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Abstract

This paper presents an approach to render novel views from input
photographs, a task which is commonly referred to asimage based
rendering. We first compute dense view dependent depthmaps us-
ing consistent segmentation. This method jointly computes multi-
view stereo and segments input photographs while accounting for
mixed pixels (matting). We take the images with depth as our input
and then propose two rendering algorithms to render novel views
using the segmentation, both realtime and off-line. We demonstrate
the results of our approach on a wide variety of scenes.

1 Introduction

The goal of our work is to render high-quality novel viewpoints
of a scene from a small number of handheld snapshots. Given our
primary application to be novel view synthesis, we compute dense
view dependent depthmap for each input photograph. We further
propose two rendering algorithms with different speed and quality
trade-offs.

Multi-view stereo [Seitz et al. 2006] and image-based render-
ing [Kang and Shum 2002] have been well-studied research prob-
lems. However, given our application, we extend previous ap-
proaches in a number of significant ways in order to produce higher
quality results.

2 Related work

Image-based rendering (IBR) techniques use multiple captured im-
ages to support the rendering of novel viewpoints [Kang and Shum
2002]. Rendering novel viewpoints of a scene by re-sampling a set
of captured images is a well-studied problem [Buehler et al. 2001].
IBR techniques vary in how much they rely on constructing a ge-
ometric proxy to allow a ray from one image to be projected into
the new view. Since we are concerned primarily with a small region
of the input viewpoints, we are able to construct a proxy by deter-
mining the depths for each of the input images using multi-view
stereo, similar to Heigl et al. [1999]. Our technique merges a set of
images with depth in a spirit similar to the Layered Depth Image
(LDI) [Shade et al. 1998]. However, we compute depths for seg-
ments, and also perform the final merge at render time. Zitnick et
al. [2004] also use multi-view stereo and real-time rendering in their
system for multi-viewpoint video, though their constraint that cam-
eras lie along a line allows some different choices. Most IBR sys-
tems are designed to operate across a much wider range of view-
points than our system and typically use multiple capture devices
and a more controlled environment [Taylor 1996; Levoy 2006].

Stereo is an active area of research in computer vision, for both two
views [Scharstein and Szeliski 2002] and multiple views [Seitz et al.
2006]. Stereo can be seen as a more constrained version of the gen-
eral optical flow problem; our stereo implementation is an extension
of the optical flow work of Zitnick et al. [2005]. Their approach to
motion estimation is particularly well-suited to image-based render-
ing because it explicitly models pixels that are mixtures of several
scene points; that is, an alpha value per pixel is computed. Recent

work [Zitnick et al. 2004] has shown that this matting information
improves novel view interpolation near depth discontinuities. One
difficulty in extending this optical flow algorithm, however, is that
while their paper provides a good conceptual framework, it con-
tains very little in the way of algorithmic details. Thus, a further
contribution of our paper could be considered to be the first de-
tailed treatment of an algorithm based on this approach, in a way
that makes the ideas implementable.

A number of papers have used advanced graphics hardware to ac-
celerate the rendering of imagery captured from a collection of
viewpoints. The early work on light fields [Levoy and Hanrahan
1996; Gortler et al. 1996] rendered new images by interpolating the
colors seen along rays. The lightfield was first resampled from the
input images. The GPU was used to quickly index into a lightfield
data structure. In one of the early works leveraging per-pixel depth,
Pulli et al. [1997] created a textured triangle mesh from each depth
image and rendered and blended these with constant weights. They
also introduced the notion of a soft-z buffer to deal with slight in-
accuracies in depth estimation. We take a similar approach but are
able to deal with much more complex geometries, use a per-pixel
weighting, and have encoded the first soft-z into the GPU accelera-
tion. Buehler et al. [2001] also rendered per-pixel weighted textured
triangle meshes. We use a similar per-pixel weighting, but are also
able to deal with much more complex and accurate geometries. We
also use a “reverse soft-z” buffer to fill holes caused by disocclu-
sions during rendering.

3 System overview

Since the collection of input photographs is typically shot with a
hand-held camera rather than a calibrated rig, we first recover the
viewpoints and orientations of each camera using structure-from-
motion (Section 4). This step also returns a sparse cloud of 3D scene
points. We compute a triangulation to determine the neighboring
viewpoints, which is useful both for determining scene depths and
for choosing which nearby input photographs to use when render-
ing a novel view. Our multi-view stereo algorithm then breaks each
photograph into small segments and determines the depth of each
segment in each view (Section 5).

