
 1

A Study of Early Stage Game Design and Prototyping

Brien Colwell, Richard C. Davis, James A. Landay

DUB Group

University of Washington, CSE Box 352350

Seattle, WA 98195

xcolwell@gmail.com, rcdavis@cs.washington.edu, landay@cs.washington.edu

ABSTRACT

Computer games and simulations can be valuable teaching

and communication tools, and they are a powerful form of

self-expression. Unfortunately, creating games requires

programming, and programming requires time and skill.

Some tools facilitate game creation to motivate novice

programmers, but programming is still necessary. Other

systems require less programming, but they are narrowly

focused. To enable faster, simpler, and more expressive

tools for professionals and amateurs, we have explored the

processes and tools used in the early stages of game and

simulation design. Interviews with educators clarified the

uses of simulations in the classroom, while interviews with

professional game designers uncovered a need for a new

medium for prototyping interaction. We also conducted a

study that observed seven groups of children designing

games with words, sketches, and animations, finding

significant advantages to sketches and animations. Finally,

we refined an interface optimization design technique and

applied it to this domain as a first step toward a new game

and simulation prototyping tool.

Author Keywords

Games, simulations, design, animation, prototyping

ACM Classification Keywords

H5.m. H5.2 [Information interfaces and presentation]: User

Interfaces - Graphical user interfaces.

INTRODUCTION

End users are starting to develop simple games and

simulations for their friends, families, or students. Such

programs need not be polished (as shown by addictive

games like Sketch Fighter [2], Crayon Physics [29], and the

Line Rider game shown in Figure 1 [5]), but they must

reflect the vision of their creators. While many can envision

new interactive experiences, however, few have the time or

programming skill to realize them. Some tools provide

simplified programming environments for games, but

teaching programming is their primary focus [18, 23, 32].

Other tools reduce or eliminate programming from building

and prototyping games or simulations, but they are too

narrowly focused to serve as general purpose tools.

Previous research has shown the value of sketching in

design [4, 8], as well as the benefits of sketch-based design

[19] and animation tools [9]. Starting a prototyping process

with sketching would give precedence to crafting the

concrete visual and dynamic aspects of a game or

simulation. This could facilitate the flow of ideas and give

end-users the anchors they need for adding behavioral

details. We hypothesize that this approach will help end

users unlock creative their potential in this area.

With this goal in mind, we have explored the processes and

tools used in early stage game and simulation design. Our

exploration began with two sets of interviews. In the first,

we interviewed educators who wanted to give students

simulations as learning exercises. These interviews showed

the need for a simple simulation builder with basic graphics

but precise physical motions. We then interviewed

professional game designers and discovered a need for fast,

simple, and expressive prototyping tools. Designers’ needs

are similar to end users’ needs, because they also need to

work quickly and avoid programming.

We tested our hypothesis that sketching and animation

would facilitate prototyping of games and simulations by

observing seven groups of children prototyping games.

Each group worked in three media: text, static sketches, and

sketched animation. We found that sketching and animation

generated more unique ideas than writing. We also found

that animation helped these children temporally situate

events, tell stories, and collaborate spontaneously with one

another.

We then took a step toward designing a fast, simple, and

expressive prototyping tool by performing interface

Figure 1: Line Rider is a popular game with simple

graphics but rich animation and interactivity.

mailto:xcolwell@gmail.com
mailto:rcdavis@cs.washington.edu
mailto:landay@cs.washington.edu

 2

optimization to visualize the design space. Following the

pattern set by K-Sketch [9], we first collected a set of 27

usage scenarios and defined a set of 83 operations for

completing those scenarios. Because the existing interface

optimization method did not scale to such large operation

sets, we developed a new processing algorithm. The

resulting data shows several interesting points in the design

space, including one occupied by current tools.

In summary, this paper makes the following contributions:

1. Interviews with educators and game designers that

clarify the requirements of an end-user game and

simulation prototyping tool

2. A study that compares text, static sketches, and

sketched animation and shows the benefits of sketches

and animation

3. A more scalable interface optimization method with

improved handling of the speed dimension

4. Interface optimization results for an end-user game

sketching system, including 27 usage scenarios, 83

operations, and a visualization of the design space.

The following section gives an overview of research and

tools related to this project. After this, we present our

interviews with educators and game designers. The next

section describes our study comparing text, static sketches,

and sketched animation. We then explain how we collected

our usage scenarios and defined operations, after which we

describe our modifications to interface optimization,

including the optimization results and implications for

design of an end-user game prototyping tool. We close with

conclusions.

RELATED WORK

We preface our exploration of game prototyping methods

and tools by situating our research relative to previous work

in three areas. First, we look at research into why end users

create simulations and games. We then review current game

and simulation prototyping tools. Finally, we give examples

of research that shows how sketching and physical action

can facilitate creative expression.

