
Occlusion Reasoning for Temporal Interpolation using Optical Flow

Evan Herbst ∗ Steve Seitz ∗ Simon Baker †

September 12, 2009

Abstract

We present an optical-flow-based algorithm to smoothly interpolate between two images. We reason
about the depth ordering of objects, and show how bidirectional flow can be used to reduce holes in the
estimated flow at the interpolated time and perform occlusion reasoning. We develop a purely pixel-wise
algorithm and then add spatial regularization. We evaluate our algorithm on the interpolation set of
the Middlebury flow benchmark.

1 Introduction

We present an algorithm to use the optical flow between two images of a scene to interpolate between
the two views. We use a recent algorithm as a base and add reasoning about the depth ordering of scene
objects and about occlusions and disocclusions that occur during the interval between the times at which
the two images were taken.

Occlusion reasoning when rerendering using two-frame stereo is straightforward because depth maps
provide occlusion information, but is nontrivial when rerendering from only optical flow. We add occlusion
reasoning and bidirectional flow to a flow-based algorithm for two-frame temporal video interpolation.
Improvements in two-frame interpolation affect the quality of general view interpolation when we don’t
have 1-d motion or a perfectly still scene (i.e. a stereo problem). They are also useful in video retiming
and slow-motion applications, and potentially in video editing for allowing artists to choose the ideal view
in which to make edits that will then be propagated.

All of the algorithms we present have a structure (shown in fig. 1) that generalizes the algorithm given
in the appendix of [1], which is based on forward warping, or splatting, the flow field. Given two frames and
the flow fields in both directions between them, we first create the flow field at the intermediate time. We
use this interpolated flow field to create occlusion masks specifying which pixels visible at the intermediate
time are visible in each input frame. Then we blend the two input frames to create the interpolated frame.

This “naive algorithm” makes three major classes of error. Some pixels at the intermediate time aren’t
splatted to; we call these holes, and have to fill them somehow. The algorithm also doesn’t consider the
depth order of objects in the scene; the objects whose pixels are splatted from last will appear in front
in the interpolated frame. Choosing an order in which to splat input pixels can’t solve this problem.
Thirdly, no occlusion reasoning is done, so that many pixels in the interpolated frame are a blend of two
different objects from the two input frames. We use bidirectional splatting to greatly cut down on holes,
color consistency between input frames to do ordering reasoning, and flow consistency checks between the
input and interpolated frames to give us occlusion reasoning; the combination of these three techniques
qualitatively improves the interpolated frames for many datasets. We further improve interpolation by
doing spatial regularization over the estimated flow field and occlusion masks, and introduce a heuristic
to improve ordering reasoning for most datasets.

We compare our results to those of the naive algorithm on the Middlebury interpolation evaluation
sets using both a recent Black & Anandan implementation [12] and Seitz and Baker’s filter flow [2]. Based
∗University of Washington Computer Science Department
†Microsoft Research Redmond

1

I
0

I
1

u
0 -> 1

u
1 -> 0

uα

occ
0

occ
1

Iα

Interpolate flow

Occlusion masks

Blend

Figure 1: data flow through the three steps of our general approach. Input frames I0 and I1; forward and backward
optical flows

⇀
u0→1,

⇀
u1→0; occlusion masks occ0, occ1; interpolated frame Iα.

on results on the Middlebury interpolation training sets, for which we have ground-truth flow in the
forward direction although not the backward, we suspect our interpolation algorithm improves greatly
with improving flow. In particular it works very well given ground-truth flow.

2 Related Work

Our algorithms use optical flow as the main source of information. The optical flow field between two
images I, J of the same scene gives the 2-d motion of the elements of the scene as a function of their
locations in I. That is, if the object seen at location (x, y) in I (and probably also at many other nearby
pixel locations) is seen at (x+ 2, y − 3) in J , the optical flow

⇀
u I (x, y) is (2,−3).

Many recent flow algorithms build on Horn and Schunck’s influential paper [9] that iteratively finds
approximate neighborhood-wide solutions to the now well-known optical flow constraint equation (OFCE)
and regularizes between neighborhoods. Black and Anandan [4], one of the first of these, upgraded Horn
and Schunck’s approach with an outlier-robust model of flow vectors. Seitz and Baker [2] model the
transformation between two images as a general linear filter that varies spatially; this approach models
lighting, focus changes and other effects in addition to movement of scene elements. There have been a
very large number of flow algorithms introduced recently; these two are the methods we use in this paper
to provide input for our interpolation algorithms.

View interpolation is a very general problem and there has been work on a variety of specific instanti-
ations of it. Chen and Williams [5] is one early approach to image-based view interpolation, the category
of algorithms that warp regions of existing images to be shown in a synthesized view. Baker et al. [3]
reconstruct a scene from two-view stereo by modeling it as a set of planar layers, as opposed to the most
common model, a set of points in 3-d with topology determined in whatever way is most convenient.
Zitnick et al. [13] model a scene captured by an array of eight cameras as a set of layers, and mattes
where the edges of layers meet in the interpolated view. Fitzgibbon et al. [7] interpolate directly from
the original (two or more) images, with little 3-d representation, and removes artifacts by constraining the
local image color statistics of the interpolated view.