We have developed two rendering algorithms to display novel views
from the textured segments with depth (Section 6. The first render-
ing algorithm is implemented as a real-time renderer leveraging the
GPU. The second algorithm is implemented as an off-line renderer
and produces higher quality results.

4 Structure from motion and triangulation

The first step of our system is to recover the relative location
and orientation of each photograph, which we perform using the
structure-from-motion system of Snavely et al. [2006]. Their sys-
tem matches features between each pair of images and iteratively
estimates the projection matrix of each photograph. We then project
the cameras onto a 2D manifold in 3D space (in our case, a least
squares plane fit), and we triangulate the projected points via a De-
launay triangulation [Shewchuk 1996] to form aview mesh. We
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consider any pair of cameras connected by a triangle edge to be
neighbors in the view mesh.

5 Multi-view stereo

Our multi-view stereo algorithm can be viewed as an extension
to the consistent-segmentation optical flow approach of Zitnick et
al. [2005]. Their intuition is that optical flow is simpler to compute
between two images that are consistently segmented (by consistent,
we mean that any two pixels in the same segment in imageIi are
also in the same segment in imageI j), since the problem reduces
to finding a mapping between segments. Conversely, consistently
segmenting two images of the same scene is easier if optical flow is
known, since neighboring pixels with the same motion are likely to
be in the same segment. Their algorithm iterates between refining
segmentation, with motion treated as constant, and refining motion,
with segmentation treated as constant.

We apply this basic approach to multi-view stereo, and extend it
in four significant ways: (1) we compute stereo rather than opti-
cal flow by enforcing a soft epipolar constraint; (2) we incorpo-
rate prior, sparse knowledge of the 3D scene computed by structure
from motion; (3) we consistently segment a view with respect to
its neighboringn views rather than a single other view; and (4) we
add an extra stage that merges the disparities computed from then
neighboring views into a single set of segments and their associated
depths, resulting in a final set of segments for each view.

We should note that the work of Georgiev et al. [2006] also builds
on the Zitnick et al. paper, imposing an epipolar constraint and com-
puting disparities with respect to two neighbors. Their work, how-
ever, neither reconstructs nor uses any scene points derived through
structure from motion, nor reconstructs depth maps — instead they
perform view morphing on a specific camera manifold, customized
for a special lens design.

Our multi-view stereo algorithm is applied to each reference view
by comparing it to itsn neighboring views. Let each viewIi contain
ki segments. Each pixel is treated as a mixture of two segments.
Therefore, each pixelp of view Ii is assigned a primary and sec-
ondary segment,s1(p) ands2(p). A coverage value α(p) expresses
the portion of the pixel that comes from the primary segment; thus,
0.5< α < 1. Given the segmentation(s1(p),s2(p)), and the cov-
erage values of each pixel, a mean colorµ(k) for the k’th seg-
ment can be computed. LetC be the observed color ofp in I, let
C1 = µ(s1(p)) be the mean color of the primary segment, andC2
be the mean color of the secondary segment. Ultimately, we seek to
compute a segmentation, such that the convex combination of the
segment mean colors,

αC1 +(1−α)C2, (1)

is as close toC as possible. Given a particular pair of mean colorsC1
andC2, we can project the observed colorC onto the line segment
that connects them in color space to impute anα for that pixel,
which amounts to computing

α =
(C−C2) · (C1−C2)

‖C1−C2‖2 . (2)

where the numerator contains a dot product between two color dif-
ference vectors, and the result is clamped toα ’s valid range. In
the end, the overlap between segments is usually fairly small; thus
many pixels belong to exactly one segment. In such cases, we con-
sider the pixel’s primary and secondary segments to be the same,
s1(p) = s2(p), and setα = 1.

To define a mapping between segments in two views, segmentk
in view Ii maps to a segmentσi j(k) in view I j. Mappings are not

required to be bijective or symmetric, which allows for occlusions
and disocclusions. A mappingσi j(k) implicitly defines a disparity
for each pixelp that considers thek’th segment as primary, i.e.,
s1(p) = k; the disparitydi j(k) is the displacement of the centroids
of the segments. (Note that we use disparity and displacement inter-
changeably here, and that they correspond to 2D vectors.) In some
cases, however, we are able to determine when a segment is par-
tially occluded, making this disparity estimate invalid, and, as dis-
cussed in Section 5.3, we compute disparity by other means. For
this reason, we separately keep track of a segment’s disparitydi j(k),
in addition to its mappingσi j(k). Ultimately, we will combine the
disparitiesdi j(k) to determine the depth of segmentk.