Why People Create Games

To build a game and simulation prototyping tool that

supports end users, it is important to understand what they

wish to create. We have observed common themes running

through the literature in education, commercial game cust-

omization, and research into games in culture. We also see

evidence that professional game designers would benefit

from a fast, simple, and expressive prototyping tool.

There are numerous examples of educators and education

researchers using games and simulations as teaching tools.

Some generally advocate the use of games because of their

ability to deeply engage students in goal-directed activities

that can teach a variety of ideas [35]. One success in this

area has been the use of The Sims to teach foreign

languages [30]. To achieve educational goals, however,

many games need customizations that take programming

skill to implement.

Simulation has been a more widely studied tool,

particularly in teaching science. Inquiry learning, for

example, is a promising teaching strategy in which students

repeatedly form and test hypotheses on a simulator [3].

Though they need not be polished, good simulations are

hard to find. The few teachers with the time and skill to

make them need lots of support. The Physlets [6]

community, for example, helps physics teachers create Java

applets that illustrate physical phenomena.

In the game industry, many believe that user-created

content and customizations will dominate game play.

Games like The Sims [11], Spore [12], and Second Life

[20] have formed large communities of players who spend

countless hours creating content. Some players get so

involved that the lines between reality and fantasy begin to

blur [17]. Users’ clearly have vast creative energy for

games, but these games only allow customized content, not

entirely new game play.

Games are a vital part of culture [16]. Some are beginning

to study how children engage their culture by creating

computer games [28, 32]. The fact that making games is

still far less common than collecting internet images into

documents may be a sign that there is room for more

engaging game building tools [28]. The casual game

industry is another sign of this burgeoning culture [13].

Casual games are simple games [5, 29] created by

individuals or small teams and are available for free or for a

small fee. To survive, casual game makers must create

many games on short product cycles with small teams.

Some designers are calling for cheaper and faster

prototyping methods that avoid programming, such as

“sketching” prototypes with wizard of oz methods [1].

We believe that that a fast, simple, and expressive game

prototyping tool would serve both educators and individuals

participating in gaming culture. Our interviews investigated

the needs of these communities in greater depth.

Game and Simulation Prototyping Tools

Today, a user who wishes to create a game or simulation

with minimal programming has several, imperfect options.

Many reach for an agent-based structured editor like Alice

[18], eToys [34], AgentSheets [31], StarLogo TNG [24], or

Scratch [23] that structures programming activities around

the creation of games. All of these systems allow characters

to be defined graphically, after which behaviors can be

added programmatically.

These systems are quite powerful, but the transition into

programming is difficult for many. We believe that this

transition can be softened by allowing end users to spend

more time sketching and animating object relationships

before making the leap to programming. We also believe

that such systems could benefit from an analysis of

 3

scenarios like the one presented here as a means for

selecting the most important programming operations.

Programming by demonstration systems are a close relative

of agent-based structured editors that attempt to simplify

programming by inferring behavior from demonstrated

examples [22, 27, 33, 37]. Unfortunately, these systems

have not been popular, because inferring a program from

examples is a difficult problem. We avoid inferring

behavior for that reason, but we do seek to take advantage

of demonstrated animation, which is similar in spirit.

A third approach to prototyping a simulation is to use a

systems modeling or domain specific prototyping tool.

Systems modeling tools, like Stella [15], Simulink [36], or

LabView [25], have visual builders for modeling dynamic

systems and can connect to 3D models and graphs. These

are powerful systems, but their visual languages are no

simpler than the others presented here. Domain specific

prototyping tools, like Interactive Physics [10] and the

Molecular Workbench [7], have less programming but they

do not allow users to create new interactions. Thus, these all

fall short of allowing a wide variety of games to be

prototyped quickly and easily.

Informal Interfaces

Since Csikszentmihalyi introduced the concept of optimal

experience [8], many have sought to support users’ creative

flow by removing unnecessary obstacles. Informal

interfaces are systems that support creative flow by

deferring the specification of details until they become

necessary [9, 19]. These systems often involve sketching,

because sketches are the most valuable representations of

thought in the early stages of design. As Buxton puts it,

“Their value lies not in the artifact of the sketch itself, but

in its ability to provide a catalyst to the desired and

appropriate behaviors, conversations, and interactions” [4].

K-Sketch is an informal interface for sketching and

demonstrating animations that targets novice animators [9].

Evaluations of K-Sketch have shown that users can focus

on higher level tasks while using it, much as they can while

sketching. Since animations can reflect much of the

dynamic activity in games and simulations, we have

hypothesized that sketched animation will help end users

explore games designs in new and powerful ways.

Stimulating Creativity with Physical Action

K-Sketch animations are created by recording real-time

hand gestures, and there is evidence that this physical action

may also promote creativity. Oulasvirta and colleagues

found inspiration for ubicomp applications through

bodystorming, i.e., placing themselves in the physical

relationships required by their designs [26]. Lundgren

found that physical experimentation with a complex

mechanical table gave people a surprising ability to

“program” games on it [21]. We have found that people

experience similar benefits when physically demonstrating

motions in a game prototype.

