length information to better estimate the saliency
of local gradients and pixels when processing them. Needless to
say, an application may choose to ignore this additional informa-
tion or augment the saliency measure by using an application spe-
cific saliency detector (e.g., a face detector).

Applications can also choose to exert further control over the result
by specifying the weight of each individual constraint in the opti-
mization, which can be used in many interesting ways. For exam-
ple, we present a general weighting scheme that produces visually
pleasing results for most applications by approximating the more
robust L1-norm when even using a simple weighted least squares
optimization.

Finally, we show how several image processing tasks can be ef-
fectively expressed in our formulation. Among the many appli-
cations we explore include saliency sharpening, pseudo-relighting,
de-blocking, sparse data interpolation over images (e.g., coloriza-
tion), video de-flickering and non-photorealistic rendering (NPR).
Using our framework, most filters that can be applied to a single
image can also be automatically applied to videos coherently by
enforcing simple first-order constraints along flow lines.

In summary, our contributions include:

• an optimization framework for defining perceptually moti-
vated image and video filters,

• a novel way of measuring local gradient saliency,

• a new constraint weighting scheme that improves results and
provides more robust constraint satisfaction,

• a demonstration of our formulation in creating new, and im-
proving upon existing, image and video processing applica-
tions.

2 Related work

Our work draws heavily from the rich body of work done in gra-
dient domain image processing. We review some of the work in
this literature that is most relevant to our optimization formulation.
However, for an more extensive introduction to the gradient domain
literature, the reader is referred to Agrawal and Raskar’s [2007] ex-
cellent ICCV course on the topic.

One of the first gradient domain image filters was proposed by Fat-
tal et al. [2002]. Their work casts the tonemapping problem as a
pure gradient field integration problem (i.e., no zeroth order terms)
by attenuating large scale gradients in a HDR image and then solv-
ing for a LDR image that best approximates this attenuated gradient
field.

Perez et al. [2003] also used a pure gradient field integration ap-
proach to create seamless image composites. They modify the gra-
dient field of a target image by overwriting it’s gradients using gra-
dients obtained from a source patch in a region selected by the user.
This modified gradient field is then integrated while keeping pixel
colors outside the selected region fixed using Dirichlet boundary
conditions. Levin et al. [2003] used a similar approach for seam-
less image stitching. Levin et al. also showed that their work could
be used for de-blocking compressed images. We present a sim-
ilar method for image de-blocking (Section 5.6) that additionally
includes zeroth order terms in the optimization to significantly im-
prove the de-blocking quality.

Lischinski et al. [2006] generalized Levin’s technique for coloriz-
ing grayscale images [Levin et al. 2004] using a mixture of both
zeroth order and first order terms in the optimization. Lischinkski’s
method allows the user to draw a small number of brush strokes
to specify local edits, such as modifications to colors, tonal values,
and white balance of the image. This user-specified sparse-data
is then interpolated over the image in a piecewise smooth fashion
with respect to the underlying gradient field of the luminance im-
age. We present a simple improvement to this method (Section 5.7)
that significantly reduces data bleeding by using our edge-length
based measure for local gradient saliency.

In their Color2Gray paper, Gooch et al. [2005] demonstrate a rather
interesting application of gradient domain techniques. They inves-
tigate the problem of converting a color image to grayscale without
sacrificing the color saliency that is often lost in the standard color
to gray mapping (i.e., isoluminant colors mapping to the same gray
value). This work uses no zeroth order terms in its optimization.
However, unlike most gradient domain techniques, this technique
employs more than two first-order terms for each pixel in the opti-
mization (i.e., each pixel has a constraint defined with respect to a
patch of pixels surrounding it).

Agrawal et al. [2005] have proposed a gradient projection tech-
nique to fuse gradients obtained from ambient and flash images in
a manner that produces well-lit images without strong highlights.
Agrawal et al. [2006] have further generalized this work to a class
of edge-suppressing operations on images.

Orzan et al. [2007] used a gradient-based approach to convert pho-
tographs into painterly renditions that capture their salient features.
They analyzed the multiscale output of the Canny edge detector
to determine both edge importance (measured by its lifetime along
the scale axis) and the characteristic edge scale. We also propose a
painterly rendering filter in this paper that in comparison to Orzan’s
method uses zeroth order terms, a different edge saliency measure
and is temporally consistent when applied to videos. A more de-
tailed comparison is provided in Section 5.5.

The temporal constraints (i.e., first order constraints in time) used in
our formulation are inspired by the work of Levin et al. [2004] and
Bhat et al. [2007]. Bhat et al. showed that fusing temporal gradients
defined along correspondence vectors from one video with the spa-
tial gradients from another video can be used to combine the tem-
poral characteristics of the former with the spatial characteristics of
the later. We use similar motion-compensated temporal-constraints
to encourage the temporal characteristics of the input video (e.g.,
temporal coherence, illumination changes) to be enforced in the fil-
tered result. Thus, our formulation decouples the task of defining
a new image filter from the task of applying that filter to a video
coherently.

3 Optimization formulation for image pro-

cessing

In this section we introduce our optimization formulation for im-
age processing. In section 4 we extend this formulation to accom-
modate video processing. Our formulation draws heavily from the
related works described in Section 2.