The algorithm of Zitnick et al. iterates between updating the seg-
mentation and disparities for two views. To handlen neighboring
views when computing depths for a reference viewIi, our algorithm
iterates between updating the segmentation ofIi and itsn neighbor-
ing viewsI j, and updating the mappings and disparities betweenIi
and each neighboring view (i.e.,σi j andσ ji). To compute segments
and depths for all views, we loop over all the images, sequentially
updating each image’s segmentation and then disparities. We repeat
this process 20 times, after which depths are merged. Note that this
entire process is linear in the number of original views.

5.1 Initialization

We initialize the segmentation for each image by subdividing it into
a quadtree structure. A quadtree node is subdivided if the standard
deviation of the pixel colors within the node is larger than a cer-
tain threshold. We set the threshold to 90 (color channel values are
in the range of[0..255]), and we do not subdivide regions to be
smaller than 8× 8 pixels, to avoid over-segmentation. We initial-
ize the mapping between segments using the sparse cloud of 3D
scene points computed by structure from motion. Each segment is
initialized with the median disparity of the scene points that project
to it, or is interpolated from several of the nearest projected scene
points if no points project within its boundaries. Each segmentk in
imageIi is then mapped to neighboring imageI j according to its
initial disparity, and the mappingσi j(k) is set to the segment inI j
that covers the largest portion of the displaced segmentk.

5.2 Segmentation update

We first describe how Zitnick et al. update the segmentation of
view Ii with respect to neighboring viewI j, given a current segmen-
tation and mapping. We then describe how we extend this update to
handlen views.

For each pixelp in view Ii, we consider the segments that over-
lap a 5×5 window aroundp. For each of these segments, treating
it as primary, we then pair it with every other segment (including
itself), computeα according to equation (2) (or set it to 1, for self-
pairings), and compute a score for every pairing for whichα > 0.5.
We then choose the highest scoring pair as the segments for this
pixel. We commit this segmentation choice after visiting every im-
age pixel in the same fashion.

The score of a segment pairing at pixelp is computed as follows.
Given the primary and secondary candidate segmentss1(p) and
s2(p), as well asα and the observed colorC, an inferred primary
color C′

1 can be calculated such that it satisfies the blending equa-
tion:

C = αC′
1 +(1−α)C2. (3)

Given the inferred primary colorC′
1 from a pair of candidate seg-

ments, we compute its score as follows:

N[C′
1; C1, Σ(s1(p))] v[p, s1(p)] v[q, σi j(s1(p))], (4)
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whereN[x; µ ,Σ] returns the probability ofx given a normal distribu-
tion with meanµ and covariance matrixΣ, v[p,k] measures the frac-
tion of the 5×5 window centered atp covered by segmentk, and
whereq is the pixel inI j corresponding top, i.e.,q = p+di j(s1(p)).

This scoring function encodes two objectives. The first is that the
inferred primary color should have high probability, given the prob-
ability distribution of the colors of the primary segment. The second
objective is that the primary segment should overlap significantly
with a window around pixelp in Ii, and the corresponding segment
should also overlap with a window aroundq in I j.

Given this pairwise segmentation-update approach, the extension
to n neighboring views is quite simple. When updating the segmen-
tation for the reference viewIi, we multiply the product in equa-
tion (4) by the termv[q, σi j(s1(p))] for each neighboring viewI j,
resulting in a product ofn+1 overlap termsv(·).

5.3 Segmentation and disparity update

Given a segmentation for each view, in this step we update the map-
pings and disparities between segments in reference viewIi and
each neighboring viewI j. We first describe the algorithm and ob-
jective function used by Zitnick et al. to choose this mapping, and
then describe our extensions to incorporate epipolar constraints and
a depth prior from the cloud of 3D scene points calculated by struc-
ture from motion.

For each segmentk in Ii, we visit all segments within a large win-
dow around the centroid of the initial segmentσi j(k) in imageI j.
We then score the compatibility of these candidate segments withk
and setσi j(k) to the candidate segment that yielded the highest
score. (In our implementation, we repeat this process 20 times,
starting with a 200× 200 search window, steadily narrowing the
search window with each iteration, down to 100×100.)

The scoring function for a segmentk and a candidate mapping
σi j(k) is a product of three terms. The first term,

N[µ(k); µ(σi j(k)), Σ(σi j(k))] N[µ(σi j(k)); µ(k), Σ(k)], (5)

measures how similar the colors are in the two corresponding seg-
ments, by measuring the probability of the mean color of segmentk
given the color distribution of segmentσi j(k), and vice versa. The
second,

N[di j(k); µ(d), Σ(d)], (6)

is a regularization term that measures the probability of the implied
disparity di j(k) given a normal distribution of disparities whose
mean and covarianceµ(d), Σ(d) are computed using the dispari-
ties of each pixel in a 100×100 window centered at the centroid of
segmentk. The third,

si j[k, σi j(k)] (7)

measures the similarity in shape between the two segments by com-
paring their sizes. The functions in this term is the ratio between
the numbers of pixels in the smaller and larger segments.