Our research lies at the convergence of these disparate

themes. Through sketching and demonstration, we hope to

provide end users with a prototyping tool that is faster,

simpler, and more expressive than any that is currently

available.

INTERVIEWS WITH EDUCATORS

To better understand the needs of end-user simulation

programmers, we interviewed four educators who had a

desire to create simulations. The results of these interviews

are summarized in Table 1. All four participants were

education graduate students or post-docs, and all were

charged with developing new curricula as part of an inquiry

learning project. Two were men, and two were women.

For educators 1 and 2, simulations played a role that is

fairly common in inquiry learning exercises. Students

would repeatedly formulate and test hypotheses on the

simulation. Educator 3 wanted to show his students that the

same principles of equilibrium applied to many natural

processes. He hoped to connect the same simulation to

multiple sets of graphics (see Figure 2). Educator 4 wanted

her students to create simulations as a learning exercise.

None of these educators had found the time to build the

simulations they envisioned. Educator 1 did not know of

any appropriate simulation system and was searching for

one. Educator 2 had a planetary motion simulator, but she

wanted it to use real physical units, and she wanted some

planets to look like stars. She did not have time to build a

simulator and was looking for a better one to avoid

changing her curriculum. Educator 4 wanted to give her

students a fast way to make simulations. She considered the

Molecular Workbench, but feared that it provided too much

help and too few opportunities for learning. Educator 3

liked Stella, because it could produce pleasing continuous

graphs, but he was thinking of using AgentSheets, because

it was simpler. Though this tool has limitations, this was the

only participant with a plan for building his simulation.

Subject Suggested simulations

1 earthquakes mass–spring models of buildings

shaken with waves of varied

amplitude and frequency

2 gravity planets and stars of varied mass

affecting each other’s trajectory

3 ecology equilibrium: sharks–fish, farms–

fish, bulldozer–trees

4 molecular

theory

particles vibrate, change from

solid to liquid to gas

Table 1: Results from interviews with educators

Figure 2: Drawing from Educator 3 showing a bulldozer

clearing trees and new trees growing. Sliders control the

the growth rate and death rate of trees.

 4

Though the subject matter of these simulations varies, the

controls and behaviors are fairly similar. All had variables

connected to slider controls that affected the motion of

objects or the rate at which they appeared and disappeared.

With the exception of the ecology simulations, the objects

in these simulations move as if they were subject to

physical forces. While these educators didn’t demand that

motions be perfect, they did need to be close enough that

students would recognize physical processes.

As an experiment, we produced one of Educator 2’s

simulations with eToys. This simulation showed a moon

revolving around a planet in a mathematically accurate

way. The educator rejected the simulation, because the

motion was too choppy. We suspect that Educators 1 and 4

would have rejected eToys versions of their simulations for

the same reason.

These interviews show how educators would benefit from a

simple simulation tool that is expressive enough for a

variety of disciplines. The tool should allow quick assembly

of user controlled variables and objects that move with

simple, predefined motions or according to physical laws.

INTERVIEWS WITH GAME DESIGNERS

To better understand the state of the art in game prototyping

methods, we interviewed three professional game designers,

each for one hour. As shown in Table 2, all played key roles

in their teams, and all had at least a decade of experience.

Designers 1 and 2 were from small studios that delivered

casual and mixed-reality experiences over the web;

Designer 3 was from a large console game studio.

Each member of Designer 3’s team worked in a different

stage of a production pipeline, and communication from

later stages to earlier stages was limited. The first two

stages were creating a spec and design document; the last

stage was creating the game experience. If the game

experience team had an idea for a new game element

motivated by how people were experiencing the game,

there was little they could do. Those designers could have

benefitted from a medium for prototyping game

modifications.

Designers 1 and 2 had more interactive teams, but in both

cases, at least one person on the team worked remotely. At

the time of the interview, Designer 1 was working on an

educational game with a remote developer. The game

started with a high-ideation sketch composed of a drawing

and a two paragraph description. Over the course of 140

revisions, the text grew to a five page description of game

elements and interactions. Designer 1 was not able write

code; text was the only way he could collaborate. He

wanted a tool that would allow him to communicate his

ideas.

At the time of the interview, Designer 2 was working on a

storyboard for a new casual game. He often used paper-

prototyping and annotated sketching to experiment with

interactions, but at the time of the interview, he was

working with a remote developer. The best he could do was

send snapshots and textual design documents. Because of

the volume of minutia in each interaction and game

element, this designer used relative language when

communicating with text. For example, if he was exploring

ideas for a game with a remote developer, he might say

“this game is like X but we’re going to heat drums.”

Both Designers 1 and 1 used Flash to prototype. Designer 2

found Flash slow for prototyping since it focused on details,

and he had tried several other tools, including GameMaker

and GameBrix. However with every tool he tried, he

eventually hit a wall. He observed either “there are too

many features that the prototyping tool is made to support...

or it's [so] specific that only certain games can be made.”

