
LaharOLAP: Supporting OLAP Queries on
Markovian Streams

April 13, 2009

Abstract
A huge amount of the world’s data, is both sequential and low-level; many applications consume higher-level information

(e.g., words and sentences) that is inferred from these low-level sequences (e.g., raw audio signals) using a model (e.g., a
hidden Markov model). This inference process is typically statistical, resulting in high-level streams that are imprecise.
Common queries on this data include sequence-finding event queries and OLAP-style aggregates of these event queries (e.g.
“How many times do 2008 NPR podcasts use the phrase ’Barack Obama’?”). These queries are difficult to support efficiently
because of the large data volumes and rich semantics of imprecise data.

In this work, we introduce LaharOLAP, a warehousing system for a common type of imprecise, sequential model called
a Markovian stream. As part of LaharOLAP, we propose semantics for OLAP-style event queries on Markovian streams
and algorithms for processing these queries. To address performance, we study and exploit a variety of lossy compression
techniques, noting that the applications that consume Markovian stream data are already accustomed to imprecision. Through
experiments on real data collected from our building-wide RFID deployment, we find that, in practice, lossy compression
techniques can yield significant performance gains with only a small loss in accuracy.

1 Introduction
People and computers worldwide generate exabytes of audio, video, text, GPS1, RFID2, and other types of multimedia and
sensor data—and because disk storage is cheap, most of this data is archived for future use [23]. These information-rich
archives are poised to revolutionize data-centric applications in diverse areas including patient and asset tracking in hospi-
tals [45], activity monitoring for elder care [39], scientific environment observation [13], e-Learning [54], phone conversation
mining, and multimedia search/retrieval.

While some applications can use raw sensor or multimedia streams directly [17,38,56], most rely on higher-level streams
inferred from the low-level data. Search engines, for example, can index audio files by content only after they have been
translated into text. Due to noise in the data or ambiguity in the inference process (or both), these inferred, high-level streams
are imprecise (e.g., a spoken word might be either “eight” or “ate”). An emerging framework for managing imprecise
sequences is the model-based view [14], which exposes a high-level stream to applications while hiding the details of the
raw, low-level data. Applications query such data as if it were precise, and receive query results scored with probabilities.
Model-based views have been successfully applied to the management of imprecise location sequences [34, 44, 51] and
environmental events [13, 52].

Many applications share a need for sophisticated queries on these model-based views, including sequence queries (e.g.
“Find all occurrences of the phrase ‘launchers ready’ in 2008 telephone conversations.”) and OLAP-style aggregates on
sequence query results (e.g. “How many of the phone conversations recorded from each household in Washington include
the phrase ‘launchers ready’?”). Supporting these queries efficiently on imprecise streams is challenging for two reasons.
First, relative to traditional (deterministic) data, imprecise data is extremely slow to process; and second, the scale of sensor
and multimedia archives is staggering.

In this paper, we present LaharOLAP, a novel data warehousing system that supports sequence and aggregated-sequence
queries on imprecise, sequential, materialized model-based views. Because these already-imprecise input sequences and
the applications that use them can often tolerate some degree of additional imprecision, LaharOLAP addresses performance
challenges using a battery of lossy compression techniques that allow it to trade accuracy for efficiency.

1Global Positioning System
2Radio Frequency Identification
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Figure 1: An example of a Markovian stream from an audio/speech domain.

1.1 Motivating Applications
We introduce two applications that we use as running examples throughout the paper:

[RFID-Based Hospital Support] RFID readers are increasingly deployed in hospitals to track the locations of medication,
equipment, and even patients carrying RFID tags. This data is used in real-time to locate objects, but can also be queried
in a historical context to streamline efficiency (“How often does the ICU need to borrow a crash cart from neighboring
units?”) or to evaluate quality of care (“How many times does a surgeon visit with each of his/her patients before performing
surgery?”).

Analysts asking these historical queries reason in terms of the locations that an object visits, (e.g., “Bob is in the ICU”),
and not in terms of tag-detection tuples, (e.g., “Bob was sighted by reader 6”). This high-level location information is inferred
from the low-level RFID stream, but due to noise or ambiguity the resulting location stream contains uncertainty about the
object’s true location ( e.g., Bob is either in reception or in the neighboring ICU). This uncertainty is represented as a prob-
ability distribution over possible object paths and takes the form shown in Figure 2(b). This distribution contains temporal
correlations, since an object’s location at each instant is strongly related to its location at the previous instant. LaharOLAP
allows analysts to query these uncertain location streams without reasoning explicitly about uncertainty. This abstracted view
of location is important in domains beyond hospitals, including supply chains [18, 22] and office environments [55].

[Semantic Audio Search] Speech recognition systems have for decades used probabilistic models to infer the phoneme-
and word-level content of raw audio signals [35, 40]. While today’s systems work well, they still produce uncertain results
even at the word level (though many interfaces hide this uncertainty by returning only the single most likely transcription).
These text streams are both uncertain and temporally-correlated, as in Figure 1.

Semantic audio search leverages these uncertain transcriptions to do for audio files what search engines currently do for
text—that is, to index/retrieve audio files based on their rich semantic content. Because traditional indexing algorithms are
not directly applicable to uncertain text streams, semantic audio search engines must instead manage these streams in a
warehouse like LaharOLAP. Semantic audio search is representative of a large set of applications that are made possible by
LaharOLAP and transform existing data in rich and novel ways.

1.2 Approach and Contributions
LaharOLAP is a novel warehousing system designed to support the above applications. The input to LaharOLAP is a set of
imprecise sequences called Markovian streams [28,34,44]. These streams are the result of probabilistic inference on common
graphical models such as Hidden Markov Models [40] or chain-structured Conditional Random Fields [31]. They take the
form of probabilistic, sequentially-correlated data streams like those illustrated in Figures 1 and 2(b).

LaharOLAP supports SELECT queries, event queries, and event-OLAP queries on Markovian streams. Event queries detect
occurrences of fixed patterns in a single stream and are standard in deterministic stream processing [12, 57]. Example event
queries include, “Find all occurrences of the phrase ‘launchers ready’ in telephone conversations recorded in January 2008,”
and “Find all times when Bob entered his office during the week of May 1.” Event-OLAP queries compute simple, OLAP-
style aggregate statistics about the occurrences of events across a set of Markovian streams. These queries are important
for performing analytics or data mining on a Markovian stream archive. Example aggregate queries include, “How many
people entered the databases lab on March 20, 2009?” and “How many times does the word ‘launchers’ appear across
all telephone conversations recorded in 2008?” LaharOLAP’s support for event-OLAP aggregates on imprecise data is
novel and a key contribution of this paper; we combine and extend prior work on OLAP for sequence databases [38] and
probabilistic streaming algorithms [44] to develop semantics for these queries and algorithms for processing them.

The primary technical challenge of a Markovian stream warehouse is to process event and event-OLAP queries efficiently.
This is challenging because 1) query processing algorithms for imprecise/correlated data are complex and slow, and 2)
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Markovian stream warehouses are huge. These imprecise archives thus pose unique challenges, but also unique opportunities:
Applications that leverage imprecise data are accustomed to imperfect results, and can in many cases tolerate some degree of
additional imprecision. This flexibility can be exploited by trading small amounts of error for large performance gains.

