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Although no historical information exists about the Indus civilization (fl. c. 2600-1900 BC), 
archaeologists have uncovered about 3800 short samples of a script that was used throughout 
the civilization. The script remains undeciphered, despite a large number of attempts and claimed 
decipherments over the past 80 years. Here, we propose the use of probabilistic models to 
analyze the structure of the Indus script. The goal is to reveal, through probabilistic analysis, 
syntactic patterns that could point the way to eventual decipherment. We illustrate the approach 
using a simple Markov chain model to capture sequential dependencies between signs in the 
Indus script. The trained model allows new sample texts to be generated, revealing recurring 
patterns of signs that could potentially form functional sub-units of an underlying language. The 
model also provides a quantitative way of testing whether a particular string belongs to the 
putative language as captured by the Markov model. Applying this test to Indus seals found in 
Mesopotamia and other sites in West Asia reveals that the script may have been used to express 
different content in these regions. Finally, we show how missing, ambiguous, or unreadable signs 
on damaged objects can be filled in with most likely predictions from the model. Taken together, 
our results indicate that the Indus inscriptions exhibit sequential structure and regularities that 
are suggestive of a linguistic rather than a nonlinguistic writing system.  
 
Ancient scripts | Markov models | Statistical inference | Linguistic systems | Machine learning  
 
From circa 2600-1900 BC, in a region spanning what is now Pakistan and northwestern India, 
flourished a vast civilization known as the Indus (or Harappan) civilization whose trade 
networks stretched all the way to the Persian Gulf and the Middle East. The civilization emerged 
from the forgotten depths of antiquity in the late 19th century when General Alexander 
Cunningham (1814-93) visited Harappa and published a description [1] of the site, including an 
illustration of a tiny seal with characters in an unknown script. Since then, much has been 
learned about the Indus civilization through the painstaking work of archaeologists (see [2,3] for 
reviews), but the script still remains an enigma.  
 
More than 3800 inscriptions in the Indus script have been unearthed on stamp seals, sealings, 
amulets, small tablets, and ceramics (see Fig. 1A for examples). A presumed monumental 
inscription has also been discovered [4]. Although there have been over 60 claimed 
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decipherments (see [5] for a review), none of these decipherments has passed the rigor of 
scholarly scrutiny and none has been widely accepted by the community. Several obstacles to 
decipherment have been identified [5] including the lack of any bilinguals, the brevity of the 
inscriptions (the average inscription is about 5 signs long), and our almost complete lack of 
knowledge of the language(s) used in the civilization. 
 
Given these formidable obstacles to direct decipherment, we propose instead to analyze the 
script’s syntactical structure using techniques from the fields of statistical pattern analysis and 
machine learning [6]. It is our belief that such an approach could provide valuable insights into 
the grammatical structure of the script, paving the way for a possible eventual decipherment. As 
a first step in this endeavor, we present here results obtained from analyzing the sequential 
structure of the Indus script using a simple type of probabilistic graphical model known as a 
Markov model [6]. Markov models assume that the probability distribution of the current “state” 
(e.g., symbol in a text) depends only on the previous state. Although a simplification in many 
circumstances, the Markov assumption renders learning and inference over sequences tractable. 
Markov models have been successfully used in the analysis of time-series data, for example, in 
speech [7] and natural language processing [8]. Here, we apply them for the first time (to our 
knowledge) to analyzing an undeciphered ancient script.  
 
Markov Models for Analyzing the Indus Script 
Perhaps the simplest form of analysis one can perform on strings of symbols from an 
undeciphered script is to calculate the set of probabilities that a given symbol follows another. 
This idea is formalized in the concept of Markov models (also called Markov chains) [9,10]. A 
Markov model consists of a finite set of N “states” s1, s2, …, sN (e.g., the states could be the 
signs in the script) and a set of conditional probabilities P(si|sj) that determine how likely it is 
that state si follows state sj. There is also a set of prior probabilities P(si) that denote the 
probability that state si starts a sequence. Figure 1B shows an example of a “state diagram” for a 
Markov model with 3 states labeled A, B, and #.  
 
