
Code-Centric Communication Graphs
for Shared-Memory Multithreaded Programs

Benjamin P. Wood Joseph Devietti Luis Ceze Dan Grossman
University of Washington

{bpw,devietti,luisceze,djg}@cs.washington.edu

Abstract
With more and more complex pieces of software using
explicit multithreading, tools to extract the structure of such
software are increasingly important. We present a novel
tool that builds graphs describing how threads in shared-
memory parallel programs communicate. Compared to prior
work, our communication graphs are code-centric: nodes
represent units of code (e.g., functions) and edges represent
inter-thread shared-memory communication via these units
of code. Our approach is dynamic, using actual executions
to build graphs, and exploits binary-code instrumentation
to work for large, real-world applications. The graphs are
useful for understanding software structure and computing
program properties, such as the effect of nondeterministic
thread-scheduling on the communication pattern.

1. Introduction
Multithreaded desktop and server applications are becoming
unavoidable in order to reap the performance benefits of
multicore architectures. Unfortunately, writing, debugging,
and understanding multithreaded code is much more difficult
than for single-threaded code. Automatic and interactive
development tools can ameliorate this pain. While many
tools exist and are commonly used in industry (e.g., Intel’s
ThreadChecker [1]), new tools that complement them — such
as the one in this work — are sorely needed.

While there are many models for parallel and concurrent
programming, we focus on shared-memory programs because
this is the prevailing paradigm for multicore machines. We
begin by reviewing the advantages and disadvantages of
shared memory. We then consider how existing tools for
helping with shared-memory computing take a data-centric
approach rather than our code-centric approach.

Shared-Memory Benefits and Drawbacks Shared memory
makes inter-thread communication simple: One thread writes
to a shared location that another thread later reads. On mul-
ticore architectures it is also efficient: We can communicate
an entire data structure by communicating just a pointer to
it. The hardware moves parts of shared data structures to the
processors using them. Compared to message-passing, there

is less focus on the complexities of serializing objects and
developing explicit communication protocols.

The rub is that shared memory is too easy: Typically com-
munication is implicit; any memory access might or might
not be part of inter-thread communication. Understanding the
structure an application requires inferring its pattern of inter-
thread communication, which is exactly what shared memory
does not make manifest. Ideally we would like to recover the
communication patterns that message passing makes explicit
without sacrificing convenience or performance.

Although shared-memory allows inter-thread communi-
cation almost everywhere, well-written applications actu-
ally communicate among threads rarely in the code. There-
fore, tools that extract communication patterns from shared-
memory programs can reveal program structure that is invalu-
able for debugging, software understanding, testing, etc.

The Data-Centric Approach Much research over the last
decade has tamed shared memory by determining what mem-
ory locations are shared among threads and what synchroniza-
tion idioms, particularly locks protecting memory locations,
are used. Static and dynamic analyses have been developed
to identify and enforce “good” programming patterns such
as thread-local data and data consistently guarded by a lock.
More recently this line of work has been extended to identify
atomicity violations, i.e., when some piece of code does not
appear to execute all at once to other threads.

Such work takes a data-centric view of shared-memory
communication. For each memory location, it determines
how it is used. For example, it might be accessed only while
holding a specific lock. Even atomicity detectors work by
considering what data is accessed in some critical section
and then whether the invariants for the data are such that the
critical section is in fact atomic.

Our Code-Centric Approach Our work takes a fundamen-
tally complementary view of an application’s communication
structure. Instead of presenting information in terms of mem-
ory locations, we present only which units of code (e.g., func-
tions) participate in inter-thread communication with which
other units of code.



Our approach produces a communication graph in which
the nodes are code units and the edges indicate that during
program execution the edge’s source wrote data to one or
more locations and the edge’s target then read that data in
another thread. (Section 2.2 modifies this basic definition, but
the core idea remains this simple.) In this work, we compute
such graphs via a dynamic analysis. Our focus is on the
graphs and their usefulness. We have built graphs for the
Parsec [4] multithreaded benchmark suite and for large widely
used parallel applications including MySQL and the Apache
web server. Our tool uses dynamic binary instrumentation to
support any program using C or C++ with POSIX Threads
without needing the source code.