He mentioned processing as an example of what he

considers good design for a tool: being able to drop out into

one page of code and keeping the GUI minimal. He also

wanted the ability to tweak game rules as a game is

running. These are key features for a professional tool,

though they are less important for novices.

These interviews show that designers also need a simple

medium for discussing interactivity. The medium should

allow remote collaboration, and it should be fast for team

members with no programming skill. Next, we describe a

study exploring possible media for such collaboration.

A STUDY OF GAME DESIGN IN THREE MEDIA

We hypothesized that being able to sketch and move game

objects would help users generate ideas for those objects’

interactions. To test our hypothesis, we designed a study

that compares the description of a game expressed using

three different media: writing, sketching, and animation.

Our participants were children interested in creating games.

The study started with a high ideation period, where the

coordinator would talk with each participant about games in

general, what games interested them, and what game they

would like to design. The coordinator would then give

participants a piece of paper and ask them to draw or write

about the game.

As the participants were creating their games, the

coordinator would ask questions about their design goals.

When the coordinator felt a participant had formed a good

enough notion of his/her game, the coordinator would give

the participant a workbook and ask him/her to start with

either sketching or writing responses (alternated each time).

When the participant had finished sketching or writing

answers to all questions, the coordinator would ask him/her

to answer the questions again with the other medium

Occupation Experience Game types

1 lead designer 10+ years mixed reality, casual

2 lead designer 10+ years casual

3 art lead 15+ years console

Table 2: Results from interviews with game designers

 5

 (writing if sketching was initially used, and vice-versa).

The workbooks contained four questions: how do you

control the main character, what is the goal, what are the

obstacles, and how do you win?

When a participant finished answering the questions with

both sketching and writing, the coordinator would give

them a Tablet PC with K-Sketch [9] running in full screen

mode. The coordinator would let the participant acclimate

to drawing with the tablet before showing him/her how to

create basic animations (using four K-Sketch operations:

translate, rotate, scale, and orient to path). Once the

participant was able to create basic animations the

coordinator would ask him/her to answer the workbook

questions using animation. The coordinator would not

restrict the time spent using each medium.

A pilot of the study was run at three community centers in

the Seattle area. After modifications to remove paper-

prototyping and add more scaffolding (the workbook

questions), the study was run in four sessions spanning two

weeks at an elementary school summer program in the

Seattle area. The coordinator set up at a table in the main

room and let children come over as they were interested. 12

groups total participated in the study (15 children, six

working in pairs); of those, seven groups (composed of two

pairs of girls, two more girls, and three boys) answered the

workbook using all three media. It took a average of 10–15

minutes to teach a group how to use the animation tool.

Our target demographic was children ages 7–14, since they

are largely unbiased by the current creative paradigm yet

have incredible creativity and enthusiasm. All of the

children who participated fit our age demographic.

However, Participant E had attended a summer workshop

for creating games, but did not have programming

experience.

When asked to complete a workbook with a medium, a

common response from participants was “I don’t know how

to X this”, where X was draw or animate. Of the seven

groups who worked in all three media, none said they could

not write a response. We asked each participant to give

their best effort and we marked “N/A” for each question a

participant attempted but could not answer.

Results

Figure 3 shows the games created by the seven groups. In

our data, each participant is assigned a letter (e.g., E). The

group name of a pair is the concatenation of the individual

participants’ letters (e.g., ED).

Using the categories in Table 3, we counted the number of

total and unique elements expressed in each category, for

each medium. A unique element is defined as an element

that appears in only one medium. The initial sketch or

writing was included in the counts. The final counts are

listed in Table 4.

In all but two categories (Obstacles and Actors) one

medium showed considerable favor. More Objective ideas

BC

ED

F

J

M

P

Q

Figure 3: Data from the three media study: participant ID,

initial concept, and a scene from the animation.

 6

were expressed with writing; more Scene and Interaction

ideas were expressed with sketching; more Action ideas

were expressed with Animation. Obstacle and Actor ideas

were close between Writing and Sketching, with Writing

being used slightly more. The uniqueness counts agreed

with the total counts in all but one category (Actors).

We identified three trends in the role of animation, which

we detail below with concrete examples.

1. Temporally situating events

In this role an animation with one or more actors moving

was looped continuously. The creators would observe the

movement and consider what could happen. At some point

the creators would stop the playback, seek to a point in

time, and add new movement to the animation. The process

would then repeat.

Concretely this role was observed in three groups of the

seven groups: J, M, and Q. Participant J (“car racer”)

created an animation where a car would turn around a bend,

past a tree. After continual looping he decided the tree

should fall down as the car drives past. He then stopped the

animation and added the falling motion. Participant M

(“animal sims”) started with two hamsters racing side by

side. After watching the animation she decided that one

hamster should hit a wall and another should pick up a

heart. She then stopped the animation, added a wall and a

heart, and modified the motion of one hamster to reflect the

new wall. Participant Q created an animation of an airplane

moving through the sky and a spinning blob. After looping

the airplane movement he decided that the blob should

shoot into the sky past the airplane. He grabbed the blob

while the animation was playing and moved it into the sky.

