PANCAKE: A Central Management Authority for Coordinating a Personal Area
Network and Controlling External Access

Tamara Denning
Computer Science & Engineering
University of Washington

Abstract

In this paper I present the PANCAKE, a device for managing and protecting a low-power
personal area network. I then describe an emulation of the system written on the Seattle
platform. The paper analyzes the security properties of the system and then presents some
data on the implementation's performance. Broadly speaking, the PANCAKE provides
attractive security benefits, but this implementation suffers from a communication bottleneck.

1. Introduction

Current research into mobile hardware, personal sensors, and other ubiquitous technologies
suggests the possibility that, in the future, individuals will be instrumented with a number of
personal devices. These diverse devices could benefit from having a central management
device that coordinates inter-device communication and oversees access to devices from
third-party clients. In this paper I propose such a device, which I call the Personal Area
Network Coordinator and Access KontrollEr (PANCAKE), and explore some of its basic
properties.

The PANCAKE's utility can be summarized into two broad categories: the PANCAKE, being
battery-powered and rechargeable, has more available power than some personal devices, and
can therefore be used to handle more power-intensive tasks; and it simplifies users'
management tasks so that they have only a single entry point for configuration. To illustrate
the PANCAKE's usage model and how it might benefit a Personal Area Network (PAN), I
will give an example.

A usage scenario. One personal device that might be in a user's PAN is a sensor that
periodically polls air quality. This sensor allows the user to collect information about the air
in the environments that he visits throughout his day. The user may wish to download this
data wirelessly to his home server at the end of the day, where it is processed and
summarized in a graph. Additionally, he may wish to grant read-access to the city's sparsely
located environmental nodes (they were deployed as part of an initiative to collect long term
statistics about environmental conditions in the city, and are located in areas that receive a
large amount of pedestrian and vehicular traffic). The user does not want any other parties to
read this data, since he is concerned that this might violate his privacy by revealing
approximately where he has been.

The air sensor is powered by a battery, but the user wants to charge the battery as
infrequently as possible, so we would like to limit the power-consuming operations on the
sensor and when possible transfer tasks to the PANCAKE. (Some devices in the PAN might
be passively powered and therefore incapable of performing power-intensive tasks.) We can
limit the amount of power consumed by the sensor by causing its transceiver to go to sleep
when not transmitting; in this way, the sensor will not waste power listening to local wireless
traffic. It 1s still desirable, however, to be able to access data on the air sensor when



necessary. One way to approach this problem is to equip the sensor with a passively-powered
chip that will wake up the transceiver only when it receives correct authentication (the
feasibility of which is demonstrated by Chae et al.) [2]. Let us suppose that the city advertises
public keys for its official environmental nodes so that citizens can verify that a
communication is legitimate; it is currently unrealistic to suppose that a passively-powered
chip could authenticate a reader in this manner. Instead, the PANCAKE can maintain a store
of public keys and authenticate a third party that is trying to access a user's personal device.
Once the client is authenticated, the PANCAKE—which has a long term pairing with devices
in the PAN—can wake the sensor's transceiver up using symmetric cryptography. At this
point, the PANCAKE serves as a proxy between the client and the personal device, logging
all communications between the two.

The PANCAKE can also support usage of the air sensor in other ways. For example, the air
sensor could notify the PANCAKE if it senses particularly poor air quality, and the
PANCAKE could issue an audio, tactile, or textual notification to the user. Alternatively, if
the air sensor runs out of local storage, it could use the PANCAKE for additional storage.

Other uses. Since the PANCAKE functions as the gateway to the PAN, it has the potential to
serve as an inter-protocol translator. There is no need for a client and a personal device to
communicate using the same protocol, as long as the PANCAKE has knowledge of a
mapping between the two protocols.

2. System Emulation

I implemented a basic emulation of the PANCAKE system in approximately 650 lines of
code across four files [1]. Three of the files emulate the behavior of the PANCAKE, a
personal device in the PAN, and a third-party client, while the fourth file contains functions
that are common to the three modules. The unique properties of specific personal devices or
clients are loaded into an instance of their module using configuration files. Communications
in the system are implemented via TCP sockets. While the communications were originally
designed to transmit between hosts at different IP addresses, where each host simulates an
entity in the system emulation, I found that it was smoother to develop the emulations as
separate processes on the same host.! Entities in the system are assigned distinct port
numbers and are configured to listen for TCP communications on that port.

The PANCAKE keeps information about each of its paired devices, including the device's
name or identifier, the type of the device, the private key shared with the device, and the port
on which to contact the device. For example:

deviceO.port=12347

deviceO.type=air

device0.key=255,144,0,133,252,147,162,70,31,168,176,32...
The PANCAKE also keeps a list of clients about which it has knowledge, along with relevant
details such as the port on which to access the client and the client's public key.

