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Abstract— Science is increasingly becoming a data manage-
ment problem. Scientists in many domains such as astronomy, bi-
ology, and oceanography are acquiring data at an unprecedented
rate from large-scale sensor deployments, high-throughput labo-
ratory equipment, and massive-scale computational simulations.
With such massive datasets, data management and analysis tasks
are becoming the new bottleneck for scientific research.

In this paper, we focus on one common yet challenging
data analysis problem from the astronomy simulation domain:
massive-scale data clustering. We study the performance and scal-
ability of a clustering algorithm called Friends-of-Friends. This
algorithm is designed to cluster points in a multi-dimensional
space and is commonly used on simulation data to study galaxy
formation and evolution. We address two technical challenges
in the scalability of this algorithm. First, we show how this
algorithm can be parallelized and implemented in a MapReduce-
style shared-nothing computational cluster. Second, we present an
optimization to handle extremely dense regions that are common
in these kinds of astrophysical simulations. We implement our
solution in the Dryad parallel data processing system using
DryadLINQ. We evaluate its performance and scalability using
a real dataset comprised of 906 million points, and show that in
a small 8-node cluster, our algorithm can cluster even a highly-
skewed dataset in 70 minutes and offers near-linear scalability.

I. INTRODUCTION

Advances in high-performance computing technology and
better access to large-scale compute clusters are changing the
face of many scientific disciplines. One area where this change
is particularly visible is the area of scientific simulations.
Simulations are used to model the behavior of complex
natural systems ranging from subatomic particles to biological
proteins, climate change, and even the evolution of structure in
the universe. Increased compute power and an increased ability
to harness this power enable scientists to run simulations at an
unprecedented scale. For example, by the end of 2011, a single
astrophysics simulation of galaxy formation will generate
several petabytes of data, with single snapshots ranging in size
from 10s to 100s of TB.

While simulations are growing in size and complexity,
scientists’ ability to analyze the resulting data remains limited.
The reason is not lack of expertise, but simple economics.
A simulation code is typically used by a large number of
researchers, and it is often in use for 10 years or more.
Data analysis applications, however, are currently often unique

to individual researchers and evolve much more quickly.
Therefore, while it may be affordable for a science discipline
to invest the time and effort required to develop highly scalable
simulation applications using hand-written code in languages
like Fortran or C, it is usually infeasible for each individual
researcher to invest a similar effort in developing their own
scalable, hand-written data analysis solution. Consequently,
data analysis is becoming the bottleneck to knowledge dis-
covery, and scientists often limit their simulations in scale and
scope due to their inability to manage the results.

The state-of-the-art technologies for such large-scale ana-
lytic queries include parallel databases, such as Oracle [1],
DB2 [2], Teradata [3], and Greenplum [4], and new types
of massive-scale data processing platforms, such as MapRe-
duce [5], Hadoop [6], and Dryad [7]. In addition, the database
research community has initiated a collaborative effort to
design and build a new data management system for complex
analytical queries over massive scientific databases [8].

While analytical queries are helpful for data exploration,
data clustering is another popular task for scientists. Clustering
algorithms, however, are generally outside of the scope of con-
ventional query systems and have traditionally motivated their
own field of research [9]. In astrophysics, cluster identification
programs, like most astrophysical data analysis applications,
have historically been written as serial programs. Substantial
effort is involved to rewrite them in a scalable manner for the
parallel distributed-memory architectures commonly used to
run simulations.

Contributions: To address the above limitation, we inves-
tigate scalable clustering techniques using a shared-nothing
cluster. More specifically, our contributions are:

• We present a density-based distributed clustering algo-
rithm expressed in a shared-nothing parallel program-
ming framework, Dryad, (a generalized form of MapRe-
duce [7]).

• We present optimizations for data partitioning and spatial
indexing that together provide near-linear scalability.

• We implement the proposed algorithm using Dryad [7]
and DryadLINQ [10] and evaluate its performance in
a small-scale eight-node cluster using two real world
datasets from the astronomy simulation domain. Each
dataset comprises over 906 million objects in 3D space.
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Fig. 1. Friend of Friend relation. Two particles are considered friends if
the distance between them is less than a threshold ε. In the figure, A and
B are friends and B and C are friends, but A and C are not because the
distance between A and C is greater than ε. The friend relation is symmetric
if the distance is symmetric. The Friend of Friend relation (FoF) is defined
between two points if they are friends or if they are contained in the transitive
closure of the friend relation (e.g., A and C are friend of friend via B). In
the figure, the FoF relation induces a partition on the particles: all black filled
points are in one cluster and all white unfilled points are in another.

Overall, we demonstrate that our approach can cluster a
massive-scale simulation dataset in under 70 minutes and
offers near linear scaleup and speedup.

II. BACKGROUND

Cosmological simulations are used to study how structure
evolves in the universe on distance scales ranging from a
few million light-years to several billion light-years. In these
simulations, the universe is modeled as a set of particles that
interact with each other through gravity and hydrodynamics.
These particles represent gas, dark matter, and stars. Cer-
tain particles can be created or destroyed as the simulations
progresses: for example, a gas particle can form several star
particles, eventually shrinking to zero mass and disappearing
as all of its mass turns into stars. Every few simulation
timesteps, the simulator outputs a snapshot of the universe,
which lists all the particles, their locations, velocities, and
other properties. State of the art simulations (e.g., Springel
et al. 2005 [11]) use over 10 billion particles producing a
data set size of over 200 GB per snapshot. Such a simulation
requires a terabyte of RAM, and over 1 million CPU hours. In
the near future, astronomers will use the full 1.6 million CPU
cores of the upcoming NCSA/IBM Blue Waters system [12]
which has the potential to generate volumes exceeding 10 PB
of data per run and 10 to 200 TB per snapshot, depending on
simulation parameters.

A. Friends of Friends Clustering Algorithm

The Friends-of-Friends (FoF) algorithm (cf [13] and ref-
erences therein) has been used in cosmology for at least 20
years to identify interesting objects and quantify structure in
simulations [11], [14]. FoF is the simplest algorithms used
to identify clusters of objects in simulations. Thanks to its
simplicity, however, FoF is one of only two algorithms to have
been implemented in a distributed parallel fashion [15], [16].
The other is AMIGA[17].