Qualitatively, the generated graphs are valuable documen-
tation, especially after simple and principled manual pruning
of a few uninteresting nodes that have many edges. Anecdo-
tally, for every program we have considered, we can learn key
aspects of the program’s structure from its graph even before
we have ever looked at the source code. More quantitatively,
the graphs have enabled several experiments and analyses
that characterize large multithreaded applications, including:

• The distribution of node-degrees in a graph indicates how
centralized or diffuse shared-memory communication is
in the code base.
• By comparing graphs for program runs with the same

inputs, we can measure the effect of nondeterministic
thread-scheduling on communication patterns.
• By comparing graphs for program runs with different

inputs, we can measure the effect of inputs on communi-
cation patterns, which helps assess test coverage.

Contributions and Outline We introduce communication
graphs as a new, code-centric way to describe the structure
of shared-memory programs. We describe a dynamic tool to
build the graphs automatically by observing an instrumented
program execution. Our tool works for large and sophisticated
programs. We consider important variations of the graph,
particularly a notion of function “communication inlining”
that lets us produce different graphs that correspond to
different levels of software abstraction. The graphs enable us
to compute relevant communication metrics for multithreaded
programs.

Section 2 defines several variations of communication
graphs. Section 3 describes how to dynamically generate
communication graphs as well as key optimizations to reduce
instrumentation overhead. Section 4 presents salient details of
our dynamic-analysis tool. Section 5 presents our experimen-
tal evaluation, including case studies and summary statistics
across applications. Sections 6, 7, and 8 discuss related work,
future work, and conclusions, respectively.

2. Communication Graphs
This section describes several flavors of communication
graphs and how to generate them. The discussion assumes

void enqueue(Queue* q, int val) {

... // synchronization of q

q->buf[q->tail++ % BUF_SZ] = val;

... // synchronization of q

}

int dequeue(Queue* q) {

... // synchronization of q

int ans = q->buf[q->head++ % BUF_SZ];

... // synchronization of q

return ans;

}

Queue pipeA = INITIAL_QUEUE;

Queue pipeB = INITIAL_QUEUE;

void stage1() { /* put items in pipeA */ }

void stage2() { /* remove items from pipeA;

put items in pipeB */ }

void stage3() { /* remove items from pipeB */ }

Thread 1: Thread 2: Thread 3:
stage1(); stage2(); stage3();

Figure 1: Outline of a simple pipeline program.

nodes in the graphs are functions in the code. Other granular-
ities, either finer such as individual lines or coarser such as
entire files, also work well, which often helps to distinguish
inter-file edges from intra-file edges.

2.1 Basic Graphs
Communication graphs are directed graphs where the nodes
are functions in the source code. When a thread T1 executing
a function f1 reads a memory location, the last write to
the location must have been performed by some thread T2

executing some function f2. If T1 6= T2, then a directed edge
from f2 to f1 is included in the graph. (Note f1 = f2 is
possible.) The graph for a program execution includes all
such edges. They describe exactly the pairs of functions that
participated in inter-thread communication.

To build the graph for a dynamic execution, we interpose
instrumentation code on all memory reads and writes. On a
write to memory address m, we record the executing thread
T and executing function f as the most-recent write to m
in an in-memory table that maps memory addresses to most-
recent writes. On a read of m, we consult the table and add an
edge to an in-memory representation of the graph unless the
edge is already present. The edge is not added for intra-thread
communication (i.e., the thread in the table is the thread doing
the read), which is the common case. When the program
terminates, the graph is written to disk. Subsequently, a graph-
visualization tool we wrote using the Prefuse visualization
toolkit [7] is used to view the graph. The tool lets users move
or remove graph nodes interactively.

As an example, consider the program outlined in Figure 1
(the Queue type definition and corresponding synchronization
is elided). This program implements a simple pipeline, where
a separate thread performs each pipeline stage, communicat-



Queue buf = INITIAL_QUEUE;

void produce() { /* put items in buf */ }

void print() { /* remove items from buf

and print them */ }

void discard() { /* remove items from buf

silently */ }

Thread 1: Thread 2: Thread 3:
produce(); print(); discard();

Figure 2: A producers-consumers program with a high-level
communication pattern different than Figure 1’s program.

produce discard print

Figure 3: Communication graph for the program in Figure 2,
with enqueue() and dequeue() “inlined.”

ing with adjacent stages via synchronized bounded-buffer
queues. Figure 4a shows the trivial communication graph
recorded for an execution of this program.

