
Believe It or Not:
Adding Belief Annotations to Databases

Wolfgang Gatterbauer, Magdalena Balazinska, Nodira Khoussainova, and Dan Suciu
Department of Computer Science and Engineering,

University of Washington, Seattle, WA, USA
{gatter, magda, nodira, suciu}@cs.washington.edu

ABSTRACT
We propose a database model that allows users to anno-
tate data with belief statements. Our motivation comes
from scientific database applications where a commu-
nity of users is working together to assemble, revise,
and curate a shared data repository. As the commu-
nity accumulates knowledge and the database content
evolves over time, it may contain conflicting informa-
tion and members can disagree on the information it
should store. For example, Alice may believe that a tu-
ple should be in the database, whereas Bob disagrees.
He may also insert the reason why he thinks Alice be-
lieves the tuple should be in the database, and explain
what he thinks the correct tuple should be instead.

We propose a formal model for Belief Databases that
interprets users’ annotations as belief statements. These
annotations can refer both to the base data and to other
annotations. We give a formal semantics based on a
fragment of multi-agent epistemic logic and define a
query language over belief databases. We then prove a
key technical result, stating that every belief database
can be encoded as a canonical Kripke structure. We use
this structure to describe a relational representation of
belief databases, and give an algorithm for translating
queries over the belief database into standard relational
queries. Finally, we report early experimental results
with our prototype implementation on synthetic data.

1. INTRODUCTION
In many sciences today, a community of users is work-

ing together to assemble, revise, and curate a shared
data repository. Examples of such collaborations in-
clude identifying functions of particular regions of ge-
netic sequences [39], curating databases of protein func-
tions [11, 46], identifying astronomical phenomena on
images [43], and mapping the diversity of species [37].

This is UW CSE Technical Report 08-12-01 in the amended version of Sept
12th 2009. Pages 1-12 correspond to the final version of PVLDB 2(1):
1-12 (2009), including modifications to address the reviewer’s comments;
the appendix contains proofs, connection to default logics, and errata. The
project page is at http://db.cs.washington.edu/beliefDB/ .

As the community accumulates knowledge and the data-
base content evolves over time, it may contain conflict-
ing information and members may disagree on the in-
formation it should store. Relational database man-
agement systems (DBMSs) today can help these com-
munities manage their shared data, but provide limited
support for managing conflicting facts and conflicting
opinions about the correctness of the stored data.

The recent concept of database annotations aims to
address this need: annotations are commonly seen as su-
perimposed information that helps to explain, correct,
or refute base information [36] without actually chang-
ing it. Annotations have been recognized by scientists as
an essential feature for new generation database man-
agement systems [4, 8, 19], and efficient management
of annotations has become the focus of much recent
work in the database community [7, 11, 13, 15, 23, 24].
Still, the semantic distinction between base information
and annotations remains blurred [10]. Annotations are
simply additional metadata added to existing data [44]
without unique and distinctive semantics.

In discussions with scientists from forestry and bio-
engineering, we have seen the need for an annotation
semantics that helps collaborating community members
engage in a structured discussion on both content and
each other’s annotations: scientists do not only want to
insert their own annotations but also want to be able to
respond to other scientists’ annotations. Such annota-
tion semantics creates several challenges for a database
system. First, it needs to allow for conflicting anno-
tations: Users should be able to use annotations to
indicate conflicts between what they believe and what
others believe. The database should allow and expose
those conflicts. Second, it should also support higher-
order annotations. Users should be able to annotate not
only content but also other users’ annotations. And, fi-
nally, the additional functionality should be supported
on top of a standard DBMS with a simple extension of
SQL. Any new annotation model should take advantage
of existing state-of-the art in query processing.

To address these challenges, we introduce the concept
of a belief database. A belief database contains base in-
formation in the form of ground tuples, annotated with
belief statements. It represents a set of different be-
lief worlds, each one for one type of belief annotation,
i.e. the beliefs of a particular user on ground tuples,
or on another user’s beliefs. These belief worlds follow

1

http://db.cs.washington.edu/beliefDB/

an open world assumption and may be overlapping and
partially conflicting with each other. The formal seman-
tics of belief annotations is defined in terms of multi-
agent epistemic logic [21]. This semantics can be rep-
resented by an appropriate canonical Kripke structure
which, in turn, can be represented in the standard rela-
tional model and, hence, on top of a standard RDBMS.
We also introduce belief conjunctive queries, a simple,
yet versatile query language that serves as interface to a
belief database and consists of conjunctive queries with
belief assertions. In addition to retrieving facts believed
or not believed by certain users, this language can also
be used to query for agreements or disagreements be-
tween users. We describe an algorithm for translat-
ing belief conjunctive queries into non-recursive Datalog
(and, hence, to SQL). We have implemented a prototype
Belief Database Management System (BDMS), and de-
scribe a set of preliminary experiments validating the
feasibility of translating belief queries into SQL.

The structure of this paper follows its contributions:
• We describe a motivating application, and give ex-

amples and a syntax for BeliefSQL (Sect. 2).
• We define a data model and a query language for

belief databases (Sect. 3).
• We describe the canonical Kripke structure that

enables implementing belief databases (Sect. 4).
• We describe a relational representation of belief

databases and the translation of queries and up-
dates over this canonical representation (Sect. 5).
• We validate our model and report on experiments

with our prototype BDMS (Sect. 6).
The paper ends with an overview of related work (Sect. 7)
and conclusions (Sect. 8).

2. MOTIVATING APPLICATION
In this section, we present a motivating application

that we use as running example throughout this paper.
The scenario is based on the NatureMapping project
whose goal is to record biodiversity of species in the
US state of Washington [37]. Participating community
members volunteer to submit records of animal sightings
from the field. Each observation includes user-id, date,
location, species name, and various options to comment
on the observation, such as details about how the ani-
mal was identified (e.g., animal tracks were found). As
sightings are reported by non-experts, they can contain
errors. In fact, even experts sometimes disagree on the
exact species of a sighted animal.

In the current protocol, a single expert in forestry (the
principal investigator) manually curates all the entries
before inserting them into the database, which results in
significant delays and does not allow the application to
scale to a larger number of volunteers. In this setting, a
Belief Database Management System (BDMS) can ad-
dress this challenge by allowing multiple experts to an-
notate, thus streamlining the curation process. Gradu-
ate students, technicians, and expert users can all con-
tribute their beliefs to annotate the data, thus proving
a collaborative curation process. They can, for example,
disagree with individual sightings, if in their judgment
the sighting is incorrect, and annotate the data accord-

select selectlist
from (((BELIEF user)+ not?)? relationname)+

where conditionlist

insert into ((BELIEF user)+ not?)? relationname
values

delete from ((BELIEF user)+ not?)? relationname
where conditionlist

update ((BELIEF user)+ not?)? relationname
set value assignments
where conditionlist

Figure 1: Syntax of query and data manipulation
commands in BeliefSQL.

ingly. They can also correct a sighting by annotating it
with corrected values they believe more plausible than
those provided by the volunteers in the field. And they
can also suggest explanations for other users’ annota-
tions, thus leading to higher-order annotations.

We now illustrate the use of a BDMS. We assume
three users (Alice, Bob, and Carol) and a simplified
database schema consisting of three relations:

Sightings(sid, uid, species, date, location)
Comments(cid, comment, sid)
Users(uid, name)

We refer to this schema as external schema since it
presents the way users enter and retrieve data. Beliefs,
in contrast, are stored transparently from users and can
be manipulated via natural extensions to standard SQL
(Fig. 1). We illustrate its usage through examples next.

Little Carol sees a bald eagle during her school trip
and reports her sighting with the following insert:

i1:insert into Sightings
values (’s1’,’Carol’,’bald eagle’,’6-14-08’,’Lake Forest’)

Bob, a graduate student, however, does not believe that
Carol saw a bald eagle:

i2:insert into BELIEF ’Bob’ not Sightings
values (’s1’,’Carol’,’bald eagle’,’6-14-08’,’Lake Forest’)

Additionally, Bob does not believe that Carol could have
seen a fish eagle, which looks similar to a bald eagle:

i3:insert into BELIEF ’Bob’ not Sightings
values (’s1’,’Carol’,’fish eagle’,’6-14-08’,’Lake Forest’)

This ensures that Bob still disagrees even if Carol’s tuple
is updated to species=’fish eagle’. In both cases, Bob
uses the external key ’s1’ to refer to the tuple with which
he disagrees.

Alice, a field technician, believes there was a crow at
Lake Placid because she found some black feathers. She
does not insert a regular tuple as Carol did, but inserts
only her own belief:

i4:insert into BELIEF ’Alice’ Sightings
values (’s2’,’Alice’, ’crow’,’6-14-08’,’Lake Placid’)

i5:insert into BELIEF ’Alice’ Comments
values (’c1’,’found feathers’,’s2’)

2

Bob believes there cannot be any crows in the Lake
Placid area. He wants to annotate the data with the fol-
lowing belief statements: (i) Bob believes that Alice saw
a raven, not a crow; (ii) Bob believes that Alice believed
that the feathers she found were black; and (iii) Bob be-
lieves the feathers were actually purple-black, suggest-
ing they come from a raven, not a crow. The second and
third belief statements above are Bob’s suggestion why
Alice may have made a mistake. These annotations are
inserted into the BDMS as follows:

i6:insert into BELIEF ’Bob’ Sightings
values (’s2’,’Alice’,’raven’,’6-14-08’,’Lake Placid’)

i7:insert into BELIEF ’Bob’ BELIEF ’Alice’ Comments
values (’c2’,’black feathers’,’s2’)

i8:insert into BELIEF ’Bob’ Comments
values (’c2’,’purple-black feathers’,’s2’)

Notice here the important role of the higher-order be-
lief statement: “Bob believes that Alice believes that
the feathers were black”; this is how Bob explains his
disagreement with Alice. Such explanations are quite
common in a collaborative data curation process, and
it is important for a BDMS to support them.

At this point we have recorded eight belief statements
in the database. In the following section, we adopt the
formalism of multi-modal logic [25] and write �ut+ for
the assertion “user u believes tuple t”. Figure 2 illus-
trates with our eight statements. Note that in practice,
a BDMS needs to keep additional information in its in-
ternal schema, which we describe in Sect. 5.

Finally, we illustrate two queries over the belief data-
base. The first query asks for sightings at Lake Forest
believed by Bob. It returns (’s2’,’Alice’,’raven’):

q1: select S.skey, S.uid, S.species
from Users as U, BELIEF U.uid Sightings as S
where U.name = ’Bob’
and S.location = ’Lake Forest’

The second query retrieves entries on which users dis-
agree with what Alice believes:

q2: select U2.name, S1.species, S2.species
from Users as U1, Users as U2,

BELIEF U1.uid Sightings as S1,
BELIEF U2.uid Sightings as S2,

where U1.name = ’Alice’
and S1.sid = S2.sid
and S1.species <> S2.species

The BDMS returns (’Bob’,’crow’,’raven’), implying that
Bob disagrees with Alice’s crow sighting.

3. FORMAL SETUP
We introduce here the basic notion of a belief database,

which enriches a standard database with annotations of
users’ beliefs. Informally, a belief database represents
a set of incomplete and consistent database instances.
Depending on which tuples they share or do not share,
any two such instances can be mutually disjoint, over-
lapping, contained or partly conflicting.