The circles denote the states and the arrows denote possible transitions between states. The 
column in the center gives the prior probabilities for each state and the table on the right 
provides the probabilities P(si|sj) for transition between states, picked arbitrarily here for the 
purposes of illustration. Suppose that A and B denote signs or letters in a language, and let # be 
the terminal sign that denotes the end of a text.  Some example sequences generated by this 
Markov model are BAAB, ABAB, B, etc. (the terminal sign # is not shown). Texts that are not 
generated by this Markov model include all texts that contain a repetition of B (…BB…) and all 
texts that end in A, since these are precluded by the transition probability table. A more complex 
example would be a Markov model for English texts involving the 26 letters of the alphabet plus 
space. In this case, the transition probability table (or matrix) would be of size 27 x 27. In the 
matrix, we would expect, for example, higher probabilities for the letter “s” to be immediately 
followed by letters such as “e”, “o”, or “u” than letters such as “x” or “z” due to the 
morphological structure of words in English. The Markov model would thus capture such 
statistical regularities inherent in the English language.  
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Fig. 1. The Indus Script and Markov Models. (A) Examples of Indus inscriptions on seals and tablets (top 
left) and three square stamp seals (images from harappa.com, J.M. Kenoyer, Courtesy Dept. of 
Archaeology and Museums, Govt . of Pakistan). Note that inscriptions appear reversed on seals. (B) 
Example of a simple Markov chain model with 3 states. (C) Subset of Indus signs from Mahadevan’s list 
of 417 signs [11]. 
 
Markov models make the simplifying assumption that the current state depends only on the 
preceding state and is independent of states from other previous time steps given this preceding 
state. While this assumption may not hold true in many cases, Markov models (and their variants 
hidden Markov models or HMMs) have nevertheless been successfully used in speech 
recognition [7] and natural language modeling [8]. Markov models and HMMs are examples of a 
more general class of probabilistic models known as graphical models [12] in which random 
variables are modeled as nodes in a graph and dependencies between random variables are 
modeled using edges. Graphical models can be used to model complex relationships between 
states, including higher-order dependencies such as the dependence of a symbol on the past N-1 
symbols (equivalent to N-gram models in language modeling).  
 
In this article, we restrict our attention to first-order Markov models. In other work [13], we have 
compared higher-order (N-gram) models for the Indus texts using the information-theoretic 
measure of “perplexity” [8] and found that the bulk of the perplexity in the Indus corpus can be 
captured by a bigram (N = 2) or equivalently, a 1st-order Markov model.  
 
To model strings using a Markov model, one needs to estimate the transition probabilities P(si|sj) 
between signs and the prior probabilities P(si) from the corpus of data available. While P(si) can 
be computed from frequencies of signs, the estimation of P(si|sj) requires “smoothing” i.e., 
transitions not observed in the data still get a small share of the probabilities rather than zeros 
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(see, e.g., Chap. 6 in [14]). We use modified Kneser-Ney smoothing [15] (based on [16]), which has 
been shown to outperform other types of smoothing on benchmark datasets.  
 
We focus in this article on three applications of Markov models to analyzing undeciphered 
scripts such as the Indus script: (1) Sampling: We show how new sample texts can be generated 
by: (i) randomly sampling from the prior probability distribution P(si) to obtain a starting sign 
(say S1) and then (ii) sampling from the transition probability distribution P(si | S1) to obtain the 
next sign S2, and so on. The string generation process can be terminated by assuming an end of 
text (EOT) sign that transitions to itself with probability one. (2) Likelihood computation: If x is 
a string of length L and is of the form x1x2…xL, where each xi is a sign from the list of signs, the 
likelihood that x was generated by a Markov model M can be computed as: P(x|M) = 
P(x1x2…xL|M) = P(x1)P(x2|x1)P(x3|x2)…P(xL|xL-1). The likelihood of a string under a particular 
model tells us how closely the statistical properties of the given string match those of the original 
strings used to learn the model. Thus, if the original strings were generated according to the 
statistical properties of a particular language, the likelihood is useful in ascertaining whether a 
given string might have been generated by the same language. (3) Filling in missing signs: Given 
a learned Markov model M and an input string x with some known signs and some missing 
signs, one can estimate the most likely complete string x* by calculating the most probable 
explanation (MPE) for the unknown parts of the string (see Methods).  
 
The Indus Script 
A prerequisite for understanding the probabilistic structure of a script is to identify and isolate its 
basic signs. This task is particularly difficult in the case of an undeciphered script such as the 
Indus script because (a) there is considerable variability in the rendering of the signs by different 
scribes, making it difficult to ascertain whether two signs that look different are stylistic variants 
of the same sign or two independent signs, and (b) many signs appear to be ligatures, composed 
of a simpler sign modified by one or more auxiliary marks. After a painstaking analysis of the 
positional statistics of variant signs in the corpus of known inscriptions (circa 1977), Mahadevan 
arrived at a list of 417 independent signs in his concordance [11] (Parpola used similar methods 
to estimate a slightly shorter list of 386 signs [17]). We utilized this list of 417 signs as the basis 
for our study. Figure 1C shows a subset of signs from this list.   
 