2. Storytelling or role playing in a scene

In this role an animation is a backdrop in which the motion

of one actor is demonstrated while the creator tells the story

of why the movement is happening. We likened this role to

puppetry.

Concretely this role was observed in two groups: F and Q.

Participant F (“the secret”) moved a kid through a kitchen

while a cook was moving. From the movement of the kid

she evolved the story of why the cook was moving and

what the kid was trying to do. Participant Q started with a

row of army men and then moved a blob through them and

up to the right while explaining “the blob has to step on the

army men to get to the finish.” He went back and animated

the army men falling over and drew stairs for the blob to

reach the finish.

Scene:
backdrop and environment; buildings and

walls; placement of actors

Objective:
a short- or long-term goal that drives

actors’ actions

Obstacle:
a situation an actor encountered that

inhibits flow (movement, action, etc) of an

actor

Action:
an exchange between actor and itself or

another object in the world; causes change

Actor:
object that creates actions; can be player or

non-player
Interaction: Physical controls human uses

Table 3: Categories used in study analysis

 Scene Objective Obstacle Action Actor Interaction

 W S A W S A W S A W S A W S A W S A

BC 1 1 1 2 1 2 2 0 2 5 1 2 8 3 2 2 1 1

ED 2 12 6 4 5 3 3 5 4 1 5 9 2 5 4 0 3 1

F 7 3 2 10 6 3 7 6 3 5 6 7 6 4 3 1 3 2

J 0 1 1 3 0 1 3 4 3 3 3 3 1 1 2 0 1 0

M 0 3 1 3 2 2 4 2 1 1 4 2 0 2 1 0 1 0

P 0 1 1 2 1 0 2 2 1 2 1 2 3 4 2 1 1 0

Q 0 1 2 2 1 3 2 2 2 2 3 7 1 3 4 0 1 0

BC 1 1 1 2 1 2 2 0 2 5 1 2 6 1 1 1 0 0

ED 0 6 0 0 1 2 1 1 2 0 1 8 0 1 0 0 2 0

F 4 0 0 5 2 2 4 2 1 3 3 4 3 0 0 0 1 0

J 0 0 0 3 0 1 3 1 0 3 3 2 0 0 1 0 1 0

M 0 3 1 3 2 2 2 1 1 0 3 1 0 2 1 0 1 0

P 0 0 0 2 1 0 0 0 0 1 0 1 0 1 0 1 1 0

Q 0 0 1 1 1 2 0 1 0 1 0 3 0 0 1 0 1 0

mean 1.4 3.1 2.0 3.7 2.3 2.0 3.3 3.0 2.3 2.7 3.3 4.6 3.0 3.1 2.6 0.6 1.6 0.6

mean 0.7 1.4 0.4 2.3 1.1 1.6 1.7 0.9 0.9 1.9 1.6 3.0 1.3 0.7 0.6 0.3 1.0 0.0

 std 2.6 4.0 1.8 2.9 2.3 1.2 1.8 2.1 1.1 1.7 1.9 3.0 2.9 1.3 1.1 0.8 1.0 0.8

 std 1.5 2.3 0.5 1.6 0.7 0.8 1.5 0.7 0.9 1.9 1.4 2.4 2.4 0.8 0.5 0.5 0.6 0.0

Table 4: Element counts per category in each medium. White rows are total counts; gray rows are unique counts. The

maximum mean in each category is highlighted. W: writing; S: sketching; A: animation

 7

3. Spontaneous collaboration

In this role an animation serves to show what is possible in

a world, allowing others to grasp what has been explored

and contribute ideas on what could be explored.

Concretely this role was observed in two groups: BC and Q.

Group BC (“tadpole rescue”) internally alternated drawing

a maze and keys hidden inside a maze. One of them would

draw a few walls, and the other would consider the best

next addition and draw it, etc. Participant Q created an

animation with a blob flying into the sky past an airplane.

Another kid in the room noticed the blob, came to the table,

and almost immediately suggested “what if the blob

bounced off the airplane.” Within seconds Q had integrated

the feedback and animated the blob bouncing off the

airplane.

Discussion

 One value we did not count in the analysis is how many

times an element recurred within a medium. If we had, we

suspect writing would have had the lowest net recurrence

count. When writing, participants tended to produce

smaller, fragmented ideas rather than developing a single

idea. For example, rather than developing a single scene

for a game, Participant F created a plot that spanned

escaping an orphanage, finding, navigating, and fighting on

a boat, and then delivering food to visitors in a basement.

The fragmented nature of written ideas may also explain the

high unique Actor and Objective count in writing.

Confirming our hypothesis, we believe the principles of

bodystorming came out in the Animation data. While

Scenes, Actors, and Interactions are static, Actions flow

with time. Animation enabled the students to visually

situate the actors and scenery in a moment, which let them

“live in” possible actions and explore them as they came.