Standard relational background. We fix a rela-
tional schema R = (R1, . . . Rr) and assume that each

Ground tuples without annotations

Sightings
sid uid species date location

s11 s1 Carol bald eagle 6-14-08 L.Forest
s12 s1 Carol fish eagle 6-14-08 L.Forest
s21 s2 Alice crow 6-14-08 L.Placid
s22 s2 Alice raven 6-14-08 L.Placid

Comments
cid comment sid

c11 c1 found feathers s2
c21 c2 black feathers s2
c22 c2 purple black feathers s2

Belief annotations
of ground tuples

i1: s1+
1

i2: �Bob s1−1
i3: �Bob s1−2
i4: �Alice s2+

1

i5: �Alice c1+
1

i6: �Bob s2+
2

i7: �Bob�Alice c2+
1

i8: �Bob c2+
2

Figure 2: Our running example. Left: Ground
tuples inserted and annotated by different users.
Conflicting tuples (like the crow and raven tu-
ples) share the same external key. Internal keys
(like s11 and s12) uniquely identify each tuple.
Right: Belief annotations over the ground tuples
written in the notation of multi-modal logic.

relation Ri(atti1, . . . attili) with arity li has a distin-
guished primary key atti1, for which we alternatively
write keyi to make the key attribute explicit. In the con-
text of belief databases, we call R the external schema,
as this is how users see the non-annotated data, and de-
note I a conventional database instance without anno-
tations. An incomplete database is a set of conventional
database instances {I1, I2, . . .} over a fixed schemaR [32,
28]. For each relation Ri, denote Tupi the set of typed
atomic tuples of the form Ri(a1, . . . ali). Further de-
note Tup =

⋃
i Tupi the domain of all tuples or the

tuple universe of the schema. We further require that
Tupi ∩ Tupj = ∅ where i 6= j, i.e., each tuple t ∈ Tup
is uniquely associated with one relation of the schema.
If t ∈ Tup then key(t) represents the typed value of the
key attribute in t. Using this notation, consistency and
conventional key constraints are defined as follows:

Definition 1 (consistency). A database instance
I over a relation R is consistent iff it satisfies the key
constraints Γ(I), i.e. no two tuples from the same rela-
tion share the same key:

Γ(I)≡∀i.∀t, t′∈Tupi.
(
t, t′∈I ∧ t 6= t′ ⇒ key(t) 6=key(t′)

)
3.1 Belief worlds

A belief world is a set of positive and negative beliefs
of a user about the database content or other user’s
beliefs, and represents a set of consistent database in-
stances. For example, one belief world is what Alice be-
lieves, another one is what Bob believes Alice believes.

Negative beliefs arise naturally when users disagree
about a ground fact or belief but do not have an al-
ternative suggestion. In order to allow for such ex-
plicit negative database entries, the default has to con-
sider a tuple possible before it is inserted as either pos-
itive or negative. This default corresponds to the Open
World Assumption (OWA), and differs from conven-
tional databases where every tuple that is not in the
database is considered negated according to the Closed
World Assumption (CWA) [40].

We next give a precise definition and semantics to a
belief world based on incomplete databases:

3

Definition 2 (belief world). A belief world is a
pair W = (I+, I−), where both I+ and I− are conven-
tional database instances over the schema R that are, a
priori, not required to satisfy the key constraints.

Definition 3 (semantics of a belief world).
The semantics of a belief world W = (I+, I−) is the in-
complete database of instances I over the schema R that
contain all tuples from I+, contain no tuples from I−,
and that satisfy the key constraints.

[[W]] = {I | I+ ⊆ I, I ∩ I−= ∅, Γ(I)}

Definition 4 (consistency of a belief world).
A belief world W is consistent iff [[W]] 6= ∅.

Proposition 5 (consistency of a belief world).
A belief world W is consistent iff it satisfies the follow-
ing two constraints:

Γ1(W) ≡ Γ(I+)

Γ2(W) ≡ ∀t ∈ I+ : t 6∈ I−

The above definitions and proposition state that a
belief world is represented by two different database in-
stances. Those have to fulfill two constraints in order
to represent a consistent set of beliefs: Γ1 is a standard
key constraint on I+, and Γ2 requires that I+∩ I−= ∅.

It is convenient to represent a belief world by com-
bining the two instances I+ and I− into a single ta-
ble where each tuple has an additional sign attribute s
whose value is ’+’ for the tuples in I+ and ’−’ for those
in I−. Figure 3 illustrates this with the belief world
“Bob believes” from our running example. His version
of Sightings has one positive and two negative records.
For example, Bob believes that Alice saw a raven (tu-
ple with sid = ’s2’), but he does not believe that Carol
saw a ’bald eagle’ nor a ’fish eagle’ (both tuples share
sid =’s1’, hence refer to the same sighting). This exam-
ple illustrates why I− does not have to satisfy the key
constraints: we want to allow a user to disagree with
more than one alternative. This is needed, for example,
if Alice adds a belief statement i9 with the species ’fish
eagle’ as alternative explanation of Carol’s entry i1:

i1 : (’s1’,’Carol’,’bald eagle’,’6-14-08’,’Lake Forest’)
+

i9 : �Alice(’s1’,’Carol’,’fish eagle’,’6-14-08’,’Lake Forest’)
+

Here, i1 and i9 represent conflicting positive statements.
But, in addition, Bob disagrees with both.

We now define positive and negative beliefs formally.
Note that they correspond exactly to the concepts of
certain and impossible tuples in incomplete databases.

Definition 6 (positive and negative beliefs).
Let W be a belief world. We say that a tuple t is a pos-
itive belief for W iff t belongs to all instances in [[W]]
and write W |= t+. We say that a tuple t is a nega-
tive belief for W iff t belongs to no instance in [[W]] and
write W |= t−:

W |= t+ iff ∀I ∈ [[W]] : t ∈ I
W |= t− iff ∀I ∈ [[W]] : t 6∈ I

Sightings
sid uid species date location s
s1 Carol bald eagle 6-14-08 Lake Forest −
s1 Carol fish eagle 6-14-08 Lake Forest −
s2 Alice raven 6-14-08 Lake Placid +

Comments
cid comment sid s
c2 purple black feathers s2 +

Figure 3: Belief world “BELIEF Bob” or �Bob of
our running example.

Proposition 7 (positive and negative beliefs).
Let t be a tuple in Tupi,i.e. it is a typed tuple for rela-
tion Ri. Tuple t is a positive belief for W iff it is in
I+. It is a negative belief for W iff it is either in I−

(“stated negative”) or if there is another tuple t′ ∈ I+

from Tupi with the same key (“unstated negative”):

W |= t+ iff t∈I+

W |= t− iff t∈I−∨ ∃t′∈Tupi.
(
t′∈I+∧t′6= t∧key(t′)=key(t)

)
3.2 Belief Databases

A belief database is a collection of belief worlds, one
for each possible combination of what users believe about
the database content or other user’s beliefs. We use the
notation of multi-modal logic [25] to express belief state-
ments. For example, the following statement denotes
“Alice believes that Bob believes that tuple t is false”:

�Bob �Alicet
− (1)

Let U be a set of users. In practice, U is a set of
user IDs, but we simply take U = {1, . . . ,m}. A belief
path is w ∈ U∗, denoted as w = w[1] · · ·w[d]. We fur-

ther restrict belief paths to be ∈ Û∗ with Û∗ = {w ∈
U∗ | w[i] 6= w[i+1]}, i.e. belief paths do not contain the
same user ids in successive positions. We define a sub-
path as w[i,j] = w[i] · · ·w[j] (defined to be ε when i > j),
a suffix as a subpath with w[i,d], where d is the depth
or belief path length of w (d = |w|), and we define as
usual the concatenation of two sequences v · w. We use
�w, �w[1,d]

, and �w[1]
· · ·�w[d]

as equivalent notations.

Hence, expression (1) is equal to �Bob·Alice t
−.

Definition 8 (Belief Database). (1) A belief
statement ϕ is an expression of the form �w ts where
w ∈ Û∗ is a belief path, t is a ground tuple from the
tuple universe, and s ∈ {’+’, ’−’} is a sign.

(2) A belief database D is a set of belief statements.
(3) Given a belief database D and a belief path w. The

explicit belief world at w is Dw = (I+
w , I

−
w) with:

I+
w = {t | �w t+ ∈ D}
I−w = {t | �w t− ∈ D}

(4) A belief database D is consistent iff Dw is consis-

tent for all w ∈ Û∗.

Figure 2 illustrates the belief database from our run-
ning example with eight belief statements. The explicit
belief worlds for “Bob believes” and for “Bob believes
that Alice believes” are:

DBob = ({s22, c22}, {s11, s12})
DBob·Alice = ({c21}, ∅)

4

Continuing this example, lets examine what happens
if a new user Dora joins the discussion. Initially there
are no belief statements for Dora. In this case, the sys-
tem needs to assume by default that Dora believes ev-
erything that is stated explicitly in the database. If we
didn’t do so, then we would force Dora to insert explic-
itly all tuples she agrees with, which are arguably the
majority of the tuples in the database. Thus, by de-
fault, we assume that a user believes every belief state-
ment that is in the database, unless stated otherwise.
Dora may later update her belief and disagree explicitly
with some tuples; the default rule only applies to tuples
about which Dora has not expressed explicit disagree-
ment by inserting either a negative belief or a positive
belief with the same key but different attributes. For
example, when user 1 inserts a belief statement �1 t,
user 2 will believe by default that user 1 believes what
he states, i.e. �2·1 t, but not necessarily the fact itself,
i.e. �2 t. We call this default rule the message board
assumption in analogy to discussion boards where users
state and exchange their opinions about facts and each
other beliefs. We define this formally next.

Definition 9 (Implicit Beliefs). Given a belief

database D, define the following sequence D(i):

D(0) = D

D(d+1) = D(d) ∪ {�iϕ | ϕ ∈ D(d), i ∈ U,

D(d) ∪ {�iϕ} is consistent}

Definition 10 (Theory). The closure of D(i) is

D̄ =
⋃
d≥0 D

(d). We call the set D̄ the theory of D.

The (infinite) belief database D̄ captures our intended
semantics: it contains all belief statements explicitly as-
serted in D together with all statements that follow im-
plicitly, except if they were explicitly contradicted.

Lemma 11. If D is consistent, then D̄ is consistent.

We give now the formal semantics of a belief database,
by defining the entailment relationship D |= ϕ.

Definition 12 (Semantics of a Belief Database).
A belief database D entails a belief statement ϕ, in no-
tation D |= ϕ, if ϕ ∈ D̄.

We illustrate with our running example (Fig. 2). Af-
ter Carol inserted her statement (i1: s+

1), Alice and Bob
believe the bald eagle sighting by default (D |= �Alice s+

1).
Bob, however, does not want to believe this sighting and
explicitly states his disagreement (i2: �Bob s−1). While
he does not believe it himself, he still believes that Alice
believes this sighting (D |= �Bob·Alice s+

1).

3.3 Queries over Belief Databases
We now introduce our language for querying belief

databases which consists of conjunctive queries extended
with belief annotations. We call these Belief Conjunc-
tive Queries (BCQ) and adopt a compact, Datalog-like
syntax that combines elements from multi-modal logic.

Definition 13 (BCQ syntax). A belief conjunc-
tive query is an expression of the form

q(x̄) :− �w̄1R
s1
1 (x̄1), . . . ,�w̄gR

sg
g (x̄g) ,

consisting of a query head q(x̄) and g belief atoms or
modal subgoals forming the query body. Each modal
subgoal �w̄iR

si
i (x̄i) comprises a belief path w̄i, a sign si,

and a relational atom Ri(x̄i) with relational tuples x̄i.

We call a modal subgoal �w̄Rs(x̄) positive if s = ’+’,
and negative if s = ’−’. We write x̄ and w̄ for tuples
and belief paths. They can contain both variables and
constants. We write var(w̄) and var(x̄) to denote the
variables of w̄ and x̄. We also allow arithmetic predicates
in the query body, using standard operators 6=, <, >,
≤, and ≥. A variable occurrence in a belief path or a
positive relational atom is called a positive occurrence.
A query is safe if every variable has at least one positive
occurrence. We assume all queries to be safe.