For our purposes, we extend the disparity update algorithm in sev-
eral ways. For one, a candidate mapping segmentσi j(k) is only
considered only if its centroid falls near the epipolar linelk in I j
of the centroid of segmentk in Ii. We cull from consideration seg-
ments whose centroids are more than 25 pixels from the epipolar
line. We also contribute two additional terms to the product to be
maximized when choosing mappings. The first term penalizes dis-
placements that are not parallel to corresponding epipolar lines:

exp(−ê(k) · d̂i j(k)) (8)

where exp(·) is the exponential function, ˆe(k) is the normalized di-
rection of the epipolar line in imageI j associated with the centroid

of segmentk, andd̂i j(k) is the normalized direction of displacement
of that segment.

Finally, we (again) take advantage of the 3D scene points recon-
structed in Section 4. In this case, if one or more of these points
project into a segmentk in imageIi, we compute the median dis-
placementmi j(k) of their re-projections into imageI j, and multiply
one more term into the scoring function:

exp(−||mi j(k)−di j(k)||) (9)

to encourage similarity in these displacements.

After iteratively optimizing all the disparities in the image accord-
ing to the scoring function, a final pass is performed to account for
segments that may have become partially occluded in moving from
image Ii to I j. (Here, we return to the original algorithm of Zit-
nick et al.) In this pass, we visit each segmentk in Ii and determine
if the size of its corresponding segment is substantially different
from the size of segmentσi j(k) in I j. We also determine if the map-
ping for a segmentk is not symmetric, i.e., ifk 6= σ ji(σi j(k)). If
neither of these conditions is true, then we simply set the disparity
di j(k) to the difference of the centroids ofk andσi j(k). However,
if either of these conditions is true, then we suspect a disocclusion.
In that case, we attempt to “borrow” the disparity ofk’s neighbors.
In particular, for each segment that overlapsk in imageIi (i.e., each
distinct segment that is either primary or secondary tok at one or
more pixels), we apply its disparity tok and compare the mapped
segment against each segment it overlaps inI j by computing the av-
erage square color difference within their overlap. After considering
all possibilities, the disparity and segment mapping with minimum
color difference are stored with segmentk.

5.4 Depth merging

After the above two update steps are iterated to completion (20 it-
erations over all the images), the result is a segmentation and a set
of n disparities for each segment, one disparity for each neighbor-
ing view. Since we need only one depth per segment, these disparity
estimates must be combined. We do so in a weighted least squares
fashion. To compute the depth of a segmentk in imageIi, we con-
sider the corresponding segmentσi j(k) in each neighboring viewI j.
Each corresponding segment defines a 3D ray from the optical cen-
ter of viewI j through the centroid of that segment on the view’s im-
age plane. Such a ray also exists for segmentk in reference viewIi.
We thus compute a 3D point that minimizes the Euclidean distance
to thesen + 1 rays in a weighted least squares sense. Correspond-
ing segments that we suspect are occluded in viewIi are given less
weight. A mapping segmentσi j(k) is considered occluded if the
mapping is not symmetric, i.e.,σ ji(σi j(k)) 6= k. We set the weights
of these rays to 0.25, and the rest to 1.0.

5.5 Interactive correction

Unfortunately, multi-view stereo algorithms are not perfect, and
they will sometimes assign incorrect depths; these errors can some-
times be seen as errant segments that coast across the field of view
(often near depth boundaries). To handle them, we allow users to
click on these errant segments in our interactive viewer; this input
is used to improve the depth estimates. The extent of this interaction
is quantified in Section 7.

6 Rendering algorithms

We have developed two rendering algorithms to display novel views
from the textured segments with depth. The first rendering algo-
rithm is implemented as a real-time renderer leveraging the GPU.
This renderer allows a user to explore the scene and design camera
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(a) (b)

Figure 1 (a) The view mesh is extended by creating copies of bound-
ary vertices and placing them radially outward (red arrow) from the
centroid (red dot) of all of the mesh vertices. These new vertices are
then re-triangulated and added to the view mesh to form an extended
view mesh.(b) The dotted blue arrow shows a ray projected through
the image plane. Theblending weights at this pixel correspond to the
barycentric coordinates of the intersected triangle of viewpoints in the
view mesh.

paths that best depict the scene. It is also used by the automatic cam-
era path planner to evaluate whether novel viewpoints are ”valid”
(i.e., wheter they can be rendered with minimal holes), and to esti-
mate the amount of parallax to select paths that provide a strong 3D
effect. The second algorithm is implemented as an off-line renderer
and produces higher quality results; it is used to render the final
result animation. Both renderers take the same basic approach; we
therefore first describe the general rendering algorithm, and then
we describe the specifics of the interactive renderer implementation
including GPU acceleration, and finally we describe the differences
in the off-line rendering algorithm.