The Friends-of-Friends algorithm is based on the notion of
a friend. Two particles are friends if they are within a distance

Algorithm II.1 Friends-of-Friends (fof)
Input: D ← {(pid, x, y, z)} // set of particles

ε← distance threshold
Output: {(pid, cid)} // cluster assignments
1: sidx← build spatial index(D)
2: R← φ // resulting cluster assignment
3: for all p ∈ D do
4: if p not visited then
5: newCid← p.pid

// find FoF closure of p
6: N ← FoF+(p, ε, sidx)

// generate cluster assignment tuples
7: R← R ∪ {(x.pid, newCid)|x ∈ N}
8: end if
9: end for

10: return R

Algorithm II.2 Friend-of-Friend Closure (FoF+)
Input: p← seed of expansion

ε← distance threshold
sidx← spatial index

Output: FoF closure of p
1: if p is already visited then
2: return φ
3: else
4: mark p visited
5: end if
6: N ← sidx.getNeighbors(p, ε)
7: R← {p} ∪N
8: for all q ∈ N do
9: R← R ∪ FoF+(q, ε, sidx)

10: end for
11: return R

ε of each other. Two particles are friend-of-friend if they are
either direct friends or if they can be reached through a series
of intermediate friend relations. More formally:

Definition: (Friend relation). Let δ : Rk × Rk → R be a
metric over Rk and let ε be a real number. For x, y ∈ Rk,
Friend(x, y, ε) if and only if δ(x, y) < ε.

Definition: (Friend of Friend (FoF) relation). Let D be
a set of points in Rk. Then FoFD(x, z, ε) if and only if
Friend(x, z, ε) or there exists y ∈ D such that FoFD(x, y, ε)
and Friend(y, z, ε).

We illustrate the friend-of-friend relation in Figure 1. To
identify clusters, the FoF algorithm simply computes these
relations. All particles related by the friend-of-friend relation
belong to the same cluster. Formally:

Definition: (FoF closure of x). The FoF closure of x over
D, denoted by FoF+

D (x, ε), is a maximal subset of D such
that all points y in the subset satisfy FoFD(x, y, ε). i.e.,
FoF+

D (x, ε) = {y ∈ D|FoFD(x, y, ε)}
Definition: (FoF algorithm). The FoF algorithm finds the

FoF closure of each particle in a set D with distance threshold
ε.

Algorithm II.1 takes a set D of particles and a distance
threshold ε as input. Each particle has a unique identifier (pid)
and a position vector in R3. The algorithm outputs a set of
cluster assignments. Each cluster assignment is represented as
a (particle, cluster) pair, (pid, cid).

The algorithm proceeds as follows. First, a spatial index
sidx over D is built to accelerate spatial range queries (i.e.,



finding friends). The index is an object with a single method
getNeighbors(p, ε) that returns all particles within ε of a
given particle p. Then, for each point in D, FoF finds its
closure by repeatedly calling FoF+ (Algorithm II.2). Each
particle in the closure of p is assigned a cluster identifier, taken
to be the identifier of p as shown in Algorithm II.1. Next, new
cluster assignment tuples are generated for each particle in the
closure. Once the algorithm visits all particles in D, it returns
the final assignments.

FoF is a special case of the DBSCAN [18] clustering
algorithm. In DBSCAN, only particles having more than
MinPts neighbors can seed a cluster. In FoF, however, the
MinPts parameter is zero, i.e., there is no noise. Thus, the
final result of FoF will include a large number of clusters
with few particles. To filter out such uninteresting clusters,
FoF applies simple filter based on the number of points in the
cluster. We omit this filtering from Algorithm II.1 for brevity.

The challenge of implementing FoF in a scalable manner is
the processing of clusters that cross the domain boundaries of
multiple distributed-memory nodes. A further challenge is that
for astrophysical applications, there is no characteristic cluster
size or mass. The universe is, to a large extent, self-similar in
clustering at nearly all scales represented by the simulation.
The largest cluster in the simulation will always comprise
roughly a few percent of the total number of particles. This
makes efficient load balancing across many nodes difficult,
since it is hard to assign each node a domain with a statistically
equivalent number of clusters.

The most scalable, parallel, distributed-memory FoF al-
gorithm at the moment is Ntropy [15], [16]. Ntropy-FoF
gives computational astrophysicists the ability to analyze their
massive datasets using the same HEC platforms on which the
data was generated. However, FoF is only one of many data
clustering algorithms. Most are quite complex [19], [20], [21],
and substantially more difficult to parallelize. Consequently,
we would like to investigate the effectiveness of MapReduce
in this regime. By examining an implementation of FoF in
MapReduce, we expect to open the door to evaluating this
paradigm for clustering problems in general.

III. DISTRIBUTED FRIENDS OF FRIENDS

In order to cluster the massive-scale datasets returned by an
N-body simulation, we introduce dFoF, a FoF algorithm for
MapReduce-style shared-nothing clusters.

There are two challenges in implementing FoF in a
MapReduce-style system. First, the shared-nothing architec-
ture precludes the use of a global index structure for spatial
range queries. FoF heavily relies on a global spatial index to
quickly retrieve the neighbors of a point. In a shared-memory
system, such an index can be built in memory then accessed
by multiple cores. To overcome this limitation, there have been
proposals to build distributed spatial indexes including the
work by Xu et al. [22]. In this paper, we investigate a radically
different approach. Instead of trying to use a distributed index,
we redesign the algorithm to better follow the shared-nothing,
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Fig. 2. High-level algorithm, data flow and schema of dFoF. dFoF runs
in four phases. Each phase exchanges data in the form of standard relation
or key-value pairs. Thus, dFoF can be easily implemented in existing data
analysis platform for shared-nothing cluster.

parallel query processing approach and not require a global
index at all.

Second, we must balance the load across the cluster. Load
imbalances can negate the benefits of parallelism [23]. Worse,
if a node runs out of memory, the whole MapReduce job fails.
To ensure load balance, we must ensure that each partition of
the same operation processes its input data in approximately
the same amount of time.

In the following subsections, we first present the overall
structure of the dFoF algorithm, then introduce two optimiza-
tions. The first improves load balance between nodes. The
second significantly reduces the runtime of each individual
node. We find that both optimizations are critical for the
approach to scale.

A. Overall Framework

The basic idea behind dFoF is to partition the input data,
perform as much work as possible within individual partitions,
then merge the results hierarchically to find clusters that span
multiple partitions.

dFoF thus runs in four phases: Partition, Local cluster,
Hierarchical merge, and Relabel. In the first phase (Partition),
dFoF hierarchically partitions the input data into chunks of ap-
proximately the same size. In the second phase (Local cluster),
each node runs FoF locally on its assigned data chunk. In the
third phase (Hierarchical merge), local clustering results are
hierarchically merged using the pre-defined partition hierarchy
to discover global structures. Finally, in the Relabel phase, the
local clustering results are relabeled as per the identified global
structures.