We define next the semantics of a query. We write be-
low D |= ϕ1, . . . , ϕg for

∧
i(D |= ϕi), where ϕ1, . . . , ϕg

are belief statements.

Definition 14 (BCQ semantics). Let q be a query
with head variables x̄ and body variables Φ. The answer
to q on a belief database D is the following set of tuples
over the set of constants in the attribute domains:

{θ(x̄) | θ : var(Φ) 7→ const , D |= θ(Φ)}

In other words, for every valuation θ that maps variables
to constants in the attribute domains, consider the for-
mula θ(Φ), which is of the form ϕ1, . . . , ϕg (one belief
statement for each subgoal): if D entails θ(Φ), then we
return the tuple θ(x̄). Recall that a belief world can en-
tail positive and negative beliefs (Def. 6). Depending on
its sign s and its belief path w̄, each subgoal represents
positive or negative beliefs of one or more belief worlds.
A BCQ then asks for constants in relational tuples and
belief paths that imply positive beliefs in positive sub-
goals, and negative beliefs in negative subgoals.

Example 15. Using S for the relation Sightings, the
following query returns all users x who disagree with any
of Alice’s beliefs, i.e. who have a negative belief about
some tuple (y, z, u, v, w), which is a positive belief for
Alice at the same time.

q3(x):−�xS−(y, z, u, v, w),�’Alice’S
+(y, z, u, v, w)

3.4 Discussion
Default rules like our message board assumption are

studied in default logics. In our presentation, we avoided
introducing default logics, non-monotonic reasoning, and
stable model semantics, and opted for a simpler defini-
tion. Yet, an alternative formulation of our message
board assumption can be given using Reiter’s default
logic [41]: The set of formulas D̄ that we define in Def. 9
is provably equal to the provably unique stable model
for D under the default rule (see appendix C):

ds =
ϕ : �iϕ
�iϕ

5

Designing an appropriate data and query model for
belief databases requires a fine tradeoff between tractabil-
ity and expressiveness. Reasoning in modal logics can
quickly become intractable [26]. This applies, in partic-
ular, to fragments that include possibility in addition to
certainty and impossibility (positive or negative beliefs).
In the notation of modal logics, we allow statements of
the form �Alicet and �Alice¬t (Alice believes that t is
necessary or impossible). Complexity would consider-
able increase by allowing negations before the modal
operators, e.g. ¬�Alicet (Alice does not believe that t
is necessary), which is equal to 3Alice¬t (Alice believes
that ¬t is possible). In our fragment of modal logics, we
allow negations only on ground facts, noting that this
is sufficient to express conflicts.

The general approach for defining semantics in modal
logic is through axioms and Kripke structures [21, 25].
Every concrete logic consists of a class of axioms and
considers formulas that are logical consequences from
these axioms, where entailment is defined in terms of
Kripke structures. Often, axioms can be removed by
restricting the class of Kripke structures. For example,
the axioms in K5 are equivalent to restricting Kripke
structures to have accessibility relations that are sym-
metric and transitive. We have chosen to define the se-
mantics of a belief database without the aid of axioms
and Kripke structures, because we felt it is simpler for
our setting. On the other hand, our definition does not
lead to an obvious query evaluation procedure. To de-
rive such a procedure we introduce a particular Kripke
structure next, and show that it defines a semantics that
is equivalent to that in Def. 12.

4. CANONICAL KRIPKE STRUCTURE
We review here Kripke structures [25], then define our

canonical Kripke structure that captures precisely the
semantics of belief databases (Def. 12).

A rooted Kripke structure isK = (V, (Wv)v∈V , (Ei)i∈U , v0)
where:
• V is a finite set called states,
• Wv = (I+

v , I
−
v) is a belief world associated with

each state v ∈ V ,
• Ei ⊆ V × V is a set of edges or accessibility rela-

tions associated with each user i ∈ U ,
• v0 ∈ V is the root of the Kripke structure.

Given a rooted Kripke structure K and a state v, the
entailment relationship (K, v) |= ϕ is defined recursively
as:

(K, v) |= t+ if Wv |= t+ (Def. 6)

(K, v) |= t− if Wv |= t− (Def. 6)

(K, v) |= �iϕ if ∀(v, v′) ∈ Ei.(K, v′) |= ϕ

We write K |= ϕ if (K, v0) |= ϕ.
We illustrate with the Kripke structure of Fig. 4.

There are four states #0, . . . ,#3 with the root #0.
Consider the belief world at state #2, W#2 = (I+

#2, I
−
#2).

I+
#2 consists of the tuples s22, c22 and I−#2 of the tuples

s11, s12. We therefore have (K,#2) |= s22. As all edges
labeled 2 from the root lead to the state #2, we further
have K |= �2 s22. In the following, we use interchange-

31

4-15-2009 Fig_Example_CBR_mat

#0

#2

1

2

1

3

3

2
3

{s11
+} {s11

+,s21
+,c11

+,c21
+}

{s11
-,s12

-,s22
+,c22

+}

2

{s11
+,s21

+,c11
+}

#1

#3

3

Figure 4: The canonical Kripke structure for our
running example.

ably the notions of world id (e.g. #3) or belief path (e.g.
w = 2 · 1), and those of state or world.

Consider a belief database D. We define the support
states as the set of all belief paths w for which D con-
tains a belief statement over w, and the states as the
set of all their prefixes:

Supp(D) = {w ∈ Û∗ | Dw 6= (∅, ∅)}

States(D) = {w ∈ Û∗ | ∃u ∈ U∗ : w · u ∈ Supp(D)}

For any w ∈ Û∗, we define the suffix states as all the
suffixes of w that are in States(D), and the deepest suffix
state (dss) as the suffix state with the longest belief path:

SuffixStates(w) = {v ∈ States(D) | ∃u ∈ U∗ : u · v = w}
dss(w) = max-argv{|v| | v ∈ SuffixStates(w)}

We can now define formally the canonical Kripke struc-
ture for a belief database D:

Definition 16 (Canonical Kripke Structure).
Let D be a belief database, and denote V = States(D).
The canonical Kripke structure is K(D) = (V, (D̄v)v∈V ,
(Ei)i∈U , ε), with edges defined as:

Ei = {(w, dss(w · i)) | w ∈ States(D), w · i ∈ Û∗}

We describe informally the canonical Kripke structure
for D. Start with all the belief paths w that are men-
tioned in some belief statement in D: these form the
support states. Take all their prefixes: these form all
states of K(D). Next, for each state v, compute the be-
lief world D̄v: this is the belief world for v in the closure
of D. Although the closure D̄ is an infinite object, the
set D̄v is contained in D(d) where d = |v|. Thus, in or-

der to compute D̄v it suffices to compute D(d) through

a finite process, then take D̄v = D
(d)
v . Finally, edges

labelled i in K(D) go “forward” from a state w to state
w · i if the latter exists. Otherwise they go “back” to
the state with the longest belief path that is a suffix of
the desired, but missing state w · i. That means, edges
labelled i always go from a state w to dss(w · i).

We prove the following theorem in the appendix:

Theorem 17 (Canonical Kripke Structure).
(1) For any belief statement ϕ, D |= ϕ iff K(D) |= ϕ.
(2) K(D) can be computed in time O(mdn), where n is
the size of the belief database D, m the number of users
and d is the maximum depth of any belief path in D.

6

Sightings STAR
tid sid uid species date location
s1.1 s1 3 bald eagle 6-14-08 Lake Forest
s1.2 s1 3 white eagle 6-14-08 Lake Forest
s2.1 s2 1 crow 6-14-08 Lake Placid
s2.2 s2 1 raven 6-14-08 Lake Placid

Comments STAR
tid cid comment sid
c1.1 c1 found feathers s2
c2.1 c2 black feathers s2
c2.2 c2 purple black feathers s2

Comments V
wid tid cid s e
1 c1.1 c1 + y
2 c2.2 c2 + y
3 c1.1 c1 + n
3 c2.1 c2 + y

Users
uid name
1 Alice
2 Bob
3 Carol

Sightings V
wid tid sid s e
0 s1.1 s1 + y
1 s1.1 s1 + n
1 s2.1 s2 + y
2 s1.1 s1 − y
2 s1.2 s1 − y
2 s2.2 s2 + y
3 s1.1 s1 + n
3 s2.1 s2 + n

E
wid1 uid wid2

0 1 1
0 2 2
0 3 0
1 2 2
1 3 0
2 1 3
2 3 0
3 2 2
3 3 0

D
wid d
0 0
1 1
2 1
3 2

S
wid1 wid2

1 0
2 0
3 1

Figure 5: Relational representation of the canonical Kripke structure for our running example.

Note that K(D) encodes an infinite number of belief
worlds with a finite number of states. This provides the
basis for our query evaluation approach: given a be-
lief database D, compute its canonical Kripke structure
K(D), then evaluate queries over K(D). We address
the latter step in the next section.

5. TRANSLATION
This section covers the representation of belief data-

bases in the standard relational model. In particular, we
give (1) the representation of the canonical Kripke struc-
ture, (2) the translation of belief conjunctive queries
over this representation, and (3) updates of a database.

5.1 The relational representation
The relational representation uses an internal schema
R∗ = (R∗1, . . . R

∗
r , U, V1, . . . Vr, E,D, S). Recall that the

first attribute of each content relation Ri(atti) contains
the external key attribute keyi of that relation. Each
relation Ri is represented by an internal relation R∗i
with one additional attribute tid and the relation obey-
ing the functional dependency tid → Attr(Ri). The
internal key constraint is only on this surrogate key:
R∗i (tid, keyi, atti2, . . . , attli). In addition, the internal
schema includes: a user relation U with user ids and op-
tional user attributes; r valuation relations Vi, one for
each Ri, recording tuples, their keys, signs and whether
they are explicit or implicit in each belief world (ex-
plicit means explicitly annotated in contrast to implic-
itly inferred by the default assumption); an edge relation
E containing the accessibility relations between worlds
for each user; a depth relation D recording the nesting
depth of each world id; and a suffix relation S recording
the deepest suffix state for each world. Relations D and
S record information that is used during updates of the
database.

The representation of the canonical Kripke structure
is then straight forward: For each world w ∈ States(D)
we create a unique world identifier wid(w) and insert it
into relation D together with its nesting depth:

D(wid(w), |w|)

Analogously, create one entry in relation S that records
the deepest suffix state for each world:

S(wid(w),wid(dss(w[2,d])))

Each tuple Ri(k, x2, . . . , xli) of any world is inserted as

R∗i (t, k, x2, . . . , xli) ,

where t is its unique internal key. Note that R∗i gath-
ers tuples from Ri of all worlds. All worlds in which t
appears are recorded in the valuation relation Vi as

Vi(wid(w), t, k, s, e) ,

where s is its sign ’+’ if positive or ’−’ if negative, and
e is ’y’ or ’n’ depending on whether the tuple is explicit
or not in the particular world. This attribute indirectly
records the “provenance” for each tuple in a world (ex-
plicitly asserted or implicitly inferred by the message
board assumption) and is needed during updates; it im-
plicitly tracks the origin world of an implicit tuple and
allows to determine precedence in case of updates with
inconsistent values. The external key k is included in
the valuation relations in order to detect conflicts be-
tween different belief worlds by merely inspecting the
valuation relations and, thereby, to increase efficiency
during updates. Finally, for each (u, v) ∈ Ej , insert an
entry into relation E:

E(u, j, v)

Figure 5 shows the representation of our running ex-
ample. Attributes wid stand for world id, tid for tuple
id, uid for user id, s for sign, e for explicitness, and d
for nesting depth.

5.2 Query translation
We next describe the translation of any belief con-

junctive query into non-recursive Datalog over the in-
ternal schema: The translation first creates one tempo-
rary tables for each subgoal and then creates one query
over these tables (Algorithm 1).