The PANCAKE is designed to process both clients requests that are addressed to one
particular device in the PAN and requests that are broadcast to a more general audience. In

1. For example, It is much faster and easier to watch the output of a process locally in real-
time than to repeatedly query a remote host to monitor the progress of a node.



the latter case, the client request is presumed to be directed towards a certain type of device
(e.g., an air quality sensor or an RFID ID card), and the PANCAKE delivers the request to all
devices in the PAN of that type.

Since this system design aims to provide increased security guarantees while minimizing the
computational and power demands on devices in the PAN, the PANCAKE takes care of
verifying the authenticity of client requests and encrypting responses with the client's public
key. Messages destined for personal devices are encrypted with the shared private key and
sent on to the device.

3. Security Properties & Analysis

The system emulation has a number of security precautions in place to help protect the
confidentiality and integrity of the system, as well as to help ensure the authenticity of
message origins. The implementation has not been subjected to penetration testing; instead, I
describe the security precautions below and discuss their effects on the system's properties.

3.1. Confidentiality

Confidentiality in the system is protected by a combination of public-key and private-key
cryptography. As mentioned above, the PANCAKE and the devices in the PAN have a long
term pairing and share a symmetric key (each PANCAKE-device pair has a unique key). In
order to prevent eavesdropping, all communications between the PANCAKE and a device are
encrypted using an AES implementation in the Seattle library.2 Similarly, the PANCAKE
protects the privacy of its messages to a client by encrypting the message with the client's
public key, using an RSA implementation in the Seattle library. Untargeted queries in the
system emulation (e.g., a reader queries the surrounding area for any devices willing and able
to respond) send their queries in plaintext.

The emulation implementation provides additional confidentiality by incorporating a
timestamp into every message's plaintext, thereby perturbing the ciphertext resulting from
otherwise identical plaintexts.

3.2. Authenticity

Third-party clients in the system authenticate themselves to the PANCAKE by signing their
messages. More specifically, the client produces a hash of the plaintext message using a SHA
implementation in the Seattle library, signs this hash using its private key, and transmits this
signed hash along with the message. This method gives the PANCAKE reasonable
confidence that the message in question originated from the client. The PANCAKE does not
sign its messages to clients, since in this model we are concerned about the privacy and
security of the PANCAKE and the devices in the PAN; the implementation could easily be
changed so that the PANCAKE also authenticates itself to clients by signing its messages.
The PANCAKE and the PAN devices do not sign their messages to each other, since they
only use symmetric cryptography on their communications. Instead, a measure of authenticity
is provided by encrypting the message hash, as mentioned in the next subsection. This

2. Thanks, Justin!

3. This is particularly important because, for the sake of simplicity, I use the same
initialization vector for every encryption operation. This is a potential weakness, as will be
discussed later.



method does not distinguish between the identities of the PANCAKE and the communicating
device, but since the PANCAKE and a personal device trust each other in this system model,
there is no need to support non-repudiation.

3.3. Integrity

The implementation incorporates message integrity codes (MICs) to provide some assurance
that a message has not been tampered with or damaged in transit. All entities hash the
message's plaintext prior to transit using a SHA implementation in the Seattle library. As
previously mentioned, a client with a broadcast transmission then signs this hash with its
private key. Communications between the PANCAKE and its devices encrypt the hash with
their private key and send the encrypted hash along with the encrypted message. These
measures provide a high degree of assurance that the sending entity did send the plaintext as
received.

3.4. Replay Attacks

The emulation attempts to prevent replay attacks by incorporating a timestamp into the
plaintext of every message. Each entity keeps track of the last time that each other entity has
sent them a message, and only accepts messages that have timestamps that occur later. In this
way, no entity will act on an encrypted message that has been replayed by an adversary.

3.5. Potential Weaknesses

The current implementation provides no protection against Denial-of-Service (DoS) attacks.
An increased number of incoming requests will cause the PANCAKE to respond more slowly
to or drop legitimate requests. There are some changes that could be made to the
implementation to improve its security properties. These changes include a scheme for
changing the initialization vector's value over time and negotiating temporary session keys to
use instead of the long term keys.4 Both of these changes would decrease the probability that
an adversary will be able to recover the keys used by decreasing the predictability of
messages. In the current implementation, an adversary with knowledge of the commands that
can be issued to a device (e.g., "read setttings") and the translation between client-
PANCAKE and PANCAKE-device protocols could potentially recover their private key. If
the adversary has some legitimate access to the device, he can perform a plaintext attack by
issuing commands to the device. In combination with trying various timestamp values near
the time when the message was sent, the adversary could successfully recover the key.

4. Performance
While performance optimization was not a goal in the implementation of the PANCAKE
emulation, performance metrics provide an idea of how viable the system would be for actual
use. Particularly, it is of interest how many simultaneous devices and client requests the
PANCAKE can handle. There are a number of factors that affect the workload on the
PANCAKE, including:

* How many clients communicate with the system

* How often clients communicate with the system

* Whether client messages are spaced out or are clustered together

» Whether client messages are targeted for one device or for a number of devices

4. For example, the Diffie-Hellman protocol could be used to negotiate session keys.



In order to get a rough idea of system performance, I ran tests that measured system latency
in response to manipulating the above factors. Figure 1 and Figure 2 show results from the
tests.

