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Abstract work [Zitnick et al. 2004] has shown that this matting information

. i i improves novel view interpolation near depth discontinuities. One
This paper presents an approach to render novel views from input gitficulty in extending this optical flow algorithm, however, is that
photographs, a task which is commonly referred tinasge based while their paper provides a good conceptual framework, it con-
rendering. We first compute dense view dependent depthmaps Us-ains very little in the way of algorithmic details. Thus, a further
ing consistent segmentation. This method jointly computes multi- contribution of our paper could be considered to be the first de-

view stereo and segments input photographs while accounting for y5jjed treatment of an algorithm based on this approach, in a way
mixed pixels (matting). We take the images with depth as our input {hat makes the ideas implementable.

and then propose two rendering algorithms to render novel views

using the segmentation, both realtime and off-line. We demonstrate A number of papers have used advanced graphics hardware to ac-
the results of our approach on a wide variety of scenes. celerate the rendering of imagery captured from a collection of
viewpoints. The early work on light fields [Levoy and Hanrahan
1996; Gortler et al. 1996] rendered new images by interpolating the
colors seen along rays. The lightfield was first resampled from the

The goal of our work is to render high-quality novel viewpoints Inputimages. The GPU was used to quickly index into a lightfield
of a scene from a small number of handheld snapshots. Given ourdata structure. In one of the early works leveraging per-pixel depth,
primary application to be novel view synthesis, we compute dense Pulli et al. [1997] created a textured triangle mesh from each depth
view dependent depthmap for each input photograph. We further image and rendered and blended these with constant weights. They

propose two rendering algorithms with different speed and quality @S0 introduced the notion of a soft-z buffer to deal with slight in-
trade-offs. accuracies in depth estimation. We take a similar approach but are

able to deal with much more complex geometries, use a per-pixel
Multi-view stereo [Seitz et al. 2006] and image-based render- weighting, and have encoded the first soft-z into the GPU accelera-
ing [Kang and Shum 2002] have been well-studied research prob-tion. Buehler et al. [2001] also rendered per-pixel weighted textured
lems. However, given our application, we extend previous ap- triangle meshes. We use a similar per-pixel weighting, but are also
proaches in a number of significant ways in order to produce higher able to deal with much more complex and accurate geometries. We
quality results. also use a “reverse soft-z” buffer to fill holes caused by disocclu-
sions during rendering.

1 Introduction

2 Related work

. . . _ System overview
Image-based rendering (IBR) techniques use multiple captured im-

ages to support the rendering of novel viewpoints [Kang and Shum Since the collection of input photographs is typically shot with a
2002]. Rendering novel viewpoints of a scene by re-sampling a sethand-held camera rather than a calibrated rig, we first recover the
of captured images is a well-studied problem [Buehler et al. 2001]. viewpoints and orientations of each camera using structure-from-
IBR techniques vary in how much they rely on constructing a ge- motion (Section 4). This step also returns a sparse cloud of 3D scene
ometric proxy to allow a ray from one image to be projected into points. We compute a triangulation to determine the neighboring
the new view. Since we are concerned primarily with a small region viewpoints, which is useful both for determining scene depths and
of the input viewpoints, we are able to construct a proxy by deter- for choosing which nearby input photographs to use when render-
mining the depths for each of the input images using multi-view ing a novel view. Our multi-view stereo algorithm then breaks each
stereo, similar to Heigl et al. [1999]. Our technique merges a set of photograph into small segments and determines the depth of each
images with depth in a spirit similar to the Layered Depth Image segment in each view (Section 5).

(LD) [Shade et al. 1998]. However, we compute depths for seg- We have developed two rendering algorithms to display novel views

ments, and also perform the final merge at render time. Zitnick et . . ]
al. [2004] also use multi-view stereo and real-time rendering in their 10 the textured segments with depth (Section 6. The first render-

system for multi-viewpoint video, though their constraint that cam- ggglg_lgrzlthm IS |r3p|leme_tnr:ed_a$ a rleal-tlntledrendererflfel\_/eraglng the
eras lie along a line allows some different choices. Most IBR sys- - Ihe second algorithm IS impiemented as an ofi-line renderer

tems are designed to operate across a much wider range of view-and produces higher quality results.
points than our system and typically use multiple capture devices
and a more controlled environment [Taylor 1996; Levoy 2006]. 4  Structure from motion and triangulation