Recall that a BCQ consists of g positive or nega-
tive modal subgoals and optional additional arithmetic
atoms (Def. 13). Conceptually, each positive subgoal
represents a subquery for positive beliefs, and each neg-
ative subgoal for negative beliefs. A belief conjunctive
query then asks for constants in relational tuples and
belief paths that imply positive beliefs in positive sub-
goals, and negative beliefs in negative subgoals. Also
recall from Prop. 7 that a negative belief can be either
stated negative, i.e. due to an explicitly stated negative
belief t−, or unstated negative, i.e. due to an explicitly
stated positive belief t′+, where tuple t′ has the same
key as t. Both of these cases have to be considered
during query translation, which makes the translation
for negative subgoals more complex, requiring nested
disjunctions with negation. Also note that a negative

7

Algorithm 1: Translation of any BCQ over the
canonical belief representation.

Input: BCQ q(x̄) :− �w̄1R
s1
1 (x̄1), . . . ,�w̄gR

sg
g (x̄g)

Output: Translated query Q(x̄) over temporary tables

Check safety of query:1

∀α ∈ var(q) : α ∈
(⋃

i var(w̄i)
)
∪
(⋃

i.(si=’+’) var(x̄i)
)

For each subgoal i, create a temporary table Ti:2

Ti(w̄i, x̄, s):−E∗(0, w̄i, z), V (z, t, , s,), R∗i (t, x̄)
Compose the final query with one temporary table Ti and3

one condition Ci for each subgoal i ...
q(x̄) :− T1(w̄t1, x̄t1, st1), . . . , Tg(w̄tg , x̄tg , stg), C1, . . . , Cg
... where conditions for positive subgoals are:4

Ci = (
∧
j:1−di w̄ti[j] = w̄i[j]), sti = 1,∧
j:1−li x̄ti[j] = x̄i[j],

... and conditions for negative subgoals are:5

Ci = (
∧
j:1−di w̄ti[j] = w̄i[j]), x̄ti[1] = x̄i[1],(

(sti = 0,
∧
j:2−li x̄ti[2,j] = x̄i,[2,j])

∨(sti = 1,
∨
j:2−li x̄ti[2,j] 6= x̄i[2,j])

)
,

subgoal alone is unsafe, since a single positive tuple in a
belief world implies negative beliefs for all tuples from
the same tuple universe with the same key.

The algorithm first verifies safety: each variable of the
query has to appear in a belief path or the relational
tuples of a positive subgoal (1). It then creates, for
each subgoal �w̄iR

si
i (x̄i), a temporary table Ti (2), with

E∗(y, w̄, z) being a notational shortcut for

E∗(y, w̄, z)
def
= E(y, w̄[1], z1), . . . , E(zd−1, w̄[d], z) ,

with z
def
= y for w = ε This table has arity li + di + 1

and includes all stated tuples for all worlds with belief
path w̄. Recall that w̄ can have both constants and
variable, so that an intermediate table can encode the
valuations for more than one belief world. Note that
we cannot perform arbitrary selections and projections
for negative subgoals at this point, even if x̄ includes
constants. Any positive tuple can lead to another tuple
being impossible that may actually be required to be
joined with another positive or negative subgoal.

The final query (3) then combines those tables as fol-
lows: For positive subgoals, it choses positive stated
tuples (s = 1), and choses constants or joins to other
subgoals (4). For negative subgoals (5), it distinguishes
the case of stated impossible tuples, i.e. s = 0, and un-
stated impossible tuples, i.e. positive tuples with s = 1
that share the key to at least another certain tuple in an-
other positive subgoal. Arithmetic predicates are simply
added as additional condition to the translated query.

The following example illustrates this translation.

Example 18. Assume a relation R(sample,category,
origin) that classifies empirical samples into a number
of categories and records their origin. Consider a query
for disputed samples, i.e. samples x for which at least
two users y and z disagree on its category or origin:

q(x, y, z) :− �yR+(x, u, v),�zR−(x, u, v)

The query written in BeliefSQL is:

select R1.sample, U1.name, U2.name
from Users as U1, Users as U2

BELIEF U1.uid R as R1,
BELIEF U2.uid not R as R2,

where R1.sample = R2.sample
and R1.category = R2.category
and R1.origin = R2.origin

The translation over the canonical belief representation
first creates two intermediate tables:

T1(y, x, u, v, s) :− E(0, y, z1), V (z1, t, x, s,), R∗(t, , u, v)

T2(z, x, u, v, s) :− E(0, z, z1), V (z1, t, x, s,), R∗(t, , u, v)

The final query then combines those two tables

Q(x, y, z) :− T1(y, x, u, v, ’+’), T2(z, x, u2, v2, s2),

(s2 =’−’ ∧ u2 =u ∧ v2 =v) ∨ (s2 =’+’ ∧ (u2 6=u ∨ v2 6=v))

5.3 Updates
Updates on a belief database consist of several smaller,

often conditional operations; those operations often in-
corporate the result of non-recursive queries extended
with a max-operator over the existing data. As a com-
pact notation for these updates, we write in the follow-
ing 4R and 5R to refer to a set of tuples that are
inserted into or deleted from R:

Rnew = (Rold −5R) ∪4R

We again use the letter T for temporary tables, and use
expressions of the form ∃(, , z) ∈ T as notational short-
cut for ∃x, y.(x, y, z) ∈ T . In order to specifically refer
to keys, we write R(k, x̄′) for relational tuples, where x̄′

refers to x̄[2,l] in R(k, x2, . . . , xl).
Data inserts. Assume a desired insert �wRs(k, x̄′),

i.e. we want to insert a tuple R(k, x̄′) with sign s into
world w. Such an insert first has to assure that the
world w already exists before the tuple can be inserted.
Algorithm 2 (idWorld) does so by verifying that the path
w from the root leads to a world at depth d = |w|(1).
If not, it recursively verifies that its parent node ex-
ists (3). Note that complexitywise, this recursion can
be unfolded as it happens a maximum of d times. id-
World then creates a new world id and applies necessary
operations on the canonical model (4- 7). One such op-
eration finds the deepest suffix state (dss) of a world
(Algorithm 3). This procedure needs the max-operator.
The back link to the dss(w) is stored in relation S (8).
After creating a new world, idWorld inserts all tuples
from dss(w) as implicit tuples (9).

Given the world id y of w, insertTuple (Algorithm 4)
first verifies if the tuple (, k, x̄′) already exists in R∗;
if not, it creates a new entry (1). It then inserts the
tuple into world w only if this update is consistent with
existing explicit beliefs (5). If inserted, insertTuple also
has to verify possible updates in all dependent worlds of
w (8). Dependent worlds are those for which x is a suffix
state. In order of increasing depth, it verifies for each
dependent world z (9) that an update has no explicit
conflict in z (12) and no conflict in the dss of z (14). If
there are no such conflicts, the tuple gets inserted and
overwrites any existing implicit conflicting beliefs.

8

Algorithm 2: (idWorld) Returns the identifier x of a
world w. Creates new world if it does not exist yet.

Input: World belief path w
Output: World id x = wid(w)

Define d = |w|; check that depth of x is d:1

T (x):−E∗(0, w, x), D(x, d)
if T is empty then2

Get the parent id:3

x′ = idWorld(w[1,d−1])

Create a new id x for w and a new entry in D:4

4D(x, d)
Redirect the w[d]-edge from x′ to x:5

5E(x′, w[d],),4E(x′, w[d], x)

For all users u except w[d], create a u-edge from x to6
the deepest suffix state of w·u:
4E(x, u, dss(w · u)):−U(u, ...), u 6=w[d]

For all worlds v ·w[1,d−1] for which w is the deepest7
suffix state for v ·w, update the w[d]-edge:

5E(y, w[d],):−E∗(v, w[1,d−1], y), D(y, r), r ≥ d,
E(y, w[d], z), D(z, p), p < d

4E(y, w[d], x):−E∗(v, w[1,d−1], y), D(y, r), r ≥ d,
E(y, w[d], z), D(z, p), p < d

Create backlink to deepest suffix in S:8

4S(x, dss(w[2,d]))

Insert all implicit tuples into new world w:9

4V (x, t, y, s, ’n’):−S(x, z), V (z, t, y, s,)

return x10

Algorithm 3: (dss) Returns the world id of the deep-
est suffix state for belief path w.

Input: World belief path w
Output: z = wid(dss(w))

Query ids z and depths d of all suffix worlds:1

for p = 1 . . . (d+ 1) do
T (z, y):−E∗(0, w[p,d], z), D(z, y)

Return the id z of the world with maximum depth:2

return z from T (z, d) where d = max(d)

Other updates. For a new user insert, first a new
entry in relation U with a unique uid has to be added:
4U(u, . . .). Then, back edges from each world to the
root have to be added: 4E(x, u, 0):−D(x,). Delete
operations follow a similar semantics as inserts.

5.4 Space complexity
We next give theoretic bounds for the size of a BDMS

in the number of tuples in the underlying RDBMS. Let
m be the number of users, n be the number of annota-
tions, d̄ the average depth of belief annotations, and N
the number of states in the canonical Kripke structure.
Sizes of relations are |U | = m, |D| = N , |S| = N − 1,
|R∗| = O(n), and |E| = O(mN). An insert into world
w can create up to NS

w entries in table V , where NS
w is 1

plus the number of worlds for which w is a suffix state.
For the root ε, NS

ε = N , and hence, an insert at the root
can create up to N inserts into V . Hence, |V | = O(nN),
and the overall database size |R∗| = O((n+m)N).

In theory, N is only loosely bounded by O(nd̄) with
the average depth of annotations d̄ as the number of

Algorithm 4: (insertTuple) Inserts signed tuple
Rs(k, x̄′) into existing world w if insert is consistent.
Returns the success of insert attempt.

Input: World belief pathw and idy, signed tuple Rs(k, x̄′)
Output: Success

Get existing or create new internal key t for tuple R(k, x̄′):1

4R∗(t, k, x̄′)
Get all tuples of world y with key k:2

T1(t′, s′, e′):−V (y, t′, k, s′, e′)
If ts is already explicitly present in the world:3

if (t, s, ’y’) ∈ T1 then return false
If ts is already implicitly present in the world:4

if (t, s, ’n’) ∈ T1 then
5V (y, t, k, s, ’n’),4V (y, t, k, s, ’y’), return true

If t does not conflict with an existing explicit tuple ...5

if s = ’+’ ∧ 6 ∃(t, ’−’, ’y’) ∈ T1 ∧ 6 ∃(, ’+’, ’y’) ∈ T1 or
s = ’−’ ∧ 6 ∃(t, ’+’, ’y’) ∈ T1 then
... delete any conflicting implicit tuples:6

if s = ’+’ then 5V (y, t, k, ’−’, ’n’),5V (y, , k, ’+’, ’n’)
if s = ’−’ then 5V (y, t, k, ’+’, ’n’)
... insert ts into y:7

4V (y, t, k, s, ’y’)
... get all dependent worlds of w and their depth:8

T2(z, r):−E∗(, w, z), D(z, r), r > d
... then, for each dependent world z in order of depth:9

foreach z ∈ T2 in ascending order of r do
Get all tuples of world z with key k:10

T3(t′′, s′′, e′′):−V (z, t′′, k, s′′, e′′)
Insert ts into world z if there is no conflict:11

if s=’+’ ∧ 6 ∃(t, ’−’,)∈T3 ∧ 6 ∃(, ’+’,)∈T3 or
s=’−’ ∧ 6 ∃(t, ’+’,)∈T3 then 4V (z, t, x1, s, ’n’)

Otherwise if conflicts are not explicit:12

else if s=’+’ ∧ 6 ∃(t,’−’,’y’)∈T3 ∧ 6 ∃(,’+’,’y’)∈T3

or s=’−’ ∧ 6 ∃(t,’+’,’y’)∈T3 then
Get tuples with key k from dss(z):13

T4(t′′′, s′′′):−S(z, v), V (v, t′′′, k, s′′′,)
Update z if there are no conflicts with dss(z):14

If s=’+’ ∧ 6 ∃(t,’−’) ∈ T4 ∧ 6 ∃(,’+’) ∈ T4 then
5V (y, t, k, ’−’, ’n’),5V (y, , k, ’+’, ’n’)
4V (y, t, k, ’+’, ’n’)

If s =’−’ ∧ 6 ∃(t, ’+’) ∈ T4 then
5V (y, t, k, ’+’, ’n’),
4V (y, t, k, ’−’, ’n’)

return true
else

return false

prefixes, hence, possible states. However, for bounded
nesting depth of belief paths (|w| ≤ dmax), we have
N = O(mdmax) as the number of possible different belief

paths |Ûdmax | with depth up to dmax, which is constant
in n. We then have |R∗| = O((n + m)mdmax), which
becomes O(n ·mdmax) for n >> m.

