
Toward A Progress Indicator for Parallel Queries*

* University of Washington Technical Report UW TR: #UW-CSE-09-07-01

Kristi Morton, Abe Friesen, Magdalena Balazinska, Dan Grossman

Computer Science and Engineering Department, University of Washington
Seattle, Washington, USA

{kmorton,afriesen,magda,djg}@cs.washington.edu

Abstract— In parallel query-processing environments, accu-
rate, time-oriented progress indicators could provide much utility
to users given that queries take a very long time to complete
and both inter- and intra-query execution times can have high
variance. In these systems, query times depend on the query
plans and the amount of data being processed, but also on the
amount of parallelism available, the types of operators (often
user-defined) that perform the processing, and the overall system
load. None of the techniques used by existing tools or available
in the literature provide a non-trivial progress indicator for
parallel queries. In this paper, we introduce Parallax, the first
such indicator. Several parallel data processing systems exist. In
this paper, we target environments where queries consist of a
series of MapReduce jobs. Parallax builds on recently-developed
techniques for estimating the progress of single-site SQL queries.
It enhances and extends these techniques in non-trivial ways. We
implemented our estimator in the Pig system and demonstrate
its performance on experiments with the PigMix benchmark and
other queries running in a real, small-scale cluster.

I. INTRODUCTION

Over the last several years, our ability to generate and
archive extremely large datasets has dramatically increased.
Modern scientific applications – for example, those driven
by widely-distributed sensor networks or simulation-based
experiments – are producing data at an astronomical scale and
rate [18], [31], [32]. Companies are increasingly storing and
mining massive-scale datasets collected from their infrastruc-
tures and services (e.g., eBay, Google, Microsoft, Yahoo!).

To analyze these massive-scale datasets, users are turning
to parallel database management systems [1], [12], [15], [30],
[33] and other parallel data processing infrastructure [7],
[10], [13], [16]. Although these systems significantly speed-up
query processing, individual queries can still take minutes or
even hours to run due to the sheer size of the input data.

When queries take a long time to complete, users need
accurate feedback about query execution status [24]. In par-
ticular, they need a reasonably accurate estimate of how
much time remains for their query to run. Such feedback
can help users plan their time. It can also help users decide
if they need to take action, such as canceling a query and
restarting it later or on a system with different resources.
Unfortunately, existing parallel systems provide only limited
feedback about query progress. Most systems simply report
statistics about query execution [5], [6], [8], [11], at best
indicating which operators are currently running [8], [11],

[13]. Such indicators, however, are too coarse-grained and
inaccurate because different operators can take wildly different
amounts of time.

In this paper, we address this limitation by introducing
Parallax, the first, non-trivial time-oriented progress indicator
for parallel queries. We developed our approach for Pig
queries [27] running in a Hadoop cluster [13], an environment
that is a popular open-source parallel data-processing engine
under active development. As an initial step, we focused on
Pig Latin queries that compile into a series of MapReduce [7]
jobs. Hence, our current indicator does not handle joins. While
the key ideas behind our technique are mostly not specific to
the Pig/Hadoop setting, this environment poses several unique
challenges that have informed our design and shaped our
implementation. Most notable, user-defined functions (UDFs)
are the norm, there is no query optimizer to estimate costs
statically, and a MapReduce-style scheduler requires interme-
diate result materialization, schedules small pieces of work
at a time, and adds a significant start-up cost to each newly
scheduled query fragment.

Parallax is designed to be accurate while remaining simple
and addressing the above Pig/Hadoop-specific challenges. At
a high level, Parallax works as follows. First, Parallax uses
statistics collected from previous runs of the same query to es-
timate input cardinalities and processing costs (in msec/tuple)
for different fragments of the query plan. Such a run is
typically a debug run on a user-generated representative data
sample, a common occurrence in a cluster setting. Second,
Parallax collects runtime statistics and combines them with
the offline ones to produce its estimates. To deliver accurate
estimates, Parallax takes into account (1) the number of tuples
that remain to be processed by different fragments of the query
plan, (2) the degree of parallelism of each fragment, and (3)
any available data skew information. Parallax estimates the
speed with which different fragments will process input tuples
and uses these estimates to predict query times. Additionally,
Parallax reacts to changes in runtime conditions (e.g., changes
in degrees of parallelism or cluster load) and updates its
estimates accordingly.

A. Building on Single-Node Query Estimation

Parallax builds on prior art in single-node SQL query
indicators [2], [4], [19], [20], [21], [22], [23]. Similar to

single-node indicators, Parallax monitors the number of tuples
processed at different points in the query plan and keeps track
of the expected number of tuples that remain to be processed.
Parallax also monitors the current processing speeds at these
different points in the query plan. Extending this work to
the parallel Pig/Hadoop setting requires changing the treat-
ment of (1) query fragments that have not begun executing
(because there is no query optimizer to estimate their cost)
(2) parallelism (estimating how a cluster of machines will
parallelize query fragments and how data skew will affect
processing times), and (3) dynamically varying distributed-
system conditions (unpredictable slowdowns and speedups).

All progress indicators are vulnerable to errors in cardinality
estimation and previous techniques propose various mech-
anisms to mitigate this effect [4], [20], [22], [23]. In this
paper, we do not focus on this problem. Rather, given some
cardinality estimates, we focus on the problem of estimating
query times in a parallel setting. We show that, even with
perfect cardinality estimates, query time prediction in a cluster
is a challenge. Errors in cardinality estimates, of course,
magnify query time estimation errors.

B. Our Setting and Overall Results

Today, parallel systems are being deployed at all scales
and each scale raises new challenges. In this paper, we focus
on smaller-scale systems with tens of servers because many
consumers of parallel data management engines today run at
this scale even if they run in larger data centers. We thus eval-
uate Parallax’s performance through experiments on a small
eight-node cluster (set to a maximum degree of parallelism of
32). We compare its performance against three state-of-the-art
single-node progress indicators from the literature [4], [20]
and Pig’s current progress indicator. We show that Parallax
is more accurate than all these alternatives on a variety of
types of queries and system configurations. For a large class
of queries, Parallax’s average accuracy is within 5% of an ideal
indicator (in the absence of cardinality estimation errors).

C. Summary of Contributions and Paper Organization

In summary, the key contribution of this paper is to develop
and fully implement techniques for estimating completion
times for parallel queries running in a small-scale cluster with
degrees of parallelism in the tens of processes. The queries
that we study are Pig Latin queries that compile into a series
of MapReduce jobs. Parallax does not currently handle all
possible scenarios such as failures or speculative execution.
It is, however, an important step toward providing accurate
feedback to users in parallel systems.

II. BACKGROUND

In this section, we present an overview of MapReduce [7],
Pig [27], and Pig’s current progress indicator.

A. MapReduce

MapReduce [7] (with its open-source variant Hadoop [13])
is a programming model for processing and generating large

data sets. The input data takes the form of a file that contains
key/value pairs. For example, a company may have a dataset
containing pairs with a sequence number and a search log
entry. Users specify a map function, which is similar to a
relational groupby operator, that iterates over this input file
and generates, for each key/value pair, a set of intermediate
key/value pairs. For example, a map function could filter away
uninteresting search log entries and group the remaining ones
by time. For this, the map function must parse the value field
associated with each key to extract any required attributes.
Users also specify a reduce function that, similar to a relational
aggregate operator, merges or aggregates all values associated
with the same key. For example, the reduce function could
count the number of log entries for each time period.