Latency of Replies versus Number of Seconds Between Client Requests
60

L
50
40
|
Latency (in seconds) 30 u . # Client request latency (1 device, 3 semi-
simultaneous clients)
| M PAC-device latency (1 device, 3 semi-simulataneous
clients)
20
‘ L 4
] |
*
10 4 8
& m t
s
L |
0
0 5 10 15 20 25 30 35

Seconds between client requests

Figure 1. Above are plotted the average latencies between sending a message and receiving a response, averaged
over a 2-minute period, for a system in which there are three clients, one PANCAKE, and one device registered
with the PANCAKE. The x-axis indicates the rate at which the clients in the system send out messages. The
different point graphics correspond to the latencies between the PANCAKE and its devices and the latency

between the time when a client sends out a message and receives a response from the PANCAKE.



Latency of Replies versus Number of Seconds Between Client Requests

45

40

|
u Latency (in seconds)
. w3
]
] ]
]
30
|
]
] 25
ap ¢ PAC-device latency (4 identically-typed devices, 1
client)
- M Client request latency (4 identically-typed devices, 1
B 15 client)
PAC-device latency (2 identically-typed devices, 1
client)
10 Client request latency (2 identically-typed devices, 1
client)
*
*
* "os
$ $ 3
0
35 30 25 20 15 10 5 0

Seconds between client requests

Figure 2. Above are plotted the average latencies between sending a message and receiving a response, averaged
over a 2-minute period, for a system in which there is one client and one PANCAKE. The x-axis indicates the
rate at which the client sends out messages. The different point graphics correspond to the PANCAKE-device

and client-PANCAKE-device-PANCAKE-client latencies. The graphics further distinguish between two system

configurations: one in which there are 4 devices of the same type (and therefore all need to respond to the same
client requests) and one in which there are 2 devices of the same type.

In Figure 1, points for 5 second- and 1 second- request intervals are omitted from the plot
because the system started failing to transmit messages, presumably due to overload. The
remaining results in Figure 1 are erratic, but unfavorable. Although I do not know why the
latencies vary so widely in the plot, I suspect that it might be due to the fact that the
synchronization of the clients varied from trial run to trial run; although clients were started
at the same time, they did not always stay synchronized, and therefore might have contributed
unevenly to system congestion.

In Figure 2, the results are easier to interpret. There are several trends in the graph that
support expected system behavior: client request latencies are larger for a given system
configuration than PANCAKE-device latencies; a larger number of devices with identical
types, and who therefore respond to the same client messages, increase system latencies;
and—although less clearly—shorter client request intervals correspond to larger system
latencies. Judging from Figure 2, an emulation with 4 identically-typed devices has an
unacceptable latency time, but an emulation with 2 identically-typed devices has acceptable
performance for non-critical applications.



5. Discussion

As previously mentioned, one of the advantages of the PANCAKE design is the fact that it is
a central management point, which could simplify user management tasks and provide inter-
protocol translation services. Additionally, the power resources available to the
PANCAKE—as opposed to passively-powered or power-conscious devices in the
PAN—allow the PANCAKE to enhance the security properties of the PAN.

One of the obvious disadvantages of the PANCAKE system design is that, by using a single
device as a coordinating agent, the system is vulnerable to a single point of failure; if the
PANCAKE is intentionally or accidentally disabled, there is no way to access devices in the
PAN until the PANCAKE is brought online. Additionally, while the PANCAKE is able to
remain operational during DoS attacks by arbitrarily dropping requests, DoS attacks can still
cause some interruption of service to legitimate clients. Similarly, aside from DoS attacks or
accidental failures, system performance is limited by the rate at which the PANCAKE can
receive, process, and send messages.

6. Conclusion

In this paper I present the basic system design of the PANCAKE, a device meant to
coordinate a personal area network of devices by centralizing management tasks and
providing increased security. I describe an emulation of the system implemented on the
Seattle platform, then discuss the implementation's security properties. Section 4 presents
some latency data points using different numbers of clients, devices, and varying the client's
request frequency. The emulation of the system performs acceptably when the PANCAKE is
not attempting to receive or transmit many messages simultaneously; however, performance
degrades quickly as the message load on the PANCAKE grows. While the central
management point of the PANCAKE offers advantages—particularly security
advantages—the system needs to achieve better performance before it can be considered
competitive compared to more distributed solutions.

References

[1]J. Cappos, 1. Beschastnikh, A. Krishnamurthy, and T. Anderson. Seattle: A Platform for
Educational Cloud Computing. In Proceedings of SIGCSE 2009, pages 111-115, March
2009.

[2] H.-J. Chae, D. J. Yeager, J. R. Smith, and K. Fu. Maximalist Cryptography and
Computation on the WISP UHF RFID Tag. In Proceedings of Conference on RFID Security
2007, July 2007.