Figure 2 shows the overall data flow of the algorithm and the
schema of the data exchanged between the different phases.
We assume that phases exchange data in the form of standard
relations or key-value pairs. Thus, the algorithm can be nat-
urally expressed in various MapReduce-style frameworks [5],
[6], [7], [10], [24], [25], [26].

We now present the different phases in more detail using a
simple 2D example.

1) Partition: The data is first spatially partitioned and
distributed. Each partition should be at most the size of
available memory in each node in the cluster. The simplest
partitioning algorithm is to partition on space rather than
data. Given known boundaries of the simulated space and
assuming a uniform data distribution, we can recursively split
the space into increasingly fine cells until the estimated data
size per cell fits in memory. We call these finest-resolution
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Fig. 3. Uniform partitioning and Cell hierarchy. Left figure shows uniform
partitioning of 2D space in two levels. Each region at the same level has
identical size and is assigned a unique identifier based on its relative position.
The upper-left region is further partitioned to demonstrate id assignment. Right
figure shows the hierarchy of cells in left figure. The structure of the hierarchy
is identical to that of quadtree in 2D.
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Fig. 4. Example of merging two partitions. Points with the same shape are
in the same global cluster. Particles with different colors but with the same
shape are in different local clusters (e.g., the circles at the middle). Each Pi

shows the cell boundary and each I shows the interior region that are excluded
during the Hierarchical merge phase. After merge, three cluster mappings are
generated: (C4,C3), (C5,C3), and (C6,C3). Such mappings are used to relabel
local clusters during the Relabel phase.

cells the unit cells. Overall, the hierarchy of cells is identical to
quad-tree and its high-dimensional variants. Such 2D uniform
partitioning scheme is illustrated in Figure 3.

Figure 3 also illustrates how an identifier is assigned to
a cell. A cell identifier is constructed by concatenating the
parent cell id with a 2-bit id determined by the relative position
of the child cell within the parent cell. With this approach,
the identifier of each cell is unique given the location of a
cell within the cell hierarchy. Extending the partitioning to
3D space is straightforward; the hierarchy becomes octree and
3-bit is used to encode relative position.

2) Local Cluster: Once the data is partitioned into unit
cells, the original FoF algorithm can run within each cell.
Once the local clustering completes, the data is materialized
on disk. Only particles at the boundary of each cell continue
on to the next phase.

The Local Cluster phase takes the longest time in dFoF
because FoF is CPU and memory intensive and processes
the largest input of all the phases. We further analyze the
performance of this phase in Section V.

3) Hierarchical Merge: To identify clusters that span mul-
tiple cells, particles near cell boundaries must be examined

Fig. 5. Hierarchical merging of SPEATH 8 dataset with uniform
partitioning. Cell boundaries are shown in dashed lines. Only points close to
cell boundaries are kept and propagated to next level.

and merged if they are within distance threshold ε.
Figure 4 illustrates such a merging step for four partitions P1

through P4. The outer boxes, Pi, represent the cell boundaries.
The inner boxes, I , are ε units away from the corresponding
edge of the cell. The local clustering step identified a total
of six clusters labeled C1 through C6. Each cluster comprises
points illustrated with a different color and shape. However,
there are only three clusters in this dataset. These clusters are
identified during the hierarchical merge step. C3, C4, C5, and
C6 are merged because the points near the cell boundaries
are within distance ε. In Figure 4, C2 does not merge with
any other cluster because all points in C2 are sufficiently far
from P1’s boundary. We can thus safely discard C2 before
merging: These points are not needed during the merge phase.
In general, we can discard all the points in the larger I regions
before merging thus reducing the input data size to the merging
algorithm. This reduction is necessary to enable nodes to look
at increasingly large spaces or cells during the mergers without
running out of memory.

We demonstrate hierarchical merging with uniform parti-
tioning step-by-step in Figure 5. The space is first partitioned
into 16 unit cells of equal size. Then, every set of four unit
cells are merged to form a larger cell in the middle figure,
and finally the larger four cells are merged again to cover the
entire space. At each step, only points close to cell boundaries
are kept, so only a small fraction of the data is kept after a
merge.

At a high-level, the merging algorithm, mergefof, discov-
ers merged clusters from closures. By the definition of closure
in Section II-A, all particles in the same closure must be in the
same cluster; therefore those clusters must be merged together.
mergefof chooses a new cluster id for such merged clusters,
then generates a (old cluster id, new cluster id) pair
for each cluster.

Algorithm III.1 shows the pseudo code of mergefof. The
algorithm takes the set of particles each labeled with cluster
id and produces mappings that each represents a merge. The
algorithm runs in three steps. First, Algorithm III.1 finds
all closures in D by repeatedly calling FoF+. Whenever a
closure is found, the should-be-merged cluster ids are extracted
from the closure and saved for the next step. At the end, we
have a nested set of merged cluster ids M .

The first step does not discover all merged clusters be-
cause of discarded points like those in I in Figure 4.
For example, the dataset in Figure 4 will have three sets,



Algorithm III.1 Merge result of FoF (mergefof)
Input: D ← {(pid, cid, x, y, z)} // output from Local Cluster or Hierarchi-

cal merge
ε← distance threshold

Output: {(old cid, new cid)}
1: M ← φ// nested set to store cluster ids of closure
2: R← φ// output
3: sidx← build spatial index(D)
4: for all p ∈ D do // find all closures
5: N ← FoF+(p, ε, sidx)
6: C ← {x.cid|x ∈ N}
7: M ←M ∪ {C}
8: end for
9: repeat // find all should-be-merged local clusters

10: for all C ∈M do
11: C+ ← {X|X ∈M, C ∩X 6= φ}
12: if |C+| > 1 then
13: M ←M − C+

14: C′ ← {x|x ∈ X, X ∈ C+}
15: M ←M ∪ {C′}
16: end if
17: end for
18: until M does not change
19: for all C ∈M do // produce output
20: newCid← min C
21: R← R ∪ {(cid, newCid)|cid ∈ C}
22: end for
23: return R

{{C1}, {C3, C4, C5}, {C4, C6}}, in M by the end of the first
step. C6 is not merged with C3, C4, C5 because the particles
of C4 bridging C6 to C3 are discarded before merging. We can
infer such missing links by examining intersections between
sets of merged cluster ids. For example, set {C3, C4, C5}
means C4 should be merged with C3 and C5. Also, {C4, C6}
tells us that C4 should be merged with C6. Thus, C3, C4, C5,
C6 are all merged together because of C4. The second step
of Algorithm III.1 does such reasoning by repeatedly finding
non-disjoint sets in M and merging them until M contains
only disjoint sets.