To render the scene from a novel view, we project a ray from the
origin of the novel view through each pixel in the image plane Fig-
ure 1b). If the ray intersects any segments, we combine their color
and depth values and assign the combined color to the pixel. We cal-
culate each segment’s contribution in three steps. First we choose
which segments should contribute to the the pixel value. Second,
we compute ablending weight for each contributing segment color
value. Finally we employ asoft z-buffer to resolve depth inconsis-
tencies and normalize the weights to combine the remaining color
values.

When choosing which segments should contribute to a pixel value,
we only consider those segments belonging to three original view-
points with rays most closely aligned with that corresponding to
the pixel to be rendered. To select the viewpoints for each pixel
of the novel view, we first construct aview mesh by projecting the
viewpoint camera positions onto a 2D manifold in 3D space, in
this case, a plane fit to the camera locations using least squares.
The original vertices are then triangulated via a Delaunay triangu-
lation [Shewchuk 1996]. We also extend the view mesh by dupli-
cating the vertices on the mesh boundary (Figure 1a). These dupli-
cate vertices are positioned radially outward from the mesh center
at a distance four times the distance from the center to the vertices
on the boundary. The original and duplicate vertices are then re-
triangulated to form the final view mesh. The triangles on the view
mesh boundary will contain two vertices with the same camera ID,
while interior triangles will have three distinct camera IDs.

Given the novel view and the view mesh, we are now ready to de-
termine which viewpoints will contribute to each pixel in the novel
view and with what weights. Each pixel in the novel view defines a
ray from the novel viewpoint through the pixel on the image plane.
This ray is intersected with the view mesh (looking backwards if
necessary). The viewpoints corresponding to vertices of the inter-
sected triangle on the view mesh areclosest for that pixel in the

novel view, and thus the ones whose segments will contribute to that
novel view pixel. We assign ablending weight to each contributing
segment equal to the barycentric coordinates for the corresponding
viewpoint in the intersected triangle. This is similar to the weights
given in [Buehler et al. 2001].

The contributing segments also lie in some depth order from the
novel view. Often, segments from different viewpoints represent
the same piece of geometry in the real world and thus will lie at
approximately the same depth. Slight differences in depth are due
to noise and errors in the capture, viewpoint positioning and depth
estimation. As the novel viewpoint changes, the exact ordering of
these segments may change. Rendering only the closest segment
may thus lead to popping artifacts as thez ordering flips. To avoid
these temporal incoherencies, we implement asoft z-buffer [Pulli
et al. 1997]. A soft z-buffer allows us to consistently resolve con-
flicting depth information by combining all of the segments that
may contribute to a pixel, and estimating the most likely RGBA
andz values for the pixel. The soft z-buffer assigns az-weight for
each contributing segment beginning with a weight of 1.0 for the
closest segment (at a distancez0) dropping off smoothly to 0.0 as
the distance increases beyondz0. The z-weights are multiplied by
theblending weight, and the results are normalized. The final pixel
value is the normalized weighted sum of the textures from the con-
tributing segments.

When the novel view diverges from the original viewpoints, the
parallax at depth discontinuities may cause segments to separate
enough so that a ray hits no segments. We are then left with a hole-
filling problem. We address this later in the context of the interactive
and offline renderers.

6.1 Interactive renderer

To render the scene from a novel view at interactive frame rates
(at least 30 fps), we need to pose the rendering problem in terms
of GPU operations. We now describe the rendering steps in terms
of polygons, texture maps and GPU pixel shaders. We render the
scene in four steps. First, we choose which segments should con-
tribute to the pixel value and calculate theblending weight for each
contributing segment color value. Second, we render all of the seg-
ments to three offscreen buffers. Third, we employ asoft z-buffer
to resolve depth inconsistencies between the three offscreen buffers
and combine their color values. Finally, we fill holes using areverse
soft z-buffer and local area sampling.