Stereo is an active area of research in computer vision, for both two The first step of our system is to recover the relative location
views [Scharstein and Szeliski 2002] and multiple views [Seitz etal. and orientation of each photograph, which we perform using the
2006]. Stereo can be seen as a more constrained version of the genstructure-from-motion system of Snavely et al. [2006]. Their sys-
eral optical flow problem; our stereo implementation is an extension tem matches features between each pair of images and iteratively
of the optical flow work of Zitnick et al. [2005]. Their approach to  estimates the projection matrix of each photograph. We then project
motion estimation is particularly well-suited to image-based render- the cameras onto a 2D manifold in 3D space (in our case, a least
ing because it explicitly models pixels that are mixtures of several squares plane fit), and we triangulate the projected points via a De-
scene points; that is, an alpha value per pixel is computed. Recentlaunay triangulation [Shewchuk 1996] to formveew mesh. We
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consider any pair of cameras connected by a triangle edge to berequired to be bijective or symmetric, which allows for occlusions
neighbors in the view mesh. and disocclusions. A mapping (k) implicitly defines a disparity

for each pixelp that considers th&'th segment as primary, i.e.,
s1(p) = k; the disparityd;j (k) is the displacement of the centroids

of the segments. (Note that we use disparity and displacement inter-
Our multi-view stereo algorithm can be viewed as an extension changeably here, and that they correspond to 2D vectors.) In some
to the consistent-segmentation optical flow approach of Zitnick et cases, however, we are able to determine when a segment is par-
al. [2005]. Their intuition is that optical flow is simpler to compute tially occluded, making this disparity estimate invalid, and, as dis-
between two images that are consistently segmented (by consistentcussed in Section 5.3, we compute disparity by other means. For
we mean that any two pixels in the same segment in inkagee this reason, we separately keep track of a segment’s displgf(ky,

also in the same segment in imalgg, since the problem reduces  in addition to its mappingsj; (k). Ultimately, we will combine the

to finding a mapping between segments. Conversely, consistentlydisparitiesd;j (k) to determine the depth of segméant

segmenting two images of the same scene is easier if optical flow is i . . )

known, since neighboring pixels with the same motion are likely to 1he algorithm of Zitnick et al. iterates between updating the seg-
be in the same segment. Their algorithm iterates between refiningMentation and disparities for two views. To handleeighboring

segmentation, with motion treated as constant, and refining motion, ViewS when computing depths for a reference vigwur algorithm
with segmentation treated as constant. iterates between updating the segmentatioi and itsn neighbor-

ing viewsl;, and updating the mappings and disparities between
We apply this basic approach to multi-view stereo, and extend it and each neighboring view (i.exj andoj;). To compute segments
in four significant ways: (1) we compute stereo rather than opti- and depths for all views, we loop over all the images, sequentially
cal flow by enforcing a soft epipolar constraint; (2) we incorpo- updating each image’s segmentation and then disparities. We repeat
rate prior, sparse knowledge of the 3D scene computed by structurethis process 20 times, after which depths are merged. Note that this
from motion; (3) we consistently segment a view with respect to entire process is linear in the number of original views.
its neighboringn views rather than a single other view; and (4) we
add an extra stage that merges the disparities computed from the 5 1 |nitialization
neighboring views into a single set of segments and their associated
depths, resulting in a final set of segments for each view. We initialize the segmentation for each image by subdividing it into
a quadtree structure. A quadtree node is subdivided if the standard
deviation of the pixel colors within the node is larger than a cer-

5 Multi-view stereo

We should note that the work of Georgiev et al. [2006] also builds

o e et eper s oo o s e
ever, neither reconstructs nor uses any scene points derived througr'%nmt:ﬁeﬁﬂgﬁ gj% .Si?(g}l)s, ?g (;\\/’g?ddé)vgf ;:;nlﬁlxtlgteiorr?g\l;\algsmti%atl)_e
structure from motio_n, nor reconstructs depth maps — instead_theyize the mapping betweén segments using the sparée cloud of 3D
perform view morphing on a specific camera manifold, customized g e hoints computed by structure from motion. Each segment is
for a special lens design. initialized with the median disparity of the scene points that project
Our multi-view stereo algorithm is applied to each reference view 10 it, or is interpolated from several of the nearest projected scene
by comparing it to it$1 neighboring views. Let each vielycontain points if no points project within its boundaries. Each segrkent

ki segments. Each pixel is treated as a mixture of two segments.imagel; is then mapped to neighboring imaeaccording to its
Therefore, each pixep of view I; is assigned a primary and sec- initial disparity, and the mappingj; (k) is set to the segment i
ondary segmens; (p) ands(p). A coverage value o (p) expresses that covers the largest portion of the displaced segient

the portion of the pixel that comes from the primary segment; thus,

0.5< a < 1. Given the segmentatiois; (p),s(p)), and the cov- 5.2 Segmentation update

erage values of each pixel, a mean colgk) for the kK'th seg- i . e .