In the last step, the algorithm simply chooses the lowest
original cluster id as the new id of the merged cluster. Finally,
it produces outputs.

Algorithm III.1 executes every time child cells under the
same parent are merged as we proceed up the cell hierarchy.
After each execution, the mappings between clusters that are
found are saved. They will be reused during the final Relabel
phase.

4) Relabel: The last phase of dFoF is Relabel. In dFoF,
there are two types of relabeling, intermediate and global. The
intermediate relabeling occurs at the end of each Hierarchical
Merge step. In the intermediate relabeling, cluster ids of
all particles passed to the next merge step are relabeled
according to the mapping produced by the last mergefof.
This guarantees that there exists only one mapping for each
local cluster id.

The global relabeling occurs at the end of dFoF. The global
relabeling first determines the final cluster ids for each local
cluster id based on the accumulated output of mergefof. It
then updates the local cluster assignments from the first phase
with the final cluster id information.

Algorithm III.2 Merging of cluster mappings
(mergeGroup)
Input: M ← output of mergefof
Output: map of old cluster id to new cluster id
1: sort M in ascending order of old cluster id
2: M ′ ← φ
3: for all m ∈M do
4: if m.new ∈M ′ then
5: M ′[m.old]←M ′[m.new]
6: else
7: M ′[m.old]← m.new
8: end if
9: end for

10: return M ′

Algorithm III.3 Distributed Friends-of-Friends (dFoF)
Input: D ← {(pid, x, y, z)} // set of particles

ε← distance threshold
Output: {(pid, cid)} // pair of particle id and cluster id

// Partition
1: grid← compute grid(D)
2: level← grid.height
3: D ← partition(grid[level], D)

// Local Cluster
4: L← fof(D, ε)
5: B′ ← {(pid, x, y, z, cid)|p ∈ D, q ∈ L, p.pid = q.pid)}
6: B ← on surface(grid[level], B′)
7: level← level − 1

// Hierarchical Merge
8: M ← φ
9: while level ≥ 0 do

10: B′ ← partition(grid[level], B)
11: M ′ ← mergefof(B′, ε)
12: S ← on surface(grid[level], B′)
13: B ← relabel S according to M // intermediate relabel
14: M ←M ∪M ′

15: level← level − 1
16: end while

// Relabel
17: M ← mergeGroup(M)
18: G← relabel L according to M // global relabel
19: return {(x.pid, x.cid)|x ∈ G}

Algorithm III.2 shows the pseudo code of determining final
cluster id for each local cluster. Because Algorithm III.1
always chooses the lowest identifier as a representative, a local
cluster id always maps to a strictly smaller cluster id. Thus, by
reversing the order, Algorithm III.2 determines the final cluster
id in ascending order and indexes this mapping in memory. If a
local cluster id x maps y which was already mapped to z, then
x maps to z. Otherwise, x maps to y. The algorithm terminates
when it determines all final cluster ids for all local cluster ids.
Actual relabeling of data is just an outer join between the data
and mapping on cluster id. Particles in non-merging clusters
retain their original cluster ids.

Summary: We put four phases of dFoF together in Algo-
rithm III.3. In Algorithm III.3, there are three functions not
described in this paper. We present brief descriptions of each.
compute grid generates partitioning information, i.e., a

tree of cells (e.g., Figure 3), given a set of points D. In case
of uniform partitioning, it does not consult input data at all
but uses prior knowledge of the size of the simulated space.
partition partitions data according to given partitioning



Fig. 6. Uniform partitioning and Non-uniform partitioning of SPEATH 8
dataset. Uniform partitioning would generate uneven workloads: two empty
partition and five dense partition containing more than 5 points out of 80
points. Data-oriented partitioning, however, produces even workload: each
partition is assigned exactly five points.

information. In Algorithm III.3, we simply right shift the grid
identifier 3 bits per level of hierarchical merging. Then we
partition using the newly computed value.
on surface filters all particles which do not participate

in the merging process (i.e., select particles on the surfaces of
grids at level i). For example, all particles in I in Figure 4
will be discarded by on surface.

The two relabels at line 13 and line 18 are outer joins
as described in previous section. Most of the steps in Algo-
rithm III.3 are set oriented operations thus easily parallelizable
in MapReduce style platform.

In following subsections, we discuss two optimizations to
balance load and improve performance of local fof and
mergefof using special index traversal.

B. Non-Uniform Data Partitioning

With the uniform space-based partitioning describe above,
some nodes may be assigned too much data and may delay
or even halt the overall job execution because uniform par-
titioning does not take into account the real distribution as
shown in Table I. Such skew is critical for two reasons. First,
the overloaded node delays the overall computation. Second,
overloaded nodes may run out of memory causing the entire
job to fail in existing distributed job execution environments.
The only way to recover is for the system to restart the job
using a smaller unit cell.

As an alternate solution, we propose to sample the data to
determine the appropriate partitioning information. For this,
we first scan the data and collect a random sample. We
insert the sampled data into a kd-tree. A kd-tree is a multi-
dimensional binary search tree. It is constructed by partitioning
data along the median of alternating axes. In our case, we
partition data until the estimated size of the data in leaf nodes
fits into memory. We choose to use a kd-tree because it is
easy to implement and its spatial partitioning nature is well-
suited to the underlying shared-nothing architecture (i.e., it
generates non-overlapping regions that are also easy to merge).
In Figure 6, we compare the uniform and data partitioning
schemes. Because we use samples instead of the entire dataset,

A B

C

ε

Fig. 7. Spatial range search in dense region. In sparse region, the number of
objects (i.e., index traversal) is small. For example, C has only two neighbors
and the range search is low-overhead. Conversely, the range search becomes
high-overhead in dense regions. For example, compared to C, A and B must
examine more entries in the index because they have more neighbors than
C. Even worse, this high-overhead range search occurs many times while
processing the shared neighbors of A and B (the white points).

there is some small discrepancy in the size of the partitions.
Also, sampling requires an extra scan over the data, thus
adding overhead to the entire job. However, it effectively
reduces load skew and the overall task completion time as
we show in Section V.