A key contribution of this paper is the study of this performance/accuracy trade-off space in the context of Markovian
stream warehouses. We study this space using LaharOLAP, which leverages lossy compression techniques to improve per-
formance for a small loss in precision. Compression is a successful tool for improving OLAP workloads [1,21,41], although
lossless compression techniques perform poorly on Markovian streams, which are dense with probabilities. Lossy compres-
sion techniques, however, can achieve good compression and exploit performance/accuracy trade-offs. In particular, lossy
compression techniques judiciously chosen to reduce the uncertainty in a Markovian stream can simplify query processing
algorithms dramatically. We show through experiments on real workloads that by leveraging lossy compression techniques,
LaharOLAP can achieve performance improvements of orders of magnitude while producing query results whose probabili-
ties differ from their precise values by, on average, less than 0.01.

In summary, the contributions of this paper are as follow:

• In Sec. 2, we develop a syntax and semantics for event-OLAP queries on Markovian streams, after introducing neces-
sary background.

• In Sec. 3, we discuss LaharOLAP’s core technical components: algorithms for event-OLAP queries and lossy com-
pression techniques.

• In Sec. 4, we evaluate the performance and accuracy of LaharOLAP on a real-world, RFID-based Markovian stream
archive.

• In Sec. 5, we discuss open problems highlighted by our experience building LaharOLAP and using it to process real-
world data.

Exploiting the accuracy/performance tradeoffs of imprecise data using lossy compression is a promising technique for Marko-
vian stream warehouses. Our study of the effects of this compression on query execution is a first step toward enabling such
systems.

2 Markovian Stream Warehouses
In this section, we present the data model of Markovian stream warehouses (LaharOLAP’s input) and develop semantics for
OLAP on this model (LaharOLAP’s output).

2.1 Data Model
In the building shown in Figure 2(a), RFID readers A, B, and C record the presence of nearby RFID tags using tuples of the
form (Tag id, Reader id, Time). The low-level tuples from each tag are used to infer a Markovian stream over the tag’s
location (Figure 2(b)). This Markovian stream is uncertain, both because of sensor noise (readers often fail to detect nearby
tags) and because of inherent ambiguity (Office1 and Lab1 are symmetric with respect to the RFID readers—even on noise-
free data it is impossible to tell which of the two rooms a tag is in). This uncertainty is similar to the uncertainty in a hospital
deployment, where reader placement is restricted because of its interference with medical equipment. The Markovian stream
is also temporally correlated: the distribution over the tag’s location at time t + 1 depends on its uncertain location at time
t. Temporal correlations in Figure 2(b), for example, indicate that if the tag (i.e., Bob) was in some room at time 12:01,
then it remained in that same room at time 12:02 with probability 1.0—but there is zero probability that it switched between
rooms (Bob cannot teleport). If correlations are ignored, then the probability that Bob teleported between rooms becomes
(incorrectly) equal to the probability that he stayed in place.

More precisely, a Markovian stream with uncertain attributes A1, . . . , Ak (where Ai has domain Di for i ∈ [1, k]) is a
pair (p0, ~C). Here p0 is a distribution over D1 × · · · × Dk, representing the initial probability distribution of the stream; ~C
is a sequence of conditional probability tables (CPTs) C(A1, . . . , Ak, A′1, . . . , A

′
k,T, P). Each tuple in C uniquely describes

the probability of a specific state transition between time t and t + 1. For example, a tuple (a1, . . . , ak, a′1, ..., a
′
k, t, p) in C

indicates that p is the conditional probability that the state of the stream is (A1 = a′1, . . . , Ak = a′k) at time t + 1, given that
the state at time t was (A1 = a1, . . . , Ak = ak). The set of tuples sharing a value of T = t together define the entire stream
transition (CPT) between t and t + 1. A Markovian stream is thus a compact representation of a probability distribution over
an exponential number of deterministic sequences. Markovian streams implement a standard possible worlds semantics in
which each stream-length sequence is a distinct possible world [28, 44].
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UserID Time LocIDPREV LocID p

Bob 12:00 Office1 Office1 0.9

Bob 12:00 Office1 Hall 0.1

Bob 12:00 Lab1 Lab1 0.9

Bob 12:00 Lab1 Hall 0.1

Bob 12:00 HallA Office1 0.4

Bob 12:00 HallA Lab1 0.4

Bob 12:00 HallA Hall 0.2

Bob 12:01 Office1 Office1 1.0

... ... ... ... ...

UserID EdRole Research Dept. Time LocID RoomType Structure

Bob Student Databases CS 12:00 Office1 Office Room

Bob Student Databases CS 12:00 Lab1 Lab Room

Bob Student Databases CS 12:00 HallA Hallway Hallway

Bob Student Databases CS 12:01 Lab1 Lab Room

... ... ... ... ... ... ...

Certain Seq. Uncertain

UserID EdRole Research Dept.

Ann Student AI CS

Bob Student Databases CS

Che Faculty Databases CS

LocID RoomType Structure

Lab1 Lab Room
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Figure 2: Markovian stream warehouse (RFID/location domain). (a) A schematic view of an RFID deployment. (b) A
schematic view of a distribution over location (Markovian stream). The number on an arrow a→ b indicates the conditional
probability p(b | a); the number inside each box represents the box’s marginal probability. (c) A relational representation of
the Markovian stream in (b). (d-e) Dimension tables. (f) The Markovian stream view exposed by LaharOLAP. This view
does not expose probabilities.

The relational schema of a location-based Markovian stream is shown in Figure 2(c). This relation may contain tuples
from many different logical streams. Each logical stream is identified by its key attributes (UserID in the example). Within
each logical stream, element ordering is determined by a sequence attribute (Time in Figure 2(c)). The stream’s uncertain
domain is represented using uncertain attributes (LocID in the example). Each uncertain attribute is replicated (LocIDPREV

is the replication of LocID in the example) in order to store conditional probability distributions (e.g. p(loct+1|loct)); whose
values are stored in the p column.

A Markovian stream warehouse is a Markovian stream relation (Figure 2(c)) and, optionally, a set of dimension tables on
the Markovian stream attributes (Figure 2(d) and (e)). The Markovian stream relation is analogous to the facts table in a
standard OLAP system.

LaharOLAP exposes to applications a Markovian stream view that hides uncertainty from queries (Figure 2(f)); the power
of LaharOLAP is that it gives applications access to complex queries on uncertain data through this simple view. In order to
simplify LaharOLAP’s syntax, introduced shortly, this view is also pre-joined with all dimension tables. Clearly, this joined
view is never materialized (join indexes are used at query time to process queries that leverage the implicit joins [34]).

2.2 Query Model
In this section, we introduce the queries that LaharOLAP supports on Markovian stream warehouses.

2.2.1 Select Queries

LaharOLAP’s SELECT queries search for single timesteps in a Markovian stream (Q1 in Fig. 6) This is the only type of
Markovian stream query on which OLAP-style aggregation has been explored in prior art [28]. An example SELECT query
is:

SELECT INSTANTS
FROM Location WITHKEY ‘Bob’
EVENT t WHERE t.locID = ‘Office1’

This query returns a 〈seqID, p〉 tuple for each timestep in the stream, indicating the probability p with which the predicate
was satisfied at time seqID.