ment can be computed. L&tbe the observed color gf in I, let We flrst_descrlbe how Z_|tn|ck_et a_I. upd_ate the segmentation of
C1 = p(s1(p)) be the mean color of the primary segment, &ad V|e_wli with respect to neighboring v_|e1/y, given a current segmen-

be the mean color of the secondary segment. Ultimately, we seek totation and mapping. We then describe how we extend this update to
compute a segmentation, such that the convex combination of thehandlen views.

segment mean colors, For each pixelp in view I;, we consider the segments that over-

lap a 5x 5 window aroundp. For each of these segments, treating
aCi+(1-a)C 1 . . e : .

1+ ( G2, @) it as primary, we then pair it with every other segment (including
is as close t€ as possible. Given a particular pair of mean colys ~ itself), computex according to equation (2) (or set it to 1, for self-
andC,, we can project the observed colmonto the line segment ~ Pairings), and compute a score for every pairing for which 0.5.
that connects them in color space to imputecarfor that pixel, We then choose the highest scoring pair as the segments for this
which amounts to computing pixel. We commit this segmentation choice after visiting every im-

age pixel in the same fashion.

C-Cy)-(C1—-C
a= w (2) The score of a segment pairing at pixeis computed as follows.

G2
€1~ Coll Given the primary and secondary candidate segmeyits) and
where the numerator contains a dot product between two color dif- $2(P), as well asa and the observed cold, aninferred primary

ference vectors, and the result is clampedats valid range. In color C} can be calculated such that it satisfies the blending equa-
the end, the overlap between segments is usually fairly small; thustion: ,
many pixels belong to exactly one segment. In such cases, we con- C=aC+(1-0a)C. 3)

:l?g)r r;?lp);??ng r;rggrialr.ld secondary segments to be the Same’Given the inferred primary coldg; from a pair of candidate seg-

ments, we compute its score as follows:
To define a mapping between segments in two views, segknent
in view l; maps to a segmei;j (k) in view |;. Mappings are not N[Cy; C1, Z(s1(p))] VI[P, s1(p)] V[a, aij(s1(p))], 4
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whereN[x; i, Z] returns the probability of given a normal distribu-
tion with mearu and covariance matrix, v[p, k] measures the frac-
tion of the 5x 5 window centered ap covered by segmett and
whereqis the pixel inlj corresponding t@, i.e.,q= p+djj(s.(p)).

This scoring function encodes two objectives. The first is that the
inferred primary color should have high probability, given the prob-
ability distribution of the colors of the primary segment. The second
objective is that the primary segment should overlap significantly
with a window around pixep in I;, and the corresponding segment
should also overlap with a window arougdin [;.

of segmenk, andoﬁ,- (k) is the normalized direction of displacement
of that segment.

Finally, we (again) take advantage of the 3D scene points recon-
structed in Section 4. In this case, if one or more of these points
project into a segmerk in imagel;, we compute the median dis-
placementn;j (k) of their re-projections into imagg, and multiply

one more term into the scoring function:

exp(—|[mj (k) —dij (K)|])

to encourage similarity in these displacements.

9)

Given this pairwise segmentation-update approach, the extension

to n neighboring views is quite simple. When updating the segmen-
tation for the reference viewy, we multiply the product in equa-
tion (4) by the termv[q, gij(s1(p))] for each neighboring viewl;,
resulting in a product ofi+ 1 overlap terms/(-).