The task of an image processing application is to take an input im-
age u and transform it into the final image f . Our formulation sim-
plifies the task of writing image processing applications that can
be expressed as an energy function involving zeroth and first or-
der terms of the image f (i.e., Equation 2). For each pixel in f
the application is allowed to specify a single zeroth order constraint
(i.e., desired pixel value) and two first order constraints (i.e., de-
sired pixel gradients). The application is also allowed to specify a
weight for each constraint in the optimization.

An application that wishes to use our formulation has to define a
function of the following form:

F (u, · · ·) → [d, g, w] (1)

Inputs: The function F takes as input the unfiltered image u and
any metadata (e.g., parameter values, selection masks, edge statis-
tics) which F may choose to use in its computation. These appli-
cation specific inputs to F will be described in further detail in the
applications section (Section 5). The input image u may contain
multiple channels (e.g., RGB, YUV, etc). However for simplicity
of exposition we will treat u as a single channel image in this sec-
tion since each channel in the result f is solved for independently
in practice.

Outputs: The function F returns three images – [d, g, w]. The im-
age d is a single channel image that provides the data constraint for
each pixel in f . The image g is a two channel image where chan-
nels gx and gy specify the desired x-derivative and y-derivative of
f respectively. The image w is a three channel image where chan-
nels wd, wx, and wy provide the weights for constraints in d, gx,
and gy respectively.

The final result f is generated by minimizing the following energy
function:

E(f) =
X

p∈f

λdEd(p) + Eg(p) (2)

where p is a pixel in f , Ed is our data cost function, and Eg is
our gradient cost function. The constant λd balances the tradeoff
between fidelity to data versus gradient constraints. The energy
terms Ed and Eg are quadratic functions defined as follows:

Ed(p) = w
d(p) [f(p) − d(p)]2 (3)

and

Eg(p) = w
x(p) [fx(p) − g

x(p)]2 + w
y(p) [fy(p) − g

y(p)]2 (4)

Thus, the energy terms Ed and Eg are the squared errors between
the desired values specified by F and the actual values of the fi-
nal image f . Each constraint also has a corresponding weight, wd

for the data constraints and wx and wy for the gradient constraints.
These weights control the amount of influence a constraint should
have on the final image. As shown later, several effects can be
achieved by varying these weights, including sparse data interpola-
tion and the suppression of haloing artifacts. Individual weights are
also commonly set to zero to completely remove the effect of the
corresponding constraint.

(a) (b)

(c) (d)

Figure 2: This figure shows the effect our robust weighting func-
tion has on the quality of the saliency sharpen filter defined in sec-
tion 5.2. (a) Input image. (b) Image saliency sharpened using ro-
bust weighting. (c) Result with uniform weighting (notice the se-
vere haloing artifacts). (d) IRLS result after solving ten weighted
least-squares problems.

Since our energy function E is quadratic, its minima can be found
using standard weighted least squares techniques like the conjugate
gradient method [Shewchuk 1994]. To increase the runtime perfor-
mance of the solver, various preconditioners may be used to bet-
ter condition the optimization [Szeliski 2006]. Recently McCann
and Pollard [2008] showed that a GPU accelerated conjugate gradi-
ent solver can minimize energy functions like ours in real-time for
megapixel-sized images.

3.1 A simple sharpen Filter

To build the reader’s intuition for image processing using zeroth
and first order constraints and to provide further familiarity with
our notation, in this subsection we will define a simple sharpen fil-
ter Fsharpen using our formulation. This sharpen filter was first
defined by Zeng et al. [2005] and can be shown to subsume the
simple Laplacian sharpen filter (i.e, f = u − λ▽

2u) commonly
used in image processing. The outputs of Fsharpen are defined as
follows:

d = u; g
x = cs · ux; g

y = cs · uy;

w
d(p) = λd; w

x(p) = 1; w
y(p) = 1

Here, the parameter cs is a scalar constant set to a value greater
than one. The sharpening behavariour of Fsharpen has an intuitive
interpretation. That is, to increase the input image’s local contrast
Fsharpen sets the desired gradients (i.e., gx and gy) to the gradi-
ents of the input image (i.e., ux and uy) multiplied by a factor, cs,
greater than one. The data constraints are set to the original image
with uniform weighting, λd, to ensure the final result does not drift
too far from the input. An example result of this sharpen filter can
be seen in Figure 3.

3.2 A robust weighting scheme

Given the L2-norm’s sensitivity to large errors (i.e., outliers), the
energy function Eg can produce visually unappealing results be-
cause it prefers to evenly distribute errors. This can result in halo-
ing or pinching artifacts in regions where the desired gradient field
g is hard to satisfy (see the example in Figure 2).

One solution to this problem is to use a more robust metric such
as the L1-norm, which would require the use of slower, more com-
plicated optimization techniques like linear programming, or itera-
tively re-weighted least squares (IRLS).

Instead, we introduce an alternative technique that involves solving
a single weighted least squares problem. By applying the appro-
priate weights wx and wy to our gradient constraints, the visual
artifacts mentioned above can be considerably mitigated. While an
application may choose to define its own weights, we provide a de-
fault weighting function for the gradient constraints that works well
for most applications.

Our default weighting function is based on the simple prior that the
gradient field of f is likely to deviate from g (thus leading to large
errors in the L2-norm) in regions where g deviates heavily from the
gradient field of u. By reducing the weights of these constraints we
can lower their influence on the resulting image as follows:

w
x =

1

(a · |ux − gx| + 1)b
(5)

w
y =

1

(a · |uy − gy| + 1)b
(6)

Here the parameter a is set such that it normalizes the scale of image
gradients (i.e., normalized gradient range = [-1, 1]), and parameter
b controls the sensitivity of Equation 4 to outliers and is typically
set between 3 and 5; both parameters do not vary spatially. Fig-
ure 2 demonstrates the effect this robust weighting scheme has on
the visual quality of our saliency sharpening filter (described in Sec-
tion 5.2).