We call the factor |R
∗|
n

the relative overhead in size for
adding beliefs to databases. We have seen above that
this factor is O(mdmax) in the worst case, which is quite
significant. For example, it is around 10,000 for a belief
database with m = 100 users and belief annotations
of depth up to dmax = 2. In practice, however, the
overhead heavily depends on the number of belief worlds
affected by inserts, which, in turn, depends on skews
in the underlying annotations. We will illustrate these
effects on the size of a BDMS by varying parameters in
the annotation data in the next section.

9

Table 1: Relative overhead |R∗|
n

of the size of a
belief database for n = 10, 000 annotations, 10 or
100 users, varying user participation (Zipf or uni-
form) and 3 distributions of annotation depth.

m = 10 m = 100
Pr[d = {0, 1, 2}] Zipf uniform Zipf uniform

[0.3̇,0.3̇,0.3̇] 31 38 130 1,009
[0.8, 0.19, 0.01] 27 60 68 162

[0.199, 0.8, 0.001] 7 6 21 26

6. EVALUATION
We have implemented a prototype of a BDMS that

allows bulk insertions of belief annotations and trans-
lations of belief conjunctive queries into SQL. We use
this prototype to experimentally study (i) the relative
overhead of managing annotations and (ii) query per-
formance. The program to generate annotations and
to translate queries is implemented in Java and uses
JDBC for calls to a RDBMS. As experimental plat-
form, we run Microsoft SQL server 2005 on a Dual-
Xeon machine (3GHz) with 4G of main memory. We
use the database schema from our running example of
Fig. 5, neglecting the comments table for the experi-
ments: R∗ = (S∗, U, VS , E, L,H) and measure the size
as the number of all tuples in the database (|R∗|). Clus-
tered indexes are available over the internal keys. All
experiments are performed on synthetic data.

6.1 Size of a BDMS
We have seen in Sect. 5.4 that the relative overhead

for adding beliefs to a database (|R
∗|
n

), i.e. the number
of tuples in the database per number of belief annota-
tions, is O(mdmax), which is 100 for m = 10 and 10, 000
for m = 100 users, and belief annotations of maximum
depth dmax = 2. In practice, the skew in the anno-
tation, i.e. the distribution of the path length k, and
the distinct count of belief paths can reduce this over-
head dramatically. To study this dependency, we use a
generic annotation generator that creates parameterized
belief annotations. We model annotation skew as dis-
crete probability distributions Pr[k = x] of the nesting
depth of annotations (e.g. 1% of annotations are of nest-
ing depth 2) and user participation as either uniform or
following a generalized Zipf distribution (e.g. user 1 is
responsible for 50% of all annotations, user 2 for 25%,
. . .). Table 1 shows the relative overhead of synthetic
belief databases (each value averaged over 10 databases
with the same parameters) and illustrates its variations
with different distributions. Figure 6 further shows that
the relative overhead can actually increase or decrease
with the number of annotations n. The decrease for the
lower more skewed distribution arises from the decreas-
ing relative overhead for supporting a constant number
of users m for increasing n: O(n+m

n
mdmax). Also note

that, despite the upper blue graph suggesting an expo-
nentially increasing relative overhead, it flattens again
and will not surpass its theoretic bound of 10,000 in the
limit. The take-away of this experiment is that the ac-
tual overhead of belief annotations can be significantly
lower than their theoretic bound. But it is still substan-

2

3-7-2009 Example world insert: Before
U = {1,2}

Existing worlds:
1
12
2
21
212

Add world
w = 121

1E+1

1E+2

1E+3

1E+4

1E+1 1E+2 1E+3 1E+4

R
el

at
iv

e
ov

er
he

d
(|R

|/n
)

Number of annotations (n)

!"### !"### !"### !"$%% !"& !"!#

' ! $ (' ! $ (

$)*$+

$)*(+

$)*#+

$)*$+ $)*(+ $)*#+ $)*,+

!
"
#
$%
#
&
'(
)
*
)
+,
-'

./01#$'23'4,,25462,7'(,-'

-./0.1$+

-./0.1(+

!+

$+

!+ $+ (+

!+

$+

!+ $+ (+

6

3-7-2009 Example world insert: Before

U = {1,2}

Existing worlds:

1

1!2

2

2!1

2!1!2

Add world

w = 1!2!1

1E+1

1E+2

1E+3

1E+1 1E+2 1E+3 1E+4

O
v

e
rh

e
d

 (
|R

|/
n

)

Number of annotations (n)

Series1

Series2

!"### !"### !"### !"$%% !"& !"!#

' ! $ (' ! $ (

$)*$+

$)*(+

$)*#+

$)*$+ $)*(+ $)*#+ $)*,+

!
"
#
$%
#
&
'(
)
*
)
+,
-'

./01#$'23'4,,25462,7'(,-'

-./0.1$+

-./0.1(+

!+

$+

!+ $+ (+

!+

$+

!+ $+ (+

6

3-7-2009 Example world insert: Before

U = {1,2}

Existing worlds:

1

1!2

2

2!1

2!1!2

Add world

w = 1!2!1

1E+1

1E+2

1E+3

1E+1 1E+2 1E+3 1E+4

O
v

e
rh

e
d

 (
|R

|/
n

)

Number of annotations (n)

Series1

Series2

Distribution of belief
path depths (Pr[k=x])

Figure 6: |R∗|
n

crucially depends on the anno-
tation skew and can either increase or decrease
with n (100 users with uniform participation).

tial and efficient techniques are needed to create more
compact representations of belief databases. We shortly
discuss future work on alternative representations at the
end of this section.

6.2 Query complexity
In the following, we list 3 example queries. These

queries cover the typical usage patterns in a BDMS and
illustrate the enriched query semantics it can support.

1. The first type is a query for content. It asks for
the content of a particular belief world and is of
the form “What does Alice believe?” In addition,
we vary the depth of its belief path d ∈ {0, . . . , 4}:

q1,d(x, y) :− �wS+(x, , y, ,), with |w| ∈ {0, . . . , 4}

2. The second type is a query for conflicts. It asks
for conflicts between belief worlds and corresponds
to: “Which animal sightings does Bob believe that
Alice believes, which he does not believe himself?”

q2(x, y) :− �2·1S+(x, z, y, u, v),�2S−(x, z, y, u, v)

3. The third query is an example of a query for users,
i.e. a query that explicitly includes a user id as
variable in the answer. It corresponds to: “Who
disagrees with any of Alice’s beliefs of sightings at
Lake Placid?” Note that the query variable only
appears in the belief path of a negative subgoal.

q3(x):−�xS−(y, z, u, v, ’a’),�1S
+(y, z, u, v, ’a’)

The evaluation time scales roughly linear with the size
of the BDMS (|R∗|). In Table 2 we report the size of
the result sets, average query times and standard de-
viation for a belief database with 10,000 annotations
and 224,339 tuples (relative overhead 22.4). Each query
was executed 1,000 times. Before each query execution,
we clear all database caches with SQL server specific
commands. Remaining variations in execution times of
identical queries result from fluctuations in the OS be-
yond our control. The runtimes are in the hundreds
of milliseconds. Content query q1 is clearly fastest as
it ranges only over one world. The execution time in-
creases by adding 1 join with relation E (q1,0 to q1,1)
but then remains stable for 2 to 4 joins (q1,2 to q1,4) as
E is small compared to |R∗|. Conflict query q2 is slower
as it has two subgoals, one of which is negative, which

10

Table 2: Execution times and size of result sets
for our seven example queries executed over a
belief database with 10,000 annotations.

q1,0 q1,1 q1,2 q1,3 q1,4 q2 q3
E(Time) [msec] 105 145 146 152 144 436 4473
σ(Time) [msec] 120 168 153 162 162 186 661

Result size 1626 2816 2253 2061 1931 196 99

requires evaluation of nested disjunctions. The query
for users q3 is slowest as it includes a negative subgoal
and ranges over the belief worlds of all users.

Overall, our experiments suggest that queries in a
BDMS can be executed in reasonable amount of time
(i.e. milliseconds) on top of a standard RDBMS.

6.3 Future Work
The dominant research challenge is to find techniques

to decrease the relative overhead of belief databases.
Recall that this overhead arises as result of the default
assumption. For example, a generally accepted fact is,
by default, believed by every user, and gets inserted
into their respective belief worlds. More precisely, our
current canonical Kripke structure stores D̄, the set of
all entailed beliefs, which means that it applies eagerly
all instances of the default rule to D; this causes the
database to increase. An alternative approach is to ap-
ply the default rule only selectively, or not at all, and to
apply it only during query evaluation. This will compli-
cate the query translation, but, at the same time, will
drastically reduce the size of the database.

At the same time, a careful analysis and categoriza-
tion of types of queries that are common in community
databases will allow to optimize query time for certain
queries. For example, conflict queries commonly focus
on tuple-wide conflicts. Modeling functional dependen-
cies between attributes during query translation will al-
low to back-chase tuple-wide attribute joins and reduce
the number of necessary join attributes.

We are currently exploring these tradeoffs.

7. RELATED WORK
Work on annotations management in databases is of-

ten intertwined with provenance management [11] study-
ing the propagation of annotations during query evalu-
ation [12, 13]. In those contexts, annotations on data
are commonly understood today as superimposed infor-
mation that helps to explain, correct, or refute the base
information [17, 36]. They are sometimes interpreted as
colors, alternatively applied to individual values [7, 15],
sets of values [23, 24] or as bundled tuples in tree frag-
ments [11]. The important role that annotations play in
science has been pointed out several times [4, 8, 10, 19,
20]. In all those settings, the semantic distinction be-
tween base information and annotations has remained
blurred [10]. Annotations are simply additional data
added to existing data [44]. In contrast, we propose
to give a concrete semantics to annotations that helps
users engage in a structured discussion on content and
each other’s annotations.

Several hardness results on inference in modal logic
are well known [26, 31, 35]. Applications to reason-
ing about knowledge of agents in distributed settings is
summarized in [21]. Modal logics have also been consid-
ered in databases before: Calvanese et al. [14] use the
modal logic K45An to manage conflicts in a peer-to-peer
system. Modalities are used to allow mappings between
peers to exist even in the presence of conflicts. The work
shares with us the common goal of using modalities to
manage conflicting tuples, e.g. key violations. How-
ever, it differs as follows: (i) our modalities are part
of the data. Users can add modalities to the data and
ask queries with modalities to extract the desired facts
from the database; (ii) in [14], the number of modalities
is proportional to the size of the schema. In our case
their number is proportional to the database; (iii) [14]
considers only modalities of nesting depth 1. We allow
arbitrary depth; and (iv) in [14] inference is in coNP. In
contrast, ours is in PTIME (the difference comes from
the fact that we restrict the use of negation to atomic
tuples only). Another related work by Nguyen [38] con-
structs finite least Kripke models for different language
fragments. The described algorithm runs in exponen-

tial time and returns a model with size 2O(n3), where
n is the size of input. In our work, we consider the
fragment of certain and impossible beliefs and construct
polynomial canonical representations. We also provide
powerful insert, deletes, update functionalities to our
model and can translate it into standard relations.