5.3 Segmentation and disparity update

Given a segmentation for each view, in this step we update the map-

pings and disparities between segments in reference kiand
each neighboring view;. We first describe the algorithm and ob-

After iteratively optimizing all the disparities in the image accord-
ing to the scoring function, a final pass is performed to account for
segments that may have become partially occluded in moving from
imagel; to ;. (Here, we return to the original algorithm of Zit-
nick et al.) In this pass, we visit each segmileit |; and determine

if the size of its corresponding segment is substantially different
from the size of segmem j (k) in I;. We also determine if the map-
ping for a segmenk is not symmetric, i.e., ik # gji(gjj(Kk)). If
neither of these conditions is true, then we simply set the disparity
dij (k) to the difference of the centroids &fand gj; (k). However,

jective function used by Zitnick et al. to choose this mapping, and if ejther of these conditions is true, then we suspect a disocclusion.
then describe our extensions to incorporate epipolar constraints andp, that case, we attempt to “borrow” the disparityksf neighbors.

a depth prior from the cloud of 3D scene points calculated by struc-
ture from motion.

For each segmetitin I;, we visit all segments within a large win-
dow around the centroid of the initial segmemnf(k) in imagel;.

We then score the compatibility of these candidate segmentskwith
and setajj(k) to the candidate segment that yielded the highest
score. (In our implementation, we repeat this process 20 times,
starting with a 200« 200 search window, steadily narrowing the
search window with each iteration, down to 120200.)

The scoring function for a segmektand a candidate mapping
0ij(k) is a product of three terms. The first term,

N[u(k); u(aij(k)), Z(aij (k)] N[u(aij(k)); u(k), Z(K)],  (5)

measures how similar the colors are in the two corresponding seg-

ments, by measuring the probability of the mean color of seginent
given the color distribution of segmedt;(k), and vice versa. The

second,
N[dij (k); H(d), Z(d)], (6)

is a regularization term that measures the probability of the implied
disparity dij (k) given a normal distribution of disparities whose
mean and covariancg(d), 2(d) are computed using the dispari-
ties of each pixel in a 100 100 window centered at the centroid of
segmenk. The third,

sijlk 0ij (k)] 7

measures the similarity in shape between the two segments by com

paring their sizes. The functiogin this term is the ratio between
the numbers of pixels in the smaller and larger segments.

For our purposes, we extend the disparity update algorithm in sev-

eral ways. For one, a candidate mapping segnagitk) is only
considered only if its centroid falls near the epipolar lipén I;
of the centroid of segmefktin I;. We cull from consideration seg-

ments whose centroids are more than 25 pixels from the epipolar

line. We also contribute two additional terms to the product to be
maximized when choosing mappings. The first term penalizes dis-
placements that are not parallel to corresponding epipolar lines:

®)

where exyp-) is the exponential functiorg(K) is the normalized di-
rection of the epipolar line in imageg associated with the centroid

exp(—&(K) - dij (k)

In particular, for each segment that overl&ps imagel; (i.e., each
distinct segment that is either primary or secondarl & one or
more pixels), we apply its disparity toand compare the mapped
segment against each segment it overlapgly computing the av-
erage square color difference within their overlap. After considering
all possibilities, the disparity and segment mapping with minimum
color difference are stored with segmént

5.4 Depth merging

After the above two update steps are iterated to completion (20 it-
erations over all the images), the result is a segmentation and a set
of n disparities for each segment, one disparity for each neighbor-
ing view. Since we need only one depth per segment, these disparity
estimates must be combined. We do so in a weighted least squares
fashion. To compute the depth of a segmleit imagel;, we con-

sider the corresponding segmeni(k) in each neighboring viely.

Each corresponding segment defines a 3D ray from the optical cen-
ter of viewl; through the centroid of that segment on the view's im-
age plane. Such aray also exists for segrkentreference view;.

We thus compute a 3D point that minimizes the Euclidean distance
to thesen+ 1 rays in a weighted least squares sense. Correspond-
ing segments that we suspect are occluded in Viewe given less
weight. A mapping segmert; (k) is considered occluded if the
mapping is not symmetric, i.egji(0jj(K)) # k. We set the weights

of these rays to 0.25, and the rest to 1.0.

5.5 Interactive correction

Unfortunately, multi-view stereo algorithms are not perfect, and
they will sometimes assign incorrect depths; these errors can some-
times be seen as errant segments that coast across the field of view
(often near depth boundaries). To handle them, we allow users to
click on these errant segments in our interactive viewer; this input
is used to improve the depth estimates. The extent of this interaction

is quantified in Section 7.