In Figure 2, we also compare the visual quality of our fixed
weighted least squares method to that produced by the iteratively
re-weighted least squares (IRLS) method after it has solved ten
weighted least-squares problems. The IRLS algorithm is a general
method for minimizing a robust L2 - L1 norm (e.g., L1-norm) by
solving successive weighted least squares problems. The method
begins by weighting each constraint uniformly and in each succes-
sive weighted least squares problem the solution from the previous
problem is used to downweight the outliers. One interpretation of
our weighting function is that it uses the structure of our problem
to approximate the weights that an IRLS solver will arrive at upon
convergence.

4 Generalization of the formulation to videos

To process an input video u using a filter function F defined us-
ing the image formulation in Section 3, one could apply F to each
video frame independently. Unfortunately, when the result video f
is generated using this approach it often looks temporally incoher-
ent.

To alleviate this temporal incoherence problem we are going to use
a technique proposed by Bhat et al. [2007], which is also similar to
the technique produced by Levin et al. [2004]. Bhat et al. showed
that fusing temporal gradients defined along correspondence vec-
tors from one video with the spatial gradients from another video
can be used to combine the temporal characteristics of the former

with the spatial characteristics of the later. We use similar motion-
compensated temporal-constraints to cause the temporal charac-
teristics of the input video (e.g., temporal coherence, illumination
changes) to be be enforced in the filtered result. Thus, our formula-
tion decouples the task of defining a new image filter from the task
of applying that filter to a video coherently.

In addition to the input video, we require a set of motion vectors
(vx, vy) for each pixel as input. These vectors are used to define
the temporal constraints in the optimization. Although optical flow
remains a difficult research problem, we have empirically found
that if good motion vectors are available for 50-60% of the pix-
els and confidence values are available for the motion vectors, then
our method produces temporally coherent results. For most results
shown in the supplementary video, we use the optical flow algo-
rithm proposed by Sand et al. [Sand and Teller 2006] to generate
motion vectors. For the streaming video results (Section 4.1) we
rely on the blockwise motion vectors encoded in the video [Tomar
2006].

As in the image processing case, the application’s filter function
F is used to obtain the desired spatial constraints (e.g., d, gx, gy)
for each video frame. However, in the video processing case, for

every pixel in the video an additional first order constraint gt̄ is
used to define the desired temporal gradient between the pixel and
its motion compensated neighbour in the previous frame. The value

of these temporal constraints gt̄ is set equal to a function Ft of the

corresponding temporal gradient of the original video, i.e. gt̄(p) =
Ft(ut̄(p)) (Equation 10).

The motion compensated gradients are defined as follows:

ut̄ = u(x, y, t) − u(x + vx, y + vy, t − 1) (7)

Here (x + vx, y + vy, t − 1) is the pixel that corresponds to p in
the previous video frame. (x, y, t) is the coordinate of p in u and
(vx, vy) is a motion vector that maps p to its corresponding pixel in
the previous video frame.

Adding these constraints to our energy function E(f), we get:

E(f) =
X

p∈f

λdEd(p) + Eg(p) + λtEt(p). (8)

Similar to the data and gradient energy functions, Et(p) is defined
as:

Et(p) = w
t(p)

h

ft̄(p) − g
t̄(p)

i

2

. (9)

g
t̄(p) = Ft(ut̄(p)) (10)

wt(p) controls the weight given to the temporal constraint at p; a
typical choice is to set wt(p) to the confidence in the accuracy of
p’s motion vector. The function Ft is set to the identity function by
default thus causing the final video to mimic the temporal behaviour
of the input video. However, certain applications may choose to
modify the behaviour of Ft to better suit their needs; See the video
deflickering application in section 5.4 for an example.

4.1 Generalization to streaming videos

Though the energy function defined in Equation 8 can be optimized
across an entire video, as videos increase in length this may become
too computationally expensive. It may also be the case that a video
is streaming and the entire video may not be available. In either
of these cases the energy function may be minimized by stepping

through the video one frame at a time with the values of the previous
time frame fixed. That is, frame t − 1 is first computed. Its pixel’s
values are then held fixed and frame t is computed. The initial
frame can be computed without using temporal constraints. In this
paper, only the de-blocking results for streaming YouTube videos
were created using this approach (See supplementary video).

5 Applications and improvements

In this section we present new applications we have developed and
a few previously defined applications that we have improved using
our perceptually motivated formulation for image and video pro-
cessing. Each of these applications was written in less than two
hundred lines of C++ code using our image processing API1. We
hope that these simple to implement, yet effective, applications will
demonstrate just how intuitive and simple the solution to a percep-
tual image processing task can be when tackled using our formula-
tion.

Note that all applications defined in this section, unless explicitly
stated otherwise, use our robust weighting function (Section 3.2,
equations 5 & 6) for defining the gradient constraint weights (i.e.,
wx & wy). Before we delve into the details of the various filters
we first need to discuss our method for detecting gradient saliency
since it is used by a few of our applications.