Functions that do not participate in inter-thread communi-
cation do not appear in the graph. For example, the functions
stage1, stage2, and stage3, while arguably involved in
communication, did not directly perform any read or write
operations that caused communication. In a full application,
most functions are clearly not involved in inter-thread com-
munication and so do not appear in the graph.

2.2 Function “Communication Inlining”
A useful way to extend the basic communication graph just
describes is to ascribe communication to a function’s caller
rather than to the function actually doing the read or write.
For example, reconsider the pipeline program in Figure 1. If
we “inline” the calls to enqueue() and dequeue(), then we
get the graph shown in Figure 4b.

Neither the graph in Figure 4a nor the graph in Figure 4b
subsumes the other in usefulness. They present complemen-
tary information by representing inter-thread communication
at different levels of abstraction. The lower-level graph in
Figure 4a is useful for ensuring all communication occurs
through shared queues, as evidenced by the absence of other
edges. The higher-level graph in Figure 4b displays the over-
all pipeline in the application. Indeed, if we consider the
program shown in Figure 2, it has exactly the same lower-
level graph as Figure 4a, but inlining the calls to dequeue()
and enqueue() leads to the graph shown in Figure 3.

Therefore, we leave choosing what functions to inline to
developers. The choice will depend on the level of abstraction
at which they wish to view the program. Given a list of inlined
functions, the tool is modified as follows: The instrumentation
for a read or write checks if the executing function f is on

enqueue dequeue

(a) Without inlining.

stage1 stage2 stage3

(b) With enqueue() and dequeue() “inlined.”

Figure 4: Communication graph for the program in Figure 1.

the list. If so, the instrumentation code inspects the stack
to determine f ’s caller, and then uses it as the node in the
graph. Repeated inlining is no problem; the instrumentation
continues inspecting the stack to find the shallowest non-
inlined function.

Inlining affects graph generation, so the program must
be re-run with different lists of inlined functions. Therefore,
producing the graphs in Figures 4a and 4b requires separate
program runs. The alternative is to record the whole call stack
for each memory access, which we deem too expensive.

2.3 Usage Scenarios
Developers can use communication graphs to investigate com-
munication properties. High-degree nodes are producers or
consumers of data for many other functions; they are of-
ten key to understanding the application’s structure. More
generally, a graph often visually decomposes into loosely cou-
pled pieces that developers can peruse separately. The graphs
could also be used to detect bugs if anomalous nodes or edges
are discovered. While it is difficult to convey the invaluable
experience of interactively exploring a communication graph,
Section 5 describes case studies we performed.

Combining and comparing different graphs is also valu-
able. Different program runs can yield different graphs due to
different inputs or nondeterministic thread-scheduling. The
graph-union of graphs across multiple runs of an entire test
suite describes the communication covered by the suite, while
the graph-intersection describes the communication so core
to the application that it is independent of the input. Edges
present in the union but not in the intersection (i.e., the sym-
metric difference) describe communication that occurs during
only some executions. Section 5 quantitatively characterizes
these properties.

3. Graph-Building Optimizations
Instrumenting every read and write and maintaining a table
indexed by memory address is expensive, potentially slowing
down execution by two orders of magnitude or more. While
significant slowdown is acceptable for a code-understand-
ing tool (consider how long it would take to derive an
application’s communication graph by hand), some care is
warranted. In particular, real applications often have built-in
timeouts to respond to slow connections and communications.
We use two simple optimizations to achieve slowdown small



enough to avoid such problems. This section describes these
optimizations and their effect on graph generation, i.e., what
edges are potentially missed as a result.

Ignore Stack Accesses Our tool has an option to not instru-
ment memory accesses that are on the stack. For a binary-
instrumention tool, this means skipping accesses indexed
from the stack pointer or frame pointer registers. While it
is possible in C/C++ to use pointers to local variables for
inter-thread communication, it is rare. Where it does occur, it
is often for simple fork-join idioms that are easily identified
in the source code. Nonetheless, removing instrumentation
of stack accesses can omit communication edges. Though it
is optional to ignore stack accesses, in practice we do so.

Permit Data Races Our run-time system lets multiple
threads access distinct memory-table entries in parallel. A
completely accurate graph would still require synchronizing
on each access to a memory location so that the table update
and actual memory access occur atomically. However, re-
moving this synchronization has only a small effect on graph
correctness — and none for data-race free applications.