However, surprisingly Animation was used least frequently

to specify Obstacles, which are also situational. One

explanation is that Animation was used to explore the

details of a single obstacle.

From this data we conclude that sketching and animation

are not merely a step in the creative process; they are part of

a continuous process that makes ideas tangible. Once

tangible, ideas can be discussed among several people,

reconsidered, and evolved. The visual overview afforded by

sketching and the quick feedback of motion and causality

afforded by animation cannot easily be recreated in a text

document.

A SCENARIO LIBRARY OF GAME AND SIMULATIONS

To study how well tools for creating games and simulations

balance expressivity, simplicity, and speed, designers need

data with which to test them. The data should help

illuminate what users of the tool would be able to create

and what operations they would need to master. In this

section we present data we believe will be useful to help

test all game and simulation design and prototyping tools.

Our process involved creating a library of games and

simulations, extracting the essential elements, identifying

common operations (which can correspond to interface

elements), and then encoding as many different approaches

using these operations as time permitted.

Choosing a Set of Games and Simulations

We created a library of fourteen games and thirteen

simulations that we believe are representative of the types

of games and simulations our target audiences want to

create. These games and simulations range from casual

games to academic simulations. The casual games (10)

came from each category listed in the IGDA (International

Game Developer’s Association) 2006 whitepaper [14]. The

remaining four games were taken from a list of innovative

casual and console games. We found simulations spanning

Name Description

1 edit edit animation (in ways not found in

K-Sketch)

2 play control playback of motions

3 spatial test and control the spatial

relationship of objects

4 cnd-sp choose a subset of objects for spatial

tests and controls

5 i/o create controls that receive input and

create visual output

6 draw control the drawing system

7 pixel test and control individual display

pixels

8 phys move objects using a physical model

9 visual control visual properties of objects

10 rand generate random numbers or

selections

11 state store state in a variable

12 seq execute a sequence of operations

13 camera control and interact with the user's

camera (view)

14 grid create & control grid of visual objects

15 sound control playback of sounds

16 cnd-vis choose a subset of objects to make

visible

17 cue conditionally cue events

18 flow control how information flows to and

from variables

Table 5: Categories of operations in our data

 8

10 disciplines: economics (1), business (1), theater (1),

dance (1), marine biology (1), physics (4), genetics (1),

brain science (1), air traffic control (1), and biology (1). All

but one of the games and simulations are 2D.

Extracting Essential Elements

Each game and simulation in the library involves many

elements. To focus on the essential elements, we studied

answers to the following two questions: 1. What actions

happen in the game? 2. Which elements of the game, if

removed, would make the game no longer fun?

One researcher answered these questions for each game and

simulation in the library. Additionally, we posed the

question on Amazon’s Mechanical Turk. We submitted 27

tasks, one for each game and simulation, and received 102

responses. There were 51 unique respondents, each

completing an average of 2 tasks (standard dev. 2.1). They

were paid $.30 for each completed task (none were

rejected). For each game or simulation we kept the first four

responses that satisfactorily answered the questions.

Common discarded responses were ones that answered

relative to another similar game or simulation (e.g., “it’s

just like X”) and ones that focused solely on the playability

of the game (e.g., “this game is too hard”). A final

description of the essential elements for each game and

simulation was created by taking the union of the essential

elements mentioned by the researcher with essential

elements mentioned in at least two of four responses

obtained from our online participants.

Defining a Set of Operations

Following the pattern set by K-Sketch [9], one researcher

iteratively coded the library to define a set of operations.

This process begins with enumerating the features that a

user would have to represent to complete each game or

simulation. For each feature, the researcher then listed one

or more approaches to representing that feature and noted

common operations required by each approach. The final

encoding was reached after five iterations through the

library. Operation categories are listed in Table 5, and the

operations themselves are listed in Table 6. The final

encoding had an average of 1.84 approaches per feature

(recent analysis of the K-Sketch encoding shows that it had

an average of 1.77 approaches per operation).

UNDERSTANDING DESIGN TRADEOFFS

The interface optimization technique processes a coded

library of features, approaches, and operations to help

interface designers produce the fastest, simplest, and most

expressive points in a design space [9]. The technique

identifies small sets of operations (simple) that support

large numbers of scenarios (expressive) using fast

approaches (fast). A set O of operations supports scenario S

if all the features of S can be represented with one or more

approaches for which all operations are contained in O.

The existing interface optimization technique had two

significant problems: slow execution time of the

optimization algorithm and a poor definition for “fast

approaches.” In this section we first explain how we

addressed these two problems and then present the results

of an interface optimization of our data.

Revising Interface Optimization

The original optimization technique searched through all

possible subsets of operations to find solutions (i.e., small

sets of operations that support large numbers of scenarios).

This exhaustive search had a running time that grew

exponentially with the number of operations (18 in the case

of K-Sketch), and was inappropriate for the present domain

(84 operations).