Although the script remains undeciphered, there is widespread consensus on the direction of 
writing in the script. Barring a few exceptions (see p. 14 in [11]), the writing direction is 
predominantly right to left (i.e., left to right in seals and right to left in the impressions). There 
exists convincing external and internal evidence supporting this claim (e.g., [5,11,17]). We 
consequently assumed a right-to-left direction for the writing and learned the sequential structure 
of the Indus texts based on a right-to-left reading of their signs, although a Markov model could 
equally well be learned for the opposite direction. 
 
Results 
Markov Model of Indus Texts 

The learned Markov model provides several interesting insights into the nature of the Indus 
script. First, examining the learned prior probabilities P(si) provides valuable information about 
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how likely it is that a particular sign si starts a text. Figure 2B shows this probability for the ten 
most frequently occurring signs (Fig. 2A) in the corpus of Indus inscriptions. 
An examination of Figure 2B reveals that certain frequently occurring signs such as  and   
(signs numbered 3 and 10 in the figure) are much more likely to start a text than the others. On 
the other hand, certain signs such as  (the most frequent sign in the corpus) and  are highly 
unlikely to start a text (they are in fact highly likely to end a text – see Fig. 3C and Table 1). 
These observations are consistent with previous analyses by Mahadevan, Parpola, and others 
[11,17,18,19]. 

 
Fig. 2. Learned Markov Model for the Indus Script. (A) The ten most frequently occurring Indus signs in 
the dataset. The numbers within parenthesis in the bottom row are the frequencies of occurrence of each 
sign depicted above in the dataset used to train the model. (B) Prior (starting) probabilities P(si) learned 
from data, shown here for the ten most frequently occurring Indus signs depicted in (A). (B) Matrix of 
transition probabilities P(si|sj) learned from data. A 418x418 matrix was learned but to aid visualization, 
only the 10x10 portion corresponding to the ten most frequent signs is shown.  
 
From the learned values for P(si), one can also extract the ten most likely signs to start a text and 
the ten least likely signs to do so (among signs occurring at least twenty times in the dataset) 
(Fig. 3A). These results suggest that some signs that look similar, such as  and , subserve 
different functions within the script and thus cannot be considered variants of the same sign. 
 
The matrix of transition probabilities P(si|sj) learned from data is shown in Figure 2C (only the 
portion corresponding to the ten most frequent signs is shown in the figure but all 418 x 418 
probabilities were learned). The learned transition probabilities for Indus sign pairs can be 
shown to be significant, in the sense that the null hypothesis for independence can be rejected 
(see [13] for details). To interpret the transition probability matrix, consider the entry with the 
highest value (colored white). This value (approximately 0.8) corresponds to P(si = 2| sj = 3) and 
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indicates that the sign  is followed by the sign  with a very high probability of about 80%.  
Other highly probable pairs and longer sequences of signs are shown in Figure 3B.  

 
Fig. 3. Some characteristics of the Indus script extracted from the learned Markov model. (A) Signs most 
likely and least likely to start an Indus text. (B) Highly probable pairs (top row) and longer sequences of 
Indus signs predicted by the learned transition matrix. The numbers above the arrows are the learned 
probabilities for the transitions indicated by the arrows. (C) Signs most likely and least likely to end an 
Indus text. (D) Top ten 10 signs with the highest probability of repeating (sign following itself).  
 
The transition matrix also tells us which signs are most likely to end a text. This can be done by 
reading off the signs that have a high probability of being followed by the end of text symbol.  
Figure 3C (top row) shows ten signs that occur at least twenty times in the dataset which have 
high probabilities (in the range 0.87 to 0.39) of terminating a text. The bottom row in the figure 
shows ten frequently occurring signs (occurring at least twenty times in the dataset) that have the 
least probability of terminating a text. 
 
The diagonal of the transition matrix, which represents the probability P(si|si) of self-transitions, 
tells us how likely it is that a given sign follows itself (i.e., repeats). Figure 3D shows 10 signs 
with the highest probability of repeating. The sign  occurs in only one inscription where it 

occurs as a pair, while the sign   occurs in 8 inscriptions, 6 times as a pair. More interestingly, 
the frequently occurring sign  occurs as a pair in 33 out of the 58 inscriptions in which it 
occurs. The presence of such repeating symbols in the Indus texts puts strong constraints on their 
semantic interpretation since the interpretation has to remain intelligible when repeated. 
 