A set of such tuples computed on a real RFID-derived Markovian stream is shown in Figure 3(b1). The Markovian stream
correctly (within a 5 second window) identifies both times at which the predicate was true, each with probability around
0.25. It additionally yields a false positive around timestep 200. In contrast, the most likely deterministic sequence (“MAP”
in Figure 3(b1)) assigns zero probability to all timesteps. The advantage LaharOLAP offers to applications is precisely its
ability to leverage the increased recall of the Markovian stream, both on SELECT queries and on the more sophisticated event
queries that we introduce next.

4



1.0

0.8

0.6

0.4

0.2

0
0 2 41 3 5

Count

p(
Co

un
t)

True
Count

LaharOLAP
Query Result

p(
Q

ue
ry

)

Stream timestep

1.0

0.8

0.6

0.4

0.2

0 200 300... 400 500

True 
Events

LaharOLAP 
Query Result

MAP 
signal
is zero

MAP
Count

S0

Hall Office1
S1

Office1
S1

(b1)

(a1)

S0

Hall Office1

¬ Office1

S1

(a2) (a3)

(b2)

Figure 3: Markovian stream event queries [top] and sample query results [bottom]. (a1) A SELECT query on predicate
‘Office1’. (a2-a3) Event queries using NEXT (a2) and BEFORE (a3) sequence semantics. (b1) Event query output (unaggre-
gated). (b2) Event query output aggregated temporally using COUNT semantics.

2.2.2 Event Queries

LaharOLAP also supports previously-studied event queries [44] which search for patterns in a Markovian stream (Q2 or Q3
in Figure 6). A LaharOLAP event query is defined as an ordered sequence of query links, which are simply NFA states
with 1) a single incoming edge and 2) an optional self-loop edge. The link structure and associated edge predicates together
define the event query pattern. Examples are shown in Figure 3(a1), (a2), and (a3). Single-link event queries are equivalent
to SELECT queries (Figure 3(a1)).

The EVENT clause in LaharOLAP’s syntax is used to define the structure of the query links. An example LaharOLAP
query is shown in Figure 5; we develop this Figure throughout this section. Link sequence definitions use either the NEXT or
BEFORE keywords to specify links lacking or containing self-loop edges, respectively. The WHERE clause includes additional
conjuncts to specify the predicates on each link edge (e.g. lines 6-8 in Figure 5).

Event queries produce the same 〈seqID, p〉 tuples as SELECT queries; however, event query probabilities are strongly
affected by Markovian stream correlations, whereas SELECT results are not. To see this, recall the example from Section 2.1
in which assuming independence between timesteps causes Bob to appear to teleport between rooms. On the correlated
stream in Figure 2(b), an event query looking for the sequence Office1 NEXT Lab1 has zero probability in all timesteps;
however, if correlations are ignored, then this query is satisfied at 12:01 with probability 0.45 ∗ 0.445 = 0.20025 and at
12:02 with probability 0.445 ∗ 0.5 = 0.2225. Thus correlation information is critical for correctly computing event query
probabilities. As we will see in Section 3, processing correlations efficiently in support of event queries is a primary challenge
of LaharOLAP.

2.2.3 Event-OLAP Queries

Inspired by traditional data cubes [19], LaharOLAP introduces several types of aggregation operators on top of event queries.
These aggregations are highlighted in Figure 4 and include aggregations across a stream’s uncertain attributes (analogous to
relational rollup/drilldown operations and shown in Figure 4(a)), and temporal or cross-stream aggregations on the output of
an event query (analogous to aggregations on a sliced/diced relational cuboid and shown in Figure 4(b-d) and Figure 4(e-i),
respectively). We examine each type of aggregation and Figure 4 in more detail in this section.

[Rollup Aggregation] Rollup aggregation occurs in any event query whose predicates are potentially satisfied by multiple
elements in the Markovian stream’s uncertain domain (Q8 in Figure 6). Such predicates are defined by a warehouse’s
dimension tables and do not alter the format of event query results (Figure 4(a)).

[Temporal Aggregation] LaharOLAP supports two types of temporal aggregation on event query results. The first is
EXISTS, which determines whether the event query was satisfied at any timestep (Q4 in Figure 6). EXISTS semantics
compute a single probability from an event query signal (Figure 4(b)). The second type of temporal aggregation is COUNT,
which determines the number of timesteps that satisfied the event query (Q5 in Figure 6). COUNT semantics compute a
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Figure 4: LaharOLAP query semantics. (a): Core event query patterns are defined using NFA-like link sequences. Rollup
aggregation is specified using edge predicates. (b-d): Event query results are temporally aggregated using either EXISTS
or COUNT semantics; alternately they are left un-aggregated (INSTANTS semantics). (g-k): Results are (optionally) further
aggregated across streams using either STREAMEXISTS or STREAMSUM semantics to produce final query results.

distribution over count values from a query signal (Figure 4(d) and Figure 3(b2)). Temporal aggregation semantics are
specified in LaharOLAP’s syntax in the SELECT clause (see line 1 of Figure 5), or, alternately, the keyword INSTANTS is used
to signal that LaharOLAP should not perform temporal aggregation (Figure 4(c)).

Temporal aggregation is a challenging operation because the result tuples of an event query are temporally correlated.
Correctly computing temporal aggregations is a novel contribution of LaharOLAP which we discuss in more detail in Sec-
tion 3. LaharOLAP currently supports only existence and count temporal aggregate functions; prior art shows that supporting
richer aggregation functions may require some care [25, 43].

[Cross-Stream Aggregation] LaharOLAP supports two types of cross-stream aggregation. These mirror its tempo-
ral aggregations and are specified syntactically in the optional GROUP BY clause (lines 9-10 of Figure 6). The first is
STREAMEXISTS, which determines whether any of its (probabilistic) Boolean inputs is true. STREAMEXISTS aggregations
can be performed either on a per-stream basis, as in, “Did anyone enter Office1 on Monday?” (Figure 4(e)); or on a per-
timestep basis, as in, “At each instant on Monday, did anyone enter Office1?” (Figure 4(g)). STREAMEXISTS aggregations
over the output of temporal COUNT aggregations are meaningless and disallowed by LaharOLAP.

LaharOLAP’s second type of cross-stream aggregation is STREAMSUM, which computes a distribution over the sum of the
values of its imprecise inputs. As with STREAMEXISTS, STREAMSUM aggregations can be performed on a per-stream basis,
as in, “How many people entered Office1 on Monday?” (Figure 4(f)); or on a per-timestep basis, as in, “As each instant
on Monday, how many people entered Office1?” (Figure 4(h)). Additionally, STREAMSUM aggregations can be performed
over temporally-aggregated count results, as in, “How many people entered Office1 on Monday [including repeat visitors]?”
(Figure 4(i)).

1. SELECT <EXISTS | INSTANTS | COUNT>
2. FROM Location L
3. WITHKEY L.researchArea = ‘Databases’

4. WINDOW L.seqID=12:00 TO L.seqID=16:00

5. EVENT E1 BEFORE E2 NEXT E3
6. WHERE E1.LocID = ‘Room 609’

7. AND E2.RoomType = ‘Hallway’

8. AND E3.RoomType = ‘Office’

9. GROUP BY L.EdRole
10. USING <STREAMEXISTS | STREAMSUM>

Figure 5: LaharOLAP’s query syntax. Lines 1-4 specify selection predicates and temporal aggregation semantics. Lines 5-8
specify the event query. Lines 9-10 specify the stream aggregation semantics and grouping criteria.
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Find all occurreces of the word 
`economy' in Monday's NPR 

newscast.