C. Pruning Visited Subtrees

The density-based partitioning described above ensures that
each task receives approximately the same amount of data.
Even with this optimization, however, each partition can spend
a wildly different amount of time processing its input. We
demonstrate this effect in Section V, where we measure the
variance in task execution times (Figure 12, all plots except for
non-uniform/optimized show high variance). This imbalance
is due to dense regions taking disproportionately longer to
process than sparse regions even when both contain the same
number of points.

To understand the challenge related to dense regions, we
must look back at the FoF algorithm shown in Figure II-A. A
key component of this algorithm is the computation of the
closure of a point (line 6, call to FoF+). Computing the
closure requires looking-up the friends of a point, then the
friends of these friends, etc. In a dense region, the number of
such friends at each step can be extremely high as shown in
Figure 7. Even worse, the number of lookups is proportional
to the density of the region. Astronomy simulation data
is especially challenging in this respect compared to other
datasets because the density of galaxies is often orders of
magnitude greater than that of other regions. To address this
challenge, we optimize the closure computation as follows.

The original FoF algorithm constructs a spatial index over
all points to speed up friend look ups. We modify this data
structure to keep track of the parts of the subtree where all
data items have already been visited. For each node in the
tree (leaf node and interior node), we add a flag which sets
to true when all points within the subtree rooted at the node
have been returned as a result of one or more previous friends
lookups. The algorithm can safely skip such flagged subtrees



Algorithm III.4 Range search with pruning visited subtree
Input: root← search root node

target← search origin
ε← distance threshold

Output: set of objects within ε from target
1: if root.visitedAll is true then
2: return φ // skip this subtree
3: end if
4: R← · · · // normal range search for root

// update book keeping information
5: if entire data under root marked visited then
6: root.visitedAll← true
7: end if
8: return R

because all data items within them have already been covered
by previous lookups. By nature of spatial indexes, points in
a dense region are clustered under the same subtree and are
thus quickly pruned. With this approach, the index shrinks as
over time as the previously-visited subtrees are pruned.

Because this optimization requires only one flag per node in
the spatial index, it imposes a minimal overhead. Furthermore,
the flag can be maintained while processing range lookups. In
Algorithm III.4, we show the modified version of range search
in this modified index structure. Line 5 is dependent on the
type of spatial index. For a binary tree, the condition can be
evaluated by checking the flags of the child nodes and the
data item assigned to the root node. For R-tree-style indexes
that does not have data items in the internal nodes, the flag
of an internal node is set by checking flags of its child nodes
and the flag of a leaf node is set by checking whether all data
items in the leaf node have been visited.

We apply this optimization both during the local clustering
and the merging phases.

IV. IMPLEMENTATION

We implemented dFoF in C# using DryadLINQ [10] the
programming interface to Dryad [7]. Dryad is a massive-scale
data processing system similar to MapReduce yet offers more
flexibility because its vertices are not limited to map or reduce
operations.

For the spatial index, we chose to use a kd-tree [27] because
of its simplicity. We implemented both a standard version of
the kd-tree and the optimized version presented in Section III-
C. We used the kd-tree both for local FoF computations and
also when planning the initial data partitions in the Partition
phase of the dFoF algorithm.

The entire code base for the experiments is written in about
3000 lines of code including both the basic and optimized kd-
tree implementations, data serialization methods, brief docu-
mentation, and boiler plate code.

Similar to Clustera [28] and Pig [24], DryadLINQ offers
relational style operators such as filters and joins. As in
Pig [24], queries are expressed using a combination of proce-
dural and declarative statements. We leveraged DryadLINQ’s
pre-defined operators and standard API as much as possible.
However, we had to implement fof(), mergefof(), and
mergeGroup() as user-defined operators. These three UDFs

64 x Merge__47

64 x GroupJoin__151

8 x Merge__55

8 x Tee__59

8 x merge_fof()

8 x Tee__69
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Tee__105
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Super__131

Tee__114

HashPartition__119

Fig. 8. Example Query Plan. Nodes in grey color are running user-defined
functions. Partition and Merge vertex pair represents repartitioning of data.
Tee vertices replicate the input data and feed them to multiple down stream
vertices. Super vertices are a chain of operators which could be pipelined in
memory.

are single threaded, and thus do not exploit the presence of
extra cores during the execution.

In runtime, DryadLINQ automatically generates a dryad
query plan of dFoF then deploys the plan to the underlying
Dryad cluster. An example static plan with two levels of
hierarchical merging is shown in Figure 8. In the query
plan, each vertex represents a computational task processing
data in parallel. Like the original MapReduce, this task is
implemented as a process at the operating system level. The
connected vertices communicate through a compressed file
stored in a distributed file system. The prefix number in
each vertex label of this graph represents the number of
partitions; i.e., the maximum degree of parallelism of that
vertex. For example, the first user-defined vertex fof()
could run completely in parallel in a 64 nodes cluster while
mergeGroup() always runs on a single node.

Unlike the original MapReduce where a job is a coordinated
pair of map, reduce primitives, a job in Dryad is the entire
query plan (Figure 8). The equivalent program would require
many map-reduce jobs.

V. EVALUATION

In this section, we evaluate the performance and scalability
of the dFoF clustering algorithm using two real world datasets.
We use an eight-node cluster running Windows Server 2008
Datacenter edition Service Pack 1. All nodes are connected
to the same gigabit ethernet switch. Each node is equipped



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000  1e+06

C
u
m

u
la

ti
v
e 

D
is

tr
ib

u
ti

o
n

# of neighbors

S43
S92
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Percentile 25 50 75 90 99 99.9 100
S43 3803 5000 8517 16118 58442 288533 381440
S92 4000 5903 11514 27065 254968 1065458 5642100

TABLE I
Size of cluster at given percentile.

with dual Intel Xeon E5335 2.0GHz quad core CPU, 8GB
RAM, and two 500GB SATA disks configured as RAID 0.
Each Dryad process requires 5GB RAM to be allocated or it is
terminated. This constraint helps quickly detect unacceptable
load imbalance. Note that we tuned neither the hardware nor
software configurations other than implementing the algorith-
mic optimizations that we described. Our goal is to show
improvements in the relative numbers rather than try and show
the best possible absolute numbers.

A. Dataset

We take two snapshots, S43 and S92, from a large-scale
astronomy simulation. Each snapshot contains 906 million
particles occupying 43 GB in uncompressed binary format.
The simulation volume is a periodic box roughly 80 million
light-years on a side and models the evolution of cosmic
structure from about 100,000 years after the Big Bang to
the present day. The simulation itself was only about 20%
complete at the time of submission. Therefore we use two
relatively early snapshots: S43 and S92 respectively corre-
spond to 580 million years and 1.24 billion years after the Big
Bang. This particular simulation will model the evolution and
interaction of several thousand galaxies with unprecedented
accuracy and spatial resolution. The entire run will take of
order 10 million core-hours of computing, and is currently
running on 2048 compute cores of the Cray XT3 system at
the Pittsburgh Supercomputing Center [29].