The dark regions in the transition matrix in Figure 2C indicate a transition probability that is near 
zero. Many entries can be expected to be near zero because of the small sample size of the 
training dataset compared to the size of the matrix (our use of modified Kneser-Ney smoothing 
ameliorates some of these effects). However, when the transition matrix is restricted to the top 
20 to 100 most frequently occurring signs in the corpus, the number of near zero entries in 
transition matrix still ranges from 34% to 62% (Table S1), which is an intermediate range 
between random and rigid symbol order. This intermediate degree of flexibility in choosing the 
next sign can be quantified using conditional entropy and falls within the range of natural 
languages [20] (see also [21]). Such a structure in the transition matrix is suggestive of specific 
grammar-like rules governing the sequencing of signs in the Indus inscriptions. The existence of 
such rules would lend support to the hypothesis that the Indus script encodes linguistic 
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information, rather than random or rigid juxtapositions of emblems or religious, heraldic, or 
political symbols [22]. 
 
Table 1 provides additional support for the hypothesis that sequences of signs in the Indus 
inscriptions may be governed by specific rules. The table shows, for the top ten most frequently 
occurring signs in the dataset, a list of signs that tend to be followed by or follow a given sign 
with some probability (given in parenthesis below). For each of the ten selected signs, only a 
small set of signs has a high probability of being followed by or following the given sign, hinting 
at specific rules governing sequential order in the texts.  
 
Generating New Sample Indus Texts from the Learned Model 

The Markov model learned from the Indus inscriptions acts as a “generative” model in that one 
can sample from it and obtain new sequences of signs that conform to the sequential statistics of 
the original inscriptions (albeit limited to pairwise statistics). Figure 4A provides an example of a 
new text obtained by sampling and the closest matching text in the original corpus. The closest 
match was computed using the “string edit distance” between strings, which measures the 
number of additions, deletions, and replacements needed to go from one string to the other. The 
closest matching Indus text in Figure 4A is not identical to the generated sample but differs from 
it in two ways. First, the symbol  occurs as the starting symbol instead of  . An examination 
of the transition matrix reveals that both  and  have a high probability of being followed by 
the sign . Second, the sample text contains the sign  instead of  in the same position. This 
suggests that  and  perhaps have similar functional roles, given that they occur within similar 
contexts.  
 
Figure 4B gives another example of a new generated Indus text (top) and two closest matching 
texts from the Indus dataset of inscriptions. Once again, based on their interchangeability in 
these texts, one may infer that the signs , , and  share similar functional characteristics. 
 
Filling-In Incomplete Indus Inscriptions 
Many of the inscribed objects excavated at the various Indus sites are damaged, resulting in 
inscriptions that contain missing or illegible signs. To ascertain whether the model trained on 
complete texts could be used to fill-in the missing portion of these incomplete inscriptions, we 
first generated an artificial dataset of “damaged” inscriptions by taking complete inscriptions 
from the Indus dataset and obliterating one or more signs. Figure 4C (top row) shows an example 
of one such inscription. The complete inscription (middle row) predicted by the Markov model 
using the “most probable explanation” (MPE) method matched a pre-existing Indus inscription 
(bottom row). Results from a detailed cross-validation study of filling-in performance are given 
in [13]. 
 



 8

 
Table 1. Signs that tend to be followed by or follow each of the top ten frequently occurring signs. (Note: 
Followed by and follow here assumes a right to left reading of the texts). The numbers in the parenthesis 
below each list of signs is the value from the transition probability matrix for the corresponding sign 
preceding (left column) or following (right column) a given sign (center column). EOT denotes “End of 
Text” meaning that the text or inscription ends at that juncture. Each list of signs was extracted from the 
learned transition matrix. Only signs that occur 20 or more times in the dataset are included in these lists. 
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Fig. 4. Generating new Indus texts and filling in missing signs. (A) The top row shows a new sequence of 
signs (read right to left) that was generated by sampling from the learned Markov model. The lower row is 
the closest matching actual Indus inscription from the corpus used to train the model. (B) Inferring 
functionally-related signs. A sample from the Markov model (top) is compared to two closest matching 
inscriptions in the training dataset, highlighting signs that function similarly within inscriptions. (C) Filling-
in missing signs in a known altered text. The inscription in the top row was produced by replacing two 
signs in a complete inscription with blanks (denoted by ?). The middle row shows the “most probable 
explanation” (MPE) output. The last row shows the closest matching text in the dataset. (D) Filling-in an 
actual incomplete Indus inscription. The inscription at the top is an actual Indus inscription (from [17]; Fig. 
4.8) with two signs missing. The text in the middle is the MPE output and the text at the bottom is the 
closest matching complete Indus text in the corpus. (E) Filling in of another actual incomplete inscription 
from [11]. The text on the left has an unknown number of missing signs (hashed box). The right side 
shows three complete texts of increasing length predicted by the model. The first and third texts actually 
exist in the corpus. 
 