5.1 Measuring local gradient saliency

We present a new measure for local gradient saliency inspired by
perception studies that have shown long coherent edges in an im-
age, even when faint, are perceptually salient to the HSV [Beaudot
and Mullen 2003; Elder and Goldberg 2001]. To account for the
perceptual importance of gradients that give rise to these edges, our
framework provides a long edge detector that applications can use
to measure the saliency of a local gradient.

Our long edge detector detects long, coherent edges instead of sim-
ply detecting edges with a strong magnitude. The edge detector
returns an image e with two channels: el and eo. The el channel
provides length of the dominant edge running through each pixel
in the input image. The eo channel provides local orientation of
the dominant edge at each pixel. The long edge detector works as
follows. Local edges are first detected using Freeman and Adel-
sons [1991] steerable filter. The edge magnitudes are then normal-
ized in a 5×5 spatial window. Edge lengths are computed for every
pixel using a message passing scheme in which the sum of the nor-
malized edge magnitudes are summed in both directions parallel to
the edge direction. The messages are weighted based on the similar-
ity of the neighbour’s edge orientation. The implementation details
of our edge detector can be found in the tech report submitted as
supplementary material. One could also approximate our continu-
ously valued long edge detector by simply running the Canny edge
detector [Canny 1986] on the input image and then using a flood fill
algorithm at each pixel to estimate the length of the dominant edge
running through the pixel.

5.2 Smart sharpening

Sharpening is one of the most commonly used image enhancement
filters. Unfortunately the simple sharpen filter (see Section 3.1) in-
tensifies all gradients in an image including gradients that give rise
to noise and background texture. A better sharpen filter would only
intensify those gradients that give rise to salient image features. Our
saliency sharpen filter uses the long edge detector to only boost the

1We plan to release the source code for our image processing API and

the filters presented in this section.

(a) (b) (c)

Figure 3: A qualitative comparison of our saliency sharpen filter
(Section 5.2) to the simple sharpen filter (Section 3.1). (a) Original
image. (b) Simple sharpen result. (c) Saliency sharpen result. No-
tice how saliency sharpen enhances the image without boosting the
noise or background texture.

magnitude of gradients that lie across long edges thus enhancing
image saliency without adding to image noise or background clut-
ter. Our saliency sharpen filter is defined as follows:

Fsaliency sharpen(u, e) → [d, g, w]

d(p) = u(p); wd(p) = c1

g
x(p) = ux(p) + c2 · ux(p) · el(p) · cos(eo(p))

g
y(p) = uy(p) + c2 · uy(p) · el(p) · sin(eo(p))

Fsaliency sharpen accepts as input the image to enhance (i.e, u)
and the edge detector results for the image (i.e., e). The data con-
straints and the parameter c1 (c1 > 0) keep the enhanced image
from drifting too far from the input. The desired gradient field g is
defined to intensify the magnitude of gradients that lie across long
edges and leave the other gradients unchanged. The parameter c2

controls the overall sharpening amount (c2 > 0). The term el (p)
spatially varies the sharpening amount by the length of the under-
lying edge. Finally, eo factors in local orientation of the underlying
edge and thus ensures that the sharpening is done perpendicular to
the local edge orientation.

See figure 3 and the supplementary video for a qualitative compar-
ison of our saliency sharpen filter to the simple sharpen filter.

5.3 Pseudo image relighting

Image relighting is the process of estimating what an image
would have looked like had it been captured under different light-
ing conditions. Previous relighting algorithms rely on estimat-
ing scene geometry in order to produce photorealistic lighting ef-
fects [Marschner and Greenberg 1997]. Instead, our relighting filter
is inspired from the observation that digital artists can often create
pseudo relighting effects by cleverly adding a few handcrafted in-
tensity ramps onto the original image (e.g., Figure 4f). Our relight-
ing filter allows the user to specify a new lighting direction on the
image plane and then it simply boosts all intensity gradients that
happen to be oriented along the specified direction. Integrating the
gradient field modified in this manner creates the desired lighting
effect by intensifying preexisting ramps in the image that happen
to be aligned with the desired lighting-direction. As a result, the

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4: The figure shows some of the pseudo relighting effects
created using the function Frelight. (a) Input image. (b) Image relit
to simulate an additional light source to the west of the face. The ef-
fect is achieved by setting the local lighting direction for every pixel
(i.e., o(p) in Frelight) to point west. (c) Input image. (d) Image re-
lit to simulate the light fading into the vanishing point, thus adding
more depth to the image. The effect is achieved by setting the local
lighting direction for every pixel to point away from the vanishing
point. (e) Input image. (f) Image relit to simulate overhead sun
light. (e) The same relighting effect attempted in Photoshop by us-
ing a radial intensity ramp. Notice that our result (f) looks more
realistic in comparison to the digital artist’s result (e).

relit image looks natural even though the relighting is done with-
out computing any scene geometry. The formal definition of our
pseudo relighting filter is as follows:

Frelight(u, o) → [d, g, w]

Here, Frelight accepts as input the image to relight (i.e., u) and an
image containing the desired lighting angle for each pixel (i.e., o).
We could have used a single angle parameter instead of o, which
is an image of angles. However, by allowing the light direction to
vary spatially Frelight can be used to create a variety of relighting
effects as shown in Figure 4. The following are the definitions used
by Frelight to produce [d, g, w]:

d(p) = u(p); w
d(p) = c1

g
x(p) = ux(p) + c2 · ux(p) · a(p)

g
y(p) = uy(p) + c2 · uy(p) · a(p)

a(p) =
ux(p) · cos(o(p)) + uy(p) · sin(o(p)))

p

ux(p)2 + uy(p)2

The data constraints and the parameter c1 (c1 >= 0) keep the relit
image from drifting too far from the input. The desired gradient
field g is defined to boost the local gradient if it happens to be ori-
ented along the local lighting direction. The parameter c2 controls
the maximum gradient boost (c2 >= 0). The term a(p) is simply
computing the dot product (i.e., cosine of the angle) between the
normalized local gradient and the local lighting direction.