Each particle has a unique identifier and 9 to 10 additional
attributes such as coordinates, velocity vector, mass, gravi-
tational potential stored as 32-bit real numbers. The data is
preloaded into the cluster and hash partitioned on the particle
identifier attribute. Each partition is also compressed using the
GZip algorithm. Dryad can directly read compressed data and

decompress on-the-fly as computational task reads.
For this particular simulation, astronomers set two param-

eters for FoF: the distance threshold (ε) is 0.000260417, and
the cluster size threshold is 3000. Both datasets require at least
two levels of hierarchical merging.

As the simulation progresses, the Universe becomes in-
creasingly structured (i.e., more galaxies and stars are created
over time). Thus, S43 has fewer clusters than S92: 890 and
3496 clusters respectively. Figure 9 shows the cumulative
distribution of the number of neighbors for particles in clusters
comprised of more than 3000 particles (i.e., the number of
returned particles per spatial index lookup). The figure shows
that S92 has significantly denser regions than S43. The densest
region in S43 has 10494 particles. In S92, more than 10 million
particles are in denser region than the densest region in S43.
We also show the cluster size at specific percentiles for the
datasets in Table I. Compared to S43, S92 contains more larger
clusters and some of them are gigantic (consisting of over 5
million particles!). Ideally, the structure of data should not
affect runtime of the algorithm so that scientists can examine
and explore snapshots taken at any time of simulation in near
constant time.

In following subsections, we evaluate how the partitioning
scheme and spatial index implementation affect the perfor-
mance of dFoF algorithm. Then, we evaluate scalability of
the dFoF algorithm by varying the number of nodes in the
cluster and the size of the input data.

B. Performance

In this section, we use the full eight-node cluster and vary
the partitioning scheme and spatial index implementation. For
the partitioning scheme, we compare deterministic uniform
partitioning (Uniform) described in Section III-A.1 and dy-
namic partitioning (Non-uniform) described in Section III-B.
We also compare an ordinary kd-tree implementation (Normal)
to the optimized version (OPT) described in Section III-C.
We repeat all experiments three times except the Uniform
partitioning using Normal kd-tree implementation because it
takes over 20 hours to complete. For Non-uniform partitioning,
we use a sample of size 0.1%. We show the total runtime
including sampling and planning times. There is no reason for
using small sample except avoiding high overhead of planning.
As the results in this section show, even such small samples
work well for this particular datasets.

Figure 10 shows a summary of average total run times for
each variant of the algorithm and each dataset. For dataset
S43, which has less skew in the particle distribution, all
variants complete in 70 minutes. However, if there is high
skew (i.e., more structures as in S92), the normal kd-tree
implementation takes over 20 hours to complete even though
the optimized version still runs in 70 minutes. The missing
bar for Uniform-OPT in S92 is because a node ran out of
memory while processing a specific data partition and caused
the failure of the entire job. We discuss this case in more
detail shortly. Overall, the dynamic partitioning with optimized
kd-tree performs the best on both datasets. It thus has good



0.00

0.20

0.40

0.60

0.80

1.00

Normal OPT Normal OPT Normal OPT Normal OPT

Uniform Non-uniform Uniform Non-uniform

R
a

ti
o

 t
o

 T
o

ta
l 

R
u

n
ti

m
e

other

mergeGroup

merge2

merge1

fof

Fail
0.00

0.20

0.40

0.60

0.80

1.00

Normal OPT Normal OPT Normal OPT Normal OPT

Uniform Non-uniform Uniform Non-uniform

S43 S92

R
a

ti
o

 t
o

 T
o

ta
l 

R
u

n
ti

m
e

other

mergeGroup

merge2

merge1

fof

Fail

Fig. 11. Ratio of UDF phase runtime to total runtime. Average of three executions except jobs take longer than 20 hours. The initial fof() takes more
than 40% of total runtime. All other UDFs took less than 4% of total runtime. Other represents time to take to run all white vertices in Figure 8. Overall,
fof() is the bottleneck and completely dominates when there is high-skew in data and ordinary kd-tree is used.

0

6

12

18

24

Uniform Non-uniform Uniform Non-uniform

S43 S92

A
vg

. T
ot

al
 R

un
ti

m
e 

(h
ou

rs
)

Normal OPT

Fail

Fig. 10. Average Job Completion Time. Average of three executions except
jobs take longer than 20 hours. Missing bar is due to failure caused by out-
of-memory error at initial fof().

performance independent of the underlying structure of the
data.

In Figure 11, we further break down the time into the
runtime of four vertices in Figure 8 while running three user-
defined functions (fof,mergefof,mergeGroup) and
other standard DryadLINQ operators. We show ratio of their
runtime to total runtime in Figure 10. The local clustering,
fof, takes more than 40% of total runtime in all cases and
even completely dominates when there is high-skew in the data
and a normal kd-tree is used. All other user-defined functions
account for less than 4% of total runtime. All other standard
operators account for over 50%, but the number is a sum of
more than 30 operators. Thus, the local clustering phase is the
bottleneck of dFoF algorithm.

In the following subsections, we report results only for
the dominant fof phase of the computation and analyze the
impact of different partitioning schemes and different spatial
index implementations.

In Figure 12 and Figure 13, we measure runtime and peak
memory utilization of the fof phase for each partitioning
scheme and plot the quartiles as well as the min and max val-
ues. We choose runtime and peak memory utilization because
low variance in runtime represents a balanced computational
load and low variance in peak memory represents balance in
both computation and data across different partitions.

1) Partitioning Scheme: In both Figure 12 and Figure 13,
Non-uniform partitioning shows a tighter distribution in run-
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time and peak memory utilization than uniform partitioning.
With uniform partitioning, the worst case scenario happens
when we try the optimized kd-tree implementation. Due to
high data skew, one of the partitions runs out of memory
causing the entire job to fail. This does not happen with normal
kd-tree and uniform partitioning because the optimized kd-tree
has a larger memory footprint. This specific result is somewhat
of a coincidence because the maximum per-partition memory
utilization for snapshot S92 is almost exactly 5 GB causing
OPT to crash while NON-OPT completes. In general, however,
a uniform data distribution is not scalable and could not serve
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to cluster snapshots later than 92 (there are roughly 30 more
snapshots following S92 in this simulation).