MapReduce jobs are automatically parallelized and exe-
cuted on a cluster of commodity machines: the map stage
is partitioned into multiple map tasks and the reduce stage is
partitioned into multiple reduce tasks. Each map task reads and
processes a distinct chunk of the partitioned and distributed
input data. The degree of parallelism depends on the input data
size. The output of the map stage is hash partitioned across a
configurable number of reduce tasks. Data between the map
and reduce stages is always materialized. As discussed below,
a higher-level query may require multiple MapReduce jobs,
each of which has map tasks followed by reduce tasks. Data
between consecutive jobs is also always materialized.

B. Pig

To extend the MapReduce framework beyond the simple
one-input, two-stage data flow model and to provide a declar-
ative interface to MapReduce, Olston et. al developed the Pig
system [27]. In Pig, queries are written in Pig Latin, a language
that combines the high-level declarative style of SQL with the
low-level procedural programming model of MapReduce. Pig
compiles these queries into ensembles of MapReduce jobs and
submits them to a MapReduce cluster.

For example, consider the following SQL query, which
corresponds to the above example:
SELECT S.time, count(*) as total
FROM SearchLogs S
WHERE Clean(s.query)
GROUP BY S.time

This example translates into the following Pig Latin script:
raw = LOAD ’SearchLogs.txt’

AS (seqnum,user,time,query);
filtered = FILTER raw BY Clean(query);
groups = GROUP filtered BY time;
output = FOREACH groups GENERATE $0 as time, count($1) as total
STORE output INTO ’Result.txt’ USING PigStorage();

This Pig script would compile into a single MapReduce
job with the map phase performing the user-defined filter and
group by operations and the reduce phase computing the count
for each group.

Because Pig scripts can contain multiple filters, aggrega-
tions, and other operations in various orders, in general a query
will not execute as a single MapReduce job. For example, one
of the two sample scripts (script1) distributed with the Pig

Record Reader Map Combine

Map Task

Split

HDFS

file
K1,N1

(a)

Reduce Task

{P 2}{P 1} {P 3} {P 4} {P 5}

K2,N2 K3,N3

Copy Sort Reduce

HDFS

file
(b) (c)

Local storage

Fig. 1. Detailed phases of a MapReduce Job. Each Ni indicates the
cardinality of the data on the given link. Ki’s indicate the number of tuples
seen so far on that link. Both counters mark the beginning of a new pipeline
(Section III).

system compiles into a sequence of five MapReduce jobs (we
test this script in Section V).

C. MapReduce Details

Within a MapReduce job, there are seven phases of exe-
cution, as illustrated in Figure 1. These are the split, record
reader, map runner, combine, copy, sort, and reducer phases.
The split phase does minimal work as it only generates byte
offsets at which the data should be partitioned. For the purpose
of progress computation, this phase can be ignored due to
the negligible amount of work that it performs. The next
three phases (record reader, map runner, and combine) are
components of the map and the last three (the copy, sort, and
reducer phases) are part of the reduce. An important point to
note is that the Pig operator code only executes within the map
runner and reducer phases; the other phases never change.

The record reader phase iterates through its assigned data
partition and generates key/value pairs from the input data.
These records are passed into the map runner and processed
by the appropriate operators running within the map function.
As records are output from the map runner, they are passed to
the combine phase which, if enabled, sorts and pre-aggregates
the data and writes the records locally. If the combine phase is
not enabled, the records are sorted and written locally without
any aggregation.

Once a map task completes, a message is sent to waiting
reduce tasks informing them of the location of the map task’s
output. The copy phase of the reduce task then copies the
data from the node where the map executed onto the local
node where the reduce is running. Once all outputs have
been copied, the sort phase merges all the files and passes
the data to the reducer phase, which executes the appropriate
Pig operators. The output records from the reducer phase are
written to disk as they are created.

D. Pig’s Progress Indicator

The existing Pig/Hadoop query progress estimator provides
limited accuracy (see Section V). This estimator only considers
the record reader, copy, and reducer phases for its computation.
The record reader phase progress is computed as the percent-
age of bytes read from the assigned data partition. The copy
phase progress is computed as the number of map output files
that have been completely copied divided by the total number
of files that need to be copied. Finally, the reducer progress

is computed as the percentage of bytes that have been read
so far. The progress of a MapReduce job is computed as the
average of the percent complete of these three phases. The
progress of a Pig Latin query is then just the average of the
percent complete of all of the jobs in the query.

The Pig progress indicator is representative of other in-
dicators that report progress at the granularity of completed
and executing operators. This approach yields limited accuracy
because it assumes that all operators (within and across jobs)
perform the same amount of work. This, however, is rarely
the case since operators at different points in the query plan
can have widely different input cardinalities and can spend
a different amount of time processing each input tuple. This
approach also ignores how the degree of parallelism will vary
between operators.

III. THE PARALLAX PROGRESS ESTIMATOR

In this section, we present the Parallax progress estimator
for queries that translate into a sequence of MapReduce jobs.
Parallax generates an estimate of the amount of time remaining
for a query. Although designed and implemented in the context
of MapReduce, most components of the indicator are more
generally applicable. Throughout this section, we thus first
focus on the key principles before showing the details for the
specific, MapReduce setting.

The key techniques behind Parallax are the following:
1) As in prior work, Parallax breaks a query into pipelines,

which are groups of interconnected operators that ex-
ecute simultaneously. It then estimates time remaining
for a query by summing the expected times remaining
across all pipelines (Section III-A).

2) For each pipeline, time remaining requires an estimate
of the amount of work that the pipeline needs to do
and the speed at which the pipeline will perform that
work. Parallax estimates both measures using offline and
online statistics (Section III-B).

3) Because load conditions can change between different
query executions and even while a query is in progress,
Parallax monitors and adjust its estimates based on how
conditions change (Section III-C).

4) In a distributed system, query setup costs are not neg-
ligible. Parallax takes these costs into account for more
accurate estimates (Section III-D).

5) Parallax accounts for the degree of parallelism of query
fragments, which can differ between consecutive frag-
ments (Section III-E).

6) Finally, Parallax accounts for data skew and changes in
the degree of parallelism during the execution of a single
operator (Section III-F).

All of these techniques enable Parallax to produce accurate
estimates in a broad range of scenarios as we discuss in
Section V.

A. Estimating Time-Remaining

As in prior work [4], [20], Parallax estimates the time
remaining for a query by breaking the query into fragments,

Table 
scan 

Filter 
Group by 
Aggregate 

Filter  Sort 

Pipeline 1  Pipeline 2 

Fig. 2. Example of an execution plan for a query comprising two pipelines.

called pipelines. Given a sequence of pipelines, Parallax
estimates the time remaining for the query as the sum of time
remainings for individual pipelines (we only consider queries
where pipelines execute in sequence).

A pipeline, is a group of interconnected operators that can
execute simultaneously as illustrated in Figure 2. The key idea
is that, at any given time during query execution, each pipeline
is in one of three states: completed, executing, or blocked.
The execution time for completed pipelines is known. The
execution time for the other pipelines must be estimated.

Intuitively, the time remaining for a pipeline is the product
of the amount of work that the pipeline must still perform and
the speed at which that work will be done [20].