We justify this claim via the example in Figure 5. Thread
3 reads a after it was written by either Thread 1 or Thread
2. If the former, as in the interleaving shown in the figure,
then Thread 3 also reads b written by Thread 1 so the
communication graph should have the single edge from f to h.
By allowing a race with Thread 2 between the instrumentation
of Thread 1’s write to a and Thread 1’s actual write to a, the
instrumentation records that Thread 2 last wrote to a. So the
graph produced has edges from f to h and g to h.

Such a graph is false: there is no execution where f and
g both communicate to h. Is it worth risking an impossible
graph in order to avoid the performance cost of synchronizing
on every memory access? Two reasons justify an affirmative
answer. First, impossible graphs can arise only from data
races in the original application, which are rare, worth finding
with data-race detection tools (not our focus), and forbidden
by the emerging C++ standard [5]. Second, while the overall
graph is impossible, every edge in the graph is possible on
some execution. That is, every edge is possible on some
interleaving. This argument holds generally: no race can lead
to an impossible edge, only impossible graphs.

4. Tool Details
Our tool consists of a runtime monitor to collect communica-
tion graphs and a visualizer to examine them.

4.1 Runtime Monitor
The monitor handles arbitrary C/C++ binaries and is imple-
mented in the Pin binary instrumentation framework [10].
Using an industrial-strength binary-instrumentation frame-
work lets us analyze large real-world applications with no
modification of the original source code. After the tool was
developed and debugged, it required zero modifications to
handle large applications such as MySQL and Apache.

Thread 1: Thread 2: Thread 3:
(running f) (running g) (running h)

wr(b,1,&f);

b++;

wr(a,1,&f);

wr(c,2,&g);

c++;

wr(a,2,&g);

a = FALSE;

a = TRUE;

rd(a,3,&h);

if(a) {
rd(b,3,&h);

foo(b);

} else {
rd(c,3,&h);

foo(c);

}

hf g

Figure 5: An execution to demonstrate that data races can lead
to an impossible communication graph but not impossible
edges. Time progresses downward. Functions wr and rd
are the instrumentation for writes and reads.

The runtime monitor maintains a memory map that records
the last thread and function to write to each memory location,
as discussed in Section 2.1. The tool instruments memory ac-
cesses with hooks to update the map and the communication
graph, stored as an adjacency matrix.

Inlining To handle function inlining, we could mark each
call frame on the stack as inlined or non-inlined and walk the
stack at each meory access to attribute the operation to the
most recent non-inlined function. To improve performance,
the monitor maintains a shadow stack instead. When a non-
inlined function is called, we push its identifier onto the
shadow stack and pop it when the function returns. Calls
and returns of inlined functions are ignored. Load and store
hooks use the top of the shadow stack as the current function.
Exceptions could cause shadow stack misalignments and
result in graph errors, but we have not observed this problem
in programs we tested.

The monitor supports flexible configuration of inlining at
the binary image, source file, and function granularities. The
tool instruments all memory accesses, but by default it inlines
all functions not in the specified binary image.

Memory Allocators Memory allocators change the mean-
ing of a memory address by reusing it for logically different
pieces of data. In well-behaved programs, the data stored
in a piece of memory has reached the end of its meaning-
ful life when that memory is freed. To distinguish the data
stored at a given memory address that is re-allocated, the tool
erases the memory map entries for a chunk of memory when



Total Instrumented Initial Graph After Inlining After Inlining and Pruning
Benchmark LOC Functions Functions Edges Inlined Functions Edges Pruned Functions Edges

blackscholes 421 13 4 (31%) 8 - - - - - -
bodytrack 11,804 233 82 (35%) 296 14 77 (33%) 336 9 68 (29%) 279
canneal 4,085 42 10 (24%) 23 - - - - - -
dedup 3,683 122 39 (32%) 143 14 28 (23%) 131 5 23 (19%) 95
facesim 29,355 1454 77 (5%) 259 22 59 (4%) 231 1 58 (4%) 226
ferret 15,035 1861 79 (4%) 181 19 77 (4%) 153 43 34 (2%) 60
fluidanimate 941 27 12 (44%) 45 - - - - - -
freqmine 2296 74 34 (46%) 140 - - - - - -
raytrace 12,878 5589 19 (<1%) 35 4 6 (<1%) 7 - - -
streamcluster 2,333 37 14 (38%) 60 - - - - - -
swaptions 1,165 39 14 (36%) 63 - - - - - -
vips 174,151 5064 135 (3%) 722 22 126 (2%) 778 26 100 (2%) 548
x264 37,413 408 140 (34%) 538 5 135 (33%) 524 12 123 (30%) 435
httpd 335,914 2072 401 (19%) 1269 1108 258 (12%) 1146 37 221 (11%) 876
mysqld 941,021 11215 847 (8%) 2293 575 811 (7%) 2254 388 423 (4%) 802