In contrast, the distribution of peak memory utilization
with Non-uniform partitioning does not significantly fluctuate
as data distribution changes in Figure 13. We expect that
with higher sampling rate, we could even further reduce the
variation at the cost of modestly increased planning time.

In summary, Non-uniform partitioning is worth the extra
scan over the entire dataset.

2) Optimized Index Traversal: As Figure 12 shows, dFoF
with the optimized index (Section III-C) significantly out-
performs Normal implementation especially when there is
significant skew in the particle distribution. Thanks to pruning
of visited subtrees, the runtime for S92 remains almost the
same as that for S43. However, the optimization does not come
for free. Due to extra flag tracking, the optimization requires
slightly more memory than the ordinary implementation as
shown in Figure 13. The raised memory requirement could be
alleviated by more efficient implementation techniques such
as keeping a separate bit vector indexed by node identifier or
implicitly constructing kd-tree on top of an array rather than
keeping pointers to children per node.

Summary: Both partitioning and spatial index influence
performance of the algorithm. Sampling-based non-uniform
partitioning more evenly distributes data and computation
across the cluster. Such advantage is more pronounced when
the data has large skew and the extra scan for sampling
pays off. The optimized index traversal greatly improves
performance when there is a large skew while the speed-up
would depend on the degree of skew in the cluster sizes in
general.

C. Scalability

We evaluate the scalability of the algorithm by measuring
speedup and scaleup. In this section, we only use non-uniform
partitioning and optimized kd-tree. We vary the number of
nodes and redistribute input data only to the participating
nodes. All reported results are averages of three runs. The
standard deviation is less than 1%.

Figure 14 shows runtime of dFoF for each dataset by
increasing the number of nodes from 2 to 8. Speedup measures
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Fig. 15. Scaleup. Runtime of dFoF as increasing data size proportional
to the number of nodes. Except two node case where scheduling overhead
pronounced, dFoF scales up in linear.

how much faster a system can process the same data if it is
allocated more nodes. Ideal speedup is identical to the number
of nodes N , i.e., N times faster than single-node execution.
For some reason, Dryad does not schedule individual vertices
after 6 hours for a single-node case1. Thus, we do not present
the number for the single-node case. For both datasets, the
runtime of the dFoF halves as we increase the number of
nodes.

Figure 15 shows scaleup by increasing the number of nodes
from 1 to 8. Scaleup measures how a system handles a data
size that increases in proportion with the number of nodes.
Ideal scaleup is flat line of 1. To vary the size of data, we
subsample the S43 and S92 dataset. For 4 nodes and 8 nodes,
the scale up is close to ideal, 0.99 and 0.91 respectively, while
2 nodes marked 0.83 and 0.78. We investigate the 2 node case
and found that the size of the subsampled dataset is near border
line of requiring additional hierarchical merging. Thus, each
partition is underloaded and completes very quickly. Such fast
completion eventually overloads the job scheduler and yields
poor scaleup for two nodes.

Overall, considering suboptimal hardware configuration, the
scalability of dFoF is reasonable. We expect that adding more
disk spindles controlled by the MapReduce system rather than
the RAID controller would improve the shape of both speedup
and scaleup curves.

D. Compared to OpenMP implementation

Astronomers currently use a serial FoF implementation
which has been moderately parallelized using OpenMP [30], a
means of scheduling computation across multiple threads that
all share the same address space. OpenMP was designed as a
means of parallelizing programs that were originally written
in serial, and is an example of “agenda” parallelism. The two
biggest drawbacks of OpenMP are 1) non-trivial serial portions
of code are likely to remain, thereby limiting scalability by
Amdahl’s Law; 2) the target platform must be shared memory.
The serial aspects of this program are state-of-the-art in terms
of performance — they represent an existing program that has
been performance-tuned by astrophysicists for over 15 years.
It uses an efficient kd-tree implementation to perform spatial

1At the time of submission, the development team is investigating this issue.



searches, as well as numerous other performance enhance-
ments. The OpenMP aspects are not performance-oriented,
however. They represent a quick-and-dirty way of attempting
to use multiple processing cores that happen to be present on
a machine with enough RAM to hold a single snapshot.

The CSE cluster nodes represent a common cost-efficient
configuration for modern hardware: roughly 8 cores per node
and one to two GB of RAM per core. Our test dataset is
deliberately much larger than what can be held in RAM of a
single one of these nodes. The astrophysics FoF application
must therefore be run on an unusually large shared-memory
platform. In our case, the University of Washington Depart-
ment of Astronomy owns a large shared-memory SGI Altix
system with 128 GB of RAM, 16 Opteron 880 single-core
processors running at 2.4 GHz, and 3.1 TB of RAID 6 SATA
disk. This system has 8 GB per processor core. Furthermore,
to purchase a shared-memory system with 128 GB of shared
memory would be much more expensive than 16 of our 8
GB CSE cluster nodes. Consequently, our goal is to at least
match the performance of the astrophysics FoF running on
the Altix with our Dryad version running on 8 CSE nodes
(i.e., 64 GB of total RAM — just barely large enough to
fit the problem in memory). If we do this, then we have
demonstrated that the MapReduce paradigm is an effective
means of leveraging cheaper distributed-memory platforms for
clustering calculations.

In order to normalize serial performance, we ran the existing
astrophysics FoF application on a smaller dataset on both the
Altix system and our CSE cluster. The dataset was small
enough to fit completely into RAM on a single CSE node.
The Altix took 61.4 seconds to perform the same analysis
that required 34.8 seconds on a CSE cluster node excluding
I/O. We do not include I/O in our normalization because the
Altix’s storage hardware is still representative of the current
state-of-the-art, only its CPUs are dated.

Running the astronomy FoF algorithm on the Altix for our
test dataset step S43 (with the same parameters as our CSE
cluster runs) took 5202 seconds in total—only 1986 of this
was actual FoF calculation, the rest was I/O. In comparison,
our Dryad version would likely have taken an estimated 30,000
seconds, extrapolated from our optimized Dryad 2-node run
assuming ideal scalability. Also, remember that a core in our
Dryad cluster is also 76% faster than a processor in the Altix,
which means that this difference in performance is even more
dramatic. We interpret this differential as arising from the
difference in RAM between the two systems. The Altix has
more than enough RAM to hold the entire dataset in memory,
so it is not surprising that this capability allowed it to beat the
Dryad implementation for S43.