There has also been work on temporal video interpolation using flow. Ferreira et al. [6] solve, instead
of the usual first-order OFCE, a more detailed second-order differential equation (derived in the same
way as the OFCE) to produce a series of interpolated frames from two images. In the authors’ words,
this method works best for “sequences created through camera translation or translation of objects in an
otherwise static scene”. Baker et al. [1] present a simple two-frame algorithm based on splatting, following
the flow from an original image to the intermediate time; we’ll use this algorithm as our baseline. Bhat

2

Hole Occlusion Ordering

t = 1

t = α

t = 0

Hole

Figure 2: forward splatting demonstrated on a synthetic dataset. Top and bottom rows are I0 and I1. Arrows show
the forward flow and which pixel locations it passes through at t = α. Three types of problem: holes (intermediate-
time pixels with no flows through them); ordering (intermediate-time pixels with multiple flows through them);
occlusion (multiple flows to the same t = 1 location).

et al. [8] propagate detail from infrequent high-resolution frames to frequent low-resolution ones, adding
resolution to existing images. Mahajan et al. [10] compute a coarse approximation to optical flow; the
biggest difference between standard optical flow approaches and theirs is that “optical flow assumes that
a point moves in a straight line[;] the path framework. . . instead assumes that all points/pixels passing
through [a given spacetime location]. . . have the same flow”. The approach of [10] is similar enough to
ours that it would be informative to see quantitative results for their method.

3 Algorithms

We formulate the temporal interpolation problem as follows. Given two video frames I0 and I1 taken at
times t = 0 and t = 1 respectively, produce an image Iα (the “interpolated frame”) that could plausibly
have been taken as part of the original video at t = α, where α ∈ [0, 1]. Each image Ik is composed of a
set of pixel locations

⇀
p kj . In addition to the input frames, we use the forward flow field

⇀
u0 (

⇀
x),

⇀
p∈ {

⇀
p 0j}

and the backward flow field
⇀
u1 (

⇀
p),

⇀
p∈ {

⇀
p 1j}, each of which is scaled so as to take pixels forward in time

by one time unit. I.e.,
⇀
u0 (·) gives the flow from t = 0 to t = 1 and

⇀
u1 (·) gives the negative of the flow

from t = 1 to t = 0.
We assume perfect (non-noisy) input flow fields, although later we’ll relax this requirement. We have to

assume the motion between the two frames is linear so we can reasonably use the flow fields to interpolate
point positions. This assumption is common to most two-frame temporal video interpolation methods.

We build on a very simple baseline algorithm using forward flow only and doing no occlusion reasoning,
and add ordering reasoning and occlusion reasoning. We then incorporate spatial regularization over the
interpolated flow and occlusion masks to further improve results.

3.1 A Pixelwise Algorithm

3.1.1 Baseline

We start with the simple algorithm given in the appendix of [1], which is based on forward warping, or
splatting, the flow field. This “naive splatting” algorithm uses the forward flow field from I0 to I1, which
is assumed to be correct, and produces first the flow field at the intermediate time, next the two occlusion
masks for the interpolated frame with respect to the original frames, and then the interpolated frame.
The occlusion mask for the interpolated frame with respect to original frame i gives the visibility of each
interpolated-frame pixel in the original frame. I.e., the mask is 0 at

⇀
pαj iff the scene element visible at

⇀
pαj

is occluded in Ii. All the algorithms we describe in this paper produce these same images in this order.
We demonstrate the naive algorithm on a simple synthetic example dataset shown in fig. 2. Here, and

in all examples in this paper, α = 0.5 for simplicity.
Each flow vector passes near one or more pixels at t = α. At each intermediate-time pixel we choose

one of these candidate flows to assign to the interpolated flow field. Intermediate-time pixels with no

3

t = 1

t = α

t = 0

? ?

Figure 3: one interpolated flow field we might create for the example in fig. 2, shown pointing forward in time from
t = α but meant to be valid for the entire interval t ∈ [0, 1].

t = 1

t = α

t = 0

? ?

Figure 4: to blend, follow the interpolated flow backward and forward and average the resulting colors.

nearby flows are called holes and will be discussed later; for now we don’t specify flows for them. One
possible interpolated flow field is shown in fig. 3.

Now we want to create the interpolated frame. We use Boolean occlusion masks M0,M1 that tell us
which input frames each intermediate-time pixel is visible in: each pixel at t = α is set to the average
(weighted appropriately for α) of the corresponding pixels in the one or two input frames in which it’s
visible. One simple way to create occlusion masks is to assume the whole scene is visible in both input
frames, i.e. set both masks to 1 everywhere. Fig. 4 shows the interpolated flows we follow during blending,
assuming such trivial occlusion masks, and the resulting interpolated pixels.

3.1.2 Problems with the Baseline

Fig. 2 shows three classes of artifact that we’ll fix with improvements to the algorithm. Firstly, the baseline
algorithm does no reasoning about the depth ordering of regions: at intermediate-time pixels with multiple
flow candidates, it picks one arbitrarily. Secondly, splatting leaves holes in the interpolated flow field. Even
given non-noisy flow, holes occur at the intermediate time because optical flow isn’t a bijection between
pixels at its start and end times; occlusions, disocclusions, expansions and contractions of objects all cause
holes. We can lessen the problem by splatting each source pixel to multiple target pixels, but unless we
use an arbitrarily large splatting radius we might see holes anyway. The heuristic we use to remove them
is to iteratively set the unsplatted-to target pixel with the most splatted-to neighbors to the average of its
neighbors (this is the heuristic used in [1]). Thirdly, the naive algorithm doesn’t reason about occlusion:
blending averages both input frames regardless of which objects are visible in each. We’ll introduce three
algorithmic improvements the combination of which will solve these three problems.