Table 1: Graph metrics for Parsec, httpd, and mysqld. At each stage of graph processing, “Functions” denotes the number (and
percentage) of functions that communicate.

it is allocated by any of the standard C allocator functions
(malloc, calloc, etc.), effectively giving each allocation a
fresh logical address. Furthermore, the tool ignores all mem-
ory accesses inside the malloc/free library.

Performance Our runtime monitor induces application
slowdowns of 200x to 450x; overheads are 25-50% higher
without our optimization of ignoring stack accesses. Though
inconvenient, these overheads have not proved prohibitive
in our tests. Subsequent tools targeting the Java language
have total overheads 1-2 orders of magnitude lower, but are
beyond the scope of this paper.

4.2 Visualizer
The visualizer, based on the Prefuse visualization toolkit [7],
lets users interactively zoom, rearrange, and filter nodes from
the communication graph. The graph is layed out via an n-
body physics simulation wherein nodes repulse one another
and edges are springs. In practice this provides a helpful
visual layout, moving communicating nodes closer together,
and non-communicating nodes farther apart. The user can
also move nodes around manually with or without the physics
in action.

5. Evaluation
We evaluated our tool on the Parsec multithreaded benchmark
suite [4], the Apache web server, and the MySQL database
server. After describing the applications, we present case
studies of the use of our tool on two applications, followed
by observations on the principled use of inlining and pruning.
Finally, we summarize all the applications with quantitative
metrics computed over their communication graphs, analyz-
ing graph complexity and graph stability across multiple
program runs.

5.1 Applications Investigated
The Parsec benchmark suite encompasses a wide variety of
parallel programming models, including pipelines, fork/join
concurrency, task queues, and work-stealing. The workloads
themselves are also diverse, including such tasks as file com-
pression, ray-tracing, data mining and physics simulation.

Apache is a widely-deployed industrial-strength web
server. We configured version 2.2.11 to use worker threads
and used the httperf web workload generator to run several
clients, simultaneously requesting documents from a single
httpd server that was running under our runtime monitor.

The popular MySQL database server allows concurrent
access by large numbers of clients. We configured version
5.1.32 with defaults suggested for small installations. To
exercise inter-thread communication in the mysqld server,
we used the accompanying mysqlslap utility to execute
workloads with several clients simultaneously querying a
single server.

Table 1 shows information about the applications. The
second column shows their size in lines of code. The third col-
umn shows how many functions were not implicitly inlined
(i.e., functions in the application, not in shared libraries).

5.2 Case Study: dedup
dedup is a compression program that pushes data through a
5-stage pipeline. Each stage uses multiple threads for load-
balancing and higher throughput. The initial communica-
tion graph (Figure 6a) does not immediately reveal this
pipeline structure. Communication often occurs via synchro-
nization functions (e.g., queue signal terminate), utility
functions (e.g., hash from key fn), and custom-memory-
allocater functions (e.g., zcfree). To reveal dedup’s high-
level structure, we inlined three simple kinds of functions:



(a) Before inlining and pruning (b) After inlining and pruning

Figure 6: Communication graphs for dedup. Dark edges indicate inter-file, and light edges intra-file, communication. Only
communicating functions (nodes with degree greater than zero) are shown.

(1) synchronization functions used by the shared queues sep-
arating the pipeline stages, (2) functions used to access a
shared hash table, and (3) functions found in the source file
util.c. We also pruned dedup’s custom memory-allocation
functions. In total, we inlined 14 functions and pruned 5.

Inlining and pruning make dedup’s high-level structure
much more evident (Figure 6b). The most-highly connected
nodes — DataProcess, FindAllAnchors, ChunkProcess
(and its helper function sub ChunkProcess), Compress
and SendBlock — are precisely the stages in the pipeline.
Pipeline structure is evident from the edge directions:
DataProcess, the first pipeline stage, is only a source of
edges while SendBlock, the last stage, is only a sink. The
darker edges show communication across file boundaries,
while the lighter edges show intra-file communication. The
pipeline stages clearly reside in the same file, but use helper
functions in other files.