We define work to be done as the number of input tuples
that a pipeline must still process. If N is the cardinality of the
pipeline’s input and K the number of tuples processed so far,
the work left to be done is simply N −K. This definition is
different from that used in prior work [4], [20] and we discuss
the reason for our definition shortly.

Let’s consider for a moment that we are given Np, Kp,
and an estimated processing cost αp, expressed in msec/tuple,
for a pipeline p. The time-remaining for the pipeline is then
αp(Np −Kp). The time-remaining for a query is the sum of
the time-remainings for the pipelines:

Tremaining =
X
p∈P

αp(Np −Kp) (1)

where P is the set of all pipelines in the query.
As we presented it so far, Parallax is identical to previously

introduced progress indicators for single-site SQL queries [20],
except for the minor change in the definition of the amount
of work for a pipeline. Surajit et al. [4] define work as the
total number of output tuples that will be produced by each
operator in the query plan. In the context of MapReduce jobs,
we found this definition problematic because many pipelines
comprise only a single blocking operator that outputs a small
amount of data, and the output is bursty. Luo et al. [20] define
work as the total number of bytes on a pipeline’s input and
output. We found that considering the output tuples was not
necessary because any work related to manipulating output
tuples can simply be folded into the cost of the pipeline.

Prior work considered pipelines instead of individual opera-
tors as a way to protect against wrong cardinality estimates. In
our setting, the use of pipelines is even more critical because
of the complexity in scheduling different operators within a
pipeline (i.e., in series, in parallel, or some combination of the
two). Pipelines mask all this complexity and help us achieve

our goal of developing a relatively simple, yet accurate estima-
tor. In the case of MapReduce, we identify three pipelines as
illustrated in Figure 1. The first pipeline comprises the record
reader, map runner, and combine phases. The second pipeline
corresponds to the copy phase only. The sort should be its
own pipeline, but we ignore it because it takes a negligible
amount of time since it only needs to merge sorted data. The
third and last pipeline corresponds to the reducer. Because in
the MapReduce setting, pipeline boundaries line up with node
boundaries, we adopt the following, more precise, equation:

Tremaining =
X
j∈J

X
p∈Pj

αjp(Njp −Kjp) (2)

where J is the set of all MapReduce jobs and Pj is the set
of all pipelines within job j ∈ J .

Similar to previously proposed estimators, Parallax is vul-
nerable to errors in cardinality estimates (i.e., wrong N
values). This problem, however, is not specific to parallel query
processing and we do not address it in this paper. Parallax,
however, could counter these errors using techniques similar
to previous progress indicators that refine cardinality estimates
as quickly as possible during query execution [4], [20], [22],
[23].

Finally, given Tremaining, Parallax also outputs the percent
query completed, computed as a fraction of expected runtime:

Pcomplete =
Tremaining

Tcomplete + Tremaining
(3)

where Tcomplete is the total query processing time so far. In
the paper, we use Pcomplete rather than Tremaining to evaluate
estimators.

B. Estimating Execution Speed

An important question that we must consider is how best
to obtain estimates for the α weights for either currently
executing or upcoming pipelines.

For the current pipeline, α can be estimated by looking
at the current execution speed. Prior work suggested using
a fixed-size window. We adopted this approach but chose
to use an exponentially weighted moving average (EWMA)
to achieve both smoothness and responsiveness to changing
conditions. To further ensure stability, Parallax waits for a
short time-period δ before producing the first estimate of the
current execution speed. δ is a configurable parameter. We use
3 secondss in our experiments.

For pipelines that are still blocked, no information is avail-
able about their execution speed. Parallax must thus use an
offline-computed estimate. Previous systems have chosen to
use the current speed as a predictor of future speed [20].
We find this approach, however, to lead to highly inaccurate
estimates (See Section V). An alternate approach is to use the
optimizer’s estimates [19]. This latter technique, however, may
yield inaccurate results if the constants used by the optimizer
are not accurate, and is not possible in MapReduce setings
where no optimizer is available.

Instead, Parallax uses α values computed from previous exe-
cutions of the same query. Such workload-aware or statement-
specific statistics are used by some commercial systems to
improve query optimization [28]. We adopt this technique
for the purpose of progress estimation. As in any sampling-
based technique, the accuracy of this approach depends on
how closely the previous dataset represents the current one
and on the model used in the extrapolation of the values to
the new dataset. We do not address the problem of selecting the
sample dataset, although techniques for selecting good samples
exist in the literature [3], [17], [25], [26]. Instead, we propose
that the system monitors query execution and opportunistically
collects statistics. Such an approach is practical in large-scale
cluster settings, where users commonly test their queries on
small, representative samples or run the same queries multiple
times on newly appended data for a given log file. To ex-
trapolate cardinalities (N) and processing costs α from earlier
runs on data samples, we use a simple linear model. This
approach works well for cardinality estimates because we do
not consider joins. For processing costs, the accuracy depends
on the actual cost curve of an operator. In the evaluation, we
find that Parallax produces good results even when a pipeline
has a more complex cost curve. We leave the extension of
Parallax to more complex models for future work.

Most important, progress estimation greatly benefits from
α estimates even when they are not accurate. We find that α
values can vary by orders of magnitudes between pipelines in a
query. Even approximate estimates thus help the system better
weigh the processing speeds of these pipelines and produce
more accurate results as we demonstrate in Section V.

In the absence of offline estimates, Parallax assumes that
all pipelines will process the same amount of data and will
process that data at the same speed, corresponding to the
current speed. Hence, the first execution of a query has very
limited progress information.

C. Accounting for Changing Conditions

Offline α estimates can be inaccurate not only due to
differences between input data used in different executions but
also differences in runtime conditions (e.g., changes in load
levels, machine heterogeneity, etc.). Such differences can lead
to systemic errors in the α computations. Parallax dynamically
adjusts its estimates to take into account such systemic error
using what we call the per-pipeline slowdown factor sp.

For the currently executing pipeline p, Parallax computes
the ratio:

sp = αe
p/α

s
p

where αe
p is the online measurement of αp and αs

p is the value
estimated from earlier executions. Parallax then propagates this
slowdown factor to pipelines that have not yet start executing.

However, because different pipelines have different bottle-
neck resources (CPU, disk or network bandwidth), Parallax
propagates s values only across pipelines of the same type.
In a parallel DBMS, the optimizer could serve to identify
which pipelines are CPU bound and which ones are either I/O

Table 
scan 

Filter 
Group by 
Aggregate 

Filter  Sort 

Pipeline 1  Pipeline 2 

Table 
scan 

Filter 
Group by 
Aggregate Table 

scan 
Filter 

Group by 
Aggregate 

Filter  Sort 

Fig. 3. Parallel query plan with different degree of parallelism for different
pipelines.

or network bound. In the case of MapReduce, the approach
is simpler. We propagate the slowdown factor only between
the same phases that belong to different jobs. For example,
if a pipeline containing a map runner is executing, Parallax
propagates its slowdown factor only to later pipelines that
contain the map runner.

The new time remaining equation thus becomes:

Tremaining =
X
j∈J

X
p∈P

s′jpαjp(Njp −Kjp) (4)

where s′jp is equal to sjp for pipelines that are already
executing or, if pipeline jp had not yet started, it is the
the slowdown factor of the most recently executed (or still
executing) pipeline of the same type as jp.