6 Rendering algorithms

We have developed two rendering algorithms to display novel views
from the textured segments with depth. The first rendering algo-
rithm is implemented as a real-time renderer leveraging the GPU.
This renderer allows a user to explore the scene and design camera
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novel view, and thus the ones whose segments will contribute to that
novel view pixel. We assign lalending weight to each contributing
segment equal to the barycentric coordinates for the corresponding
viewpoint in the intersected triangle. This is similar to the weights
given in [Buehler et al. 2001].

The contributing segments also lie in some depth order from the

novel view. Often, segments from different viewpoints represent

the same piece of geometry in the real world and thus will lie at

(b) approximately the same depth. Slight differences in depth are due
to noise and errors in the capture, viewpoint positioning and depth

Figure 1 (a) The view mesh is extended by creating copies of bound-  €stimation. As the novel viewpoint changes, the exact ordering of

ary vertices and placing them radially outward (red arrow) from the ~ these segments may change. Rendering only the closest segment

centroid (red dot) of all of the mesh vertices. These new vertices are may thus lead to popping artifacts as therdering flips. To avoid

then re-triangulated and added to the view mesh to form an extended these temporal incoherencies, we implemesofaiz-buffer [Pulli

view mesh.(b) The dotted blue arrow shows a ray projected through et al. 1997]. A soft z-buffer allows us to consistently resolve con-

the image plane. Thblending weights at this pixel correspond to the flicting depth information by combining all of the segments that
barycentric coordinates of the intersected triangle of viewpoints in the  may contribute to a pixel, and estimating the most likely RGBA
view mesh. andz values for the pixel. The soft z-buffer assigngwaeight for

each contributing segment beginning with a weight of 1.0 for the

closest segment (at a distangg dropping off smoothly to 0.0 as
paths that best depict the scene. Itis also used by the automatic camthe distance increases beyond The z-weights are multiplied by
era path planner to evaluate whether novel viewpoints are "valid” the blending weight, and the results are normalized. The final pixel
(i.e., wheter they can be rendered with minimal holes), and to esti- value is the normalized weighted sum of the textures from the con-
mate the amount of parallax to select paths that provide a strong 3Dtributing segments.
effect. The second algorithm is implemented as an off-line renderer
and produces higher quality results; it is used to render the final
result animation. Both renderers take the same basic approach; w
therefore first describe the general rendering algorithm, and then
we describe the specifics of the interactive renderer implementation
including GPU acceleration, and finally we describe the differences
in the off-line rendering algorithm.

When the novel view diverges from the original viewpoints, the
Qarallax at depth discontinuities may cause segments to separate
enough so that a ray hits no segments. We are then left with a hole-
filling problem. We address this later in the context of the interactive
and offline renderers.

6.1 Interactive renderer
To render the scene from a novel view, we project a ray from the

origin of the novel view through each pixel in the image plane Fig- To render the scene from a novel view at interactive frame rates

r (at least 30 fps), we need to pose the rendering problem in terms

ure 1b). If the ray intersects any segments, we combine their colo f > d ibe th deri :
and depth values and assign the combined color to the pixel. We cal-Of GPU operations. We now describe the rendering steps in terms
of polygons, texture maps and GPU pixel shaders. We render the

culate each segment’s contribution in three steps. First we choose ot Fi h hich hould
which segments should contribute to the the pixel value. Second,s.cbene n ﬁ”r §te|ps.| irst, ‘(’j"e CI olosem ch' segmelzwtfs S O”h con-
we compute dlending weight for each contributing segment color  t'PUte to the pixe| value and calculate thiending weight for eac

value. Finally we employ aoft z-buffer to resolve depth inconsis- contributing segment color value. Second, we render all of the seg-

tencies and normalize the weights to combine the remaining color ments to three o_ffscree_n buff_ers. Third, we emplogof z-buffer
values. to resolve depth inconsistencies between the three offscreen buffers