Another work that considers key violations is [22].
Here the approach differs from ours: key violations are
allowed in the database, and are only resolved at query
time through repairs [3]. Repairs are explored automati-
cally by the system. At a high level, only those answers
are returned that can be computed without any con-
flicts; there are no modalities, and hence the users have
no control over conflict resolution.

There is a large body of work on managing uncertain
and incomplete information [1, 2, 5, 16, 18, 28, 42, 47].
For example, Widom [48] describes the Christmas Bird
Count as motivation, which is similar to our motivating
scenario. Our work shares a similar motivation for in-
formation that is not certain. However, we do not mea-
sure, track, nor evaluate uncertainty; we rather allow
conflicting user views and provide means for structured
discourse inside a database.

We also share motivation with work on peer-data man-
agement and collaborative data sharing systems that
have to deal with conflicting data and lack of consensus
about which data is correct during integration [6, 29,
30, 34]. In contrast to these systems, we do not address
the problem of schema integration. We consider con-
flicts at the data level within a given common schema.
Systems like ORCHESTRA [27, 33, 45] enable different
peers to accept or reject changes to shared data made
by other peers. Each peer can have its own view of the
data. This view, however, is materialized once for each
peer in its separate database instance. In contrast, we
propose to allow conflicting information to co-exist in
a single database and we allow users to discuss these
conflicts.

11

8. CONCLUSIONS
This paper describes a model of database annotations

that allows users to annotate both content and other
users’ annotations with beliefs. It allows users to collab-
oratively contribute and curate a shared data repository
as common today in large-scale scientific database ap-
plications. It also allows to explicitly manage conflicts
and inconsistencies between different users and their
views. We introduce the concept of belief databases,
give a concrete application throughout the paper, show
a polynomial-size encoding of our desired semantics on
top of relational databases, and validate this concept
with a prototype and tests on synthetic data.

9. ACKNOWLEDGEMENTS
We very much like to thank Karen Dvornich for valu-

able discussions and access to the data of the NatureMap-
ping project, and the anonymous reviewers for detailed
comments which greatly helped us improve the presen-
tation of this paper. This research was supported in
part by NSF under grants IIS-0513877, IIS-0713576,
and CNS-0454425. Magda Balazinska was also sup-
ported by a Microsoft Research New Faculty Fellowship.

10. REFERENCES
[1] S. Abiteboul and G. Grahne. Update semantics for

incomplete databases. In VLDB, 1985.
[2] L. Antova, C. Koch, and D. Olteanu. From complete to

incomplete information and back. In SIGMOD, 2007.
[3] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent

query answers in inconsistent databases. In PODS, 1999.
[4] J. Becla and K.-T. Lim. Report from the SciDB meeting

(extremely large database workshop), 2008.
[5] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom.

Uldbs: Databases with uncertainty and lineage. In VLDB,
2006.

[6] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data
management for peer-to-peer computing: A vision. In
WebDB, 2002.

[7] D. Bhagwat, L. Chiticariu, W. C. Tan, and
G. Vijayvargiya. An annotation management system for
relational databases. VLDBJ, 14(4):373–396, 2005.

[8] R. Bose, P. Buneman, and D. Ecklund. Annotating
scientific data: why it is important and why it is difficult.
In Proceedings of the 2006 UK e-Science all hands
meeting, 2006.

[9] R. J. Brachman and H. J. Levesque. Knowledge
representation and reasoning. Morgan Kaufmann,
Amsterdam, 2004.

[10] P. Buneman, R. Bose, and D. Ecklund. Annotation in
scientific data: A scoping report. Technical report,
University of Edinburgh, 2005.

[11] P. Buneman, A. Chapman, and J. Cheney. Provenance
management in curated databases. In SIGMOD, 2006.

[12] P. Buneman, J. Cheney, and S. Vansummeren. On the
expressiveness of implicit provenance in query and update
languages. In ICDT, 2007.

[13] P. Buneman, S. Khanna, and W. C. Tan. Why and where:
A characterization of data provenance. In ICDT, 2001.

[14] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini,
and R. Rosati. Inconsistency tolerance in P2P data
integration: An epistemic logic approach. Inf. Syst.,
33(4-5):360–384, 2008.

[15] L. Chiticariu, W. C. Tan, and G. Vijayvargiya. DBNotes:
a post-it system for relational databases based on
provenance. In SIGMOD, 2005.

[16] N. N. Dalvi and D. Suciu. Management of probabilistic
data: foundations and challenges. In PODS, 2007.

[17] L. M. L. Delcambre and D. Maier. Models for
superimposed information. In ER (Workshops), 1999.

[18] L. Detwiler, W. Gatterbauer, B. Louie, D. Suciu, and
P. Tarczy-Hornoch. Integrating and ranking uncertain
scientific data. In ICDE, 2009.

[19] M. Y. Eltabakh, M. Ouzzani, and W. G. Aref. bdbms - a
database management system for biological data. In
CIDR, 2007.

[20] M. Y. Eltabakh, M. Ouzzani, W. G. Aref, A. K.
Elmagarmid, Y. Laura-Silva, M. U. Arshad, D. Salt, and
I. Baxter. Managing biological data using bdbms. In
ICDE, 2008.

[21] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about knowledge. MIT Press, 1995.

[22] A. Fuxman, E. Fazli, and R. J. Miller. Conquer: Efficient
management of inconsistent databases. In SIGMOD, 2005.

[23] F. Geerts and J. V. den Bussche. Relational completeness
of query languages for annotated databases. In DBPL,
2007.

[24] F. Geerts, A. Kementsietsidis, and D. Milano. Mondrian:
Annotating and querying databases through colors and
blocks. In ICDE, 2006.

[25] V. Goranko and M. Otto. Handbook of Modal Logic,
chapter Model Theory of Modal Logic. Elsevier, 2006.

[26] G. Gottlob. Complexity results for nonmonotonic logics.
J. Log. Comput., 2(3):397–425, 1992.

[27] T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton,
Z. G. Ives, and V. Tannen. ORCHESTRA: facilitating
collaborative data sharing. In SIGMOD, 2007.

[28] T. J. Green and V. Tannen. Models for incomplete and
probabilistic information. IEEE Data Eng. Bull.,
29(1):17–24, 2006.

[29] S. D. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, and
D. Suciu. What can database do for peer-to-peer? In
WebDB, 2001.

[30] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov.
Schema mediation in peer data management systems. In
ICDE, 2003.

[31] J. Y. Halpern and Y. Moses. A guide to completeness and
complexity for modal logics of knowledge and belief.
Artif. Intell., 54(2):319–379, 1992.

[32] T. Imielinski. Query processing in deductive databases
with incomplete information. In SIGMOD, 1986.

[33] Z. G. Ives, T. J. Green, G. Karvounarakis, N. E. Taylor,
V. Tannen, P. P. Talukdar, M. Jacob, and F. Pereira. The
ORCHESTRA collaborative data sharing system.
SIGMOD Record, 37(3):26–32, 2008.

[34] A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping
data in peer-to-peer systems: Semantics and algorithmic
issues. In SIGMOD, 2003.

[35] R. E. Ladner. The computational complexity of
provability in systems of modal propositional logic. SIAM
J. Comput., 6(3):467–480, 1977.

[36] D. Maier and L. M. L. Delcambre. Superimposed
information for the internet. In WebDB, 1999.

[37] NatureMapping. http://depts.washington.edu/natmap/.
[38] L. A. Nguyen. Constructing finite least Kripke models for

positive logic programs in serial regular grammar logics.
Logic Journal of the IGPL, 16(2):175–193, 2008.

[39] R. A. Overbeek, T. Disz, and R. L. Stevens. The SEED: a
peer-to-peer environment for genome annotation.
Commun. ACM, 47(11):46–51, 2004.

[40] R. Reiter. On closed world data bases. In Logic and Data
Bases, pages 55–76, 1977.

[41] R. Reiter. A logic for default reasoning. Artif. Intell.,
13(1-2):81–132, 1980.

[42] A. D. Sarma, O. Benjelloun, A. Y. Halevy, and J. Widom.
Working models for uncertain data. In ICDE, 2006.

[43] Sloan Digital Sky Survey. http://cas.sdss.org.
[44] D. Srivastava and Y. Velegrakis. Intensional associa- tions

between data and metadata. In SIGMOD, 2007.
[45] N. E. Taylor and Z. G. Ives. Reconciling while tolerating

disagreement in collaborative data sharing. In SIGMOD,
2006.

[46] UniProt. http://www.uniprot.org/.
[47] R. van der Meyden. Logical Approaches to Incomplete

Information: A Survey, chapter In Logics for Databases
and Information Systems. Kluwer, 1998.

[48] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In CIDR, 2005.

12

http://depts.washington.edu/natmap/
http://cas.sdss.org
http://www.uniprot.org/

APPENDIX
A. NOMENCLATURE

R external schema with R = (R1, . . . , Rr)
Tup tuple universe with example tuple t ∈ Tup
I standard database instance over the external schema
W belief world instance with W = (I+, I−)
[[W]] semantics of W as incomplete database
Γ key constraints of a standard database instance I
Γ1,Γ2 consistency constraints for a belief world W
U set of users {1, . . . ,m} with m = |U |
Û∗ Û∗ = {w ∈ U∗ | w[i] 6= w[i+1]}
u, v, w belief paths ∈ Û∗
w̄ belief path of zero or more variables and constants
x̄ tuples of variables and constants
d nesting depth or belief path length with d = |w|
ϕ belief statement ϕ = �wts with s as sign
D data with belief statements {ϕ1, . . . , ϕn}, n = |D|
Dw explicit belief world at w (with belief path w)
D̄ entailment of D
D̄w entailed belief world at w
g number of subgoals of a belief conjunctive query
K Pointed Kripke structure with

K = (V, (Wv)v∈V , (Ei)i∈U , v0)
V set of states
Wv belief world associated with a state v ∈ V
v0 root of the Kripke structure; v0 ∈ V
Ei set of edges associated with each user i ∈ U with

Ei ⊆ V × V
R∗ internal schema; relational representation of a belief

database

B. PROOFS

B.1 Proof Proposition 5
Proposition 5 (consistency of a belief world)

A belief world W is consistent iff it satisfies the following
two constraints:

Γ1(W) ≡ Γ(I+)

Γ2(W) ≡ ∀t ∈ I+ : t 6∈ I−

Proof. (1) We first show Γ1(W)∧Γ2(W)⇒ [[W]] 6=
∅: WLOG, we focus on a fixed key k. The proce-
dure is implicitly assumed to be repeated for all k ∈
{key(t) | t ∈ Tup}. From Γ1 follows that there is either
(i) no or (ii) one positive tuple with key k in the be-
lief world W . From Γ2 follows that there can be zero
or more negative tuples with key k in the belief world,
but none that is already contained as positive tuple. In
case (i), we can create a consistent complete database
for key k by making all tuples with this key t.(key = k)
negative. In case (ii), we make all tuples with the same
key negative, except for the positive one.
(2) [[W]] 6= ∅ ⇒ Γ1(W) ∧ Γ2(W): We again focus on a
fixed key k. A complete database I ∈ [[W]] is consistent,
if for each key k, there are either zero or one (positive)
tuples in the database. Therefore Γ1. A tuple cannot
be at the same time be in the database and not be in
the database. Therefore Γ2.