D. Accounting for Setup Overhead

Finally, when a query executes in a distributed or parallel
system, startup costs can be significant. Parallax models these
costs as part of its progress estimation. The challenge lies only
in implementation details that we omit. Here, we model these
costs as a constant, SetupOverheadremaining.

E. Accounting for Parallelism

The indicator described so far can accurately measure the
progress of parallel queries (i.e., MapReduce sequences spread
across multiple nodes), but where only one instance of each
operator (e.g., one Map and one Reduce) executes at any time.
This type of parallelism is called pipelined or inter-operator
parallelism [9].

In addition to pipelined parallelism, parallel data man-
agement systems also use intra-operator parallelism, where
individual operators are partitioned across many nodes. All
operator partitions execute concurrently, each one processing
a fragment of the input data

Intra-operator parallalelism affects query progress by chang-
ing the speed with which a pipeline can process intput data.
In the case of uniform data distribution, the speedup is
proportional to the number of partitions.

As a simplification and because this is always the case
for MapReduce jobs, Parallax is designed for systems where
all operators inside the same pipeline execute with the same
degree of parallelism as shown in Figure 3. Operators in
different pipelines can have different degrees of parallelism.
In this case, the time remaining computation becomes:

Tremaining = SetupOverheadremaining+
X
j∈J

X
p∈P

s′jpαjp(Njp −Kjp)

pipeline widthjp

(5)

Where Njp and Kjp values are aggregated across all parti-
tions of the same pipeline.

If the query optimizer or scheduler fixes the degree of
parallelism for each pipeline, the pipeline width becomes
an input to Parallax. This is not the case for MapReduce as
we discuss next.

F. Accounting for Data Skew and Changes in Degree of
Parallelism

The time-remaining computation above assumes a uniform
data distribution: it assumes that all partitions of a pipeline end
at the same time. Additionally, it assumes that the number of
partitions does not vary during the execution of a pipeline.
Unfortunately, both assumptions rarely hold in practice in a
MapReduce system. We now discuss the causes for changes
in pipeline width and causes for data skew.

In a MapReduce system, the number of map tasks depends
on the size of the input data, not the capacity of the cluster.
For example, given a 256 MB chunk size (a recommended
value that we also use in our experiments), a 1 GB file is
processed by 4 map tasks while a 16 GB file is processed by
64 map tasks. The system schedules simultaneously as many
tasks as are available slots in the cluster.1 Once some tasks
complete and resources become available, the system starts
scheduling tasks from the next round. For example, if 16 slots
are available for map tasks in the cluster, the 16 GB file would
be processed by four rounds of 16 map tasks each. If the
number of map tasks is not a multiple of cluster capacity,
the number of tasks can decrease at the end of execution of
a pipeline, causing the pipeline width to decrease, and the
pipeline to slow down. For example, a 5 GB file would be
processed by a first round of 16 map tasks followed by a
round with only 4 map tasks.

Similarly, the number of reduce tasks can be set by the
user, also independent of the cluster capacity. In both cases,
Parallax takes this slowdown into account by computing the
average pipeline width for the duration of each pipeline. If a
pipeline is already executing, Parallax computes the average
pipeline width until the end of execution. For example, the
average pipeline width for the 5 GB file would be 16+4

2 = 10.
Once a pipeline is down to its last round of tasks, another

factor starts dominating the progress estimation: skew between
individual tasks. Up to this point, when some tasks were
finishing, others were starting and the pipeline width remained
unchanged. At the end, however, no new tasks can fill the
pipeline. In that case, skew between individual data partitions
can cause some partitions to end later than others, distorting

1A Hadoop configuration specifies the maximum number of map and reduce
tasks that can execute on a single physical machine. That number times the
number of physical machines gives the total number of slots for each type of
task.

the query progress. Such skew can be due to uneven data
distribution, where some partitions need to process more data
than others, which is possible in the case of reduce tasks. It
can also be due to high-variance in per-tuple processing times
(possible for either task). For this latter challenge, Parallax can
do nothing since it does not know the detailed processing time
distribution for upcoming tuples. For the former challenge,
however, Parallax estimates the completion time for a pipeline
using a simple critical path computation: it considers that the
time of the pipeline will be equal to the time of its slowest
map or reduce task.2

Interestingly, in the case of MapReduce when map tasks
end, reduces start copying their input files in the background.
Parallax does not explicitly account for this overlap, yet it
produces accurate estimates. The reason is that this process
either happens without overlap as planned or happens slowly
in the background and the estimator has time to incrementally
adjust.

IV. IMPLEMENTING OTHER INDICATORS

For comparison purposes, in addition to Parallax, we im-
plemented in Pig three other state-of-the-art query progress
indicators: gnm [4], dne [4], and one of Luo et al.’s indica-
tors [20]. We refer to the latter as the Luo indicator. In this
section, we describe our implementation of these single-node
SQL query indicators in a MapReduce setting. We compare
their performance to Parallax in the following section.

a) General implementation remarks: We instrumented
Pig to collect progress information from all four estimators
once every second. We implemented this as a background
thread that computes the progress for all the estimators and
logs the progress estimate to a file. We found this collection
overhead to be negligible, especially relative to the running
times of the queries that we studied in Section V.

To implement all progress indicators, we leveraged and
extended Hadoop’s infrastructure for collecting performance
counters. Our extended version collects information on bytes
and tuples processed by each phase and also on the runtime
for each phase.

Because we do not study cardinality estimation problems
in this paper, for all indicators, we set the N values to the
correct values obtained from an earlier execution. We com-
pare the relative performance of the indicators given correct
cardinalities.

b) Gnm indicator: Chaudhuri et al. [4] propose to esti-
mate the percentage complete of a query by using the Get-
Next() model (gnm) of work. This model defines the progress
of a query as the fraction of tuples output so far by all
operators in the query plan, where the total number of tuples
is determined from cardinality estimates.

gnm =
∑

i∈I Ki∑
iNi

2Speculative execution [7] further complicates this problem but we disabled
this feature for this paper

where I is the set of all operators in the query plan.
Translated into the MapReduce setting, gnm relies on

cardinality information collected at the granularity of the
phase level. We thus implemented this indicator by collecting
cardinality information at the output of all significant phases,
including: record reader, map reader, combine, copy, and
reduce. Ignoring any of the phases reduced the accuracy of
the indicator.

c) Dne indicator: The gnm’s use of cardinality estimates
at all intermediate nodes in the query plan can lead to highly
inaccurate results in case of cardinality estimation errors. To
address this challenge, Chaudhuri et al. introduced the Driver
Node Estimator (dne). The dne breaks a query plan into
pipelines. The progress of each pipeline is derived from the
progress of its input operators, called driver nodes, for which
input cardinalities are known accurately when the pipeline
starts. As the query progresses, cardinality estimates of all
pipelines are refined, resulting in increasingly more accurate
progress estimates. Since we used perfect cardinalities to test
this estimator, we did not implement this latter refinement. In
the case of MapReduce, the driver nodes of the pipelines are
respectively the record reader, copy, and reducer phases. Given
the N1 and K1 values for the driver node of a pipeline, dne
estimates the Ni for all non-driver nodes in a pipeline as:

Ni =
N1

K1
Ki

It then uses the same equation as gnm to compute the overall
query progress.

d) Luo’s indicator: Luo et al. [20], [19] proposed an
estimator similar to those of Chaudhuri et al. but that also
estimates the remaining query execution time, in addition to
percent complete.