and combine their color values. Finally, we fill holes usirrg.erse
When choosing which segments should contribute to a pixel value, soft z-buffer and local area sampling.
we only consider those segments belonging to three original view-
points with rays most closely aligned with that corresponding to
the pixel to be rendered. To select the viewpoints for each pixel
of the novel view, we first construct\vdew mesh by projecting the
viewpoint camera positions onto a 2D manifold in 3D space, in
this case, a plane fit to the camera locations using least squares
The original vertices are then triangulated via a Delaunay triangu-
lation [Shewchuk 1996]. We also extend the view mesh by dupli-
cating the vertices on the mesh boundary (Figure 1a). These dupli-
cate vertices are positioned radially outward from the mesh center
at a distance four times the distance from the center to the vertices
on the boundary. The original and duplicate vertices are then re-
triangulated to form the final view mesh. The triangles on the view When rendering the extended view mesh, there are two special
mesh boundary will contain two vertices with the same camera ID, cases that should be highlighted. First, if the novel view lies in front
while interior triangles will have three distinct camera IDs. of the view mesh, the projection step requires a backwards projec-

tion (i.e., projecting geometry that is behind the viewer through the

Given the novel view and the view mesh, we are now ready to de- center of projection). Second, the projection of the view mesh nears
termine which viewpoints will contribute to each pixel in the novel singularity as the novel view moves close to the view mesh it-

view and with what weights. Each pixel in the novel view defines a go|t Therefore, if the novel view is determined to lie within some
ray from the novel viewpoint through the pixel on the image plane.

This ray is intersected with the view mesh (looking backwards if it is not strictly necessary to encode both viewpoint IDs and the
necessary). The viewpoints corresponding to vertices of the inter- barycentric weights into one off-screen buffer, but doing so saves a ren-
sected triangle on the view mesh atesest for that pixel in the dering pass and reduces texture memory usage.

Rendering the extended view mesh To choose which seg-
ments should contribute to the pixel value and to calculate the
blending weights we render the extended view mesh from the novel
view to an offscreen buffer. Setting the three triangle vertex colors
to red, green, and black encodes two of the barycentric coordinates
in the Red and Green channels; the third coordinate is implicit. The
Blue and Alpha channels are used to store an ordered 3-element list
storing the ID’s of the three viewpoints (we use 5 bits to encode a
viewpoint ID, so 3 IDs can be stored in 16 bits, allowing for a total
of 32 input viewpoints).
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small distance from the view mesh, the view mesh is not rendered el se di scard;
at all. Rather, the nearest point on the mesh is found. The blending
weights and viewpoint IDs are then constant across all pixelsinthe if (SegnmentlD == Segl DMap[ 0] or

novel view, set to the barycentric coordinates of the point on the Segment | D == Segl Dvap[ 1])
view mesh and the vertex IDs of the triangle the point lies in. | Extract AndDr aw( Tar get ) ;
el se
di scard;

Rendering segments  Each segment is rendered as a texture }

mapped rectangle. The rectangle’s vertex locations and texture co-

ordinates are defined by the bounding box of the segment. A seg-Before rendering any segments, the segments for each viewpoint
ment ID and associated viewpoint ID is recorded with each rect- are sorted to be processed in front-to-back order. The three ren-
angle. Rather than create a separate texture map for each segmetering buffers are initialized to black background and zero alpha.
rectangle, we create two RGBA textures for each viewpoint, plus To maintain proper color blending armbuffering, the blending
oneSegment ID texture. As described in Secti®? pixels nearthe ~ mode is set to GISRCALPHA_SATURATE, depth testing is en-
boundaries of segments are split into two overlapping layers to ac- aled, and set to GIALWAYS. The pixel shader calculates the pre-
count for mixed pixels along the boundaries. Thus, the first RGBA multiplied pixel values and alphas to render.

texture contains the segment interiors and one of the two layers.

The other RGBA texture contains the second layer along segment

boundaries. Finally we create a third 2-channel 16-bit int&ggs Soft z-buffer  The z-buffering is performed traditionally within a
ment 1D texture map containing segment ID values indicating to single viewpoint for each of the three buffers; however, we employ
which segment a pixel belongs. a soft z-buffer across the viewpoints to blend the three results. For

ach corresponding pixel in the three buffers, we compute a soft

For each segment, a pixel shader combines the texture maps and ; Al :
discards fragments within the segment bounding rectangles but Iayﬁ“alght w; by comparing each pixel'svalue with thez-value of

ing outside the segment itself. To render a rectangle, we encode théz'xil closestto t_he orlgln of the novel_ V'?]W'an's (j_lstamzewher.e
segment ID as a vertex attribute (e.g. color or normal data). The 2= Z— Zelosest IS Used to compute; in the following equation:
shader uses this value in conjunction with Begment ID texture

and the two RGBA textures to compose the segment color values 1 if Az<y
on the fly. w(82)={ d(1+cos(TELL)) ify<dz<p-y (10
voi d main(){ 0 otherwise

if (SegnentlD == Segl DMap[ 0] or
Segnent | D == Segl Dvap[ 1] )
Extract AndDr aw( ) ;

el se
di scard;

wherep is the depth range (max—min) of the entire scene, aisd
set top/10.