Find all instants on 
Monday when Bob was in 

Office1.
SELECTQ1

Find all occurrences of the phrase 
`economic downturn' in Monday's 

NPR newscast.

Find all instants when Bob 
entered Office1 on 

Monday.
EVENT-NEXT/
INSTANTS

Q2

Find all occurrences of the word 
`Obama' that appear any time after 

the word `economy' ...

Find all times on Monday 
when Bob was in Office1 

after visiting Lab1.
EVENT-BEFORE/

INSTANTS
Q3

Does the phrase `economic 
downturn' appear in Monday's  

NPR newscast? 
Did Bob enter Office1 at 

all on Monday?
EVENT-NEXT/

EXISTS
Q4

How many times does the phrase 
`economic downturn' appear in 

Monday's NPR newscast?
How many times did Bob 
enter Office1 on Monday?

EVENT-NEXT/
COUNT

Q5

Does any Monday newscast [from 
any network] contain the phrase 

`economic downturn'?
Did anyone enter Office1 

on Monday?
EVENT-NEXT/

EXISTS/
STREAMEXISTS

Q6

Audio Processing Domain Location Domain Query 
SemanticsQID

How many different newscasts on 
Monday contained the phrase 

`economic downturn'?

How many different people 
entered Office1 on 

Monday?

EVENT-NEXT/
EXISTS/

STREAMSUM
Q7

Find all occurrences of any 
economic buzzwords in Monday's 

NPR newscast.

Find all instants when Bob 
entered any office on 

Monday.

EVENT-NEXT/
INSTANTS

[+Rollup Aggregation]
Q8

Figure 6: Sample event-OLAP queries from an audio processing and a location tracking domain.

Although STREAMSUM aggregation is strictly richer than STREAMEXISTS—any STREAMEXISTS query can be answered
from STREAMSUM results—we will see in Section 4 that the STREAMEXISTS semantics has performance advantages over
STREAMSUM (as does EXISTS over COUNT).

3 The LaharOLAP System
The flow of data in LaharOLAP is shown in Figure 7(a). Markovian streams are generated outside of the system. Compressed
stream views are computed and materialized (Section 3.2) during loading. At query time, LaharOLAP constructs a query plan
(Section 3.1, Figure 7(b)) and executes it using the standard getNext() iterator model. Our current optimizer is trivial, a point
we return to in Section 5. In this section we first discuss LaharOLAP’s algorithms for processing precise (uncompressed)
Markovian stream views. We then introduce the approximation techniques used to accelerate this processing.

3.1 Precise Query Processing
LaharOLAP query plans include a separate branch for each stream selected by the query (Figure 7)(b). Within each branch,
the Ex (Extract) operator retrieves and decompresses Markovian stream timesteps. The Reg (RegularExpression) opera-
tor computes the event query on these timesteps and (optionally) performs temporal aggregation. The result tuples from each
branch are then aggregated together by the root Agg (Aggregation) operator. We discuss each of these operators in turn.

3.1.1 Ex Operator

The Ex operator retrieves and decompresses Markovian stream timesteps. In our prior art we have studied optimization of
the Ex operator using indexes [34]; however in this paper we implement Ex as a straightforward stream scan.

3.1.2 Reg Operator

The Reg operator processes an event query on a single Markovian stream and optionally performs temporal aggregation.
The basic Reg algorithm (INSTANTS semantics) is prior art [44]. Here we briefly review this algorithm and introduce novel
variations that compute EXISTS and COUNT aggregations in the presence of temporal correlations.
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Figure 7: LaharOLAP data flow (a) and query plan (b).

[INSTANTS] The basic Reg algorithm uses standard NFA machinery adapted to handle uncertain, correlated input. This
algorithm maintains a 2D state matrix M with a row for each possible set of NFA states (sets instead of individual states
because the NFA is non-deterministic and can be in multiple states at once) and a column for each element in the Markovian
stream’s uncertain domain. Entry M(i, j) represents the joint probability that the NFA is in the ith state set and that the true
value of the last input was the jth element of the uncertain domain (e.g. Office1, Lab1, etc.). The entries of M sum to 1.0.

The Reg operator computes its updated state at each timestep into a temporary matrix M‘, which is then copied back into
M before the next update. M′ is computed as follows: For each entry M(i, j) (with value pi j) of the state matrix, and for
each possible uncertain value j′ of the current uncertain input, Reg computes two values. First, it determines the state set i′

that results from a transition out of the NFA states in set i on input value j′. This value depends on the NFA structure and
predicates. Second, Reg determines the probability p( j′| j): the probability of input j′ conditioned on the previous input being
j. This probability can be read directly from the temporal correlations in the input. The Reg operator then adds probability p
to the value of M′(i′, j′), where p = M(i, j) ∗ p( j′| j).

On each input, computation of M′ requires N × D × D multiplications, where N is the number of NFA state sets and D
is the size of the Markovian stream’s uncertain domain. This cost is quadratic in the size of the uncertain domain (a direct
result of manipulating temporal correlations) and exponential in the number q of query links (this cost is hidden in the fact
that N = 2q).

[EXISTS] As it receives each input, the EXISTS operator computes the probability p that either this or any previous input
satisfies the event query. Intuition suggests that this operator might simply pass these inputs into the INSTANTS operator and
combine the results. Such a computation would be incorrect, however, since event query result probabilities produced for
different timesteps are correlated (this is a consequence of the temporal correlations in the Markovian input stream).

Fortunately, EXISTS semantics can easily be computed using INSTANTS machinery after a simple query rewrite. Specif-
ically, during parsing of queries with EXISTS semantics, LaharOLAP adds a trivially-true self-loop edge to the final link of
the event query NFA. Informally, this edge “captures” the probability mass added to the NFA’s final state at every step where
the query is satisfied. Correlations are automatically and correctly handled in this framework by the INSTANTS processing
algorithm.

[COUNT] The COUNT operator computes a probability distribution over the number of timesteps that satisfy the event
query. As with EXISTS semantics, this count cannot be post-computed on the output of an INSTANTS computation because
this output does not make explicit the correlations between its values.

In order to correctly handle correlations, a COUNT operator implements the same computation as the INSTANTS operator,
with one difference: while the INSTANTS state matrix entries are single probabilities, the COUNTmatrix entries are histograms
that represent a set of possible count values (and their probabilities). These histograms are not probability distributions: the
sum of probabilities over all values in all of the matrix entries combined is 1.0.

One important characteristic of COUNT processing that is not shared by EXISTS or INSTANTS algorithms is that its perfor-
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mance degrades with the length of the input stream. The cost of updating the counts (histograms) for each new input grows
with the size of the count domain, which in turn can grow linearly (worst-case) with the number of inputs. This scaling
problem has been noted in prior art and can be avoided in cases where only summary statistics (e.g. the expected value) about
the final count are required [28]. Currently LaharOLAP always computes an exact count distribution; we show in Section 4
that the performance consequences in practice are usually minor.

3.1.3 Agg Operator

The Agg operator combines event query results computed on independent Markovian streams. Its two semantics,
STREAMEXISTS and STREAMSUM, are conceptually similar to the EXISTS and COUNT temporal aggregation semantics; however
the Agg operators are simpler because their inputs are uncorrelated.