For percent complete, Luo’s indicator uses cardinality esti-
mates and tuple counts similar to dne. The main difference is
that Luo’s indicator counts bytes rather than tuples and counts
them at the input and output of each pipeline. This approach
results in the tuples output by intermediate phases being
double-counted, which may account for any materialization
of data buffering between pipelines [20]. We implemented this
indicator by tracking the K and N values for the inputs and
outputs of all three of the key MapReduce pipelines in each
job.

To convert the fraction of work done into the remaining
processing time, Luo’s approach observes the current speed
with which a pipeline processes its input data. It then either
assumes that all following pipelines will process their data
at the same speed [20] or it uses the output of the query
optimizer as an estimate of query execution time for those
pipelines that have not yet started [19]. In the absence of a
query optimizer (and because Pig Latin scripts are typically
heavy in UDFs), we only implemented the former approach.
We estimated the current processing rate from a 60 second
moving window, which we found to provide much smoother
estimates than the suggested 10 second window [20].

V. EVALUATION

In this section, we evaluate the Parallax estimator and com-
pare it to other estimators from the literature. We experiment
with simple Pig Latin queries and the PigMix [29] benchmark
on synthetic datasets up to 16GB in size with uniform and
Zipfian distributions. We present the results of serial queries,
the effects of random and systemic errors on our estimates,
and the ability of our estimator to perform well for highly
parallel queries and in the presence of data skew.

A. Experimental Setup and Assumptions

All experiments in this section were run on an eight-node
cluster configured with the Hadoop-17 release and Pig Latin
trunk from February 12, 2009. Each node contains a 2.00GHz
dual quad-core Intel Xeon CPU with 16GB of RAM. The
cluster was configured to a maximum degree of parallelism of
16 map tasks and 16 reduce tasks.

In these experiments, gnm, dne, and Luo take perfect
cardinality estimates, N , as input. Parallax takes N as input
in addition to α values that were collected from prior runs.
Parallax is demonstrated in two forms: Perfect Parallax, which
uses N and α values from a prior run over the entire data set;
and 1% Parallax which uses α collected from a prior run over a
1% sampled subset (other sample sizes yielded similar results)
and N values from a prior run over the full data set.

B. Distributed, Serial Query Experiments

We first evaluate how well the single-node SQL progress
indicators from the literature (gnm, dne, and Luo), the current
Pig estimator, and Parallax estimate the progress of MapRe-
duce sequences in the absence of parallelism. For this we
execute a Pig Latin script that compiles into five MapReduce
jobs executed sequentially, with most of the work done in
the first job. Although the jobs are executed in series, both
the computation and the data for this job are still distributed
amongst the nodes. The script, script1-hadoo.pig, comes from
the standard Pig Latin distribution. It contains fourteen unique
Pig Latin statements and five UDFs, and processes a search
query log file from the ‘Excite’ search engine. We construct a
much larger, 210MB data set from the original ‘Excite’ data set
to see how well the estimators do on longer-running queries (>
10 minutes). These experiments demonstrate the importance of
adequately modeling the relative weight of different pipelines
in a query.

1) Default Script1: Figure 4 shows the progress reported by
each indicator throughout the execution of the script. The x-
axis shows the actual percent time complete of the script. The
y-axis shows the percent complete reported by each indicator.
An ideal estimator is shown as a diagonal line. Furthermore,
Table II(a) reports the average and maximum estimation error
of each technique, computed as in [4]:

error =
∣∣∣∣100 ∗ (ti − t0)

(tn − t0)
− fi

∣∣∣∣ (6)

where fi is the percentage of overall run completion as
reported by the estimator, ti is the current time, tn is the time

TABLE I
SCRIPT1 RELATIVE THROUGHPUT ACROSS JOBS AND PIPELINES

(a) (b)
Job Relative Throughput

Job 1 311
Job 2 83
Job 3 51
Job 4 3
Job 5 17

Pipeline Relative Throughput
map 447

reduce 7,263
reduce copy 22,323

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9

!" !# !$!%

!

!"#$%&'()$*+('

,+-

./0

1/2

345

67$,8&8**8#

,'&9':%$,8&8**8#

Fig. 4. Default script1-hadoop, 210MB, serial execution

when all the jobs complete, and (ti -t0)/(tn-t0) represents the
actual fraction of the jobs completed.

The script is dominated by the map pipeline of the first
job, which takes 79% of the total running time. As shown
in Figure 4, the uniform throughput of this pipeline allows
Parallax and the estimators from the literature to perform
well. Note that the 1% variant of Parallax performs as well as
Perfect Parallax because of similar throughput measurements.
The gnm and dne estimators are less accurate because of the
assumption that the average amount of work performed by
each call to GetNext() is approximately equal across operators
and pipelines. This assumption is disproved by the results
in Table I(a), which shows that the relative throughput for
different pipelines varies greatly within each job (expressed
as the MAX throughput divided by the MIN throughput).
Additionally, Luo’s estimator is less accurate than Parallax
because of the assumption that the current throughput for a
given pipeline is indicative of future throughputs. The results
from Table I(b) reveal that the throughput varies significantly
for a given pipeline across all jobs. Luo, gnm and dne are
mostly pessimistic because the first job only processes 63%
of the total tuples, but occupies 82% of the total running
time. The original Pig estimator, unfortunately, does not give
accurate estimates because it assumes that each pipeline and
job perform the same amount of work.

Table II(a) shows that Perfect Parallax and 1% Parallax yield
accurate overall estimates with 2.2% and 2.0% average error
respectively. Our estimates are more accurate than those from
the literature because we don’t assume constant throughput
across jobs or pipelines. Instead, Parallax tracks throughput
per pipeline per job.

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9

!" !# !$!%

!

!"#$%&'()$*+('

,+-

./0

1/2

345

67$,8&8**8#

,'&9':%$,8&8**8#

Fig. 5. Modified script1-hadoop, 210MB, serial execution

2) Altered Script1: To demonstrate the vulnerability of
the estimators from the literature to throughput variance, we
reduce the dominance of the map pipeline in the first job by
increasing the latency of a later job. For this, we modify
script1-hadoop by adding complexity to one of the UDFs
used in the script. This change forces job 3 to exhibit a
much longer latency for processing the same number of tuples,
thus decreasing its throughput approximately by two orders of
magnitude. The results from this experiment (see Figures 5
and Table II(a)) demonstrate that this small change causes
all of the estimators from the literature to have less accurate
estimates. Note that by the end of job 2, gnm, dne, and Luo
estimate that the script is around 99% complete, not taking into
account the low processing rate of the remaining 1% of work.
Recall that our implementation of Luo’s estimator uses a 60
second moving window to track changes in throughput. The
discontinuity near 45% completion is the result of the moving
window fully incorporating the extremely low throughput of
job 3. The Luo estimator becomes pessimistic because it
assumes this same processing rate applies to the remaining
tuples in jobs 4 and 5, which actually have significantly higher
throughput than job 3.