5.3 Case Study: MySQL Server
At 941,021 lines of code, mysqld is a large application.
As a higher-level shared memory system itself, allowing
concurrent database access by multiple clients, it contains
significant inter-thread communication. Although only 8%
of functions in mysqld communicate (see Table 1), the
raw communication graph for any run of mysqld remains
large, with almost 850 communicating functions and 2300
edges in larger graphs. Simply put, the unmodified graph
is visually overwhelming. However, straightforward inlining
and conservative pruning of the graph makes it quite tractable.
Since we were unfamiliar with the code, we used the graph to
explore the code, starting with the highest degree nodes. The
very highest degree nodes included initialization functions
such as mysql init variables, run at server boot time,

my thread init, used to initialize thread data structures,
and THD::THD, a thread metadata constructor. Pruning these
nodes interactively revealed more structure in the graph.

Function pruning can remove false communication from
the graph. Functions such as custom memory allocators,
constructors, and destructors can obfuscate otherwise simple
communication graphs by introducing false edges via global
metadata. Communication through metadata channels such
as the run queue of a thread pool or the free list of a custom
allocator are not meaningful at the application level. Inlining
custom allocators would induce communication between a
function that frees an object and a subsequent function that
allocates one. Instead, we eliminate this false communication
path entirely by pruning the relevant functions.

In the mysqld graph, other high-degree nodes with suspi-
cious function names like my vsnprintf and my hash insert
led us to source code for generic data structures and utility
functions, which the source distribution fortuitously groups in
two directories. Running mysqld again with all these utility
functions inlined yielded a greatly simplified graph. We also
pruned several custom memory allocator functions and all
C++ object destructors. The resulting graph is much more
manageable; simple inlining and pruning abstracts enough
low-level communication to reveal communication patterns
in mysqld. For example, functions for opening and closing
tables, such as open table and close open tables, are
tightly connected, as shown on the right in Figure 7. Similarly,
database and table locking operations are tightly connected
on the left of Figure 7. A screenshot does not do the visualizer
justice; we have found interactive graph exploration far more
helpful than any static graph representation.



5.4 Function Inlining and Pruning
The simple heuristics for inlining and pruning presented
above – inlining synchronization, data structure, and helper
functions, and pruning custom allocators and initialization
and destruction functions – tamed the complexity of many
graphs by abstracting low-level communication.

Quantitative results, shown in Table 1 as the number of
communicating functions (i.e. nodes with nonzero degree)
and edges in a graph before and after applying inlining and
pruning, support our qualitative observations of the usefulness
of inlining and pruning. For large applications in our tests, it
was not uncommon for inlining and pruning to remove 20-
50% of communicating functions and edges. (Graph metrics
are discussed further in Section 5.5.)

Inlining and pruning are relatively easy, even for those
without prior knowledge of an application’s source code.
Since we were unfamiliar with the applications we targeted,
we were conservative in our approach to inlining and pruning.
However, we believe that developers working with familiar
code will have good intuitions for what functions to inline
or prune, enabling them to inline more application-specific
functions that we did not.

In our experiments, candidates for inlining were often
self-evident from their distinctive names, and graph topology
highlighted high-degree nodes to prune, suggesting that the
graphs are indeed powerful tools for program understanding.
After identifying candidates in the graphs, we examined their
source code to verify they should be inlined. Since function
inlining can reveal new communication edges (as shown
previously in Figure 4a), it was sometimes helpful to iterate
on inlining a small number of times.

Finally, our experience with Apache and MySQL suggests
that inlining and pruning allow our communication graphs
to scale well to large applications. Furthermore, source-
code organization in large applications often makes inlining
and pruning simple, so the effort to use these techniques
also scales well with application size. For example, the
Apache Runtime library (APR) provides several low-level
operations. Inlining just the APR and pruning functions for
handling memory pools and allocation simplified the graph
enough to show higher level communication between server
components.

5.5 Graph Characterization
Representing inter-thread communication as a graph lets
us quantify communication properties. We now show a
quantitative analysis of the graphs from applications we
studied as case studies for our tool. In summary, we find:
1. Node degree distributions are heavily biased towards zero.
2. At most 10% of nodes have degree above 10 (<7% for
most applications).
3. Fewer than half of functions communicate at all.
4. In many programs, communication structure is relatively
stable over multiple runs on a single input.