[STREAMEXISTS] The STREAMEXISTS operator computes the probability p that any of its inputs is true as one minus the
probability that none of the M inputs are true: p = 1−

∏M
i=1 (1 − pi). This computation is applied straightforwardly in the Agg

operator. LaharOLAP assumes that each Markovian stream is independent from the others, so correlations are not a concern
for cross-stream aggregation. It is illustrative to contrast this computation with COUNT, where correlations prevent us from
writing such a simple formula.

[STREAMSUM] The STREAMSUM operator computes a distribution over the sum of its imprecise numeric inputs. These
numeric inputs are usually Boolean values, which LaharOLAP treats as degenerate count distributions over the domain {0, 1}.
The single case in which STREAMSUM inputs are non-Boolean is when they are the result of COUNT temporal aggregation.
In either case, the Agg operator incorporates each input into its incrementally-computed sum using a simple pairwise sum
between elements from the input and sum distributions.

As with COUNT aggregation, the latency of the STREAMSUM operator increases with the size of its distribution over the final
sum. Growth of the STREAMSUM domain is potentially worse than the linear growth of the COUNT domain, since each single
input to STREAMSUM may itself have a large domain (this occurs only on aggregations of COUNT results). In Section 4 we
demonstrate that, in practice, COUNT aggregation is nevertheless more of a performance bottleneck because its cost recurs on
a per-timestep basis, while the cost of a STREAMSUM aggregation over COUNT results is incurred only once per stream.

3.2 Markovian Stream Compression
The performance of all three Reg operators described in the previous section scales quadratically in the size of the input
stream’s active domain—in other words, event query processing on Markovian streams is slow. In this section we focus on
compression techniques to improve performance, as is common in OLAP systems [1, 21, 41]. The performance benefits of
compression are complementary to those of Markovian stream indexing, which has been studied in prior art [34].

While traditional databases use lossless compression to improve performance, lossy techniques are a more promising
avenue for Markovian stream warehouses. In addition to reducing the number of bytes required to represent a Markovian
stream, judiciously-chosen lossy compressions can reduce the cost of event query processing by shrinking the size of the
uncertain domain, or by making quadratic algorithms unnecessary. Applications that leverage these streams are already
accustomed to handling uncertainty, so they can often tolerate a small amount of additional imprecision incurred by the use
of lossy techniques.

In this section we introduce the set of lossy and lossless compression techniques leveraged by LaharOLAP. Because
LaharOLAP implements null suppression—meaning that it does not explicitly represent elements with zero probability—
techniques that assign zero probability to elements are effectively pruning these elements from the stream. Because the effect
of compression techniques on event query processing performance is more important than their effect on data size (by 1-2
orders of magnitude, as we demonstrate in Section 4), none of LaharOLAP’s techniques produce compressed representations
that require active decompression. We thus use the terms “lossy compression” and “approximation” interchangeably.

3.2.1 Numeric Compression

Numeric compressions do not consider the semantics of the stream values. These compressions include:
Thresholding compression uses a parameter T to prune/discard any temporal correlations (conditional probabilities) v

such that v < T . The remaining values are normalized in order to maintain a consistent Markovian stream. Clearly, higher
values of T produce more aggressively-compressed streams. T values of 0.5 or higher produce deterministic streams in which
the most likely element at each timestep has a normalized probability of 1.0. We discuss the trade-offs of various choices of
T in Section 4.
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Independence compression simply removes all temporal correlations from a Markovian stream. The effect of this com-
pression is dramatic (more precisely, quadratic), both in terms of disk storage and in terms of the effect on Reg performance.

Consider a Markovian stream on an uncertain domain D: the correlations between two adjacent timesteps of this stream
form a matrix of size |D| × |D|. After dropping these correlations, the independence-compressed stream view must store
only the marginal distribution over the uncertain domain at each timestep. This marginal distribution has size |D|, yielding
quadratic space savings.

Independence compression yields quadratic performance improvements in the Reg operator as well. Recall the state matrix
M that is the core of the event query processing algorithms: this matrix has a separate column for each of the |D| elements
in the Markovian stream’s uncertain domain. Conceptually, each column of M represents a different set of possible worlds;
the jth column of M represents the possible states of the query NFA conditioned on the fact that the jth domain element
was the previous input. Reg must keep track of the previous input in order to correctly compute the temporal correlations
between this previous input and the next input to arrive. If the input stream is independent, then the |D| columns of M are
identical (at all times, on all inputs). Clearly in this case there is no need for Reg to maintain a full matrix, and M can be
reduced to a single vector V . Thus, instead of the N × D × D operations required to update M, the Reg operator update on an
independence-compressed input requires only N × D operations. This is a quadratic performance improvement.

MAP compression identifies the single most likely deterministic sequence (called the Maximum a Posteriori sequence)
in a Markovian stream. It saves this single, deterministic stream and discards everything else. MAP approximation thus
eliminates not only correlations (like independence), but it eliminates all uncertainty. A MAP-compressed timestep requires
constant space to store, since it contains only a single element from the stream’s uncertain domain. A MAP-compressed
timestep also requires constant time to process, since it is deterministic. Instead of a matrix or a vector, the internal state of
the Reg operator on MAP input is simply a number that identifies the single set of states that the NFA is currently in. MAP
approximation has a special significance since the MAP sequence is the most common way to deterministically represent an
uncertain stream.

3.2.2 Semantic Compression

In contrast to numeric compression, semantic compression is applied with an awareness of the semantics of Markovian
streams.

Rollup compression uses a concept hierarchy to produce materialized Markovian stream rollups. These rollups represent
the uncertain domain elements at a coarser level of granularity. For example, consider the uncertain location domain shown
in Figure 2(a): {Office1, Lab1, Lab2, HallA, HallC}. One possible rollup compression on this domain is defined by a “Floor
Plan” concept hierarchy that groups all room locations into a single concept and all hallway locations into another. The
resulting rollup compression has the domain: {Room, Hallway}.

Rollup views retain both the uncertainty and the temporal correlations from the underlying Markovian stream, so they
require quadratic space to represent and quadratic time to process. However, these costs are quadratic in the size of a smaller
domain. Rollups thus achieve performance gains according to the degree to which they collapse together the elements of the
Markovian stream’s uncertain domain.

A rollup view is equivalent to a Markovian stream produced by inference on a model (e.g. an HMM) defined at the
granularity of the rollup. Thus rollup compression is lossless with respect to the coarse-grained underlying model. A rollup
view is not lossless, however, with respect to the Markovian stream inferred using the original, fine-grained model.

To see this, consider the fine-grained office model in Figure 2(a), and suppose that the the dotted door between HallA
and HallC is locked (Bob has no key). Suppose further that Bob’s location in this model is uncertain: we do not know for
sure which side of the door Bob was on. Any Markovian stream inferred using this model will assign zero probability to
trajectories in which Bob visits both Lab1 and Lab2, since Bob cannot walk through walls or through locked doors. Now
consider a rollup-compressed view in which all hallway locations (in this case, HallA and HallC) are collapsed into a single
conceptual entity called Hallway. The trajectory Lab1-HallA-HallC-Lab2, which had zero probability in the uncompressed
Markovian stream, is mapped to Lab1-Hall-Hall-Lab2 in the rollup-compressed stream. This latter trajectory may not have
zero probability in the compressed stream, because the rollup compression discards correlations between entities that are
collapsed together (e.g. it discards knowledge of the locked door between HallA and HallC that makes these locations
negatively correlated in a single trajectory).