Figure 4D (top row) shows an actual Indus text with missing signs (from [17]). The middle row 
shows the completed text generated by the MPE method, with the closest matching Indus text at 
the bottom. The generated text differs from the known matching text in two ways: the “modifier” 

 is omitted and the sign  is replaced by a visually related sign . The text shown at the 
left of Figure 4E is another actual Indus inscription with an unknown number of signs missing 
(from [11]). The three texts shown at the right are MPE outputs assuming one, two, or three 
signs are missing. The first and third MPE texts actually occur in the Indus corpus while the 
middle text contains the frequent  pair   . Additional examples of filling-in of damaged texts 
are given in Supplementary Information (Table S2). 
 
Testing the Likelihood of Indus Inscriptions 
We also computed the likelihood of particular sequences of Indus signs with respect to the 
learned Markov model. The computed likelihood tells us how likely it is that a particular 
sequence of signs belongs to the putative language model encoded by the Markov model.  
Altering the order of signs in an existing Indus text causes the likelihood of the text to drop 
dramatically (see Fig. S1 for an example), supporting the hypothesis that Indus texts may be 
subject to specific syntactic rules for sequencing of signs.  
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West Asian Text 
(from [11]) 

Likelihood 

  0 

 2.71 x 10-10 

 6.32 x 10-8 

 4.66 x 10-14 

 0 

 8.82 x 10-12 

 1.20 x 10-12 

 2.22 x 10-17 

Indus valley held-out texts  
(median) 6.85 x 10-8 

Table 2. Likelihood of West Asian Texts compared to Indus valley texts. Only complete and unambiguous 
West Asian texts from [11] are included in this analysis. Two texts have a likelihood of zero because they 
each contain a symbol not occurring in our training dataset. The last row shows for comparison the 
median likelihood value for a randomly selected set of eight texts originating from within the Indus valley 
which were held out and not used for training the Markov model.   
 
Applying this analysis to Indus texts discovered outside of the Indian subcontinent, for example, 
in Mesopotamia and other sites in West Asia, we find that the likelihoods of most of these 
inscriptions are extremely low compared to their counterparts found in the Indus valley (Table 
2). Indeed, the median value of likelihoods for the West Asian texts is 6.22 x 10-13, about 
100,000 times less than the median value of 6.85 x 10-8 obtained for a random set of texts of 
Indus valley origin that were excluded from the training set for comparison purposes. These 
findings suggest the intriguing possibility that the Indus script may have been used to represent a 
different language or subject matter by Indus traders living or conducting business in West Asia. 
Such a possibility has already been suggested by Parpola, who noted that the West Asian texts 
often contain unusual sign combinations [17]. In fact, in Table 2, many of the West Asian texts 
with the low likelihoods contain sign combinations such as , , , , , and 

 that never appear in any texts found in the Indus valley. 
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Discussion 
A number of researchers have made observations regarding sequential structure in the Indus 
script, focusing on frequently occurring pairs, triplets, and other groups of signs 
[11,17,18,19,23]. Koskenniemi suggested the use of pairwise frequencies of signs to construct 
syntax trees and segment texts, with the goal of eventually deriving a formal grammar. More 
recently, Yadav, Vahia and colleagues [18,19] have performed statistical analyses of the Indus 
texts, including explicit segmentation of texts based on most frequent pairs, triplets and 
quadruplets.  
 
In this article, we provide to our knowledge the first investigation of sequential structure in the 
Indus script based on Markov models. An analysis of the transition matrix learned from a corpus 
of 1548 Indus texts provided important insights into which signs tend to follow particular signs 
and which signs do not, revealing interesting patterns in the script that are unlikely to occur if the 
script was merely used to represent religious, political, or heraldic symbols in random or rigid 
linear order [22]. The transition matrix also provides a quantitative probabilistic basis for 
extracting common sequences and subsequences of signs in the Indus texts. We demonstrated 
how the learned Markov model can be used to generate new sample texts, revealing groups of 
signs that tend to function similarly within a text.  
 
The approach we have proposed can also be used to fill-in missing portions of illegible and 
incomplete Indus inscriptions by computing the “most probable explanation” for the data based 
on the corpus of complete inscriptions. Finally, a comparison of the likelihood of Indus 
inscriptions discovered in West Asian sites with those from the Indus valley suggests that many 
of the West Asian inscriptions may represent subject matter different from Indus valley 
inscriptions. 
 