3.1.3 Ordering Reasoning

Ordering reasoning infers the order of the depths of objects from the camera. Stereo algorithms assume a
rigid scene and so can map flow directly to depth. When we’re working with a general flow field, ordering
isn’t so straightforward.

Splatting generates a set of “candidate” flows for each
⇀
pαi, one from each source pixel that flows to

or near
⇀
pαi. There can be any number of candidates at a target pixel; holes are simply pixels with no

candidates. We choose to handle multiple candidate flows by copying one to the interpolated flow field
and ignoring the others. During splatting, we follow each proposed flow at

⇀
pαi to t = 0 and 1, and

rank candidate flows by the similarity of the colors at the corresponding locations in I0 and I1, bilinearly
interpolating intensities. In fig. 2 (“ordering”), this is how we know how the right edge of the black object

4

t = α

t = 1

t = 0

Figure 5: ordering reasoning on the example of fig. 2. At a given intermediate-time pixel, follow each candidate
flow forward and backward. Here the diagonal flow will be chosen as the more color-consistent.

Hole Occlusion Ordering

t = 1

t = α

t = 0

Hole

(a)

t = 0

t = α

t = 1

(b)

Figure 6: bidirectional splatting reduces holes. (a) forward splatting (fig. 2 repeated); (b) bidirectional splatting.

moves over time. Fig. 5 shows the candidate flows (from the flow field of fig. 2) for a particular pixel. At
each

⇀
pαi we choose the candidate that’s the most color-consistent between I0 and I1. Given relatively small

movement between the input images, this color consistency criterion should correctly handle all occlusions
(and disocclusions, once we use bidirectional flow; thus we also correctly capture the disoccluding edge at
the left of fig. 2).

Many pixels at the interpolated time flow out of image bounds at t = 0 or 1; for purposes of comparison
with other color consistencies, we set the color consistency of these flows (i.e., the Euclidean color-vector
distance between the hypothesized values at t = 0 and t = 1) to a constant ρ. For comparisons in RGB
space we let ρ ≈ 5. Since each value in the interpolated flow field is copied from one of the input flow
fields, each pixel at t = α is in image bounds at at least one of t = 0 and t = 1, so this is the only special
case to be handled.

3.1.4 Bidirectional Splatting

Splatting using only the forward flow leaves holes in the interpolated flow field. Heuristic hole filling does
remove the holes, but not well. The forward and backward flow fields carry different information, so the
performance of naive splatting in one direction doesn’t relate to its performance using the other flow field.
For any dataset on which forward splatting substantially outperforms backward splatting, if the dataset
were horizontally flipped the reverse would be true. Heuristic hole filling doesn’t work well in most cases;
a better solution is to use both flow fields and not ignore any source of information.

As can be seen in fig. 6, bidirectional splatting avoids most of the holes in the interpolated flow field
that we see with forward splatting.

3.1.5 Occlusion Reasoning

All of our algorithms blend the input frames using occlusion masks that give the visibility of scene elements
at t = 0 and 1. The naive algorithm sets the masks to 1 everywhere; we can do better by using bidirectional
flow information.

We make the assumption that each pixel at t = α is visible in at least one input frame, which isn’t
always true. I.e., there are in general holes even after bidirectional splatting. The sources of information
we use in this paper aren’t enough to tell us anything about these pixels, so ignore them for now. Then
at each pixel at t = α, at least one of the two occlusion masks must be 1.

5

t = 0

t = 1

t = α

Figure 7: occlusion reasoning on the example of fig. 2. Follow the chosen flow forward and backward from t = α

and compare to the flows at those locations at t = 0 and 1. We determine this pixel to be visible in I0 and possibly
in I1.

At each intermediate-time pixel
⇀
pαi we can follow the previously chosen flow

⇀
uα (

⇀
pαi) forward and

backward in time to locations
⇀
p 0←αi and

⇀
p 1←αi in the two input frames respectively. We can then compare

the flow at
⇀
pαi to the flows we find at

⇀
p 0←αi and

⇀
p 1←αi. Define

d0(i) ≡ −α ⇀
uα (

⇀
pαi) + α

⇀
u0 (

⇀
p 0←αi),

d1(i) ≡ (1− α)
⇀
uα (

⇀
pαi)− (1− α)

⇀
u1 (

⇀
p 1←αi)

with the values of
⇀
u0 (·),⇀u1 (·) interpolated bilinearly. In fig. 7, follow the arrows up and down from

the intermediate-time location, then follow the input flows at the resulting locations back to t = α; d0, d1

are the distances from our starting loction at which we end up. In this example d0 < d1. We denote
−d0(i),−d1(i) the flow consistencies of

⇀
pαi wrt I0 and I1. We decide that

⇀
pαi is always visible in the

input frame with respect to which
⇀
pαi has higher flow consistency. I.e., if d0(i) < d1(i), we set the visibility

flag for
⇀
pαi wrt I0 to 1. We set the other visibility flag at

⇀
pαi to 1 if the larger of d0(i), d1(i) is less than

a constant threshold υ. The threshold is very dependent on the quality of the input flow fields. For good
input flow fields taken from a manual annotation tool, we use υ = 1.0; for Black & Anandan flows it needs
to be larger.