B.2 Proof Proposition 7
Proposition 7 (certain and impossible tuples)

Let t be a tuple in Tupi,i.e. it is a typed tuple for relation
Ri. Tuple t is a positive belief for W iff it is in I+. It
is a negative belief for W iff it is either in I− (“stated
negative”) or if there is another tuple t′ ∈ I+ from Tupi
with the same key (“unstated negative”):

W |= t+ iff t∈I+

W |= t− iff t∈I−︸ ︷︷ ︸
stated

∨∃t′∈Tupi.
(
t′∈I+∧t′6= t∧key(t′)=key(t)

)︸ ︷︷ ︸
unstated

Proof. (1) What we have to show is t ∈ I+ ⇔6
∃I.(I+ ⊆ I ∧ I ∩ I− = ∅ ∧ Γ(I) ∧ t 6∈ I). (1a) ⇒: If
t ∈ I+ and I+ ⊆ I, then t ∈ I. Hence, 6 ∃I.(t 6∈ I).
(1b) ⇐: If ∀I.(I+ ⊆ I ∧ I ∩ I− = ∅ ∧ Γ(I) ⇒ t ∈ I),
then t ∈ I+. As if t 6∈ I+, then there is always some
consistent I.(∀t′.(key(t′) = key(t) ⇒ t′ 6∈ I)) for which
t 6∈ I.

(2) W |= t− iff t ∈ I− ∨ ∃t′ ∈ I+.
(
key(t′) = key(t) ∧

t′ 6= t
)
: From Def. 3 and Def. 6, we know that W |= t−

iff ∀I.(I+ ⊆ I ∧ I ∩ I−= ∅ ∧ Γ(I) ⇒ t 6∈ I). Hence, we
have to show

t ∈ I− ∨ ∃t′ ∈ I+.
(
key(t′) = key(t) ∧ t′ 6= t

)
⇔ 6 ∃I.(I+ ⊆ I ∧ I ∩ I−= ∅ ∧ Γ(I) ∧ t ∈ I)

(2a) ⇒: If t ∈ I− then 6 ∃I.(I ∩ I−= ∅ ∧ Γ(I) ∧ t ∈ I).
If ∃t′ ∈ I+.

(
key(t′) = key(t) ∧ t′ 6= t

)
then 6 ∃I.(I+ ⊆

I ∧ Γ(I) ∧ t ∈ I). (2b) ⇐: ∀I.(I+ ⊆ I ∧ I ∩ I− =
∅ ∧ Γ(I)⇒ t 6∈ I) is equivalent to ∀I.

(
I ∩ I−= ∅ ⇒ t 6∈

I
)
∨ ∀I.

(
I+ ⊆ I ∧ Γ(I) ⇒ t 6∈ I

)
. The first proposition

∀I.
(
I ∩ I−= ∅ ⇒ t 6∈ I

)
is true iff t ∈ I−. The second

proposition ∀I.
(
I+ ⊆ I ∧ Γ(I) ⇒ t 6∈ I

)
is true iff

∃t′ ∈ I+.
(
key(t′) = key(t) ∧ t′ 6= t

)
.

B.3 Proof Theorem 16
Theorem 16 (Canonical Kripke Structure)

(1) For any belief statement ϕ, D |= ϕ iff K(D̄) |= ϕ.
(2) K(D̄) can be computed in time O(mdn), where n is
the size of the belief database D, m the number of users
and d is the maximum length of any belief path in D.

Proof. (1) From Def. 12, D |= ϕ ⇔ ϕ ∈ D̄. Hence,
it suffices to show that K̄(D) |= ϕ ⇔ ϕ ∈ D̄. We
proceed in 5 steps:
(1a) We first construct an empty infinite Kripke tree

frame TK for U , i.e. a tree with root v0 so that for
each belief path w ∈ Û∗, there is exactly one node
in TK whose path from the root is w. Therefore,
for each node at depth d 6= 0 and incoming i-edge
(i ∈ U), we create m − 1 child nodes at depth
d + 1 for all j ∈ U \ {i}. This tree has 1 node at
depth 0, m nodes at depth 1, m(m − 1) nodes at
depth 2, in general m(m − 1)d−1 nodes at depth
d. The number N of nodes with depth ≤ d is then
N(d) = 1+m+m(m−1)+. . .+m(m−1)d−1. Using
the geometric series, we get N(d) = 1 + m

m−2
((m−

1)d − 1) = O(md).
(1b) We next consider Kripke trees, i.e. Kripke tree frames

with each node corresponding to a belief world with

13

belief path corresponding to the path from the root
to each node. We define a sequence TK(D(i)) of
Kripke trees corresponding to the infinite sequence
from Def. 9,

D(0) = D

D(d+1) = D(d) ∪ {�iϕ | ϕ ∈ D(d), i ∈ U,

belief path of �iϕ ∈ Û∗,

D(k) ∪ {�iϕ} is consistent}

where for each ϕ ∈ D(i) with ϕ = �wts, we add
ts to the node with path w in TK(D(i)). We call
TK(D̄) the canonical Kripke tree. As there is ex-

actly one node for each belief path w ∈ Û∗ with the
path w from the root, it follows that (Td(D

(i)), v0) |=
ϕ⇔ TK(D(i)) |= ϕ if and only if ϕ ∈ D(i). In par-
ticular, TK(D̄) |= ϕ⇔ ϕ ∈ D̄. Figure 7 shows the
first two Kripke trees up to depth 2 for our running
example D from Fig. 2.

2

4-10-2009 Fig_ExampleKripkeTree

1

2

{s11
+}

{s21
+,c11

+}

{s11
-,s12

-,s22
+,c22

+}

2

3

1

1

2

3

3

{c21
+}

1

2

{s11
+}

{s11
+,s21

+,c11
+}

{s11
-,s12

-,s22
+,c22

+}

2

3

1

1

2

3

3

TK(D(0))

{s21
+,c11

+}

{s11
+}

{s11
-,s12

-,s22
+,c22

+}

{s21
+,c11

+,c21
+}

{s11
-,s12

-,s22
+,c22

+}

TK(D(1))

(a)

2

4-10-2009 Fig_ExampleKripkeTree

1

2

{s11
+}

{s21
+,c11

+}

{s11
-,s12

-,s22
+,c22

+}

2

3

1

1

2

3

3

{c21
+}

1

2

{s11
+}

{s11
+,s21

+,c11
+}

{s11
-,s12

-,s22
+,c22

+}

2

3

1

1

2

3

3

TK(D(0))

{s21
+,c11

+}

{s11
+}

{s11
-,s12

-,s22
+,c22

+}

{s21
+,c11

+,c21
+}

{s11
-,s12

-,s22
+,c22

+}

TK(D(1))

(b)

Figure 7: Sequence of Kripke trees T
(i)
K cut off

at depth 2 for our running example.

(1c) We next show that subtrees of TK(D̄) that do no
contain States(D) can be pruned and replaced by
an appropriate back edge, so that for the resulting
model T ′K(D̄), it holds T ′K(D̄) |= ϕ⇔ TK(D̄) |= ϕ:
Consider the general subtree starting from node #2
with path w = i · v · j (v, w ∈ Û∗; i, j ∈ {ε} ∪U) in
Fig. 8a. Assume the subtree contains no States(D),
i.e. there is no ϕ ∈ D with belief path w ·u (w ·u ∈
Û∗). Then the subtree starting from node #2 is
isomorph to the subtree starting at node #3 with
path v · j which we show as follows:
(i) each node at depth d = |w·u| in subtree #2 can

be mapped to a node at depth d−1 in subtree
at #3 in such a way that the edges of #2 map
to edges in #3. This follows inductively by
starting to map node #2 to #3 and repeating
at each subsequent depth;

(ii) each belief world at a node in #2 is the same
as the corresponding belief world at #3. This
follows from the fact that for each node with
path w · u in #2, Dw·u = {}. Hence each tu-
ple in subtree #2 of TK(D̄) is inserted by the

default rule from Def. 9 which inserts each tu-
ple ts in ϕ = �v·j·uts from the node with path
v · j ·u in #3 into the corresponding node with
path i · v · j · u in #2. Hence, corresponding
nodes have the same belief worlds.

As a consequence, we can create a new Kripke
tree T ′K(D̄) from TK(D̄) with pruned subtree #2
and replaced forward j-edge (#1, #2) by a back
j-edge (#1, #3) as shown in Fig. 8b. We know
(TK(D̄),#2) |= ϕ⇔ (TK(D̄),#3) |= ϕ. It follows:
TK(D̄) |= �i·v·jϕ ⇔ (TK(D̄), v0) |= �i·v·jϕ ⇔
(TK(D̄),#2) |= ϕ⇔ (TK(D̄),#3) |= ϕ⇔ (T ′K(D̄), v0) |=
ϕ⇔ T ′K(D̄) |= �i·v·jϕ. Hence, the original and the
pruned Kripke tree have the same theory: TK(D̄) |=
ϕ ⇔ T ′K(D̄) |= ϕ. Note that node #3 with path
v · j is the node with the largest suffix of node #2
with path i · v · j.

…

…

3

4-10-2009 Fig_BacklinksKripkeTree

#4

 i

v

#1

#3 j

v #2 j …

… #4

 i

v

#1

#3 j

v

 j

TK(D)

TK
’(D)

#4

 i

v

#1

 j

v

 j

TK
’ ’(D)

#5

 u i

(a)

…

…

3

4-10-2009 Fig_BacklinksKripkeTree

#4

 i

v

#1

#3 j

v #2 j …

… #4

 i

v

#1

#3 j

v

 j

TK(D)

TK
’(D)

#4

 i

v

#1

 j

v

 j

TK
’ ’(D)

#5

 u i

(b)

…

…

3

4-10-2009 Fig_BacklinksKripkeTree

#4

 i

v

#1

#3 j

v #2 j …

… #4

 i

v

#1

#3 j

v

 j

TK(D)

TK
’(D)

#4

 i

v

#1

 j

v

 j

TK
’ ’(D)

#5

 u i

(c)

Figure 8: The pruned Kripke trees T ′K(D̄) and
T ′′K(D̄) have the same theory as TK(D̄).

(1d) If the node #3 6∈ States(D), then #3 can itself be
pruned according to (1c), i.e. we can replace the j-
edge (#4, #3) by a j-edge from #4 to the largest
suffix of #3, say #5. Since the subtrees #3 and #5
are ismorphic, so are #2 and #3. Hence, we can
further replace the j-edge (#1, #3) by j-edge (#1,
#5), and we still have TK(D̄) |= ϕ⇔ T ′′K(D̄) |= ϕ.
As a consequence, each forward j-edge (#1, #2)
with #2 6∈ States(D) can be replaced with a back
j-edge (#1, #5), where #5 has the largest suffix
path of #1 and ∈ States(D).
If we repeat this pruning for each edge between a
node #1 ∈ States(D) and a node #2 6∈ States(D),
then we get exactly the construction of the canoni-

14

cal Kripke modelK(D̄) in Def. 16. Hence, TK(D̄) |=
ϕ⇔ K(D̄) |= ϕ, and ϕ ∈ D̄ ⇔ K(D̄) |= ϕ.

(2) We first give an alternative construction of K(D̄)
that avoids the intermediate infinite Kripke tree and
then evaluate the complexity of this method.
(2a) Fix a node in the canonical Kripke tree TK(D̄)

with path w = u · v · x · y (u, v, x, y, w ∈ Û∗) and
|w| = d. For a tuple ts to be in the node with
path w, either (i) ts ∈ Dw or (ii) ∃w′ = u · v
with ts ∈ Dw′ and ∀w′′ = u · v · x : Dw′′ ∪ ts is
consistent. It follows that the content of a node
with path w and k = |w| in the canonical Kripke
tree TK(D̄) (and hence, the world D̄w) is the same
as in the Kripke tree in the canonical Kripke tree

TK(D(d)) (and hence, the world D
(d)
w), and it can

be deduced by only analyzing all suffix worlds of
w: {Dw, Dw[2,d]

, . . . Dw[d]
, Dε}. Figure 9 illustrates

that the content of world D
(d)
w in the left lower cor-

ner, and hence D̄w, can be deduced in the following
iterative way: start with the root world Dε. Insert
all tuples from ε into the belief world D[d] which
are consistent wit D[d]. Repeat this step for all
belief worlds until Dw.