Our results favor the hypothesis that the Indus script represents a linguistic writing system. Our 
Markov analysis of sign sequences makes it clear that the signs do not occur in a random manner 
within inscriptions but appear to follow certain rules: (1) some signs have a high probability of 
occurring at the beginning of inscriptions while others almost never occur at the beginning, and 
(2) for any particular sign, there are signs that have a high probability of occurring after that sign 
and other signs that have negligible probability of occurring after the same sign. Furthermore, 
signs appear to fall into functional classes in terms of their position within an Indus text, where a 
particular sign can be replaced by another sign in its equivalence class. Similar conclusions have 
been arrived at by others using different methods [17,18,19]. For example, Yadav, Vahia and 
colleagues have shown [19] that larger Indus texts can be effectively split into smaller segments 
that do not necessarily form complete standalone texts but need to be enclosed within specific 
signs or sign sets to make them complete. A range of other arguments in favor of the linguistic 
hypothesis for the Indus script are provided by Parpola [24]. 
 
Our study suffers from some shortcomings that could be addressed in future work. First, our 1st-
order Markov model only captures pairwise dependencies between signs, ignoring important 
longer-range dependencies. Although much of the “perplexity” [8]  in the Indus corpus can be 
captured by a 1st-order Markov model, indicating that the most important correlations in Indus 
sign sequences come from the immediately preceding sign, additional reduction in perplexity can 
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be obtained by considering triplets and quadruplets of signs [13].  Thus, higher-order Markov 
models represent a promising direction for future work.  
 
A second potential shortcoming is our use of an Indus corpus of texts from 1977 [11] which does 
not include many new texts and signs that have since been discovered. Also, new sign lists have 
been suggested with up to 650 signs [25]. We believe these additions and variations will have 
only a minor perturbative effect on the structural analysis presented in the paper for the 
following reasons: (1) The types of new material that have been discovered are in the same 
categories as the texts in the 1977 corpus, namely, more seals, tablets, etc. The new material thus 
exhibits syntactic structure that is similar to the material we have analyzed in this paper. (2) The 
new signs that have been discovered are still far outnumbered by the most commonly occurring 
signs in the 1977 corpus, most of which also occur frequently in the newly discovered material. 
Thus, variations in sign frequencies due to the new material will only slightly change the 
conditional probabilities in the Markov model. Nevertheless, a more complete analysis with all 
known texts and new sign lists remains an important objective for the future. Additionally, our 
analysis combined data from different geographical locations. A more detailed site-by-site 
analysis could shed light on the interesting question of whether there are differences in the 
sequential patterning of signs across regions.  
 
Finally, it should be noted that the corpus of Indus texts currently available likely represents only 
part of the total corpus of Indus writing. Evidence for one text on perishable material (a wooden 
signboard) has been found archaeologically [4]. This opens up the possibility that there are more. 
The texts in our dataset are almost entirely from special purpose artifacts such as seals and 
tablets. They therefore may not fully capture the breadth of Indus writing, but rather represent 
only a small sample consisting of terse statements such as names, titles, occupations etc. related 
to seals and tablets. The large number of Indus sites yet to be fully excavated leave open the 
possibility that new texts will be discovered that expand the breadth of subject matter 
represented by the script. 
 
In summary, the results we have presented strongly suggest the existence of specific rules 
governing the sequencing of Indus signs in a manner that is indicative of a grammar. A 
formidable but perhaps not insurmountable challenge for the future (also articulated in 
[17,18,23]) is to apply statistical and machine learning techniques to infer a grammar directly 
from the corpus of available Indus inscriptions. 
 
 
Methods 
Dataset 
We applied our Markov model analysis techniques to a subset of Indus texts extracted from Mahadevan’s 
1977 concordance [11]. This dataset, called EBUDS [18], excludes all texts from Mahadevan’s 
concordance containing ambiguous or missing signs and all texts having multiple lines on a single side of 
an object. In the case of duplicates of a text, only one copy is kept in the dataset. This resulted in a 
dataset containing 1548 lines of text, with 7000 sign occurrences. We used Mahadevan’s list of 417 signs 
plus an additional “End of Text” (EOT) sign to denote the end of each text. Signs were fed to the model 
from right to left in each line of text, ending in the EOT sign. 
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Learning a Markov model from data 
The parameters of a Markov model include the prior probabilities P(si) and the transition probabilities 
P(si|sj).  A simple method for computing these probabilities is counting frequencies, e.g. P(si) is set equal 
to  the number of times sign si occurs in the dataset divided by the total number of occurrences of all 
signs. This can be shown to be equivalent to maximum likelihood estimation of the parameters [8]. 
However, such an estimate, especially for P(si|sj), can yield poor estimates when the dataset is small, as 
is the case with the Indus script, since many pairs of signs may not occur in the small dataset at all, even 
though their actual probability may be nonzero. There has been extensive research on “smoothing” 
techniques which assign small probabilities to unseen pairs based on various heuristic principles (see 
Chap. 6 in [8] for an overview). For the results in this paper, we used modified Kneser-Ney smoothing, a 
technique that has been shown to outperform other smoothing techniques on a number of benchmark 
datasets [15].  
 