We designed a new optimization algorithm that uses two

heuristics. The first takes advantage of the fact that optimal

solutions of similar size tend to have many common

operations. Using this heuristic, we assumed that it was

good enough to search through sets of operations that are up

to K operations removed from solution.

The second was a greedy heuristic that chooses operations

to keep based on the total number of approaches they

appear in. These heuristics were validated against the

optimal K-Sketch data and results were very close to the K-

Sketch results for small values of K.

To integrate speed into the analysis, generate multiple sets

of solutions. The first assumes that all scenarios are

completed using the fastest available approaches.

Successive solution sets allow approaches that take longer

to execute. We classify sets of solutions by the total time

needed to complete the scenario: fastest time, 25% longer,

50%, 75%, 150%, 300%, 600% longer, and unlimited time.

In this way, we could observe the change in solutions as

slower approaches were used.

We ran the greedy heuristic optimization using K=7. The

process took 2 hours to complete on eight 2.66 GHz Xeon

cores and gave the results shown in Table 6. Figure 4 shows

an overview of the data. Each line shows the simplest and

most expressive solutions for a given speed. The lines

converge near 300% slower than the fastest speed, which

means that using alternative approaches will never add

more than 300% to the total task time.

Figure 4: Minimum operation counts. Add operations (y-

axis) to support more scenarios (x-axis).

B

C

A

 9

Discussion

These results help us see this tradeoff between speed and

simplicity. If we allow some scenarios to take up to 300%

longer to perform, we can support more scenarios with

fewer operations. However, requiring scenarios to take any

longer would provide little benefit. For this reason, we

generated Table 6 assuming that scenarios could take up to

300% longer than the fasted available time.

We identified three interesting points in the results, marked

A, B, and C in Figure 4, and Table 6. To identify these

spots we look for convex inflection points, which indicate

fewer operations than average were required to support the

number of scenarios at that point. At Point A, 7 scenarios

(26%) are supported with 16 operations (19%). At Point B,

12 scenarios (44%) are supported with 28 operations (33%).

At Point C, 21 scenarios (78%) are supported with 56

operations (66%).

Interestingly, Point A includes the set of operations that

approximately make up the Scratch programming

environment, minus input, pixel, and sound operations. In

our encoding the “object instance variable” operation

approximates named sprites in Scratch. Point A has one of

the highest supported scenarios per operation value of any

point; and it also is the sweet spot with the smallest number

of operations. This may explain how skilled end-user

programming systems designers, such as those who created

Scratch, are able to intuitively find it.

The operations and results of this optimization span all

interfaces, whether textual or informal. Each of Points A, B,

and C represents an appreciable difference in the

expressiveness and simplicity of such a tool for the given

speed (300% of the fastest). In this respect, Points A, B, and

C can be thought of as checkpoints to guide the

development process of any game and simulation design

tool. When tool designers can agree on goals for the speed,

simplicity, and expressivity of their tools, they can focus on

building interfaces to better match the mental models of a

specific audience of users.

CONCLUSIONS

We have explored the processes and tools used in the early

stages of game and simulation design. Interviews with four

educators clarified the uses of simulations in the classroom,

while interviews with three professional game designers

uncovered a need for a new medium for prototyping game

interaction. We also ran a study that observed seven groups

of children designing games with words, sketches, and

animations, finding significant advantages to sketches and

animations. Finally, we refined the interface optimization

design technique and applied it to this domain as a first step

toward a new game and simulation prototyping tool.

REFERENCES

1. Agustin, M., et al. Game Sketching. In Proc. the Second

International Conference on Digital Interactive Media

(DIMEA) (2007).

2. Ambrosia Software Inc. Sketch Fighter 4000 Alpha.

http://www.ambrosiasw.com/games/Sketchfighter/.

3. Bell, T., et al., Technology-Enhanced Collaborative

Inquiry Learning: Four Approaches under Common

Aspects, in Contributions from Science Education

Research, R. Pintó and D. Couso, Editors. Springer

Netherlands, 2007. 451-463.

4. Buxton, B. Sketching User Experiences: Getting the

Design Right and the Right Design. Morgan Kaufmann,

2007.

5. Čadež, B. Line Rider.

http://linerider.com/en/node/365244.

6. Christian, W. and Belloni, M. Physlet Physics:

Interactive Illustrations, Explorations and Problems for

Introductory Physics. Prentice Hall, Upper Saddle

River, NJ, 2004.

7. Concord Consortium Inc. Molecular Workbench.

http://workbench.concord.org.

8. Csikszentmihalyi, M. Flow : The Psychology of Optimal

Experience. First ed. Harper and Row, New York, 1990.

9. Davis, R.C., et al. K-Sketch: a “kinetic” sketch pad for

novice animators. In Proc. the SIGCHI Conference on

Human Factors in Computing Systems, ACM (2008),

413-422.

10. Design Simulation Technologies Inc. Interactive

Physics. http://www.design-simulation.com/ip.

