
blami: Externalized Parallelism for a 
Serial Web Server 

 

Koos Kleven and Daniel Otero 

Department of Computer Science and Engineering 

CSE551: Operating Systems 

University of Washington 

{ koos42, oterod } @cs.washington.edu 

 

 

ABSTRACT 

Parallelizing complex services can be a daunting 

task for any developer. Some services are inherently 

limited to serial execution as a result of 

technological restrictions. 

 

We’ve designed, implemented, and evaluated blami, 

a framework-agnostic, transparent, and entirely 

external parallelizing proxy and load balancer. 

Results show it to confer dramatic increases in 

performance for high-stress, parallelizable 

workloads. Moreover, it’s flexibility, extensibility, 

and ease of deployment make it an ideal 

performance solution for applications which cannot 

be easily parallelized themselves. 

INTRODUCTION 

Ruby's rise in popularity, specifically when coupled 

with the Rails web application framework, has been 

prolific in the last few years. As of version 1.8.6, 

however, Ruby was an entirely interpreted language 

with an entirely user-level threading library. In 

addition to the multiprogramming short-comings of 

Ruby itself, the Rails framework is not remotely 

thread safe. This com-bination of factors makes it 

very difficult to leverage the ease of development 

provided by Ruby on Rails when making large-scale 

internet applications.  

Mongrel, a web server made popular largely by its 

simplicity, is often used to serve Rails applications. 

Written in Ruby, Mongrel’s performance suffers as a 

result of the aforementioned issues. First, because a 

threaded Ruby application ultimately sits on top of a 

single kernel thread, any Ruby thread that causes 

kernel-level blocking also brings the application's 

remaining threads to a grinding halt. Second, the 

lack of thread safety in the Rails framework led the 

creator of Mongrel to enforce mutual exclusion for 

the entirety of Rails code. While Mongrel itself is 

multi-threaded, no two threads can be executing 

Rails code at the same time, effectively killing real 

parallelism. 

We have created blami (Balancing Load Across 

Mongrel Instances), transparent middlebox software 

capable of proxying requests to and from replicated 

Mongrel servers for the purpose of introducing true 

parallelism, though parallelism external to the 

underlying application.  

 

DESIGN GOALS 

We maintained three core design goals during the 

creation of blami: 

1. Simplicity 

2. Maximum protocol-agnosticism 

3. Transparency and framework externality 

Simplicity 

It would have been possible to optimize blami 

heavily to leverage the conventions used by Rails, or 

to fully take advantage of the many performance 

features built into the HyperText Transfer Protocol 

(HTTP). To do this, however, we would largely 

duplicate the functionality already built into the 

requesting browsers and responding HTTP servers. 



Worse still, blami would become outdated anytime 

an aspect of Rails changed, or a feature was added to 

the HTTP spec. 

Our system was therefore designed to be the 

simplest possible layer that could be inserted 

between current client-server HTTP endpoints. 

Though we sacrifice possible optimizations, and 

therefore peak performance, in lieu of simplicity, we 

dramatically ease the use, maintenance, and 

configuration of our system. 

Protocol-agnosticism 

While blami was intended for use with Rails, and 

therefore HTTP, it follows from designing for 

simplicity that one would also maximize the 

system’s level of protocol agnosticism. If it were 

possible to open blami to other protocols and 

applications without negatively impacting the design 

process, it would only increase the value of such a 

system. 

To make blami Rails-compatible, at the very least, 

put limits on how protocol-agnostic it could be. We 

settled for supporting any stateless, TCP-based 

protocol. A further, more subtle, restriction is that 

the protocol cannot rely on anything but the content 

of its messages (i.e. TCP/routing state cannot be 

used). 

Transparency and framework externality 

Due to the vast and steadily-increasing popularity of 

both Ruby and the Rails framework, it was 

unrealistic to address these problems by introducing 

branched changes in their core libraries. The cost of 

adoption would be too great, especially for clients 

with substantial time investmented in the existing 

versions. In addition, our system would impose too 

great an inconvenience if it somehow required that 

either the client or Rails application be aware of the 

existince of the middleware. 

To avoid these issues, blami functions completely 

transparently. Neither the client nor the service are 

remotely aware of its man-in-the-middle behavior, 

nor do any changes need to be made to the client or 

server software or configuration. 

Sacrifices 

One of the major downsides to this form of process-

based parallelization is that it carries much more 

overhead than a more purpose-built methodology. 

Not only does the application suffer the overhead of 

multiple copies of its executable in memory, but it 

suffers further from the duplication of work between 

instances of the application. For instance, if one 

process serves a request for resource X and caches it, 

that caching does nothing to increase the 

performance of a different process. In fact, a user 

could request the same resource from blami up to n 

times (n being the level of back-end replication) and, 

in the worst case, cause n different replicated 

processes to miss their caches. 

To make matters worse, blami’s protocol-

agnosticism makes it impossible for intelligent load 

balancing based on what is being requested by a 

client. In the case of HTTP, the middlebox would 

have to understand the content of HTTP headers to a 

degree that it would even recognize equivalent 

requests, and subsequently redirect them to the same 

back-end server. As should be apparent, this would 

be fairly easy to do poorly. One could, for example, 

recognize resources that appeared to be static. 