5. Across different inputs, communication differs by <15%
for most applications, but reaches 50% in some cases.

Node Degree One intuitive way of understanding the com-
plexity of a program’s communication graph is by examining
the degree distribution of the graph’s nodes. The more func-
tions that a given function communicates with, the higher
the degree of its node in our graphs. Graphs whose nodes
have lower degree generally indicate programs that perform
inter-thread communication via a more limited interface.

Figure 8 shows the cumulative distribution function of
node degrees in graphs that are the union of unpruned graphs
observed across several runs of each benchmark. In all
applications, nearly 100% of functions have degree less than
25; 90% have degree less than 8 for most applications. Fewer
than half of all functions communicate at all, which supports
the view that inter-thread communication is restricted to a
subset of an application’s functions. For large applications,
this percentage is even lower, e.g. under 10% of the functions
in mysqld participate in inter-thread communication. Small
programs are more highly connected, but larger programs are
well-partitioned and limit inter-thread communication.

Functions are often the right granularity for considering
inter-thread communication, but communication between
modules, classes, or source files is a good measure of the
encapsulation of inter-thread communication among larger
code units. Our experiments (omitted for space reasons)
show that file degree in C programs behaves similarly to
function degree, suggesting that applications limit inter-
thread communication at multiple architectural layers.

Graph Stability We examined the stability of our commu-
nication graphs with respect to (1) changes in instruction
interleaving due to nondeterminism across multiple runs of a
program with the same input, and (2) changes due to running
the program with a different input. For (1), the left part of
Table 2 shows how many new edges, i.e. new communication
paths, were discovered by monitoring an additional run of
the program. For each benchmark, we chose the input that
yielded the most new edges across runs; this differs from
Table 1, which shows data aggregated across all inputs. The
table gives the number of edges discovered that had not been
seen in any previous run of the program. In general, only a
modest number of runs, e.g. five runs total, is necessary to
reach reasonable edge coverage for a single input. Across
inputs (shown on the right part of Table 2), the edge variabil-
ity can be much higher, so a diverse test suite is required to
exercise all the communication in an application.

6. Related Work
Our work is most closely related to characterizations of
shared-memory parallel programs, software-visualization
tools, and tools for finding concurrency errors.

Characterizations of shared-memory parallel program
benchmarks (e.g., SPLASH [17] and Parsec [4]) normally



Figure 7: The main connected component in a communication graph for mysqld after inlining and pruning.

0 5 10 15 20 25

Degree

50

60

70

80

90

100

%
 o

f n
od

es
 w

ith
 d

eg
re

e 
<

 x

blackscholes
bodytrack
canneal
dedup
facesim
ferret
fluidanimate
freqmine
raytrace
streamcluster
swaptions
vips
x264
httpd
mysqld

Figure 8: Cumulative distribution functions of node degree
before inlining or pruning. Note the y-axis starts at 50%.

focus on the amount of shared data and how frequently
memory accesses lead to a remote action (i.e., coherence
protocol message). They provide a data-centric, low-level
view of inter-processor communication. This is important
when assessing behavior at the hardware level but does
not describe the application’s high-level communication
structure.

Software visualization is a very mature and active research
topic. Researchers have explored visualization of many as-
pects of programs. These include execution steps [15], data-
structure relationship [18], inter-class communication via
method calls [3, 12], profiling data visualization [2], and par-
allel program executions [6, 11, 13], which is the closest to
our work. Past work on parallel-program visualization has
focused on performance of message-passing systems, e.g.,
understanding execution imbalance, communication to com-

putation ratio, etc. Our work focuses on understanding the
structure of shared-memory communication.

We do not claim a large contribution in software visual-
ization per se, but to the best of our knowledge, this is the
first work to visualize shared-memory inter-thread commu-
nication. We focus on what to visualize (the communication
graph) rather than how to visualize it. Prefuse [7] met all
our needs, but integrating communication graphs in software-
visualization frameworks [8, 16] could be valuable.

Dynamic concurrency bug-detection tools use program
instrumentation to monitor synchronization and accesses to
shared data. Eraser [14] and AVIO [9] are canonical examples.
Eraser detects when shared data is accessed without holding
an appropriate lock. AVIO determines when a pair of accesses
to a given memory location were supposed to be atomic but
ended up interleaved by an access from another thread. We
see our tool as a complementary addition to the available
tools. The lack of atomicity violations or locking discipline
violations does not mean the program is free of concurrency
bugs; using our tool, a programmer can identify unexpected
communication between functions.