Rollup-compressed views are thus lossy with respect to fine-grained models, because some correlation information is dis-
carded by the compression. However, rollup-compressed marginal values are not affected, and thus rollup compression can be
used in conjunction with independence compression without incurring additional loss beyond that incurred by independence
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Figure 8: Accuracy vs. efficiency for two INSTANTS queries of length 1 (circles) and length 4 (triangles) on our ambiguous
dataset. (a) shows unaggregated event query differences, while (b) shows differences in query results using a combination
of EXISTS and STREAMEXISTS aggregation. The compression techniques shown are: U-Uncompressed, I-Independence,
M-MAP, and T1-T4 are thresholded views using thresholds 1E-6, 1E-4, 1E-2, and 0.5, respectively.

alone. The combination of independence and rollup compression is particularly advantageous because it can significantly
reduce the size of the uncertain domain.

4 Evaluation
In this section we demonstrate the performance of LaharOLAP on event-OLAP queries. We then examine the impact of
lossy compression techniques on both performance and the precision of query results, demonstrating that these techniques
can yield large performance gains while altering result probabilities only minimally.

[Data] Real-world Markovian streams are critical to our evaluation of LaharOLAP, which focuses on empirical rather than
worst-case accuracy. Our streams are inferred using a particle filter from RFID readings collected by a real deployment. This
deployment includes 160 RFID readers installed in the hallways (and only the hallways) of our 6-story office building, and
over 300 RFID tags attached to books, laptop computers, and even to people. From over 6.6 million tag sighting events we
have curated two data sets which we label unambiguous and ambiguous. Each set contains five distinct RFID traces manually
annotated with detailed ground-truth location information, for a total of 2.2 hours of Markovian streams (sampled at 1Hz).

The traces in both sets reflect a person walking around an office environment like the one shown in Figure 2(a), entering and
exiting various rooms for brief (1 minute) intervals. The Markovian streams inferred from the unambiguous dataset contain
significant uncertainty, but identify a single most likely room during each in-room interval; in contrast, streams inferred from
the ambiguous dataset generally identify 2-3 most likely rooms with roughly equal probability. Temporal correlations are
thus stronger in the ambiguous data, which reflects the symmetry problem discussed in Section 2.1.

[Queries] We evaluate LaharOLAP on a set of queries designed to highlight the strengths and weaknesses of various
compression techniques as well as their sensitivity to Markovian stream ambiguity/correlations. These queries search for the
room-entry events present in our trace sets (specified using varying numbers of query links, according to the purpose of each
experiment). For simplicity we restrict our evaluation to event queries that use NEXT sequence semantics—these queries are
more common and also more sensitive to correlations.

[Overview of Performance/Accuracy Trade-Offs] We show a high-level view of LaharOLAP’s trade-off space, on which
we focus in the remainder of this section, in Figure 8(a) and (b). These figures plot the performance and result quality of two
event queries (a 1-link query represented using circles, and a 4-link query represented using squares) computed on various
compressed stream views. We show the trade-off space for both unaggregated event queries (Figure 8(a)) and for aggregated
query results (Figure 8(b)). Note the log scale of all 4 axes. The x-axes represent the average, per-timestep latency of the Reg
operator. The y-axes represent the average query error, computed as the absolute difference between the exact event query
probability and its probability computed on an approximate view (for each timestep).

Throughout this section we define error in this way (with respect to the original Markovian stream); an equally valid
and interesting evaluation would compare query results on different compressed views with respect to their fidelity to the
underlying ground truth sequence. Such an evaluation confuses two sources of imprecision, however: imprecision from the
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Figure 9: (a) Overview of baseline LaharOLAP performance on 5-stream STREAMSUM queries. Note the logscale y-axis;
numbers above each query bar give the ratio of Reg

Ex
latency.

inference process and imprecision from the compression process. For clarity we choose the inferred Markovian streams as
our exact baseline. As a point of reference, the error of randomly-chosen query probabilities in this framework is 0.5.

The baseline performance of LaharOLAP on an uncompressed stream is shown by the “U” points along the “zero error”
lines in both plots in Figure 8. We discuss this performance in more detail in Section 4.1.

The two-dimensional portion of the plots in Figure 8 show LaharOLAP’s performance/accuracy trade-offs. The spread
of the points in these plots show that LaharOLAP’s compressions achieve a flexible range of trade-offs, which we discuss in
Section 4.2.

We first evaluate the baseline performance of the system when executing event and event-OLAP queries on uncompressed
Markovian streams (Section 4.1). We then study the trade-offs between high performance and high accuracy when executing
queries on compressed Markovian streams (Section 4.2).

4.1 Baseline Performance
In this section we first demonstrate LaharOLAP’s baseline performance, and we then discuss several cases in which LaharO-
LAP can improve this performance while providing exact results.

4.1.1 Baseline Performance

We measure the baseline performance of each of LaharOLAP’s three operators using a STREAMSUM aggregation over all five
input streams from our ambiguous trace set, on representative event queries of varying lengths. This performance is shown
in Figure 9 (note the logscale y-axis).

Figure 9 shows that the Reg operator is consistently the most expensive, sometimes by several orders of magnitude (the
ratio between the time spent in the Reg and Ex operators is shown above each bar in the plot). This observation validates the
intuition from Section 3 that event query processing, and not disk access, is LaharOLAP’s performance bottleneck.

While the Ex operator’s latency is a roughly-constant 50-100 milliseconds per timestep (equivalently, it processes 10-20
timesteps per second), the Reg operator’s latency ranges from 50 milliseconds to nearly ten full seconds per stream timestep!
Recall from Section 3.1 that Reg scales exponentially with the number of links in a query. This trend is most clearly visible
on the EXISTS and INSTANTS queries in Figure 9. In practice, queries with length greater than 4 are not tenable (nor are they
particularly useful).

The exponential scaling of the Reg operator on COUNT queries is less clear in Figure 9—this is because, as discussed in
Section 3.1, the COUNT operator incurs additional latency as the size of its count domain grows. Comparing against EXISTS or
INSTANTS performance as a baseline, Figure 9 shows that the 1- and 2-link COUNT queries incur a significant domain-induced
latency, while the 4- and 8-link queries incur almost none. Indeed, the domain size of the COUNT estimate on the longest of
the five input streams used in this experiment was 511, 101, 53, and 27, for 1-, 2-, 4-, and 8-link queries, respectively.
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Figure 10: Performance of LaharOLAP using compressed stream views to compute exact query results for INSTANTS queries
of varying length.

Finally, Figure 9 shows that latency of the STREAMSUM operator is low compared to the latency of Reg. The amortized costs
of one-time cross-stream aggregations (i.e. over EXISTS and COUNT results) are all below 25 milliseconds and are not even
visible in Figure 9. The single-link COUNT query is an exception whose slow performance is due to the count domain size,
which reaches 1536 elements (the ground truth count is 711). The amortized cost of per-timestep cross-stream aggregations
(i.e. over INSTANTS output) is naturally somewhat higher (6-35 milliseconds per timestep), but is still dominated by the cost
of the Reg operator.

4.1.2 Leveraging Compression Losslessly

LaharOLAP can leverage compressed stream views to compute precise query results in two cases, summarized in Figure 10.
First, SELECT queries without temporal aggregation can be processed precisely on an independence-compressed view (this
explains the presence of the “I” circle on the zero-error line in Figure 8). Dropping temporal correlations (i.e. independence
compression) doesn’t affect SELECT queries because they examine timesteps in isolation; however, if temporal aggregation
is applied then these correlations are again required to compute precise results.