4

4-10-2009 Fig_KripkeTreeOverridingUnion

w = w[1,k] w[k,k] = ε w[2,k] w[3,k] w[k-1,k]

D(0)

D(2)

D(3)

D(k)

D(k-1)

…

…

…

…

…

…

… … … … …

Figure 9: Calculating D̄w can be done in d = |w|
steps by consecutively analyzing all suffix states
of w with increasing depth and inserting all tu-
ples from D[x,d] into D[x−1,d] which are consistent
with the tuples already in D[x−1,d].

(2b) The algorithm for constructing the whole canoni-
cal Kripke model K(D̄) starts with (i) the canoni-
cal Kripke frame, i.e. all nodes that correspond to
the States(D), forward edges; (ii) it then inserts
all back edges to the largest suffixes according to
Def. 16. (iii) It then determines for each node in
the model its largest suffix node in order to con-
structs an inverted suffix tree, i.e. the tree from the
root node to all other nodes where a node #1 with
path i ·v is a child of another node #4 with path v
if the path of #4 is a suffix of the path of #1 and
no deeper node is a suffix of #1. (iv) Use either a
breath-first algorithm that calculates for each state
the overriding union with its largest suffix state, or

a depth-first algorithm that traverses an inverted
suffix tree and calculates the overriding union at
each step.

(2c) Complexity:
(i) Construction of the canonical Kripke frame (i.e.

the canonical Kripke structure without any tu-
ples) without the back edges takes O(nd), as
for each of n belief statements ϕ ∈ D with
belief path w we need |w| ≤ d operations.

(ii) Construction of the back edges takesO(md+1d2)
time: (a) a canonical Kripke frame with all

worlds w ∈ Û∗ and |w| ≤ d has N(d) = 1 +
m
m−2

((m− 1)d − 1) = O(md) nodes. The root
node has m, each other node m − 1 outgoing
edges. The number of edges is hence E(d) =

m + m(m−1)
m−2

((m − 1)d − 1) = O(md+1). The

number of leaf nodes is m(m−1)d−1 = O(md);
it hence needs m(m − 1)d = O(md+1) back
edges. For each such edge, we have to find the

largest suffix node, which takes d(d−1)
2

= O(d2)
in the worst case and with a naive algorithm.

(iii) For each of the O(md) nodes in the Kripke
frame, determine the node in the model with
the largest suffix of its path. This can be bound
by O(md(d− 1)) analog to (ii) above.

(iv) Inserting all implicit beliefs is O(mdn). For
that, assume the worst case of a canonical Kripke
frame with all worlds w ∈ Û∗ and |w| ≤ d. In-
sert of a tuple at the root leads to checking
for all O(md) nodes in the model. The in-
sert/check at each node can be performed in
O(1) with a hash index on the key attribute.
Hence, O(mdn).

(v) Note that n ≥ m(m − 1)d−1 for the bound in
(ii) as minimum number of annotations for the
canonical Kripke model to include all states
with w ∈ Û∗ and |w| ≤ d. Further note that
(m − 1)d−1 ≥ d2 for (m ≥ 3, d ≥ 7) or (m ≥
4, d ≥ 3) or m ≥ 5. Hence, we can bound
O(md+1d2) by the looser boundO(mdn), which
is the overall bound.

C. DEFAULT LOGIC
We shortly review Reiter’s default logic [41] before

drawing the connection to our message board assump-
tion. We mostly follow the exposition and notation of
Gottlob [26] and Brachman and Levesque [9].

C.1 Default logic primer
A default rule d is a configuration of the form

α : β

ω
,

where α, β, and ω are propositional sentences. Usually,
α is called the prerequisite, β the justification, and ω
the consequence of d. A default rule d is satisfied by a
deductively closed set of sentences S if, whenever α is
an element of S and β is consistent with S, then ω also
is an element of S. A normal default rule is one where

15

justification and consequence are the same:

α : ω

ω
.

A default that contains formulae with free variables is
sometimes called a default schema. It defines the set
of all default rules obtained for all ground substitu-
tions that assign values to all free variables occurring
in the schema. A propositional default theory is a pair
T = (W,D), where W is a finite set of propositional
sentences, sometimes called the background theory, and
D is a finite set of default rules.

Informally, an extension E of a default theory (W,D)
is a grounded minimal deductively closed set of proposi-
tional formulae containing W and satisfying all defaults
of D. Hence, extensions are (minimal) fixed points of
the operator D, namely, that further application of the
default rules inD to the sentences in an extension has no
effect. More formally: Let (W,D) be a default theory.
For any set S of propositional formulae, let Γ(S) be the
smallest set U satisfying the following three properties:
(1) W ⊆ U .
(2) U is deductively closed.
(3) If α:β

ω
∈ D and α ∈ U and ¬β 6∈ S, then ω ∈ U .

An extension of (W,D) is a fixpoint of Γ, i.e. a set E of
propositional formulae satisfying Γ(E) = E.

An alternative definition is as follows: Given a default
theory T = (W,D). A set of sentences E is an extension
of T if and only if for every sentence ϕ,

ϕ ∈ E iff W ∪ {ω|α:β
ω
∈ D,α ∈ E,¬β 6∈ E} |= ϕ

An equivalent algorithmic definition is as follows. A
default α:β

ω
is applicable to a propositional theory W if

W |= α and W ∪β is consistent. The application of this
default to W leads to the theory W ∪ ω.

A default theory can have one, more or no extension.
A normal default theory, i.e. a default theory that has
only normal default rules, has at least one extension.

C.2 Default beliefs for belief databases
We can define the belief theory T of a belief database

D of a finite set of belief statements as the pair (D,A),
where A is the set of default assumptions consisting of
one default schema, the message board assumption

ϕ : �iϕ
�iϕ

.

In our notation, the extension D̄ of a belief database
consists of the explicitly annotated belief statements D
and a set of implied belief statements from the default
assumption, such that no additional beliefs can be im-
plied from D̄ that are are consistent with D̄. We call all
ϕ ∈ D the explicit belief statements, and all ϕ ∈ D̄ \D
the implicit belief statements of a belief database.

Replacing Def. 9 and Def. 10 with the following defi-
nition gives an alternative definition of the semantics of
a belief database together with Def. 12:

Definition 19 (Extension of a belief database).
Given a belief database D and a set of default assump-
tions A = {ds} consisting of one normal default schema

ds ≡
ϕ : �iϕ
�iϕ

,

D̄
Entailed beliefs

(extension)

D̄ \ D
Implicit beliefs
(assumptions)

D
Explicit beliefs
(annotations)

!"#

9-6-2009 !"#$%&'()*"+),(-"(./,0

Figure 10: A belief database “contains” or en-
tails more than just the explicit belief annota-
tions.

where ϕ and �iϕ are belief statements over the external
schema. A set of sentences D̄ is an extension of a belief
database if and only if for every sentence ϕ,

ϕ∈D̄ iff ϕ∈D ∨ ϕ∈{ω | α:β
ω
∈A,α∈D̄, β is consistent with D̄}

The important consequence of the following lemma
is that the order in which default rules from the de-
fault schema are applied does not matter and we have
one unique stable model for D (observation in Sect. 3.4).
This observation allows an efficient depth-first construc-
tion of the materialized canonical belief database.

Lemma 20. If D is consistent, then D has exactly
one consistent extension D̄.

Proof. (1) There is at least one consistent extension:
An extension E of a default theory is inconsistent if
and only if the background theory is inconsistent and
every default theory has at least one extension. As our
default theory is normal, we have at least one consistent
extension.

(2) There is maximal one consistent extension: As-
sume there exist two consistent extensions D̄ and D̄′.
WLOG, there must then be one belief statement ϕ ∈ D̄′
that is not in D̄. Let ϕ = �wts with w = v ·i. As D ⊆ D̄
and D ⊆ D̄′, ϕ must be implicit and there must be a
grounded default rule

d1 ≡
�vts : �v·its

�v·its
,

which is satisfied for D̄′, but not for D̄. This can happen
either because (i) the prerequisite �vts ∈ D̄′, but 6∈ D̄;
or (ii) the justification �v·its is consistent with D̄′, but
not with D̄. We only have to focus on case (ii) as case
(i) can be reduced to at least one occurrence of case (ii)
by backchaining. So it suffices to disprove (ii).

So assume that �vts ∈ D̄ and ∈ D̄′, but �v·its is
consistent with D̄′ and inconsistent with D̄. For that to
happen, there must be a belief statement �v·it′s

′
∈ D̄

but 6∈ D̄′, which is inconsistent with �v·its and, hence,

the grounded tuples ts and t′s
′

do not fulfill the require-
ments Γ1 and Γ2 of Prop. 5 for D̄′w to be consistent.
This necessarily implicit belief statement can only be in
D̄ because of another grounded default rule

d2 ≡
�vt′s

′
: �v·it′s

′

�v·it′s
′ .

For the prerequisite of d2 to be satisfied, �vt′s
′

has to

be in D̄. Hence, the �vts and �vt′s
′

would have to be

16

in D̄, hence the belief world D̄v is inconsistent which
contradicts our assumptions.

Some thoughts. (1) In default logic, the extension
of a logical theory W creates a new logical theory E that
“extends” W . In contrast, in standard database nomen-
clature, the extensional database refers to the explicitly
stored tables and intensional to the relations defined
or implied by rules. To avoid a possible naming ambi-
guity, we call explicit all belief statements ϕ ∈ D and
implicit all ϕ ∈ D̄ \ D. (2) In default logic, D stands
for the set of default rules, whereas we use D for the
explicit part of a belief database corresponding to the
standard usage in database literature. (3) Our default
schema ds defines infinitely many default rules and an
infinite extension. (4) Note that consistency is defined
by extended key constraints and differs from the propo-
sitional case: ϕ ∪ D̄ consistent 6⇔ ¬ϕ 6∈ D̄.

C.3 Errata
This report includes the following corrections over the

final PVLDB version:

• Sect. 5.1: Relation S:

S(wid(w),wid(dss(w[2,d])))

instead of

S(wid(w),wid(dss(w)))

• Sect. 5.3: 3rd paragraph:

“Given the world id y of w ...”

instead of

“Given the world id x of w ...”

• Sect. 5.3: Algorithm 2:

7 For all worlds v ·w[1,d−1] for which w is the deepest
suffix state for v ·w, update the w[d]-edge:

8 4S(x, dss(w[2,d]))

instead of

7 For all worlds v ·w[1,d−1] for which w is the deepest
suffix state, update the wd-edge:

8 4S(x, dss(w))

• Sect. 5.3: Algorithm 3:

1 for p = 1 . . . (d+ 1) do
T (z, y):−E∗(0, w[p,d], z), D(z, y)

instead of

1 for p = 2 . . . (d+ 1) do
T (z, y):−E∗(0, w[p,d], x), D(z, y)

17

	1 Introduction
	2 Motivating application
	3 Formal setup
	3.1 Belief worlds
	3.2 Belief Databases
	3.3 Queries over Belief Databases
	3.4 Discussion

	4 Canonical Kripke structure
	5 Translation
	5.1 The relational representation
	5.2 Query translation
	5.3 Updates
	5.4 Space complexity

	6 Evaluation
	6.1 Size of a BDMS
	6.2 Query complexity
	6.3 Future Work

	7 Related Work
	8 Conclusions
	9 Acknowledgements
	10 References
	A Nomenclature
	B Proofs
	B.1 Proof Proposition 5
	B.2 Proof Proposition 7
	B.3 Proof Theorem 16

	C Default logic
	C.1 Default logic primer
	C.2 Default beliefs for belief databases
	C.3 Errata