The set ofw,’'s are normalized to sum to one. The depior that
} pixel is then given the sum of thevalues weighted by therss.

Using this GPU based texture representation has two benefits, bothEachblending weight stored in the view mesh texture is multiplied
of which increase rendering speed. First, it reduces the number ofbY its correspondingy,. These new blending weights are normal-
texture swaps from thousands per viewpoint to only three. Second,ized. The final pixel value is computed by scaling each pixel by the
by removing the texture swap from the inner loop we are able to Normalizedblending weight, and composited based on their alpha
take advantage of vertex arrays or vertex buffer objects and utilize values.

the GPU more efficiently.

We still need to choose which segments contribute to each pixel
and by how much. A pixel is ultimately a sum of segments orig-
inating from at most three different viewpoints as encoded in the
viewpointIDs in the offscreen rendered view mesh. We create three | = . '
buffers to accumulate RGBA values, corresponding to the three durl_ng the_ﬂn_alsoft z—b_uffer pass. We assume that any hole should
viewpointIDs stored at each pixel in the rendered view mesh. When Pe filled with information from neighboring pixels. Since holes oc-
rendering a segment, we encode the segment’s viewpoint ID as aCl" due_ to dlsocclu5|0_n, given two neighbors, we prefer to use the
vertex attribute. The pixel shader chooses to which of the three More distant one to fill the gap. To do so, we combine the pixel
buffers a segment should contribute, if any, by matching the the colors andz-values of the pixels in a ¥ 7 neighborhood. They are
segment’s viewpoint ID with the ones encoded in the offscreen ren- combined using theoft z-buffer calculation described above except
dered view mesh at that pixel location. For example, if the seg- in reverse. In other words, more distaatalues are given higher
ment’s viewpoint ID matches the first of the view mesh’s encoded weights by inverting the ordering, by setting thgalues to -z
viewpoint IDs (i.e., the one corresponding to the "red” barycentric

coordinate), the pixel is accumulated in the first buffer using the first

(red) barycentric coordinate as a weight. The same is done |f there|, summary  When iterating over the segments to be rendered,
is a match with the second (green) or third of the view mesh's en- o three textures are (re-)loaded per viewpoint: the two RGBA
coded viewpoint IDs, except the third barycentric weight is inferred texture maps; and a texture for an 1D image to map pixels to seg-

from the other two (1 - red - green). ments. A fourth texture, the barycentric weight map from the view

Holefilling  Holes occur when, due to parallax, a nearby segment
separates from a more distant segment. A pixel withvalue of 1
indicates a hole. we fill small holes of less than 6 pixels in diameter

voi d main(){ mesh, is computed once and used throughout.
if (Viewl D == Vi ewl DVap[ 0] ) _
Target = O; As a result of this GPU approach, we can render scenes at 30-
else if (Viewm D == View DVap[1]) 45 frames-per-second on an NVIDIA 8800 series graphics card,
Target = 1; whereas an implementation using one texture per segment achieved
else if (View D == View Dvap[ 2]) only 7.5 frames-per-second and did not calculate the blending
Target = 2; weights on a per pixel basis, useddt z-buffer, or fill holes.
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sparse data generated from the input photographs. Finally, depth
of field effects are rendered with increased quality by simulating a
camera aperture.

Soft z-buffer  The softz-buffer calculation is very similar to the
process described in the real-time renderer. However, rather than us-
ing a traditional hara-buffering within each viewpoint followed by

a softz-buffer across viewpoints, all segments from all contributing
viewpoints are combined in a uniform manner. We assemble a depth
ordered list of elements at each pixel location as the segments are
projected onto the scene. Each element contains the sampling view-
point ID, the RGBA color valuez-value, theblending weight, and

the soft weightw; as computed above. The safbuffer weights,

w; are computed when the list is complete.