Second, LaharOLAP can compute precise results (with respect to a coarse-grained data model, as explained in Sec-
tion 3.2.2) using rollup-compressed views. Figure 10 shows LaharOLAP’s perfor-
mance on a rollup view that reduces the stream’s uncertain domain from 966 discrete locations (individual rooms, halls,
etc..) down to 4 coarse-grained location types (offices, halls, stairs, and “other”). The 241-fold reduction in domain size
yields speedups of 15-39% percent (Figure 10 rows 1-2)—the apparent mismatch between the magnitudes of these reductions
reflects the fact that in our experiment, the Reg operator was optimized to scale quadratically in the size of the active uncertain
domain (instead of the full uncertain domain). The active domain in the experiments in Figure 10 was roughly 20, which is
consistent with the 15-39% speedups.

4.2 Performance and Accuracy Trade-Offs
In this section we examine in more detail the accuracy/performance tradeoffs highlighted in Figure 8. We look first at the
performance benefits of compression (Section 4.2.1), then at the effects on result quality (Section 4.2.2).

4.2.1 Performance

The mean latency of LaharOLAP’s Reg and Ex operators on various compressed stream views is shown in Figure 11, com-
puted over a set of five 4-link INSTANTS queries. Queries with different lengths and temporal aggregation semantics show
similar trends (with the exception of highly unselective COUNT queries, as discussed at the beginning of this section). Note
that the y-axis is not in logscale, as small timing differences appear more clearly on linear axes.

Figure 11 clearly demonstrates that LaharOLAP can dramatically reduce processing time by leveraging compressed stream
views. Thresholded views accelerate performance by a factor of 2-7, depending on the threshold. Independence- and MAP-
compressed views achieve performance boosts of one and two orders of magnitude, respectively.

The performance benefits of the independence- and MAP-compressed views stem directly from their reductions to the
dimensionality of the Reg operator’s state matrix. To see this, consider in Figure 11 Reg performance on the thresholded
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Figure 11: Unaggregated Reg and Ex operator performance on various compressed stream views. Performance on EXISTS
and COUNT semantics is similar and we omit these plots.

stream with T=0.5; this stream is effectively deterministic. However, LaharOLAP is able to process the independence view—
which maintains full uncertainty within each timestep—2.3 times faster than it processes the “deterministic” thresholded
stream, despite the fact that independence view is 1.45 times larger than the thresholded view! Because the determinism of
the thresholded view is a side-effect, but not a guaranteed property, of the thresholded view, LaharOLAP must still process
it using a 2D state matrix that is an order of magnitude slower to update than the 1D state vector used to process the
independence view.

The smaller physical size of both independent and aggressively-thresholded streams is only a secondary factor contributing
to the lower latency of processing these views. Smaller streams proportionally reduce the cost of the Ex operator; for space
reasons we omit graphs showing the compression ratios achieved by each of LaharOLAP’s compression techniques.

4.2.2 Result Quality

LaharOLAP’s performance-improving compression techniques are worthwhile only if they produce query results that can be
used by applications. As we discuss in Section 4.2.3, compressed Markovian stream views can differ significantly from the
original stream; however, applications care not about these stream-level differences but about their effects on query results.
In this section we demonstrate that, empirically, LaharOLAP can compute high-quality query results on lossily-compressed
Markovian streams. Our real-world RFID data is critical to this empirical evaluation.

We measure the quality of LaharOLAP’s query results in terms of the absolute difference between result probabilities
computed on approximate and precise Markovian streams.

Figure 12 shows the query-level probability differences on a single 4-link event query aggregated using EXISTS semantics
(left column), COUNT semantics (right column), and using no temporal aggregation (middle column). The top and bottom
row of the figure show query error on the unambiguous and ambiguous trace sets, respectively. For EXISTS and INSTANTS
queries, the y-axis (error) is the same metric (average difference in query probability) used in Figure 8. For COUNT queries,
which produce distributions over a count value, the error is computed as the Earth Mover’s Distance (EMD) between these
distributions [46]. Intuitively, an EMD value of n means that the count estimates of the two distributions differ by n. Finally,
the quartiles of the INSTANTS plots (Figure 12 middle column) include only non-zero errors (this is also true in Figure 8),
since the vast majority of timesteps produce zero error which, if plotted, obscure the magnitudes of the errors on the small
number of timesteps when the query is actually satisfied with some probability.

Figure 12 shows that overall, differences in query results on compressed views are low. As thresholds increase, these
differences naturally increase (on all types of data and temporal aggregation). The differences incurred by independence- and
MAP-compressed views are less predictable, however, and since these are the views that yield the best performance, we look
at these errors in more detail below.

Independence views ignore the temporal correlations in a Markovian stream. In our data sets, this generally results in
overestimation of event query probabilities (recall the example from Section 2 in which Bob stays in either his Office or his
Lab for an hour without moving). Although the magnitudes of these individual over-estimates are small (Figure 12(b), (e)),
temporal aggregation of many of these over-estimated values can result in larger differences (Figure 12(a), (c), (d), and (f)).

In addition to computing potentially over-estimated event query values, independence also causes COUNT queries to over-
count (recall again the example from Section 2 in which Bob’s stream satisfies the event query zero times, but produces 60
false positives if correlations are ignored). We verified that the EMD error shown in Figure 12(c) and (f) is indeed caused by
over-counting. The over-counting error is higher on the unambiguous trace set (Figure 12(c)) than on the ambiguous trace set
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Figure 12: Differences in query result probabilities computed on exact and compressed Markovian streams. Differences are
shown for each compression technique on a set of five 4-link queries with varying temporal aggregation semantics (Figure
columns) and on two trace sets (Figure rows).

(Figure 12(f)) because the event query is satisfied in the unambiguous trace set with higher probability—causing LaharOLAP
to have a higher confidence in its over-counted values.

MAP views replace a Markovian stream distribution with the single most likely (deterministic) sequence in the distribu-
tion. The quality of query results on these views is thus dependent on the level of uncertainty in the data; highly uncertain
datasets are poorly represented by a single estimate. In practice we found that even our unambiguous trace set contained
enough uncertainty that MAP error varied widely across a wide range of queries; thus we abstain from drawing further
conclusions about MAP, except to note that the very unpredictability of its error is a potential liability. A LaharOLAP admin-
istrator must carefully identify the datasets on which MAP views can be accurately used (we discuss this selection in more
detail in Section 5).

4.2.3 Stream-Level Error

As mentioned in the previous section, compressed Markovian stream views can differ significantly from the original stream.
We quantify these differences at the distribution (stream) level by computing the EMD distance between the pairwise joint
distributions of each stream. These differences, computed over our entire RFID archive, are shown in Figure 13. Interest-
ingly, while these stream-level differences and the query-level differences shown in Figure 12 follow the same trends, the
magnitudes of the stream-level differences are much greater (COUNT magnitudes are not comparable). We surmise that the
reason these differences do not propagate up to the query/application level is that our techniques are often trimming noise
from the stream (e.g. thresholding may drop errant tuples). This means that, perhaps counterintuitively, the approximations
we study may in some cases improve Markovian stream quality (with respect to ground truth).

5 Discussion
In this section, we discuss some of the implications of the above findings and outline important research questions that remain
to be addressed within the context of Markovian stream warehouses.