Rendering the extended view mesh To choose which seg-
ments should contribute to the pixel value and to calculate the
blending weights we render the extended view mesh from the novel
view to an offscreen buffer. Setting the three triangle vertex colors
to red, green, and black encodes two of the barycentric coordinates
in the Red and Green channels; the third coordinate is implicit. The
Blue and Alpha channels are used to store an ordered 3-element list
storing the ID’s of the three viewpoints (we use 5 bits to encode a
viewpoint ID, so 3 IDs can be stored in 16 bits, allowing for a total
of 32 input viewpoints)1.

When rendering the extended view mesh, there are two special
cases that should be highlighted. First, if the novel view lies in front
of the view mesh, the projection step requires a backwards projec-
tion (i.e., projecting geometry that is behind the viewer through the
center of projection). Second, the projection of the view mesh nears
a singularity as the novel view moves close to the view mesh it-
self. Therefore, if the novel view is determined to lie within some

1It is not strictly necessary to encode both viewpoint IDs and the
barycentric weights into one off-screen buffer, but doing so saves a ren-
dering pass and reduces texture memory usage.
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small distance from the view mesh, the view mesh is not rendered
at all. Rather, the nearest point on the mesh is found. The blending
weights and viewpoint IDs are then constant across all pixels in the
novel view, set to the barycentric coordinates of the point on the
view mesh and the vertex IDs of the triangle the point lies in.

Rendering segments Each segment is rendered as a texture
mapped rectangle. The rectangle’s vertex locations and texture co-
ordinates are defined by the bounding box of the segment. A seg-
ment ID and associated viewpoint ID is recorded with each rect-
angle. Rather than create a separate texture map for each segment
rectangle, we create two RGBA textures for each viewpoint, plus
oneSegment ID texture. As described in Section?? pixels near the
boundaries of segments are split into two overlapping layers to ac-
count for mixed pixels along the boundaries. Thus, the first RGBA
texture contains the segment interiors and one of the two layers.
The other RGBA texture contains the second layer along segment
boundaries. Finally we create a third 2-channel 16-bit integerSeg-
ment ID texture map containing segment ID values indicating to
which segment a pixel belongs.

For each segment, a pixel shader combines the texture maps and
discards fragments within the segment bounding rectangles but lay-
ing outside the segment itself. To render a rectangle, we encode the
segment ID as a vertex attribute (e.g. color or normal data). The
shader uses this value in conjunction with theSegment ID texture
and the two RGBA textures to compose the segment color values
on the fly.

void main(){
if (SegmentID == SegIDMap[0] or

SegmentID == SegIDMap[1])
ExtractAndDraw();

else
discard;

}

Using this GPU based texture representation has two benefits, both
of which increase rendering speed. First, it reduces the number of
texture swaps from thousands per viewpoint to only three. Second,
by removing the texture swap from the inner loop we are able to
take advantage of vertex arrays or vertex buffer objects and utilize
the GPU more efficiently.

We still need to choose which segments contribute to each pixel
and by how much. A pixel is ultimately a sum of segments orig-
inating from at most three different viewpoints as encoded in the
viewpointIDs in the offscreen rendered view mesh. We create three
buffers to accumulate RGBA values, corresponding to the three
viewpointIDs stored at each pixel in the rendered view mesh. When
rendering a segment, we encode the segment’s viewpoint ID as a
vertex attribute. The pixel shader chooses to which of the three
buffers a segment should contribute, if any, by matching the the
segment’s viewpoint ID with the ones encoded in the offscreen ren-
dered view mesh at that pixel location. For example, if the seg-
ment’s viewpoint ID matches the first of the view mesh’s encoded
viewpoint IDs (i.e., the one corresponding to the ”red” barycentric
coordinate), the pixel is accumulated in the first buffer using the first
(red) barycentric coordinate as a weight. The same is done if there
is a match with the second (green) or third of the view mesh’s en-
coded viewpoint IDs, except the third barycentric weight is inferred
from the other two (1 - red - green).

void main(){
if (ViewID == ViewIDMap[0])
Target = 0;

else if (ViewID == ViewIDMap[1])
Target = 1;

else if (ViewID == ViewIDMap[2])
Target = 2;

else discard;

if (SegmentID == SegIDMap[0] or
SegmentID == SegIDMap[1])

ExtractAndDraw(Target);
else

discard;
}

Before rendering any segments, the segments for each viewpoint
are sorted to be processed in front-to-back order. The three ren-
dering buffers are initialized to black background and zero alpha.
To maintain proper color blending andz-buffering, the blending
mode is set to GLSRC ALPHA SATURATE, depth testing is en-
abled, and set to GLALWAYS. The pixel shader calculates the pre-
multiplied pixel values and alphas to render.