5.4 Video deflickering

Often old videos on film will develop a temporal flicker due to film
degradation, dust accumulation, or chemical exposure. A common
challenge while restoring digitized footage of old videos is to re-
move such temporal flicker. Temporal flicker is also commonly
seen in timelapse videos due to exposure and lighting changes be-
tween the long timesteps in the capture. Flicker can also be seen in
regular videos shot with poorly synchronized fluorescent lamps.

Past techniques, like the VirtualDub MSU deflicker filter [Strel-
nikov and Vatolin 2004], have tried to eliminate flicker by simply
smoothing out fluctuations in the mean brightness level of nearby
video frames. However, such methods cannot get rid of spatially
varying flicker caused by uneven film degradation or multiple light
sources. Our method on the other hand, tries to preserve the spatial
gradients of the input video while dampening temporal gradients
along flow lines thus reducing spatially varying flickering without
oversmoothing the input. Our deflicker filter is defined as follows:

Fdeflicker(u) → [d, g, w]

w
d(p) = 0

g
x(p) = ux(p); gy(p) = uy(p)

Ft(g) =

0 if |g| < c
g otherwise

Here u is the input video in luminance space. Fdeflicker uses no

data constraints based on input video pixel values (i.e., wd(p) = 0)
because the input video suffers from flicker. The desired spatial
gradients (i.e., gx and gy) are defined to replicate the spatial gra-
dients of the input video. Now, to get rid of the temporal flicker

Fdeflicker redefines the function Ft that is used to compute the
value of temporal constraints in Equation 10. As mentioned in Sec-
tion 4, Ft is set to the identity function by default thus causing
the final video to mimic the temporal behaviour of the input video.
However, since the input in the deflickering application contains
some temporal flicker we redefine Ft to suppress small fluctuations
of luminance along flow lines. Here, parameter c controls the scale
of fluctuations that are suppressed by Fdeflicker . In our experi-
ments c was set to the median magnitude of the temporal gradients
along flow lines in the input flickering video.

In the supplementary video we use challenging examples to com-
pare the deflickering performance of Fdeflicker versus two in-
dustry tools – VirtualDub MSU deflicker [Strelnikov and Vatolin
2004] and Furnace deflicker programs. The MSU deflicker program
smooths out fluctuations in the mean brightness over time and the
Foundry deflicker program is able to handle some spatially vary-
ing flicker. However, as can be seen from the supplementary video,
Fdeflicker clearly outperforms both programs.

5.5 Painterly rendering

We will now present a filter for stylizing photographs and videos
with a painterly look. Our filter is inspired from a basic technique
employed by painters when depicting a scene, that is the exagger-
ation of salient features and the abstraction of non-salient features
in the scene. Like most of our other filters, this filter also measures
the saliency of a region using the length of the underlying edge de-
tected by the long edge detector. Specifically, the filter suppresses
gradients in regions with short or no edges (i.e., abstraction) and
intensifies gradients across long edges (i.e., exaggeration of local
contrast). Our painterly filter Fpainterly is defined as follows:

Fpainterly(u, e) → [d, g, w]

d(p) = u(p); wd(p) = c1

g
x(p) = ux(p) · cos(eo(p)) · n(p)

g
y(p) = uy(p) · sin(eo(p)) · n(p)

n(p) = c2 ∗ (1 − e
el(p)∗el(p)

−2∗σ2)

Here, Fpainterly accepts as input the image to stylize (i.e., u) and
the edge detector results for the image (i.e., e). The function n
spatially varies the abstraction/exaggeration amount based on the
underlying edge light el(p). The parameter σ in function n con-
trols the abstraction amount; Larger values of σ result in large
scale objects being abstracted out of the result. The parameter c2

(c2 >= 1) controls the amount of exaggeration of local contrast
across larger object boundaries. The data constraints and the param-
eter c1 (c1 >= 0) control how much the stylized image is allowed
to drift from the input image. As a postprocessing step, our system
can optionally overlay a simple visualization of the long edges de-
tected in the input image on top of the result to make it look as if
the artist outlined the salient edges using black brush strokes.

Now we will briefly compare our method for painterly rendering
to that of Ozran et al. [2007] and Holeger et al. [2006]. Ozran’s
method for painterly rendering only uses a gradient field integra-
tion approach (i.e., no data constraints) and as a side effect has to
use more complicated contrast equalization and blurring steps to
post process their results. In contrast, the data constraints used in
our method cause the overall contrast and depth of field effects (e.g.,
spatially varying blur) in the input image to be automatically repro-
duced in the result to the amount desired by the user (i.e., using
the control parameter c1). Ozran’s method also does not address

(a) (b)

(c) (d)

Figure 5: A comparison of our method for painterly rendering to
Ozran and Holeger’s methods. (a) Original image. (b) Ozran et al.’s
result. (c) Holeger et al.’s result. (d) Our result. Unlike Ozran and
Holeger’s methods, our method not only abstracts away non-salient
image features but also exaggerates the contrast of salient image
features (e.g., the hairline in this case), which can help excentuate
the non-photorealistic look of the result.

the problem of applying their effect to videos in a temporally co-
herent fashion. Unlike Ozran’s method and Holeger’s method, our
method not only abstracts away non-salient image features but also
exaggerates the contrast of salient image features, which can help
excentuate the non-photorealistic look of the result. However, un-
like Holeger’s method, our method does not currently perform in
real-time. See figure 5 and the supplementary video for a qualita-
tive comparison of our method to Ozran and Holeger’s methods.