In fig. 9 we can see that occlusion reasoning removes a great deal of ghosting: each of the affected
pixels is no longer being set to an average of either the background of I0 and the foreground of I1 or the
foreground of I0 and the background of I1.

This is essentially the same occlusion reasoning done by [10], the difference being that they follow the
flow linearly from t = α to t = 0 or 1 despite their flow model being nonlinear, whereas we explicitly
assume all pixels flow linearly in t ∈ [0, 1].

3.1.6 A Synthetic Example

To illustrate our algorithms we introduce a simple synthetic dataset (fig. 8). The true motion is as follows:
the light gray object moves right, the dark gray object moves left and expands in the x direction, and the
black object moves up slightly. X and y dimensions of flows are shown in separate images. The lighter the
color, the greater the flow; zero shows as medium gray. To simplify the presentation, all examples in this
paper will use α = 0.5. Fig. 9 gives various sub-results of a few algorithms on this dataset, showing that
each algorithmic improvement we have introduced does visually improve rendering.

6

(a) I0 (b) I1

(c) forward flow
⇀
u0, x direction (d) backward flow

⇀
u1, x direction (e) occlusion mask M0

(f) forward flow
⇀
u0, y direction (g) backward flow

⇀
u1, y direction (h) occlusion mask M1

(i) interpolated flow
⇀
uα, x direction (j) interpolated flow

⇀
uα, y direction (k) interpolated frame Iα

Figure 8: a synthetic example dataset. True motion: the light gray object moves right; the black object moves up;
the dark gray object moves left and expands horizontally.

7

A
lg

or
it

h
m

E
st

im
at

ed
x
-fl

ow
E

st
im

at
ed

y
-fl

ow
O

cc
lu

si
on

m
as

k
s

In
te

rp
ol

at
ed

fr
am

e

Fwdsplat Fwdsplat+ordering Bidisplat+ordering
Bidisplat+ordering
+occlusion

F
ig

ur
e

9:
va

ri
ou

s
al

go
ri

th
m

s
ap

pl
ie

d
to

th
e

da
ta

se
t

of
fig

.
8.

T
he

fin
al

no
n-

re
gu

la
ri

ze
d

al
go

ri
th

m
m

ak
es

no
er

ro
rs

on
th

is
ex

am
pl

e.
C

om
pa

re
th

e
oc

cl
us

io
n

m
as

ks
an

d
in

te
rp

ol
at

ed
fr

am
es

to
th

e
tr

ue
on

es
in

fig
.

8.

8

3.2 Refinements

3.2.1 Spatial Regularization

So far our algorithms treat each pixel independently, but in the presence of noise in the input images
and/or the flow, it’s important to incorporate spatial regularization. We use it during the estimation of
the interpolated flow field and of the occlusion masks.

Above we determined the interpolated flow field and occlusion masks one pixel at a time. In the case of
the flow field, we choose one of the candidate flows for each pixel. Then we assign one of three combinations
of visibility flags to each pixel. Both these procedures are specializations of the max-product algorithm
over a 4-connected Markov random field whose nodes correspond to pixel locations at t = α. We refer to
candidate flows with the symbol C.

The flow data term is a function of color consistency:

EflowD (
⇀
pαi 7→ C) =

∣∣∣I0(
⇀
pαi −α

⇀
u (C,

⇀
pαi))− I1(

⇀
pαi +(1− α)

⇀
u (C,

⇀
pαi))

∣∣∣2
The data term for the occlusion-mask MRF includes a single term, measuring back-and-forth flow

consistency. First define a “single-frame penalty” for each of I0 and I1 with respect to
⇀
pαi:

⇀
p 0i ≡

⇀
pαi −α

⇀
uα (

⇀
pαi)

⇀
p 1i ≡

⇀
pαi +(1− α)

⇀
uα (

⇀
pαi)

penalty0(
⇀
pαi) =

∣∣∣⇀u0 (
⇀
p 0i)−

⇀
uα (

⇀
pαi)

∣∣∣
penalty1(

⇀
pαi) =

∣∣∣⇀u1 (
⇀
p 1i)−

⇀
uα (

⇀
pαi)

∣∣∣
As earlier,

⇀
u0 (·) and

⇀
u1 (·) are bilinearly interpolated. Now we can calculate the data energy.

ok ∈ {0, 1} is the visibility flag for the intermediate-time pixel with respect to input frame k.

EoccD (
⇀
pαi, o0, o1) =

penalty0(

⇀
pαi)− penalty1(

⇀
pαi), o0 = 1 ∧ o1 = 0

penalty1(
⇀
pαi)− penalty0(

⇀
pαi), o0 = 0 ∧ o1 = 1

penalty0(
⇀
pαi) + penalty1(

⇀
pαi)− η, o0 = 1 ∧ o1 = 1

Here η parameterizes our prior preference for no occlusion (o0 = o1 = 1) at any pixel. This preference
declines with increasing difference between penalty0(

⇀
pα) and penalty1(

⇀
pα).