Hole filling  To fill holes the offline renderer uses a more prin-
cipled approach, in particular the in-painting algorithm of Crim-
inisi et al. [2003] — based on example-based texture synthesis
— with two modifications. First, to accelerate computation, we
search for matching (5 5) neighborhoods within a restricted win-
dow (100x 100) around the target pixel, rather than over the entire
image. The second, more significant, modification is based on the
: observation that nearly all large holes occur along depth disconti-
Figure2 Three renderings of crabs at the market. The first row showsa  huities, because some region of background geometry was always
novel viewpoint rendered from the segments of all the input photographs ~ 0ccluded in the input photographs. In this case, the hole should be
by the interactive renderer; many holes are visible. An inset, highlighted ~ filled from background (far) regions rather than foreground (near)
in blue, is shown on the right. The second row shows the result after ~ regions. We thus separate the depths of the pixels along the bound-
inpainting without depth guidance; no holes remain but the result is in-  ary into two clusters, and use these two clusters to classify pixels,
correct. The final row shows the result after depth-guided inpainting in  as needed, as foreground or background. We then fill the hole with
offline-rendering; no holes remain and the inferred background is cor- ~ Criminisi’s propagation order, using modified neighborhoods and
rect. neighborhood distance metrics. In particular, for a given target pixel
tofillin, its neighborhood is formed only from pixels labeled back-
ground. If no such pixels exist in this neighborhood yet, then this
Depth of field and color effects Efficient, approximate pixel is placed at the bottom of the processing queue. Otherwise, the
depth-of-field rendering is accomplished using a variation on ex- neighborhood is compared against other candidate source neighbor-
isting methods [Demers 2004; Kass et al. 200)6for each pixel, hoods, measuring the differences between valid target pixels and
we calculate a circle of confusion based on a user defined apertureall corresponding source pixels from a candidate neighborhood. For
size, and blur the result of our rendered scene accordingly. The blur-source pixels that are invalid (foreground or unknown), we set their
ring operation is performed efficiently by loading the scene into a colors to 0, which penalizes their matching to generally non-zero,
MIPMAP and indexing into it based on the blur kernel radius. To valid target neighborhood pixels. Whenever a pixel is filled in, it
improve visual quality, we index into a higher resolution level of is automatically classified as background. Thus pixels with invalid
the MIPMAP than strictly needed, and then filter with a Gaussian neighborhoods (e.g., those centered on the foreground occluder)
filter of suitable size to achieve the correct amount of blur. Note that will eventually be processed as the hole is filled from the back-
when focusing on the background in a scene, this approach will not ground side. When copying in pixel color, we also inpaintzitsy
result in blurred foreground pixels that partially cover background weighted blending from known neighbouring pixels, again favoring
pixels as they should, i.e., the blurry foreground will have a sharp the back layer. The inpaintedassists in region selection for color
silhouette. manipulation effects. The third row of Figure 2 shows the results of
. . . . our inpainting algorithm for a novel viewpoint rendering of one of
To avoid such sharp silhouettes, when processing a pixel at or be-or gatasets. Note that Moreno-Noguer et al. [2007] also explored
hlnd.the focus plane, the pixel shader blends the pixel Wlth a blurred depth-sensitive inpainting, though their application has lower qual-
version of the image at that pixel. The blur kernel size is based i, requirements since they use the inpainted regions for rendering

on the average-value of nearby foreground pixels. The blending  §efocused regions rather than novel viewpoints.
weight given to this blurred version of the image is given by the

fraction of the neighboring pixels determined to be foreground. The
size of the neighborhood is determined by the circle of confusion

computed from the user specified aperture and focal depth. Depth of field Our rendering algorithm now provides a way
to reconstruct any view within the viewing volume. In addition to
6.2 Off-line rendering changing viewpoint, we can synthetically focus the image to simu-

late camera depth of field. To do so, we apply an approach similar to
The higher quality off-line rendering algorithm differs from the in-  what has been done synthetic-aperture photography [Levoy and
teractive renderer in three main ways. First, we extendstiftez- Hanrahan 1996; Isaksen et al. 2000]. We jitter viewpoints around
buffer described above to increase the accuracy of our pixel value the center of a synthetic aperture and reconstruct an image for each
estimate. Second, the renderer uses a texture synthesis approach taewpoint. We then project all the images onto a given in-focus
fill any holes and cracks that might appear in a novel view due to plane and average the result.
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8 Conclusion

We described an approach to render novel views based on a dense
geometry representation from a few snapshots of a scene, which are
easy and cheap to capture with a digital camera.
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