5.6 Improved de-blocking filter

A common problem with highly compressed images and videos
is that they appear blocky because each macroblock in the im-
age/video is compressed independently without accounting for spa-
tial coherence across block boundaries. Perception studies have
found blocking to be one of the most distracting compression ar-
tifacts ranking alongside low resolution and ringing artifacts. A
good de-blocking filter can therefore improve the perceived quality
of videos found on sites like YouTube.

Previous work in the spatial domain: There have been many at-
tempts in the past to define high-quality de-blocking filters in the
spatial domain [Averbuch et al. 2005; Castagno and Ramponi 1996;
Hong et al. 1996]. The best de-blocking filters in the spatial domain
tend to be similar to a bilateral filter. They take the weighted aver-
age of pixels across block boundaries in order to suppress block-
iness while trying not to over-blur the image. Most of the effort
in designing these filters goes into crafting a weighting kernel that
can suppress block edges but not affect the true edges in the im-
age. There are three major limitations of these spatial-domain ap-
proaches for de-blocking:

1. The de-blocking effect of these filters is localized to a few
pixels near the block boundaries. For severely compressed
images such de-blocking filters are unable to fully suppress
the blocking artifacts.

(a) (b)

(c) (d)

Figure 6: A demonstration of our improvement to Levin’s method
for de-blocking images. (a) Original image. (b) Image after com-
pression. (c) De-blocking result using gradient suppression but
no data constraints (similar to Levin’s approach); Notice how the
highly compressed regions get flattened in appearance. (d) Result
produced by our de-blocking method, which uses gradient suppres-
sion to reduce blockiness and data constraints to maintain fidelity
to the input.

2. Increasing the size of the de-blocking kernel in order to in-
crease the de-blocking effect invariably over-smoothes the im-
age.

3. Applying these de-blocking filters to individual video frames
results in the introduction of temporal artifacts (e.g., flicker-
ing).

De-blocking using optimization: Fortunately, the de-blocking
problem can be tackled by creatively defining first order constraints
in our formulation. In compressed images the gradients across mac-
roblock boundaries (i.e, inter-block gradients) are much less reli-
able than the gradients inside the macroblocks (i.e., intra-block gra-
dients) since each macroblock is compressed independently. Ergo,
a straightforward de-blocking filter in our formulation would selec-
tively edit inter-block gradients in a manner that suppresses the per-
ceived blockiness. Our experiments show that inter-block gradients
with large magnitudes usually correspond to true image gradients
that simply happen to coincide with block boundaries. On the other
hand, inter-block gradients with small magnitudes usually corre-
spond to gradients with zero magnitude in the uncompressed image
and form the major source of perceived blockiness in a compressed
image. Therefore, our de-blocking filter selectively suppresses only
those gradients that lie across block boundaries and have a small
magnitude. The formal definition of our de-blocking filter is as fol-
lows:

Fdeblock(u) → [d, g, w]

d(p) = u(p); wd(p) = c1

g
x(p) = G(ux(p))

g
y(p) = G(uy(p))

G(g) =

g if g is an intrablock gradient
g * S (g) otherwise

,

S(g) = 1 − e
g∗g

−2∗σ2

The data constraints and the parameter c1 (c1 > 0) keep the de-
blocked image from drifting too far from the input u. The function
G suppresses only those gradients that lie across block boundaries,
which can be easily determined by the file format (i.e., compression
type) of u. The function S suppresses gradients with magnitudes
close to zero. The parameter σ controls the amount of gradient sup-
pression that happens at block boundaries and this parameter can
be learned a priori by using pairs of compressed and uncompressed
images. See figures 1 & 6 and the supplementary video for image
and video de-blocking results.

Now we will briefly compare our method for de-blocking to that
of Levin et al. [2003], which also works by suppressing inter-block
gradients. Their gradient suppression function requires access to
the DCT coefficients of each macroblock, which might not be avail-
able to the application. More significantly, their approach is a pure
gradient field integration approach (i.e., no data constraints). This
severely affects their de-blocking quality in regions where the mac-
roblocks only have a single DC coefficient (i.e, a single color). For
example, several macroblocks in the sky and water regions of Fig-
ure 6b only have a single color. Without the use of data constraints
(i.e., c1 = 0), suppressing the inter-block gradients removes the
image blockiness but also flattens the appearance of the result (See
figure 6c). In contrast, our use of data constraints causes the colors
in the macroblocks to be smoothly interpolated over the sky and
water regions as shown in Figure 6d.