11. Electronic Arts Inc. The Sims. http://thesims.ea.com/.

12. Electronic Arts Inc. Spore.

13. Goodloe, K., Online: Games, The Wall Street Journal

Online, December 9, 2006. Dow Jones and Company,

Inc.

http://online.wsj.com/article/SB116561569237944971.h

tml.

14. International Game Developer’s Association, Casual

Games White Paper, 2006.

http://www.igda.org/casual/IGDA_CasualGames_White

paper_2006.pdf.

15. ISEE Systems Inc. Stella.

http://www.iseesystems.com/softwares/Education/Stella

Software.aspx.

16. Jenkins, H. Convergence Culture: Where Old and New

Media Collide. NYU Press, 2006.

17. Jenkins, H. Playing Politics in Alphaville, Technology

Review, Issue, Number, May 7, (2004).

18. Kelleher, C., et al. Storytelling alice motivates middle

school girls to learn computer programming. In Proc.

the SIGCHI Conference on Human Factors in

Computing Systems, ACM (2007), 1455-1464.

19. Landay, J.A. and Myers, B.A. Sketching interfaces:

toward more human interface design. IEEE Computer

34,3 (2001), 56-64.

20. Linden Research Inc. Second Life.

21. Lundgren, S., Joining Bits and Pieces – How to Make

Entirely New Board Games Using Embedded Computer

Technology, Master's Thesis, Department of Computing

Science, IT University of Göteborg, Göteborg, Sweden,

2002.

http://www.ambrosiasw.com/games/Sketchfighter/
http://linerider.com/en/node/365244
http://workbench.concord.org/
http://www.design-simulation.com/ip
http://thesims.ea.com/
http://online.wsj.com/article/SB116561569237944971.html
http://online.wsj.com/article/SB116561569237944971.html
http://www.igda.org/casual/IGDA_CasualGames_Whitepaper_2006.pdf
http://www.igda.org/casual/IGDA_CasualGames_Whitepaper_2006.pdf
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx

 10

22. McDaniel, R., Demonstrating the Hidden Features that

Make an Application Work, in Your Wish is My

Command: Programming by Example, H. Lieberman,

Editor. Morgan Kaufmann, San Francisco, CA, 2001.

161-174.

23. MIT Media Lab. Scratch. http://scratch.mit.edu/.

24. MIT Scheller Teacher Education Program. StarLogo

TNG: The Next Generation.

http://education.mit.edu/drupal/starlogo-tng.

25. National Instruments Corporation. LabVIEW.

http://www.ni.com/labview/.

26. Oulasvirta, A., et al. Understanding contexts by being

there: case studies in bodystorming. Personal and

Ubiquitous Computing 7,2 (2003), 125-134.

27. Pane, J.F., et al. Using HCI Techniques to Design a

More Usable Programming System. In Proc. the IEEE

Symposia on Human Centric Computing Languages and

Environments (2002), 198-206.

28. Peppler, K. and Kafai, Y.B. What videogame making

can teach us about literacy and learning: alternative

pathways into participatory culture. In Proc. the Digital

Games Research Association Conference (2007), 369-

376.

29. Purho, P. Crayon Physics.

http://www.kloonigames.com/blog/games/crayon.

30. Purushotma, R. Commentary: you're not studying,

you're just... Language Learning and Technology 9,1

(2005), 80-96.

31. Repenning, A. and Ioannidou, A. Agent-based end-user

development. Communications of the ACM 47,9 (2004),

43-46.

32. Repenning, A. and Ioannidou, A. Broadening

participation through scalable game design. ACM

SIGCSE Bulletin 40,1 (2008), 305-309.

33. Smith, D.C., et al., Novice Programming Comes of

Age, in Your Wish is My Command: Programming by

Example, H. Lieberman, Editor. Morgan Kaufmann, San

Francisco: CA, 2001. 7-19.

34. Squeak. eToys. http://www.squeakland.org/.

35. Squire, K. Games, learning, and society: building a

field. Educational Technology 4,5 (2007), 51-54.

36. The MathWorks Inc. Simulink.

http://www.mathworks.com/products/simulink/.

37. Wolber, D., Pavlov: where PBD meets Macromedia's

Director, in Your Wish is My Command: Programming

by Example, H. Lieberman, Editor. Morgan Kaufmann,

San Francisco: CA, 2001. 345-350.

http://scratch.mit.edu/
http://education.mit.edu/drupal/starlogo-tng
http://www.ni.com/labview/
http://www.kloonigames.com/blog/games/crayon
http://www.squeakland.org/
http://www.mathworks.com/products/simulink/

 11

Table 6: All operations identified in our

data, sorted by their rank in the optimization

run with K=7. Solid blue boxes mean the

operation is used in all minimal sets for that

operation count. Light blue boxes mean the

operation is used in some minimal sets; with

lighter indicating less minimal sets in which

the operation appears. The categories are

described in Table 5.

B

A

C