The smoothness energy for the flow optimization penalizes dissimilarity of flow between the two
intermediate-time pixels as well as dissimilarity of the colors of the corresponding input-frame pixels:

rgb0(
⇀
pα, C) ≡ I0(

⇀
pα −α

⇀
u (C,

⇀
pα))

rgb1(
⇀
pα, C) ≡ I1(

⇀
pα +(1− α)

⇀
u (C,

⇀
pα))

EflowS (
⇀
pαi 7→ C1,

⇀
pαj 7→ C2) = φfs(

∣∣∣⇀u (C1,
⇀
pαi)−

⇀
u (C2,

⇀
pαj)

∣∣∣)
+ φcs(

∣∣∣rgb0(
⇀
pαi, C1)− rgb0(

⇀
pαj , C2)

∣∣∣) + φcs(
∣∣∣rgb1(

⇀
pαi, C1)− rgb1(

⇀
pαj , C2)

∣∣∣),
where we define the flow smoothness penalty φfs(x) = φ(x, 0.5) and the color smoothness penalty

φcs(x) = φ(x, 4) based on the robust penalty function φ(x, σ) = −1

1+(xσ)2 of [4].

9

t = 0

t = α

t = 1

Figure 10: a small example dataset demonstrating temporal aliasing. Forward flow is shown with arrows. Both a
black and a white region move through the two center pixels at t = α. Colors and flows for other pixels are irrelevant
and so not shown.

The occlusion-mask smoothness energy measures the similarity of the interpolated-frame pixels result-
ing from choosing particular masks:

rgbα(
⇀
pα, C, o0, o1) ≡ o0rgb0(

⇀
pα, C) + o1rgb1(

⇀
pα, C)

EoccS (
⇀
pαi 7→ (C1, o0i, o1i),

⇀
pαj 7→ (C2, o0j , o1j)) = φcs(

∣∣∣rgbα(
⇀
pαi, o0i, o1i)− rgbα(

⇀
pαj , o0j , o1j)

∣∣∣)
Recall that at this point C1, C2 are fixed.
We find empirically that replacing this with the Potts energy gains a bit of efficiency at the cost of a

bit of accuracy.
As the MRF formulation for creating the intermediate flow explicitly chooses one of a set of candidates

at each pixel, it makes sense to generate multiple candidates even at hole pixels. We do this by changing
the operation performed at each hole pixel during hole filling from an average of neighboring values to
a set union. This leads to very large numbers of candidates at some pixels in large hole areas, so after
generating all candidates at a pixel we cluster them on the 2-d flow values. Parameter setting for clustering
can be constrained by deciding that hole pixels shouldn’t end up with more candidates than non-holes,
which come by their candidates “naturally”.

3.2.2 Temporal Aliasing

Fig. 10 demonstrates a problem for ordering reasoning that occurs on a great many datasets. The middle
region in this example may be incorrectly rendered due to temporal aliasing, which occurs when two or
more regions each of which is visible in each input frame pass through the same area at t = α. From
low-level cues alone, such as the cues we use in this paper, it isn’t possible to decide which region is visible
at the intermediate time. Temporal aliasing is common in our datasets. Since we’re committed to using
only two frames of video and no high-level scene understanding, we use a heuristic to alleviate inconsistent
rendering decisions. We know that in stereo and most flow datasets, usually the faster-moving object of
any two is closer to the camera. Therefore we add to the flow-field data energy a term to reward large
flows:

EflowD (
⇀
pαi, C) =

∣∣∣I0(
⇀
pαi −α

⇀
u (C,

⇀
pαi))− I1(

⇀
pαi +(1− α)

⇀
u (C,

⇀
pαi))

∣∣∣2 + ν
∣∣∣⇀u (C,

⇀
pαi)

∣∣∣
3.3 Summary

The final algorithm resembles the following, starting with the two input frames and given α:

• Compute, with your choice of algorithm, forward and backward flow between I0 and I1.

• Splat the forward flow from t = 0 to t = α and the backward flow from t = 1 to t = α to get
candidate flows at each pixel.

10

• Run inference over an MRF defined by EflowD (·) and EflowS (·) to choose which candidates become the
interpolated flow field.

• Run inference over an MRF defined by EoccD (·) and EoccS (·) to get the occlusion masks occ0 and occ1.

• Using the interpolated flow and occlusion masks, create the final frame via the blending algorithm
we discuss above, a more sophisticated Poisson blending algorithm, or your favorite algorithm.

4 Experiments

So far we’ve shown results with ground-truth flow on a synthetic dataset and with more or less ground-
truth flow on a stereo dataset. Now we compare the baseline and multiple improved algorithms on the
cones and teddy Middlebury stereo datasets and show some results with existing flow algorithms on real
data (both stereo and general flow). Recall that our baseline algorithm is the one currently used by the
Middlebury flow evaluation framework [11]; by comparing our results to it we’re attempting to improve
the quality of that evaluation.

The error measure we use is the same interpolation error used by the Middlebury flow evaluation. We
take the root mean square Euclidean distance in some color space over all pixels in the interpolated frame:

Err(Iα, Itrueα) ≡

√√√√√
(∑

⇀
p

∣∣∣Iα(
⇀
p)− Itrueα (

⇀
p)
∣∣∣2)

3

The factor of 3 makes the measure interpretable in terms of a single color channel. The most obvious
candidate color space is YIQ, which was designed so that Euclidean distance in YIQ is very similar to
human-perceived color distance. RGB distance is more or less proportional to YIQ distance (although it
isn’t always even monotonic), so we use RGB distance here and at all other points in the algorithm when
color distance is required.