Perfect and 1% Parallax produce almost perfect, identical
estimates up until the end of the first job. The reason that
1% Parallax diverges from the diagonal and trends pessimistic
is due to the lower-throughput α values that were generated
from the sample. However, the slowdown factor helps correct
for this inaccuracy.

3) Default Script1 α Perturbation Tests: We study the
effect of inaccurate α values on Parallax’s estimates by in-
ducing two different types of errors: random and systemic.
We compare the estimation accuracy for each perturbation
run against an unperturbed run with Perfect α values. In the
first experiment, we select errors of either +0.9% or -0.9%
for each pipeline. In subsequent runs, we repeat with +/- 9%
and +/- 99%error. We also consider systemic errors, which
may occur when a cluster is heavily-loaded, for example.
To study this, we introduce uniform error to the α for each
pipeline, using multipliers of +1%, +9%, and +99%. The goal
of this experiment is to show the resilience of our estimator in
the presence of system variability, namely the importance of
the slowdown factor. Parallax has the ability to recover from

TABLE II

(a) Script1 Error Comparison (b) Script1 α Perturbation Error Comparison

Pig gnm dne Luo Perfect Parallax 1% Parallax
% Error % Error % Error % Error % Error % Error

Experiment Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
Default serial script1 39.9 71.5 7.9 17.6 7.2 17.6 9.33 29.7 2.2 7.3 2.0 6.9

Modified serial script1 14.4 39.1 21.9 55.6 22.5 55.6 32.9 95.5 1.7 5.9 3.1 15.8
Default parallel script1 38.4 74.9 31.5 68.8 31.5 68.8 34.1 77.3 2.2 6.8 2.8 8.1

% Error
Experiment AVG MAX
Perfect 0.9 3.6
Random (+-0.9%) 1.4 4.5
Random (+-9%) 1.6 4.9
Random (+-99%) 4.5 10.4
Systemic (1%) 1.4 5.2
Systemic (9%) 2.4 6.8
Systemic (99%) 4.5 10.4

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$"%&

'()*+,-.//01

234&",5%-.//01

Fig. 6. Systemic and random alpha error, alpha perturbation experiment

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9

!

!"#$%&'()$*+('

,+-

./0

1/2

345

67$,8&8**8#

,'&9':%$,8&8**8#

Fig. 7. Pig script1-hadoop, 210MB, parallel execution

systemic errors because the slowdown factor adjusts α values
for future pipelines based on observed changes in conditions
between the sample and current runs. Figure 6 and Table II(b)
show that α values in the presence of random error on the
order of +/-99% or systemic error on the order of +99% yield
estimates with only 4.5% average error.

C. Parallelism Experiments

We now evaluate Parallax’s performance in face of paral-
lelism. For this, we present a series of experiments that stress
different features of Parallax. We put all these features to the
test together in the next section, where we show results from
the PigMix benchmark.

1) Basic Parallelism Experiments: As a motivation for
Parallax, we execute script1 again, but this time, we allow
two of the pipelines (the copy and reduce pipelines of the
first job) to execute with a degree of parallelism of 16.
Figures 7 and Table II(a) demonstrate that the estimators

from the literature do poorly in the presence of parallelism,
which affects pipeline throughput in ways these estimators are
not designed to handle. These estimators all yield pessimistic
estimates because they assume that the processing rate of the
map from the first job (which dominates over 85% of the
overall running time) reflects the processing rate of future
pipelines. In fact, the processing rate increases after the map
from job 1 has completed due to the increased parallelism in
the reduce pipelines. 1% Parallax and Perfect Parallax remain
well under 10% error for the entire duration of the script.
The average estimation error for 1% Parallax was 2.75% and
2.25% for Perfect Parallax.

We now study Parallax’s performance in more detail through
a series of five experiments that we label P1 through P5. All
experiments are run on our full 8-node cluster.

In experiment P1, we run a simple select query (i.e., a
LOAD-FILTER-STORE Pig Latin script) with selectivity 0.5.
This script translates into a single MapReduce job with only
map tasks, the simplest parallel configuration possible. In this
experiment, we increase the input data size from 256MB to
16GB. Given that our file chunk-size is set to 256 MB, this
results in jobs containing 1, 2, 4, 8, 16, 32, and 64 map tasks
respectively. Runs with up to 16 tasks require only one round
of map tasks. The subsequent runs require two and four rounds
of map tasks, respectively. The longest configuration took 68
minutes to run.

Figure 8 shows the results for the longest run, demonstrating
that Parallax tracks the ideal progress indicator extremely well.
The three dips correspond to the transition between rounds of
map tasks. Indeed, even with a uniform data distribution, map
tasks never end exactly at the same time. Due to scheduling
overhead, new map tasks are not immediately activated. As
some map tasks end, our algorithm adjusts the average pipeline
width for the current round, temporarily reflecting the reduced
concurrency.

However, even with these dips the average error remains
below 2.2% for all configurations as summarized in Table III.

In experiment P2, we execute a LOAD-GROUPBY-STORE
script that translates into a single MapReduce job, but this
time with both Map and Reduce tasks. This is thus a 3-
pipeline query. Again, uniform data distribution ensures that
all map and reduce tasks in the same round end approximately
at the same time. We vary the input data size from 1 to 32
map tasks. We set the degree of parallelism of the reduce
pipelines to mirror those of the map pipeline. Figure 9 shows

TABLE III
EXPERIMENT P1: AVERAGE ESTIMATION ERROR ACROSS INCREASING NUMBER OF MAPS

Estimator 1 2 4 8 16 32 64
AVG STDDEV AVG STDDEV AVG STDDEV AVG STDDEV AVG STDDEV AVG STDDEV AVG STDDEV

1% Parallax 0.8% 0.5% 1.2% 0.6% 0.8% 0.6% 1.2% 0.8% 1.9% 1.2% 2.2% 1.7% 1.2% 1.5%
Perfect Parallax 0.8% 0.5% 1.2% 0.6% 0.8% 0.6% 1.2% 0.8% 1.8% 1.2% 2.2% 1.7% 1.2% 1.5%

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&'()$*+('

,-$./&/**/#

.'&0'1%$./&/**/#

Fig. 8. Experiment P1: Progress estimation results during the execution
of a query comprising four rounds of map tasks (64 maps total). Uniformly
distributed 16GB dataset. Eight-node cluster

the result from the query on the largest input data. This query
had two rounds of map tasks and two rounds of reduce tasks.
Table IV shows the estimator error values for all configurations
that we tested. Once again, the overall results are extremely
encouraging, with average error values remaining below 4%
in all configurations. Figure 9 shows the same dip as before
when the first round of map tasks ends. The figure also
shows that Parallax is optimistic during the second round of
map tasks. This effect is due to our model. Parallax assumes
that, in the absence of changes to external conditions, a
pipeline will process data at constant speed. Parallax does not
account for an extra blocking combine phase that is sometimes
performed at the end of a map pipeline.3 A more refined
model could improve these estimates, but would complicate
the implementation. Overall, however, Parallax tracks simple
parallel queries extremely well.

2) Dynamic Parallelism Variations: As discussed in Sec-
tion III-F, depending on input data size and configuration
parameters, a query can execute with a number of map and/or
reduce tasks that is not a multiple of the cluster capacity. As
a result, the degree of parallelism of a pipeline can change
during its execution. We explore the effects of this dynamic
pipeline width variation through a series of three experiments.