5.7 Improved sparse data interpolation

In their seminal work Levin et al. [2004] demonstrated an opti-
mization approach for colorizing grayscale images using a few user
drawn color scribbles. Lischinski et al. [2006] observed that Levin’s
work was in fact a general and a very powerful technique for inter-
polating sparse data over images. Lischinski pointed out that most
data channels in images, and not just color channels, are best in-
terpolated in a spatially piecewise-smooth manner with respect to
the luminance channel of the image. Lischinski’s work showed the
generality of Levin’s work by interpolating a variety of data types
including tonal values, blurring amounts, and white balance correc-
tions specified by the user using a few paint strokes. Lischinski’s
method maps quite easily to our formulation as follows:

Flischinski(u, d) → [d, g, w]

w
d(p) =

∞ if d(p) is defined
0 otherwise

g
x(p) = 0; gy(p) = 0

The function Flischinski accepts as input an image u that will guide
the data interpolation and an image d that contains the user data
(e.g., scribbles, paint strokes). The image u is grayscale or in log-
luminance space depending on the data to be interpolated. The
weights for the data constraints in wd encourages the result to main-
tain fidelity to the user input where defined. The null gradient field
in g in union with our default weighting function for gradient con-
straints (Section 3.2, equations 5 & 6) causes the data in d to be
interpolated in a piecewise smooth manner with respect to u. In
fact, the function Flischinski in union with our default weighting
function causes the energy function in equation 2 to become equiv-
alent to the energy function used by Lischinski’s method.

Improvement: Linchiski’s method interpolates sparse data in a
piecewise-smooth manner with respect to the underlying image.

(a) (b)

(c) (d)

Figure 7: A demonstration of our improvement to Lischinski’s
method for sparse data interpolation over images. (a) Original color
image. (b) User scribbles specifying the desired recolorizing of the
image. (c) Colorization result produced by Lischinski’s method;
Notice the color bleeding between the sky and the ocean. (d) The
colorization result produced by our improved method.

However, their function for estimating regions where the smooth-
ness constraints have to be softened (i.e., to create the piecewise
smooth behavior) depends on the magnitude of a single, local gra-
dient in the image (i.e., Equations 5 & 6). We make a simple
modification to Linchiski’s method by using our long edge detec-
tor to more robustly detect regions that should produce a break in
the smoothness of the interpolation. Thus our improvement sig-
nificantly reduces the amount of data bleeding in the result (or
conversely the amount of user strokes required to produce the de-
sired result). We redefine the weights for the gradient constraints in
Flischinski as follows:

w
x(p) =

1

(c · el(p) · cos(eo(p)) + ǫ)b

w
y(p) =

1

(c · el(p) · sin(eo(p)) + ǫ)b

Here, c is a scalar parameter that controls the sensitivity of the data
interpolation to the underlying edge length (i.e., el(p)). The weight-
ing functions also take into account the local edge orientation (i.e,
eo(p)) in order to soften the smoothness constraints across, but not
along, long edges.

Figures 1 & 7 show two results created using our improved data in-
terpolation algorithm. Also, the supplementary video shows results
interpolating data over an entire video where only a few frames
have been marked by the user. Figure 7 compares our improved
method to Lischinski’s method. The sky and water regions in this
example are separated by faint local gradients causing Lischinski’s
method to exhibit more data bleeding in comparison to our im-
proved method.

6 Discussion

In this paper, we have provided a perceptually-motivated
optimization-framework for image and video processing. We have
tried to account for certain perceptual biases of the HVS in our for-
mulation by:

• allowing applications to define desired pixel gradients in ad-
dition to desired pixel values,

• proposing a new measure for gradient saliency that uses edge
length in addition to edge strength,

• and proposed a robust weighting scheme that approximates
the more robust L1-norm in order to produce visually pleasing
results.

We have demonstrated the versatility of our formulation by de-
signing and improving a variety of image processing applications.
The ease with which new applications can be developed using our
framework should be apparent given the simple, intuitive solutions
we arrived at for the applications we visited, which include:

• a new saliency sharpening filter,

• a new pseudo relighting filter,

• a new video deflickering filter,

• a new painterly rendering filter,

• an improved de-blocking filter, and

• an improved sparse data interpolation method.

Performance Performance is a major concern when it comes to
least squares based methods for image processing. Our unopti-
mized C++ code currently spends a few seconds for one megapixel
images and nearly one minute per video frame (at 800x600 reso-
lution) starting from the application specific filtering to the full 3D
optimization. However, there is plenty of room of improvement.
Our software based conjugate gradient solver, can be significantly
sped up using GPU acceleration and a preconditioner similar to the
one proposed by Szeliski et al. [2006]. In fact, McCann and Pol-
lard [2008] have recently shown that a GPU accelerated conjugate
gradient solver can minimize energy functions like ours in realtime
for megapixel-sized images.

Future Work There are several image processing applications
that are likely to yield successful solutions when expressed using
our formulation. For example, the LDR2HDR problem tackled by
Rempel et al. [2007] could probably be solved with high quality
results using our framework. Another interesting exploration of
our formulation would be in removing compression artifacts like
ringing and mosquito noise, which when combined with our de-
blocking filter could significantly improve the perceived quality of
streaming videos (e.g., YouTube and teleconferencing videos).

Our optimization framework also has much untapped potential in
the interactive image editing domain, especially when combined
with learning algorithms that could automatically identify the type
of pixels/gradients the user wants to manipulate given a few exam-
ple brush strokes. Such interactive tools could be used to remove
unwanted texture, glare, shadows, and other annoying artifacts from
an image by simply drawing a few rough strokes. Conversely, such
tools could also be used to selectively enhance portions of the im-
age for dramatic emphasis. In the coming years, we hope to see the
graphics community use and extend our optimization framework to
create exciting new image and video processing applications.

References

AGRAWAL, A., AND RASKAR, R., 2007. Gradient domain manip-
ulation techniques in vision and graphics.