4.1 Combating Temporal Aliasing

Fig. 11 shows that our heuristic (section 3.2.2) does improve consistency at least on stereo datasets. The
input flow used here is the ground truth, with the (few) holes filled with the values at the corresponding
pixels of the filter flow output.

4.2 Regularization on Real Data

Adding spatial regularization of the interpolated flow field and the occlusion masks improves results on
the Middlebury cones and teddy stereo datasets, as shown in figs. 12 and 13. Fig. 11 showed that even
regularization isn’t able to deal with temporal aliasing without heuristics, but it does solve a number of
other problems. Compare the second and fourth rows of figs. 12 and 13 for noticeable effects: in cones,
regularization smooths the edges of the cones (they should be flat) and removes some of the ghosting of
the tongue depressors, and in teddy it smooths the teddy’s left arm. It also reduces interpolation error.
The input flow used here is created the same way as in fig. 11: ground-truth flow with holes filled using
the filter flow.

We do still see noticeable artifacts in both datasets. In cones, the tongue depressors are still doubled.
In teddy, the birdhouse chimney and the right side of the teddy show ghosting, and there’s a large gray
spot between the birdhouse and the blue backdrop just above the stuffed animal. The diamond-shaped
tongue-depressor ghost is unavoidable because in neither input frame do we see the patch of cloth that’s
behind that area. The gray spot is an area in which the ground-truth flow has a hole and the filter flow is
incorrect. The ghosting in teddy occurs because the “ground-truth” flow tracks the outlines of the teddy

11

(a) (b)

Figure 11: combating temporal aliasing in the Middlebury cones dataset. Interpolated frame without (a) and with
(b) the prefer-large-flows heuristic. Interesting regions are circled.

and the birdhouse only to an accuracy of about a pixel; it’s hard to define the outline of an object whose
edges are blurred over a band multiple pixels wide.

4.3 Impact of Flow Algorithm

The quality of the input flow greatly affects the rendering quality. On the cones and teddy datasets (figs. 16
and 17), our algorithm improves on the naive algorithm much more with ground-truth flow than when
given Black & Anandan or filter flow (table 1). In fact, interpolation error goes up when we apply our
algorithm to Black & Anandan input flow. The less accurately the flow tells us how the boundaries of
objects move, the less it makes sense to reason on a small scale about occlusions and disocclusions. The
naive algorithm does well on low-quality flow because it doesn’t try to extract too much information out
of the flow.

Filter flow is usually more accurate than Black & Anandan, and is less smoothed. The lack of smooth-
ness is sometimes helpful and sometimes unhelpful: we desire high-quality flow, but smooth flow helps
prevent regularization from introducing unrealistically sharp boundaries.

The interpolation-error images in figs. 16 and 17 are normalized such that all pixels within the same
table are comparable. Brightness is directly proportional to error. Fig. 14 gives the ground-truth interpo-
lated frames for comparison.

Fig. 15 shows the forward-direction input flows used for the cones dataset, in order to compare the
accuracy of the algorithms we use for flow. In particular Black & Anandan does very badly, so the
interpolation error numbers for the datasets using that input flow probably aren’t as meaningful as the
others.

4.4 Videos

Since increasing video frame rate is a major application of our work, we include the results of generating
views for multiple α values. Videos for the cones and teddy datasets, with α ∈ [0 : .1 : 1], for three
interpolation methods, can be found at http://grail.cs.washington.edu/projects/tvif/. We have
not incorporated temporal regularization because the naive way of connecting pixels (in a 6-neighbor grid)
leads to blocky results and it’s not obvious how to connect pixels along “the direction of the flow” when
the flow is concurrently being optimized.

12

Interpolation Interpolated frame Error

Naive
12.95

FNR
10.76

Reg
10.92

RegTA
9.85

Figure 12: interpolated frames and interpolation error for various algorithms on the Middlebury Cones dataset with
hole-filled ground-truth flow. FNR = final non-regularized; Reg = regularized without temporal-aliasing heuristic;
RegTA = regularized with temporal-aliasing heuristic.

13

Interpolation Interpolated frame Error

Naive
9.32

FNR
6.66

Reg
6.40

RegTA
6.25

Figure 13: interpolated frames and interpolation error for various algorithms on the Middlebury Teddy dataset with
hole-filled ground-truth flow. FNR = final non-regularized; Reg = regularized without temporal-aliasing heuristic;
RegTA = regularized with temporal-aliasing heuristic.

14

(a)

(b)

Figure 14: true interpolated frames for the Middlebury cones and teddy datasets.

Table 1: average per-pixel interpolation error on the Middlebury cones and teddy datasets as a function of input
flow.

Dataset Interpolation
Flow

Ground truth Filter flow Black & Anandan

Cones
Naive 12.95 13.30 13.09

Final non-regularized 10.76 12.71 13.73
Regularized 9.85 12.31 13.71

Teddy
Naive 9.32 8.71 21.46

Final non-regularized 6.66 7.53 25.21
Regularized 6.25 7.34 24.15

15

Flow algorithm Forward x-flow Forward y-flow

(Ground truth)

Filter flow

Black & Anandan

Figure 15: forward flows used as input on the Middlebury cones dataset. These are stereo datasets: the true y-flow
is zero.