Filling in missing signs 
Let x = x1x2…xL be a string of length L where each xi is a random variable whose value can be any sign 
from the list of signs. Let X denote the set of xi for which the values are given and Y the set of xi with 
values missing. For a general graphical model M, the most probable explanation (MPE) for the missing 
variables Y given the “evidence” X is computed as Y* = arg maxY P(Y|X,M). For the learned Markov 
model, M = (α, π), where αi = P(si) and πij = P(si|sj). For a Markov model, we can compute the most 
probable explanation (MPE) Y* = arg maxY P(Y|X, α, π) using a version of the “Viterbi algorithm” [26], 
which is itself based on the broader technique of dynamic programming (see [7,10] for algorithmic 
details).  

 
ACKNOWLEDGMENTS. This work was supported by the Packard Foundation, the Simpson Center for 
the Humanities at the University of Washington (UW), the UW College of Arts and Sciences, the UW 
College of Engineering and CSE Dept., Sir Jamsetji Tata Trust, and the Indus Research Centre at the 
Roja Muthiah Research Library, Chennai. 



 14

References 
                                                 
1.  Cunningham A (1875) Archaeological Survey of India Report for the Year 1872-73 (Archaeological 

Survey of India, Calcutta). 
2.  Kenoyer JM (1998). Ancient cities of the Indus Valley Civilisation (Oxford University Press). 
3.  Possehl GL (2002). The Indus Civilisation (Alta Mira Press, Walnut Creek). 
4.  Bisht RS (1990) Dholavira: New horizons of the Indus Civilization. Puratattva, 20:71–82. 
5.  Possehl GL (1996) The Indus Age: The Writing System (University of Pennsylvania Press, 

Philadelphia, PA). 
6.  Bishop C (2008) Pattern Recognition and Machine Learning (Springer Verlag). 
7.  Jelenik F (1997) Statistical Methods for Speech Recognition (MIT Press, Cambridge, MA). 
8. Manning C, Schütze H (1999) Foundations of Statistical Natural Language Processing (MIT Press. 

Cambridge, MA). 
9.  Drake AW (1967) Fundamentals of Applied Probability Theory (McGraw-Hill, New York). 
10.  Rabiner LR (1989) A Tutorial on Hidden Markov Models and Selected Applications in Speech 

Recognition. Proceedings of the IEEE 77(2):257–286. 
11.  Mahadevan I (1977) The Indus Script: Texts, Concordance, and Tables (Memoirs of Archaeological 

Survey of India, New Delhi). 
12.  Jordan MI (2004) Graphical models. Statistical Science (Special Issue on Bayesian Statistics) 

19:140-155. 
13  Yadav N, Joglekar H, Rao RPN, Vahia MN, Mahadevan I, Adhikari R, Statistical analysis of the Indus 

script using n-grams. arxiv.0901.3017 (2009). 
14  Manning C and Schütze H, Foundations of Statistical Natural Language Processing. Cambridge, MA: 

MIT Press (1999).  
15  Chen SF and Goodman J, Harvard University Computer Sci. Technical Report TR-10-98 (1998). 
16  Kneser R and Ney H, In Proceedings of the IEEE International Conference on Acoustics, Speech and 

Signal Processing, vol. 1, pages 181-184 (1995). 
17.  Parpola A (1994) Deciphering the Indus script. (Cambridge University Press, Cambridge). 
18.  Yadav N, Vahia MN, Mahadevan I, Joglekar H (2008) A statistical approach for pattern search in 

Indus writing. International Journal of Dravidian Linguistics 37(1):39-52. 
19.  Yadav N, Vahia MN, Mahadevan I, Joglekar H (2008) Segmentation of Indus Texts. International 

Journal of Dravidian Linguistics 37(1):53-72. 
20  Rao RPN, Yadav N, Joglekar H, Adhikari R, Vahia MN, Mahadevan I, Entropic evidence for linguistic 

structure in the Indus script. Science, April 2009. 
21  Schmitt AO and Herzel H, Estimating the Entropy of DNA Sequences. J. Theor. Biol. 188, 369 (1997). 
22  Farmer S, Sproat R, and Witzel M, The Collapse of the Indus-Script Thesis: The Myth of a Literate 

Harappan Civilization. Electronic Journal of Vedic Studies 11, 19 (2004).  
23. Koskenniemi K (1981) Syntactic methods in the study of the Indus script. Studia Orientalia 50:125-

136. 
24.  Parpola A (2008) Is the Indus script indeed not a writing system? in Airavati: Felicitation volume in 

honor of Iravatham Mahadevan (Varalaaru.com publishers, Chennai, India) pp. 111-131. 
25  Wells BK, Epigraphic Approaches to Indus Writing (PhD Dissertation, Harvard University). 