In experiment P3, we execute again the query with only
map tasks, but this time we set the input data size to require
17, 24, or 31 map tasks. In experiments P4 and P5, we execute
a query with both map and reduce tasks. In experiment P4,
the number of map tasks is a fixed multiple of the cluster
capacity (i.e., 32 maps), while the number of reduces vary
as 17, 24 and 31. Finally, in experiment P5, both the maps

3The combine phase processes the data one chunk at the time in parallel
with the rest of the pipeline but may sometimes block that pipeline.

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.)
1
7
8
-3
*3
9 !"#$%&'()$*+('

,-$./&/**/#

.'&0'1%$./&/**/#

Fig. 9. Experiment P2: Progress estimation results during the execution of
a query comprising two rounds of map and two rounds of reduce tasks (32
maps and 32 reduces). Uniformly distributed 8GB dataset, eight-node cluster

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"
;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&'()$*+('

,-$./&/**/#

.'&0'1%$./&/**/#

Estimator 17 24 31
AVG STDDEV AVG STDDEV AVG STDDEV

1% Parallax 4.6% 4.7% 3.0% 1.5% 2.2% 1.8%
Perfect Parallax 4.6% 3.1% 1.4% 4.7% 2.2% 1.9%

Fig. 10. Experiment P3: The figure shows a representative run on 7.8GB
data set, 31 maps, eight-node cluster. The table shows the average estimation
error across increasing dataset sizes (17, 24, and 31 maps).

and reduces have variable degrees of parallelism during their
execution (each has 17, 24, or 31 tasks depending on the
run). Figures 10 through 12 show the results. Interestingly,
Figures 10 and 11 show the exact same trends as above
indicating that Parallax’s average pipeline width computation
handles this type of parallelism variation well. When all
pipelines have variable degrees of parallelism during their
execution (Figure 12), we see an interesting effect where
Parallax produces optimistic progress estimates toward the end
of the first round of map tasks. The transition between rounds
causes Parallax to briefly generate optimistic estimates in this
case because it observes more concurrency than expected, due
to jobs lingering from the first round.

3) Parallelism Experiments with Data Skew: The goal of
the experiment in this section is to measure how well Parallax

TABLE IV
EXPERIMENT P2: AVERAGE ESTIMATION ERROR ACROSS INCREASING NUMBER OF MAPS AND REDUCES

Estimator 1 2 4 8 16 32
AVG STDDEV AVG STDDEV AVG STDDEV AVG STDDEV AVG STDDEV AVG STDDEV

1% Parallax 4.1% 2.3% 2.4% 1.6% 1.2% 0.7% 1.3% 0.9% 1.1% 0.8% 4.3% 2.7%
Perfect Parallax 3.0% 2.8% 2.8% 2.7% 3.7% 3.2% 2.9% 2.8% 3.5% 2.9% 3.0% 2.8%

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&'()$*+('

,-$./&/**/#

.'&0'1%$./&/**/#

Estimator 17 24 31
AVG STDDEV AVG STDDEV AVG STDDEV

1% Parallax 3.1% 2.0% 3.6% 2.2% 4.3% 3.0%
Perfect Parallax 1.9% 1.9% 1.9% 2.4% 3.6% 3.1%

Fig. 11. Experiment P4: The figure shows a representative run on 7.8GB
data set, 31 maps, eight-node cluster. The table shows the average estimation
error across increasing reduce parallelism (17, 24, and 31), 8GB data set (32
maps)

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&'()$*+('

,-$./&/**/#

.'&0'1%$./&/**/#

Estimator 17 24 31
AVG STDDEV AVG STDDEV AVG STDDEV

1% Parallax 3.1% 2.8% 2.4% 1.2% 2.8% 1.8%
Perfect Parallax 6.3% 6.2% 2.3% 1.9% 2.7% 2.3%

Fig. 12. Experiment P5: The figure shows a representative run on 4.2GB
data set, 17 maps, eight-node cluster. The table shows the avg estimation error
across increasing dataset size (4.2GB -17 maps, 6GB- 24 maps, and 7.8GB -
31 maps) and reduce parallelism (17, 24, and 31)

handles data skew. In contrast to variations in the degree
of parallelism, in the presence of data skew the number of
tasks may well be a multiple of the cluster capacity but some
tasks take much longer to process their input data than others.
Parallax currently handles cases where such skew results from
an imbalance in the number of input tuples processed (and not
time to process each tuple). Parallax takes such imbalance into
consideration if it can be predicted from sample runs.

For experiment P6, we use the same Pig Latin query as in
experiment P2 and P4 above, but we alter the data makeup.
We generated 8 GB of data with a Zipfian distribution on the

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&'()$*+('

,-$./&/**/#

.'&0'1%$./&/**/#

Fig. 13. Experiment P6. Zipfian skew 8GB data set, eight-node cluster

TABLE V
ESTIMATION ERRORS PIGMIX LATENCY BENCHMARKS, 15GB DATA SET

Perfect Parallax 1% Parallax dne gnm Luo Pig
% Error % Error % Error % Error % Error % Error

Query Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
L1 2.2 8.8 1.9 9.0 2.9 8.0 3.1 8.5 7.9 12.8 14.9 31.2
L4 4.3 8.6 3.7 7.7 5.3 15.1 5.8 15.6 5.4 16.2 13.3 26.6
L6 3.0 8.6 2.4 7.3 8.5 19.3 9.1 19.5 6.4 19.7 13.2 26.2
L7 3.0 6.8 1.2 5.5 7.8 23.6 8.0 23.6 8.8 23.7 13.3 27.5
L8 4.1 8.4 3.7 7.7 5.1 10.3 5.1 10.3 7.1 11.1 15.2 30.8
L9 4.8 17.3 6.6 18.7 15.9 34.3 15.9 34.7 21.6 41.9 15.8 29.5
L10 4.3 11.9 5.6 17.1 16.5 39.5 16.5 39.5 20.5 46.3 12.5 23.4

key used by the GROUP-BY operator, which results in data
skew in the reduce tasks. In Figure 13 we see that Parallax
handles this skew quite well, with an average error of 2.5%
for Perfect Parallax and 4.5% for 1% Parallax.

D. PigMix Benchmarks

This section studies the standard set of Pig Latin bench-
marks called PigMix [29]. We only consider a subset of these
benchmarks (referred to as latency) which test a wide-variety
of Pig Latin queries and generate one or more MapReduce
jobs. We exclude queries that do not translate into a sequence
of jobs such as those containing joins. Furthermore, a 15GB
data set is used, and depending on the attribute, contains
both Zipfian and uniformly-distributed keys. These results are
summarized in Table V.

Parallax outperforms all estimators with the best average
and maximum errors. Across all queries, average estimation
error is below 5% for Perfect Parallax and below 6.6% for
1% Parallax. Maximum errors remain below 10% for the
first five queries and below 20% for the last two queries.
The dne and gnm estimators perform similarly though not as
well on average, and have significantly worse maximum errors

reaching up to 40%.

VI. RELATED WORK

We discussed the main single-node SQL progress indicators
and how Parallax builds on them in earlier sections. Here, we
present additional related work.