16

Input flow Interpolated frame Interpolation error

G
ro

un
d

tr
ut

h
F

ilt
er

flo
w

B
la

ck
&

A
na

nd
an

Figure 16: interpolated frames and interpolation error of regularized algorithm on the Middlebury cones dataset
with varying input flow.

17

Input flow Interpolated frame Interpolation error

G
ro

un
d

tr
ut

h
F

ilt
er

flo
w

B
la

ck
&

A
na

nd
an

Figure 17: interpolated frames and interpolation error of regularized algorithm on the Middlebury teddy dataset
with varying input flow.

18

4.5 Middlebury Flow Evaluation

Appendix A shows interpolated frames and interpolation error for the eight datasets in the Middlebury
interpolation evaluation set, with each of Black & Anandan and filter flow as input. Table 6 gives numerical
results. All algorithmic parameters were optimized for the cones dataset. The final algorithm numerically
improves on the naive algorithm mostly only on the synthetic dataset (Urban) and the stereo dataset
(Teddy).

Here we present brief explanations of differences in the few most visually interesting comparisons of
results for the naive and final regularized algorithms. Some of these comparisons favor the naive algorithm
and some favor ours. Each section includes blowups of the same regions (outlined in white) in the two
interpolated frames, and explains the differences with reference to the algorithmic differences.

19

4.5.1 Urban, Black & Anandan

(a) naive algorithm (b) final algorithm

Figure 18: interpolated frames for the urban dataset with Black & Anandan flow.

Table 2:
crop # description naive regularized

1 Occlusion reasoning removes ghosting on the car, the
fastest-moving part of the scene.

2 No combination of our algorithmic changes is able
to recover from the incorrect flow at the corner of
the roof. Regularization makes it visually worse by
reducing smoothing.

3 Occlusion reasoning and regularization allow the blue
piece to show up against the brown.

4 Occlusion reasoning removes the incorrect second set
of white lines on the roof.

20

4.5.2 Backyard, Black & Anandan

(a) naive algorithm (b) final algorithm

Figure 19: interpolated frames for the backyard dataset with Black & Anandan flow.

Table 3:
crop # description naive regularized

1 Regularization makes the shape of the girl’s foot more
realistic.

2 Regularization removes ghosting on the ball but also
removes many pixels that are in fact part of the ball.

21

4.5.3 Basketball, Black & Anandan

(a) naive algorithm (b) final algorithm

Figure 20: interpolated frames for the basketball dataset with Black & Anandan flow.

Table 4:
crop # description naive regularized

1 Bidirectional flow avoids the phantom dark brown re-
gion but doesn’t have a better suggestion for what to
render in that area.

2 Bidirectional flow and occlusion reasoning reduce
ghosting of the hands.

3 Again occlusion reasoning and regularization reduce
the number of ghost pixels but actually visually
worsen the result.

22

4.5.4 Basketball, filter flow

The highlighted regions we examine here are exactly the same ones we saw for the Black & Anandan
output.

(a) naive algorithm (b) final algorithm

Figure 21: interpolated frames for the basketball dataset with filter flow.

Table 5:
crop # description naive regularized

1 The large hole behind the head that we saw for Black
& Anandan is avoided.

2 The hands are over-regularized, although there’s even
less ghosting than for Black & Anandan.

3 Again, less ghosting than for Black & Anandan, and
we see more of the actual ball than we did above, but
the result is even more blocky.

23

Table 6: average per-pixel interpolation error of various interpolation algorithms on Middlebury interpolation
evaluation sets with each of two input flow algorithms.

Dataset Interpolation
Flow

Black & Anandan Filter flow

Army
Naive 1.91 1.84

Final non-regularized 1.90 1.89
Regularized 1.90 1.89

Mequon
Naive 2.84 2.84

Final non-regularized 2.92 3.20
Regularized 2.87 3.08

Urban
Naive 4.22 4.39

Final non-regularized 4.15 4.15
Regularized 4.09 4.10

Teddy
Naive 5.80 5.74

Final non-regularized 5.73 5.65
Regularized 5.60 5.40

Backyard
Naive 10.00 10.20

Final non-regularized 10.20 10.50
Regularized 10.20 10.30

Basketball
Naive 7.06 5.69

Final non-regularized 8.18 6.19
Regularized 8.02 6.07

Dumptruck
Naive 7.53 7.62

Final non-regularized 7.66 8.09
Regularized 7.49 7.83

Evergreen
Naive 7.13 7.13

Final non-regularized 7.41 7.78
Regularized 7.22 7.52

5 Conclusion

We have presented an optical-flow-based algorithm for two-frame image interpolation making use of rea-
soning about occlusions and disocclusions. We have shown that bidirectional flow can improve rendering
results, as can spatial regularization. Our algorithm works well, at least for stereo datasets, when given very
accurate flow fields. The improvement we see from our algorithm decreases as the quality of the input flow
fields decreases. When optical flow algorithms improve, our algorithm might be useful in differentiating
among flow algorithms whose performance is very good and very similar.