Cambridge, MA: ASPR Monograph Series (2009).  
26.  Viterbi AJ (1967) Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding 

Algorithm. IEEE Transactions on Information Theory 13:260-269.  
 



 

 1

Supplementary Information  
 
Sparseness analysis of the transition matrix 
We define sparseness as the percentage of probability values in a transition matrix that are near 

zero (below a threshold of 0.0024 for the results below). We chose 0.0024 based on the fact that 

uniform probability of succession given the set of 417 Indus signs is 1/417 = 0.0024. For random 

strings where any sign has a non-zero probability of following any other, the sparseness value 

will be relatively low. On the other hand, if the sequencing is rigid and a sign can only be 

followed by another unique sign, the matrix will contain many values near zero and have a high 

sparseness value. One caveat is that the full transition matrix (417x417 = 173,889 entries) can be 

expected to be quite sparse because of the small size of the dataset (1548 lines of text with about 

7000 sign occurrences for 417 signs) -- this implies that many pairs of signs will not occur in the 

dataset at all (our use of modified Kneser-Ney smoothing ameliorates this to some extent). 

However, the matrix need not be sparse when restricted to the most frequently occurring signs in 

the dataset. We therefore computed the sparseness of the transition matrix for Indus texts when 

only the top 20, 40, 60, 80, or 100 most frequently occurring signs are considered. The results, 

shown in Table S1, indicate that the sparseness value for the Indus transition matrix falls in the 

intermediate range between random and rigid symbol order, i.e., there is some flexibility in 

choosing the next sign but not too much flexibility. This is also the case for natural languages 

(Refs [20] and [21] in the main text) and hints at possible grammatical rules underlying the 

sequencing of signs in the Indus texts. 

 

 
Number of Frequent Signs Sparseness of Transition Matrix 

20 34% 
40 44% 
60 49% 
80 55% 
100 62% 

Table S1. Sparseness of transition matrix as a function of number of most frequent signs. 
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Examples of damaged texts from Mahadevan’s concordance filled in using MPE 
The table below shows complete texts predicted using MPE for a number of damaged texts given 

in Mahadevan’s concordance (Ref [11] in the main text). The Text Numbers below are from the 

concordance.  denotes one or more missing signs. * denotes a doubtfully read sign. Since the 

exact number of missing signs can be obscured by the damage to the object, filled-in texts are 

shown for the cases of 1 and 2 signs missing for each . 

Table S2. Filling in of damaged texts from Mahadevan’s concordance. 
 

Text 
No. 

Text with Missing Signs Filled-In Texts  
 

1001   

 

1002 *
 

 

 

1017 *    
 

1020   
  

  

1034  
 

 

1059 * 
 

 

 

1111   
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1144       

  

1165      
   

     

1176 *    

  
1240   

 

 

1265   

 

1289 
  

 

 

1343   
 

1408    

 

 

 

 
 

 
 
 
Likelihood of Altered and West Asian texts 
To test whether the model could be used to ascertain whether a text belongs to the putative 
language encoded by the Markov model, we generated several example texts by altering existing 
Indus texts – alterations involved randomly switching the positions of signs within a text. Figure 
S1 shows an example of an Indus valley text, the same text altered (last sign moved to the 
beginning), and a West Asian text. The likelihoods for each according to the learned model are 
given on the right. The altered text has a very small probability (4.4 x 10-10), consistent with the 
observations that  rarely begins a text and the sign pair  almost never occurs. 
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Interestingly, the West Asian text is about a 100 times even less likely than the altered text under 
the learned model, suggesting that the script was used to possibly encode different subject matter 
in West Asia. Additional examples of West Asian texts and their likelihoods are given in Table 2 
in the article. 
 

 
Fig. S1. Comparison of Likelihoods of Example Indus, Altered, and West Asian Texts. 

 
 
 

 
 
 

Likelihood 

Indus text      7.3 x 10-6 
 
Altered text      4.4 x 10-10 
 

West Asian seal     1.20 x 10-12 