Several relational DBMSs, including parallel DBMSs, pro-
vide coarse-grained progress indicators for running queries.
Most systems simply maintain and display a variety of
statistics about (ongoing) query execution [5], [6], [8], [11]
(e.g., elapsed time, number of tuples output so far). Some
systems [8], [11] further break a query plan into steps (e.g.,
operators), show which of the steps are currently executing,
and how evenly the processing is distributed across processors.
Our approach strives to provide significantly more accurate
time-remaining estimates.

In follow-up work to gnm and dne [2], Chaudhuri et
al. extended their approach with two additional estimators.
The first of these, pmax, provides increased accuracy in the
case of input data skews. These skews refer to the difference
in the per-tuple processing times for a single operator (rather
than imbalance between operator partitions as we study in
this paper). The second, safe, provides an estimate that is
worst case optimal in the presence of such skew. Our work is
orthogonal to the safe and pmax estimators since we did not
consider this type of skew. Parallax could be extended with
these techniques.

Recent work also considers the impact of concurrent queries
and their expected completion times to improve estimates [21].
This extension is orthogonal to our work. and we could
incorporate it to improve the accuracy of our indicator in
the presence of concurrent queries. Currently, Parallax simply
reacts to observed changes in dynamic conditions.

Query progress is related to the cardinality estimation prob-
lem. Indeed, given accurate predictions of intermediate result
sizes, the GetNext() model can directly be used to compute
query completion as a percentage. There exists significant
work in the cardinality estimation area including recent tech-
niques [22], [23] that continuously refine cardinality estimates
using online feedback from query execution. These techniques
can help improve the accuracy of progress indicators; however,
they are orthogonal to our approach since we do not address
the cardinality estimation problem in this paper.

Work on online aggregation [14], [17] also strives to provide
continuous feedback to users during query execution. The
feedback, however, takes the form of confidence bounds on
result accuracy rather than estimated completion times. Addi-
tionally, these techniques use special operators to avoid any
blocking in the query plans.

VII. CONCLUSION AND FUTURE WORK

We presented Parallax, the first, non-trivial time-based
progress indicator for parallel queries. Parallax is developed
for Pig Latin queries that compile into a series of MapRe-
duce jobs. To produce accurate estimates, Parallax combines

runtime measurements with statistics collected from earlier ex-
ecutions of the same query on a data sample. Parallax handles
queries with operators that process tuples at different speeds
(including UDFs). It handles an environment where processing
speeds vary, where the degree of parallelism changes between
operators, and where data skew exists. Parallax is fully imple-
mented in Pig and we evaluated it on queries from the PigMix
benchmark, finding it more accurate than existing alternatives.

VIII. ACKNOWLEDGEMENTS

The Parallax project is partially supported by NSF CAREER
award IIS-0845397, NSF CRI grant CNS-0454425, gifts from
Microsoft Research, and Balazinska’s Microsoft Research
New Faculty Fellowship. Kristi Morton is supported in part
by an AT&T Labs Fellowship.

REFERENCES

[1] C. Ballinger. Born to be parallel: Why parallel origins give Teradata
database an enduring performance edge. http://www.teradata.
com/t/page/87083/index.html.

[2] S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When can we trust
progress estimators for SQL queries. In Proc. of the SIGMOD Conf.,
Jun 2005.

[3] S. Chaudhuri, R. Motwani, and V. Narasayya. On random sampling over
joins. SIGMOD Record, 28(2):263–274, 1999.

[4] S. Chaudhuri, V. Narassaya, and R. Ramamurthy. Estimating progress
of execution for SQL queries. In Proc. of the SIGMOD Conf., Jun 2004.

[5] DB2. SQL/monitoring facility. http://www.sprdb2.com/
SQLMFVSE.PDF, 2000.

[6] DB2. DB2 Basics: The whys and how-tos of DB2 UDB
monitoring. http://www.ibm.com/developerworks/db2/
library/techarticle/dm-0408hubel/index.html, 2004.

[7] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. In Proc. of the 6th OSDI Symp., 2004.

[8] M. Dempsey. Monitoring active queries with Teradata Man-
ager 5.0. http://www.teradataforum.com/attachments/
a030318c.doc, 2001.

[9] D. DeWitt and J. Gray. Parallel database systems: the future of high
performance database systems. Commun. ACM, 35(6):85–98, 1992.

[10] D. J. DeWitt, E. Paulson, E. Robinson, J. Naughton, J. Royalty,
S. Shankar, and A. Krioukov. Clustera: an integrated computation and
data management system. In Proc. of the 34th VLDB Conf., pages 28–41,
2008.

[11] Greenplum. Database performance monitor datasheet (Green-
plum Database 3.2.1). http://www.greenplum.com/pdf/
Greenplum-Performance-Monitor.pdf.

[12] Greenplum database. http://www.greenplum.com/.
[13] Hadoop. http://hadoop.apache.org/.
[14] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In

Proc. of the SIGMOD Conf., 1997.
[15] IBM zSeries SYSPLEX. http://publib.boulder.ibm.com/

infocenter/\\dzichelp/v2r2/index.jsp?topic=/com.
ibm.db2.doc.admin/xf6495.htm.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
data-parallel programs from sequential building blocks. In Proc. of the
European Conference on Computer Systems (EuroSys), pages 59–72,
2007.

[17] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and A. Pol. A disk-
based join with probabilistic guarantees. In Proc. of the SIGMOD Conf.,
pages 563–574, 2005.

[18] Large Synoptic Survey Telescope. http://www.lsst.org/.
[19] G. Luo, J. F. Naughton, C. J. Ellman, and M. Watzke. Increasing the

accuracy and coverage of SQL progress indicators. In Proc. of the 20th
ICDE Conf., 2004.

[20] G. Luo, J. F. Naughton, C. J. Ellman, and M. Watzke. Toward a progress
indicator for database queries. In Proc. of the SIGMOD Conf., Jun 2004.

[21] G. Luo, J. F. Naughton, and P. S. Yu. Multi-query SQL progress
indicators. In Proc. of the 10th EDBT Conf., 2006.

[22] C. Mishra and N. Koudas. A lightweight online framework for query
progress indicators. In Proc. of the 23rd ICDE Conf., 2007.

[23] C. Mishra and M. Volkovs. ConEx: A system for monitoring queries
(demonstration). In Proc. of the SIGMOD Conf., Jun 2007.

[24] B. A. Myers. The importance of percent-done progress indicators for
computer-human interfaces. In CHI ’85: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 11–17, 1985.

[25] F. Olken and D. Rotem. Random sampling from b+ trees. pages 269–
277, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[26] F. Olken, D. Rotem, and P. Xu. Random sampling from hash files.
SIGMOD Record, 19(2):375–386, 1990.

[27] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin:
a not-so-foreign language for data processing. In Proc. of the SIGMOD
Conf., pages 1099–1110, 2008.

[28] Oracle. http://www.oracle.com/database.
[29] PigMix Benchmarks. http://wiki.apache.org/pig/PigMix.
[30] A. Pruscino. Oracle RAC: Architecture and performance. In Proc. of

the SIGMOD Conf., page 635, 2003.
[31] Sloan Digital Sky Survey. http://cas.sdss.org.
[32] M. Stonebraker, J. Becla, D. DeWitt, K.-T. Lim, D. Maier, O. Ratzes-

berger, and S. Zdonik. Requirements for science data bases and SciDB.
In Fourth CIDR Conf. – Perspectives, 2009.

[33] Vertica, inc. http://www.vertica.com/.