7. Future Work
Work on communication graphs can go well beyond auto-
matic generation via dynamic instrumentation as discussed
in this paper. First, we would like to consider checking an
execution’s communication against a pre-computed graph.
This graph could come from developers or be the union of
the graphs produced by a test suite. Either way, it provides a
way to detect unexpected communications. More generally
and speculatively, our code-centric view can be the core of a
shared-memory programming model in which the allowable
shared-memory communication is defined as a communica-



Additional Runs Across
Benchmark Initial 1 2 3 4 Inputs
blackscholes 6 0 1 0 0 0
bodytrack 253 14 18 1 1 46
canneal 19 3 0 0 0 0
dedup 76 2 6 8 3 12
facesim 168 7 4 6 3 12
ferret 145 0 1 0 0 2
fluidanimate 38 0 0 0 0 3
freqmine 124 6 0 0 3 14
raytrace 6 0 0 0 0 0
streamcluster 50 0 0 0 0 1
swaptions 46 7 1 2 0 12
vips 424 48 20 16 15 109
x264 510 1 1 0 0 255
httpd 1164 19 5 9 9 102
mysqld 1879 43 5 2 0 159

Table 2: Number of new edges discovered with additional
runs of the same input. The last column gives the maximum
number of new edges discovered by changing inputs.

tion graph. Language primitives or annotations could allow
programmers to specify an acceptable graph — and what to
do when communication exceeds the bounds of the graph.

8. Conclusion
We have developed a tool that monitors shared-memory
multithreaded programs and builds a communication graph
to describe which functions communicate data across threads.
We have applied our tool to real programs. The graphs are
of reasonable size to gain real insight into the structure of
the applications. Indeed, the greatest benefit of our tool may
be the invaluable but difficult-to-quantify issue of program
understanding. However, the communication graphs also
enable new metrics for describing the behavior of program
executions such as the difference in communication graphs
across different runs.

References
[1] Intel Thread Checker. http://software.intel.com/en-us/intel-

thread-checker/.

[2] Intel VTune Performance Analyzer.
http://software.intel.com/en-us/intel-vtune/.

[3] R. Bertuli, S. Ducasse, and M. Lanza. Run-time information
visualization for understanding object-oriented systems. In
International Workshop on Object-Oriented Reengineering,
2003.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions. In 17th International Conference on Parallel Architec-
tures and Compilation Techniques, 2008.

[5] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concur-
rency Memory Model. In ACM Conference on Programming
Language Design and Implementation, 2008.

[6] M. T. Heath and J. A. Etheridge. Visualizing the Performance
of Parallel Programs. IEEE Software, Sep./Oct. 1991.

[7] J. Heer, S. K. Card, and J. A. Landay. Prefuse: A Toolkit for
Interactive Information Visualization. In SIGCHI Conference
on Human Factors in Computing Systems, 2005.

[8] M. Lanza and S. Ducasse. Polymetric Views - A Lightweight
Visual Approach to Reverse Engineering. IEEE Transactions
on Software Engineering, 29(9), 2003.

[9] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
Atomicity Violations via Access Interleaving Invariants. In
12th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2006.

[10] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building cus-
tomized program analysis tools with dynamic instrumentation.
In ACM Conference on Programming Language Design and
Implementation, 2005.

[11] W. Nagel and A. Arnold. Performance visualization of parallel
programs – the PARvis environment. In Intel Supercomputer
Users Group Conference, 1994.

[12] W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Execu-
tion patterns in object-oriented visualization. In Conference on
Object-Oriented Technologies and Systems, 1998.

[13] L. D. Rose, Y. Zhang, and D. A. Reed. SvPablo: A Multi-
language Performance Analysis System. In Computer Perfor-
mance Evaluation (Tools), 1998.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: A Dynamic Data Race Detector for Multi-
Threaded Programs. ACM Transactions on Computer Systems,
15(4), 1997.

[15] J. Stasko. Animating algorithms with XTANGO. SIGACT
News, Spring 1992.

[16] M.-A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu,
and M. Musen. SHriMP Views: An Interactive Environment
for Information Visualization and Navigation. In SIGCHI
Conference on Human Factors in Computing Systems, 2002.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In International Symposium on Computer
Architecture, 1995.

[18] A. Zeller and D. Lütkehaus. DDD – a free graphical front-end
for UNIX debuggers. SIGPLAN Notices, Jan. 1996.