Soft z-buffer The z-buffering is performed traditionally within a
single viewpoint for each of the three buffers; however, we employ
a soft z-buffer across the viewpoints to blend the three results. For
each corresponding pixel in the three buffers, we compute a soft
weight wz by comparing each pixel’sz-value with thez-value of
pixel closest to the origin of the novel view. This distance∆z, where
∆z = z− zclosest, is used to computewz in the following equation:

wz(∆z) =











1 if ∆z ≤ γ
1
2(1+cos

(

π(∆z−γ)
ρ−2γ

)

) if γ < ∆z ≤ ρ − γ
0 otherwise

(10)

whereρ is the depth range (max−min) of the entire scene, andγ is
set toρ/10.

The set ofwz’s are normalized to sum to one. The depth,z for that
pixel is then given the sum of thez-values weighted by thewzs.
Eachblending weight stored in the view mesh texture is multiplied
by its correspondingwz. These new blending weights are normal-
ized. The final pixel value is computed by scaling each pixel by the
normalizedblending weight, and composited based on their alpha
values.

Hole filling Holes occur when, due to parallax, a nearby segment
separates from a more distant segment. A pixel with az-value of 1
indicates a hole. we fill small holes of less than 6 pixels in diameter
during the finalsoft z-buffer pass. We assume that any hole should
be filled with information from neighboring pixels. Since holes oc-
cur due to disocclusion, given two neighbors, we prefer to use the
more distant one to fill the gap. To do so, we combine the pixel
colors andz-values of the pixels in a 7×7 neighborhood. They are
combined using thesoft z-buffer calculation described above except
in reverse. In other words, more distantz-values are given higher
weights by inverting the ordering, by setting thez-values to 1− z.

In summary When iterating over the segments to be rendered,
only three textures are (re-)loaded per viewpoint: the two RGBA
texture maps; and a texture for an ID image to map pixels to seg-
ments. A fourth texture, the barycentric weight map from the view
mesh, is computed once and used throughout.

As a result of this GPU approach, we can render scenes at 30-
45 frames-per-second on an NVIDIA 8800 series graphics card,
whereas an implementation using one texture per segment achieved
only 7.5 frames-per-second and did not calculate the blending
weights on a per pixel basis, use asoft z-buffer, or fill holes.
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Figure 2 Three renderings of crabs at the market. The first row shows a
novel viewpoint rendered from the segments of all the input photographs
by the interactive renderer; many holes are visible. An inset, highlighted
in blue, is shown on the right. The second row shows the result after
inpainting without depth guidance; no holes remain but the result is in-
correct. The final row shows the result after depth-guided inpainting in
offline-rendering; no holes remain and the inferred background is cor-
rect.

Depth of field and color effects Efficient, approximate
depth-of-field rendering is accomplished using a variation on ex-
isting methods [Demers 2004; Kass et al. 2006;?]. For each pixel,
we calculate a circle of confusion based on a user defined aperture
size, and blur the result of our rendered scene accordingly. The blur-
ring operation is performed efficiently by loading the scene into a
MIPMAP and indexing into it based on the blur kernel radius. To
improve visual quality, we index into a higher resolution level of
the MIPMAP than strictly needed, and then filter with a Gaussian
filter of suitable size to achieve the correct amount of blur. Note that
when focusing on the background in a scene, this approach will not
result in blurred foreground pixels that partially cover background
pixels as they should, i.e., the blurry foreground will have a sharp
silhouette.

To avoid such sharp silhouettes, when processing a pixel at or be-
hind the focus plane, the pixel shader blends the pixel with a blurred
version of the image at that pixel. The blur kernel size is based
on the averagez-value of nearby foreground pixels. The blending
weight given to this blurred version of the image is given by the
fraction of the neighboring pixels determined to be foreground. The
size of the neighborhood is determined by the circle of confusion
computed from the user specified aperture and focal depth.

6.2 Off-line rendering

The higher quality off-line rendering algorithm differs from the in-
teractive renderer in three main ways. First, we extend thesoft z-
buffer described above to increase the accuracy of our pixel value
estimate. Second, the renderer uses a texture synthesis approach to
fill any holes and cracks that might appear in a novel view due to

sparse data generated from the input photographs. Finally, depth
of field effects are rendered with increased quality by simulating a
camera aperture.

Soft z-buffer The softz-buffer calculation is very similar to the
process described in the real-time renderer. However, rather than us-
ing a traditional hardz-buffering within each viewpoint followed by
a softz-buffer across viewpoints, all segments from all contributing
viewpoints are combined in a uniform manner. We assemble a depth
ordered list of elements at each pixel location as the segments are
projected onto the scene. Each element contains the sampling view-
point ID, the RGBA color value,z-value, theblending weight, and
the soft weightwz as computed above. The softz-buffer weights,
wz are computed when the list is complete.