AGRAWAL, A., RASKAR, R., NAYAR, S., AND LI, Y., 2005. Re-
moving photography artifacts using gradient projection and flash
exposure sampling.

AGRAWAL, A., RASKAR, R., AND CHELLAPPA, R. 2006.
Edge suppression by gradient field transformation using cross-
projection tensors. In 2006 Conference on Computer Vision and
Pattern Recognition (CVPR 2006), 2301–2308.

ATTNEAVE, F. 1954. Some informational aspects of visual percep-
tion. Psychol Rev 61, 3 (May), 183–193.

AVERBUCH, A., SCHCLAR, A., AND DONOHO, D. 2005. De-
blocking of block-transform compressed images using weighted
sums of symmetrically aligned pixels. IEEE Transactions on Im-
age Processing 14, 2 (February), 200–212.

BARTEN, P. G. 1999. Contrast Sensitivity of the Human Eye and
Its Effects on Image Quality. International Society for Optical
Engineering.

BEAUDOT, W., AND MULLEN, K., 2003. How long range is con-
tour integration in human color vision?

BHAT, P., ZITNICK, C. L., SNAVELY, N., AGARWALA, A.,
AGRAWALA, M., CURLESS, B., COHEN, M., AND KANG,
S. B. 2007. Using photographs to enhance videos of a static
scene. In Rendering Techniques 2007 (Proceedings Eurograph-
ics Symposium on Rendering), J. Kautz and S. Pattanaik, Eds.,
Eurographics, 327–338.

CANNY, J. 1986. A computational approach to edge detection.
IEEE Trans. Pattern Anal. Mach. Intell. 8, 6, 679–698.

CASTAGNO, R., AND RAMPONI, G., 1996. A rational filter for the
removal of blocking artifacts in image sequences coded at low
bitrate.

ELDER, J. H., AND GOLDBERG, R. M. 2001. Image editing in
the contour domain. IEEE Transactions on Pattern Analysis and
Machine Intelligence 23, 3, 291–296.

FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002. Gra-
dient domain high dynamic range compression. In SIGGRAPH
’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 249–256.

FREEMAN, W. T., AND ADELSON, E. H. 1991. The design and
use of steerable filters. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence 13, 9, 891–906.

GOOCH, A. A., OLSEN, S. C., TUMBLIN, J., AND GOOCH, B.
2005. Color2gray: salience-preserving color removal. ACM
Trans. Graph. 24, 3, 634–639.

HONG, S., CHAN, Y., AND SIU, W. 1996. A practical real-time
post-processing technique for block effect elimination. II: 21–
24.

LEVIN, A., ZOMET, A., PELEG, S., AND WEISS, Y., 2003. Seam-
less image stitching in the gradient domain.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. In SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers, ACM Press, New York, NY, USA, 689–694.

LISCHINSKI, D., FARBMAN, Z., UYTTENDAELE, M., AND

SZELISKI, R. 2006. Interactive local adjustment of tonal val-
ues. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, ACM
Press, New York, NY, USA, 646–653.

MARSCHNER, S. R., AND GREENBERG, D. P. 1997. Inverse light-
ing for photography. In Proceedings of the Fifth Color Imaging
Conference, Society for Imaging Science and Technology.

MCCANN, J., AND POLLARD, N. S. 2008. Real-time gradient-
domain painting. ACM Transactions on Graphics (SIGGRAPH
2008) 27, 3 (Aug.).

ORZAN, A., BOUSSEAU, A., BARLA, P., AND THOLLOT, J. 2007.
Structure-preserving manipulation of photographs. In Interna-
tional Symposium on Non-Photorealistic Animation and Render-
ing (NPAR).

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers,
ACM Press, New York, NY, USA, 313–318.

REMPEL, A. G., TRENTACOSTE, M., SEETZEN, H., YOUNG,
H. D., HEIDRICH, W., WHITEHEAD, L., AND WARD, G. 2007.
Ldr2hdr: on-the-fly reverse tone mapping of legacy video and
photographs. ACM Trans. Graph. 26, 3, 39.

SAND, P., AND TELLER, S. 2006. Particle video: Long-range mo-
tion estimation using point trajectories. In CVPR ’06: Proceed-
ings of the 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, IEEE Computer Society,
Washington, DC, USA, 2195–2202.

SHEWCHUK, J. R. 1994. An introduction to the conjugate gradient
method without the agonizing pain.

STRELNIKOV, K., AND VATOLIN, D., 2004. Virtualdub msu de-
flicker filter.

SU, S. L., DURAND, F., AND AGRAWALA, M. 2005. De-emphasis
of distracting image regions using texture power maps. In APGV
’05: Proceedings of the 2nd symposium on Applied perception
in graphics and visualization, ACM, New York, NY, USA, 164–
164.

SZELISKI, R. 2006. Locally adapted hierarchical basis precon-
ditioning. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
ACM Press, New York, NY, USA, 1135–1143.

TOMAR, S. 2006. Converting video formats with ffmpeg. Linux J.
2006, 146, 10.

WINNEMÖLLER, H., OLSEN, S. C., AND GOOCH, B. 2006. Real-
time video abstraction. ACM Trans. Graph. 25, 3, 1221–1226.

ZENG, Y., CHEN, W., AND PENG, Q. 2005. A novel varia-
tional image model: Towards a unified approach to image edit-
ing. Journal of Computer Science and Technology.