One problem we continually run into is that “ground-truth” flow fields don’t line up exactly with any
sort of outline in the input images, since outlines aren’t very clear but we want to see relatively clear edges
in the input flow. To combat this, and possibly allow for flow fields that are less exact near boundaries,
we could incorporate matting into our model: allow each intermediate-time pixel to be in multiple layers
each of which has a separate flow model. This might remove what ghosting is left in our results for the
teddy dataset.

6 Acknowledgements

The authors wish to thank Rick Szeliski of Microsoft Research and Daniel Scharstein of Middlebury College
for technical discussions, and Prof. Scharstein also for assistance in comparing our method to the current

24

Middlebury test framework.

References

[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski. A database and evaluation
methodology for optical flow. In IEEE International Conference on Computer Vision (ICCV), 2007.

[2] S. Baker and S. Seitz. Filter flow. In IEEE International Conference on Computer Vision (ICCV),
2009.

[3] S. Baker, R. Szeliski, and P. Anandan. A layered approach to stereo reconstruction. In IEEE Computer
Vision and Pattern Recognition (CVPR), 1998.

[4] M. Black and P. Anandan. Robust dynamic motion estimation over time. In IEEE Computer Vision
and Pattern Recognition (CVPR), 1991.

[5] S. Chen and L. Williams. View interpolation for image synthesis. In ACM SIGGRAPH, 1993.

[6] P. Ferreira, J. T. ao, P. Carvalho, and L. Velho. Video interpolation through green’s functions of
matching equations. In IEEE International Conference on Image Processing (ICIP), 2005.

[7] A. Fitzgibbon, Y. Wexler, and A. Zisserman. Image-based rendering using image-based priors. In
International Journal of Computer Vision (IJCV), 2005.

[8] A. Gupta, P. Bhat, M. Dontcheva, B. Curless, O. Deusen, and M. Cohen. Enhancing and experiencing
space-time resolution with videos and stills. In IEEE International Conference on Computational
Photography (ICCP), 2009.

[9] B. Horn and B. Schunck. Determining optical flow. In Artificial Intelligence, 1981.

[10] D. Mahajan, F. Huang, W. Matusik, R. Ramamoorthi, and P. Belhumeur. Moving gradients: A
path-based method for plausible image interpolation. In ACM SIGGRAPH, 2009.

[11] D. Scharstein. Middlebury optical flow evaluation. http://vision.middlebury.edu/flow/eval/.

[12] D. Sun. Black & anandan implementation. http://www.cs.brown.edu/~dqsun/research/
software.html.

[13] L. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-quality video view interpolation
using a layered representation. In ACM SIGGRAPH, 2004.

25

A Detailed Middlebury Results

Interpolated frames and per-pixel interpolation error images for the Middlebury flow evaluation sets. Error
images are normalized so that all pixels for a given dataset are comparable.

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 22: interpolated frames and interpolation error for the Middlebury Army dataset with filter flow [2] as input.
Algorithm names from fig. 12.

26

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 23: interpolated frames and interpolation error for the Middlebury Mequon dataset with filter flow [2] as
input. Algorithm names from fig. 12.

27

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 24: interpolated frames and interpolation error for the Middlebury Urban dataset with filter flow [2] as
input. Algorithm names from fig. 12.

28

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 25: interpolated frames and interpolation error for the Middlebury Teddy dataset with filter flow [2] as
input. Algorithm names from fig. 12.

29

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 26: interpolated frames and interpolation error for the Middlebury Backyard dataset with filter flow [2] as
input. Algorithm names from fig. 12.

30

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 27: interpolated frames and interpolation error for the Middlebury Basketball dataset with filter flow [2] as
input. Algorithm names from fig. 12.

31

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 28: interpolated frames and interpolation error for the Middlebury Dumptruck dataset with filter flow [2]
as input. Algorithm names from fig. 12.

32

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 29: interpolated frames and interpolation error for the Middlebury Evergreen dataset with filter flow [2] as
input. Algorithm names from fig. 12.

33

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 30: interpolated frames and interpolation error for the Middlebury Army dataset with Black & Anandan
flow [12] as input. Algorithm names from fig. 12.

34

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 31: interpolated frames and interpolation error for the Middlebury Mequon dataset with Black & Anandan
flow [12] as input. Algorithm names from fig. 12.

35

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 32: interpolated frames and interpolation error for the Middlebury Urban dataset with Black & Anandan
flow [12] as input. Algorithm names from fig. 12.

36

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 33: interpolated frames and interpolation error for the Middlebury Teddy dataset with Black & Anandan
flow [12] as input. Algorithm names from fig. 12.

37

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 34: interpolated frames and interpolation error for the Middlebury Backyard dataset with Black & Anandan
flow [12] as input. Algorithm names from fig. 12.

38

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 35: interpolated frames and interpolation error for the Middlebury Basketball dataset with Black & Anandan
flow [12] as input. Algorithm names from fig. 12.

39

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 36: interpolated frames and interpolation error for the Middlebury Dumptruck dataset with Black & Anan-
dan flow [12] as input. Algorithm names from fig. 12.

40

Interpolation Interpolated frame Interpolation error

Naive

FNR

RegTA

Figure 37: interpolated frames and interpolation error for the Middlebury Evergreen dataset with Black & Anandan
flow [12] as input. Algorithm names from fig. 12.

41