However, things get much more interesting for snapshot
S92. The particle distribution in S92 is more highly clustered
than S43, meaning that the clusters are larger on average and
there are more of them. In this case, the astrophysics FoF takes
quite a bit longer: 16763 seconds for the FoF computation
itself and 19721 for the entire run including I/O. This is vs.
roughly 30,000 seconds for a serial Dryad run of the same

snapshot.
One can also see the effect of S92’s higher clustering on

the OpenMP scalability. The OpenMP version is not efficient
for snapshots with many groups spanning multiple thread
domains. This is because multiple threads may start tracking
the same group. When two threads realize they are actually
tracking the same group, the one gives up entirely but does not
contribute its already-completed work to the survivor. While
this is another optimization that could be implemented in the
OpenMP version, astronomers have not yet done so. This
effect can be seen in Figure 14.

Since our Dryad version performed similarly on both snap-
shots, this seems to indicate that it is limited mostly by
I/O. The I/O is, however, scalable. The advantage of our
implementation can be seen when we run on higher numbers
of nodes. This allows us to match the performance of the
astrophysics code on S43 and to substantially outperform it
for S92. Consequently, we have achieved our goal of reducing
time-to-solution while at the same time using less expensive
hardware than the current state-of-the-art in astrophysics.

VI. DISCUSSION

In this section, we discuss our experience of developing
clustering algorithm in a MapReduce style analysis platform.
Our experience of using MapReduce system, Dryad, generally
agrees to Pavlo et al. [31].

Once we designed dFoF, the implementation of the al-
gorithm was quite straightforward. Our user-defined codes
are nicely integrated into the standard API of DryadLINQ.
The semi-declarative way of defining data processing greatly
reduces the amount of code to coordinate the distributed
execution of dFoF. Also, well-defined standard operators help
us find bugs early in development. However, we spent most of
our development time trying to understand the non-standard
features (i.e., non-relational APIs) provided by DryadLINQ. It
is also tedious to debug program crashes while running on the
cluster. Overall, however, it is quite pleasant to use MapReduce
system and we expect that the documentation and debugging
support will become more mature in near future.

We wished for the following features to the MapReduce
style system while implementing and evaluating dFoF.

First, an efficient data sampling mechanism should be
provided. Several existing systems already leverage sampling
while sorting and partitioning [10], [24]. We found that
such sampling is more than necessity to implement custom
partitioning algorithms for complex data types such as spatial
data. Sampled data could be treated as a metadata, cached at
loading time and shared by many other jobs [32].

Second, we would like better support for iterative tasks.
Clustering algorithms typically runs in multiple stages. A
common practice for these types of algorithms is to have
loop coordination code in MapReduce client programs. We
call such client program driver program. In existing imple-
mentations, the support of this type of application is limited.
The driver program may leverage runtime statistics of a job
to optimize execution in many ways. For example, if the size



of data becomes small enough to fit in a single machine, the
remaining job could run on a single node rather than paying
the high initiation cost for the remaining short tasks. An-
other example is testing loop termination conditions. Instead
of spawning extra MapReduce jobs to evaluate termination
conditions, MapReduce runtime may provide a way to embed
such tasks as part of loop-body execution. If the termination
condition is defined as the size or number of tuples to process,
they could be easily piggy-backed in final runtime statistics of
loop-body execution.

VII. RELATED WORK

A. Scientific Data Analysis

Scientists usually implement analysis tasks in high-level
languages such as IDL, C/C++ and Fortran and parallelize
them using OpenMP [30] and/or MPI [33]. They also prefer
large shared-memory platforms over a shared-nothing cluster
because of performance concerns and well as ease of pro-
gramming. In this paper, we take a completely different path
to implement scientific data analysis using a shared-nothing
cluster and a different programming model. Programming
shared-nothing clusters has been gaining more attention in
both academia and industry. Over the past few years, several
distributed job execution engines have been proposed [5], [6],
[7], [28] followed by high-level job description languages [10],
[24], [25], [26], [34].

Chu et al. investigated how to leverage such emerging
platforms to run popular machine-learning algorithms and gain
linear scalability [35]. This research initiated an open-source
project Mahout [36], a library of machine learning algorithms
running on Hadoop. However, Mahout does not implement
any density-based clustering algorithms yet. Papadimitrious et
al. implemented co-clustering algorithm using Hadoop and
evaluated performance and scalability [37]. All algorithms in-
cluding dFoF shares the same high-level software architecture
proposed by Chu et al..

B. Distributed DBSCAN

The friends-of-friends (FoF) [38] clustering algorithm is
one of the two available distributed algorithms to analyze N-
body simulation results. FoF is a special case of the DBSCAN
algorithm [18] where its density threshold parameter, MinPts
is zero.

There is a huge body of research work in parallelized
and distributed DBSCAN. We briefly summarize previous
work in three approaches. The first approach is to build a
distributed spatial index on a shared-nothing cluster and use
the index when merging local clustering results [22]. However,
dFoF avoids building such a global index to fully leverage
features of the MapReduce framework. The second approach
is approximation by using clustering on local models [39]
or using samples to reduce the size of data or the number
of spatial index lookups [40]. dFoF processes data in its
entirety and produces an identical result to DBSCAN. The last
approach is to increase the throughput of spatial index lookups
via distributed asynchronous protocols [41]. dFoF increases

the throughput by pruning spatial index based on the unique
constraint of the problem.

Another key difference of dFoF from aforementioned works
is that dFoF is designed and implemented to run on a data
analysis platform rather than stand alone parallel or distributed
application.

Finally, previous works have been evaluated against rela-
tively small and often synthetic datasets; their datasets have,
at most, roughly one million objects in two dimensions. In this
paper, we evaluate the performance and scalability with real
datasets of substantially larger scale and more extreme skew.

VIII. CONCLUSION

Science is rapidly becoming data management problem.
Scaling existing data analysis techniques is very important
to expedite the knowledge discovery process. In this paper,
we design and implement a standard clustering algorithm
to analyze astrophysical simulation output using a popular
MapReduce style data analysis platform. Through extensive
evaluation using two real datasets and a small eight-node
lab-size cluster, we show that our proposed dFoF algorithm
achieves near-linear scalability and performs consistently re-
gardless of data skew. To achieve such performance, we
describe non-uniform data partitioning techniques based on
sampling and optimized spatial range queries. As a future
work, we will extend dFoF to the more general DBSCAN
algorithm and scale up non-trivial scientific data analysis
algorithms.
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