Hole filling To fill holes the offline renderer uses a more prin-
cipled approach, in particular the in-painting algorithm of Crim-
inisi et al. [2003] — based on example-based texture synthesis
— with two modifications. First, to accelerate computation, we
search for matching (5×5) neighborhoods within a restricted win-
dow (100×100) around the target pixel, rather than over the entire
image. The second, more significant, modification is based on the
observation that nearly all large holes occur along depth disconti-
nuities, because some region of background geometry was always
occluded in the input photographs. In this case, the hole should be
filled from background (far) regions rather than foreground (near)
regions. We thus separate the depths of the pixels along the bound-
ary into two clusters, and use these two clusters to classify pixels,
as needed, as foreground or background. We then fill the hole with
Criminisi’s propagation order, using modified neighborhoods and
neighborhood distance metrics. In particular, for a given target pixel
to fill in, its neighborhood is formed only from pixels labeled back-
ground. If no such pixels exist in this neighborhood yet, then this
pixel is placed at the bottom of the processing queue. Otherwise, the
neighborhood is compared against other candidate source neighbor-
hoods, measuring theL2 differences between valid target pixels and
all corresponding source pixels from a candidate neighborhood. For
source pixels that are invalid (foreground or unknown), we set their
colors to 0, which penalizes their matching to generally non-zero,
valid target neighborhood pixels. Whenever a pixel is filled in, it
is automatically classified as background. Thus pixels with invalid
neighborhoods (e.g., those centered on the foreground occluder)
will eventually be processed as the hole is filled from the back-
ground side. When copying in pixel color, we also inpaint itsz by
weighted blending from known neighbouring pixels, again favoring
the back layer. The inpaintedz assists in region selection for color
manipulation effects. The third row of Figure 2 shows the results of
our inpainting algorithm for a novel viewpoint rendering of one of
our datasets. Note that Moreno-Noguer et al. [2007] also explored
depth-sensitive inpainting, though their application has lower qual-
ity requirements since they use the inpainted regions for rendering
defocused regions rather than novel viewpoints.

Depth of field Our rendering algorithm now provides a way
to reconstruct any view within the viewing volume. In addition to
changing viewpoint, we can synthetically focus the image to simu-
late camera depth of field. To do so, we apply an approach similar to
what has been done insynthetic-aperture photography [Levoy and
Hanrahan 1996; Isaksen et al. 2000]. We jitter viewpoints around
the center of a synthetic aperture and reconstruct an image for each
viewpoint. We then project all the images onto a given in-focus
plane and average the result.

6
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Figure 3 Crab example: the top row shows one of the input images, the
middel row is the visulization of its segmentation, and the bottom row
is the corresponding depth map.

7 Results

We demonstrate our results on a variety of scenes. The depth esti-
mates are not as geometrically accurate as the top performers in this
category, but are sufficient to synthesize novel views that are visu-
aly appealing. The number of input images ranges from 8 to 15. As
shown in Figure 4, only four of the results out of over 100 datasets
required the user to click segments with errant depth, which typi-
cally took 3-5 minutes of user time.

We have tested our overall approach on 208 datasets capturing a va-
riety of scenes. About half of the datasets (108 out of 208) produced
visually appealing results. The other half were less successful. Here
is a breakdown of what failed:

• Error due to data (35/208 or 17%): The data contained too much
motion, resulting either in motion blur or poor correspondence.

• Error caused by structure-from-motion (SfM) (9/208 or 4%): too
little parallax for SfM to recover the camera parameters.

• Error in stereo matching (56/208 or 27%): color shifts, too large
a baseline, textureless regions, etc.

The majority of failure is due to error in stereo matching. For one,
our stereo algorithm is tuned for small baselines (typically about
four inches apart). Larger baselines will produce poor depth recon-
struction. Also, our approach is subject to the same limitations as
most multi-view stereo algorithms. For example, large, fairly un-
textured regions, such as a gray sky, may not work well. Our results
certainly contain examples of non-Lambertian surfaces; however,
widespread violations of the Lambertian assumption, such as large
areas of reflective or translucent surfaces, will also cause problems.
Finally, very thin structures, such as wires or trees in winter, tend to
cause poor depth reconstruction, unless they are far enough away
that little parallax exists with their background.

8 Conclusion

We described an approach to render novel views based on a dense
geometry representation from a few snapshots of a scene, which are
easy and cheap to capture with a digital camera.
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