[Query optimization] As Section 4 demonstrates, lossy compression of Markovian streams enables interesting trade-offs
between accuracy and performance. How best to leverage these trade-offs is an important question. One possible approach
is for the system to isolate applications from the details of compression by materializing multiple compressed views and
leveraging an optimizer to select an appropriate view for each query at runtime. Although such automated optimization
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Figure 13: Distribution-level differences between Markovian streams and lossily-compressed views, computed over our entire
RFID-based trace archive. Stream difference is computed using the Earth Mover’s Distance on the joint distributions over
each pair of consecutive stream timesteps.

is possible in some cases—for example, as we showed above, independence views are always preferable to uncompressed
views for SELECT queries—in general, the contours of the accuracy/performance space are application-specific. For example,
exploratory applications wishing to identify a set of candidate streams for closer analysis requires high performance but not
high accuracy. In contrast, applications wishing to rank a set of similar events by probability require high accuracy but not
high performance.

Thus a second approach might allow applications to set their desired precision/performance trade-off dynamically. In this
approach, users would choose to execute their queries in either a Maximum performance (MP) or Maximum accuracy (MA)
mode, similar to choosing a degree of isolation when executing a transaction. By choosing the MA mode, users signal to
the system that precise results are required; however, by choosing the MP mode, the user signals that imprecise results are
acceptable, allowing the system to leverage lossy compression. Related research opportunities include automatic selection of
the appropriate set of compressed views to materialize for a given workload.

[Richer query and data models] A second related research problem is the question of how to extend LaharOLAP’s
warehousing and compression framework to other types of queries and more sophisticated data models. For example, richer,
sequential probabilistic models such as Dynamic Bayesian Networks [36] exploit correlations between attributes within a
timestep to specify distributions much more succinctly. The cost of succinct representation is that query answering may
become more difficult. It would thus be interesting to study the interaction between these higher-level models and the
compressions studied in this paper. Similarly, in this paper, we discuss queries that find complex patterns within a single
stream, but the study of more sophisticated queries that search for complex patterns across several streams is also interesting
in the context of Markovian stream warehouses [44].

6 Related Work
We briefly survey the work that LaharOLAP brings together, which encompasses classical database techniques such as OLAP,
event processing, and compression, together with emerging database and AI techniques such as model-based views, particle
filtering, and Markov Models.

Graphical models and probabilistic inference have long been used in the AI community to model and reason about
uncertainty [26,32]. Dynamic Bayesian networks [36], of which Hidden Markov Models [40] are a simple example, are well-
established models for temporally-correlated data. The particle filtering [4] and associated smoothing [10,30] algorithms used
in this paper are only several of many well-established probablistic inference algorithms that infer unknown and/or high-level
information from uncertain inputs like sensor data.

Many recent database systems allow users to pose relational queries on model-based views [14], whose values are com-
puted at query time via probabilistic inference on an underlying graphical model using either exact inference [?,16,48,49,52]
or sample-based inference [24, 27, 51]. LaharOLAP, in contrast, stores materialized versions of such views given as input,
and thus assumes that all inference is performed offline.
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A separate set of systems mange uncertainty by applying deterministic cleaning rules rather than probabilistic inference [6,
29, 42, 53]. These systems tend to target a specific data domain—usually RFID—and thus are less general than inference-
based approaches.

Probabilistic relational DBMSs emerging in recent years handle uncertainty by imposing independence assumptions on
the base data. Such systems include Mystiq [11] and Trio [5]. The query languages supported by these systems are richer
than that of LaharOLAP, but their data models exclude the ordered, correlated tuples of Markovian streams.

Streaming event queries and NFA-based processing have been studied in the context of deterministic streams (e.g. the
Cayuga [12] and SASE [?,2] systems) and also for probabilistic streams (e.g. a SASE extension [50] for uncorrelated streams,
and previous work on Lahar [34,44] for Markovian streams). Although most of these systems are targeted at real-time stream
processing, LaharOLAP’s event query processing is built on similiar foundations. A separate set of related systems process
streaming data—in many cases Markovian streams—using probabilistic inference inside the DBMS [?, 51], but as a storage
manager LaharOLAP is solving a fundamentally different problem.

Work on probabilistic stream sketches [9, 25] is related to LaharOLAP, but focuses more on single-pass computation of
stream statistics rather than relational/event query processing. Time-series databases [15, 58] and temporal databases [47]
also share a natural connection to LaharOLAP because they handle temporal data, but they focus on very different problems
(time-series databases focus on sequence similarity/matching, while temporal databases focus on managing the temporal
evolution of relational datasets).

OLAP/warehousing systems and OLTP systems target very different workloads [7]. LaharOLAP is developed for the
former, characterized by aggregate queries over large slices of historical data. Though the data cube [19] is the predominant
data model for warehousing, its aggregation model is not directly applicable to the temporal, uncertain data of Markovian
streams. LaharOLAP takes the same approach as other recent determinstic stream warehousing work [38] by answering
each query directly on raw (non-cuboid) data. LaharOLAP’s fundamental approach to trading efficiency against accuracy is
similar in spirit to the iterative-refinement ideas in ????.

Because of RFID’s popularity in commercial supply chains, much data warehousing work targets RFID data specifi-
cally [17, 18, 33]. This work exploits RFID-specific characteristics (e.g. shared path prefixes early in a supply chain) to
support efficient query processing, but such systems require that queries be written at the semantic level of RFID tags/readers,
ignoring noise issues and precluding the transformation of RFID data into higher-level information (e.g. location).

Compression within a DBMS is generally applied losslessly to relational data, whether in a row-store [41] or column-
store [1] framework. In either case, the most successful techniques exploit the lack of tuple order to achieve effective,
lightweight compression [20]; unfortunately the ordered nature of Markovian streams renders such techniques inapplicable
in LaharOLAP. At a higher level, however, LaharOLAP is similar in spirit to the work of Apaydin et al. [3], who use
approximate bitmap compression to create a tradeoff between query accuracy and efficiency; and to Chen et al. [8], who
introduce(??) the notion of allowing a quer optimizer to choose between different types of compression.

Additional compression work has been done for XML data [37], but this work was targeted at reducing network bandwidth,
and thus did not consider the effect of decompression time on query effciency.

Need to find a home for this discussion of Amol’s ICDE work: LaharOLAP is able to process a superset of the queries
processed by the Markovian stream operators proposed by Kanagal et al. [?] (LaharOLAP handles complex event queries and
does not require that the final result stream be determinized in any way).

We need to either compare performance with Amol’s system or clearly state why we have not.

7 Conclusion
In this paper, we presented LaharOLAP, a novel system for warehousing imprecise and temporally-correlated data sequences
that we call Markovian streams. LaharOLAP is designed to support a broad class of applications from RFID tracking to
speech processing and more. All of these applications need to query high-level data inferred using a model from low-
level data like multimedia or sensor streams. Markovian streams are the result of this inference and the data managed by
LaharOLAP.

LaharOLAP supports complex queries including SELECT, event, and event-OLAP queries that search for patterns in
streams and, optionally, aggregate them. A key contribution of this paper is the study of tradeoffs between additional impre-
cision (via lossy compression techniques) and increased performance. Given the increased availability of large multimedia
and sensor data archives, warehousing Markovian streams is an important problem and we view this paper as an important
step toward enabling such systems.
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