However, to do such intelligent load balancing 

correctly, especially given the very dynamic nature 

of today’s web applications, blami would need a 

tremendous amount of HTTP-specific “knowledge.” 

While we do require that the serviced protocol be 

stateless, many clients nonetheless try to be “smart.” 

If a client application relied on being connected to 

the same back-end server throughout multiple 

requests in order to function properly, its behavior 

might be irregular. 

SYSTEM DESIGN 

Concurrency Model 

Rather than using multithreading, an event-driven 

architecture was used instead. This was beneficial in 

a number of ways. First, it vastly simplified 

implementation, as concurrency within blami was 

not an issue. While it would be possible to run 

multiple proxies in separate threads, each thread 

would be self-contained and thus no synchronization 

of any kind would be required. 



The event-driven architecture also has performance 

benefits over a threaded approach. Eliminating 

synchronization inherently aids performance by 

eliminating cycles wasted on locking and state 

duplicated in multiple threads. For the benefits of 

serial execution to be realized, however, that serial 

execution must not waste resources (e.g. idle CPU). 

By deconstructing each client-to-server round trip 

into its constituent non-blocking parts, and by 

performing other operations during blocking, our 

event-driven control flow efficiently multiplexes 

requests without substantially decreasing 

performance. 

Architecture 

blami behaves like any other web server. It accepts 

connections on a specified port, opens each 

connection on a new port, fulfills client requests 

over the created connections, and then closes 

connections when they are no longer needed. 

The difference between a traditional server and 

blami is that it does none of the work to compute the 

appropriate response. Behind it run any specified 

number of replicates, the parallelized back-end 

servers tasked with doing the “real” computation. As 

soon as blami receives a client request, it chooses a 

replicate based on defined criteria (see “Load 

Balancing” below) and forwards the request to that 

replicate. When the replicate responds, blami then 

returns the response to the corresponding client.  

While we designed blami with Rails and Mongrel 

clusters in mind, and thus made it easy to run it on 

the same machine as its back-end replicates, this is 

by no means necessary. It would be perfectly easy to 

offer much greater degrees of parallization by 

moving replicates to different machines with their 

own plentiful resources. However, we anticipate that 

in the common case, blami would be used for small-

to-medium deployments of Rails on a single 

machine. 

Control Flow 

There are three basic events in the blami event 

model: accept, read, and write. Whenever an event 

is triggered, it is added to a queue of events to be 

handled. Each event is handled serially in the order 

that it was generated. 

When an instance of blami’s ZokaServer – the 

event-driven server that powers the system – is 

created, it is given a port on which to accept 

connections. When a connection request arrives on 

this port, an accept event is triggered. When 

handled, a connection is created with the requesting 

client, as is a connection to a replicate chosen to 

service this client’s request. This pairing of client to 

replicate will exist as long as the two connections 



remain open. It is then up to the client and the 

protocol as to when the connection should close. 

When data arrives on a socket, whether its endpoint 

is a client or a replicate, a read event is triggered. 

Reading comes in two flavors. Either there will be 

data ready to be read, or what waits is an end-of-

stream notification, in which case the connection 

must eventually be closed. When data is read, it is 

immediately added to the pending data queue for the 

corresponding connection. For instance, any data 

received from a replicate will be enqueued for 

sending back to the associated client. 

If an end-of-stream request is received, the 

connection can be closed only after all relevant 

responses have been written back. For instance, in 

the diagram above, it would be inappropriate to 

sever the connection with the client when they 

request to close. If blami were to terminate the 

connection then, there would be no connection to 

write responses back to when they arrived from the 

corresponding replicate. Before severing a 

connection with a client, one must ensure that the 

corresponding replicate connection is no longer in 

use, and that there is no pending data waiting to be 

written back to the client. 

Any time that a read occurs, with the exception of 

an end-of-stream message, data will have been read 

which needs to be forwarded to the opposing party. 

If reading from the client, data must be forwarded to 

the replicate, and vice versa. Thus, at the end of a 

read, the corresponding connection is marked to 

notify when it is available to write. It is when the 

connection becomes writable that a write event is 

triggered. 

Load Balancing 

In order to allow flexibility and experimentation 

with respect to load balancing, we built an interface 

for a load balancing strategy, and allow blami to run 

with any valid implementation. We were only able 

to create two implementations ourselves, however. 

Round Robin balance strategy, not surprisingly, 

implements a round robin scheduling system for 

client requests over the available replicates. Least 

Loaded balance strategy, on the other hand, routes 

new requests to the replicate with the fewest 

incomplete requests pending. 

EVALUATION 

We carried out a series of  twenty tests with different 

proxy settings and replication factors in an attempt 

to evaluate the performance of the system. 

Machine Setup 

Our system tests were performed using an instance 

of blami hosted on a MacBook Pro. The test 

machine had a dual-core Intel Core2 Duo 

(clockspeed 2.33Ghz) processor and 2GB of main 

memory. The machine ran an instance of the blami 

proxy, which in turn relied on up to ten (varied 

based on the test) instances of Mongrel serving the 

same Rails application. The Mongrel instances were 

also run locally on the test machine. As a further 

detail, the Rails application (served, again, by 

Mongrel) was run in development, rather than 

production mode. Effectively, this had the effect of 

turning off caching of any machine code or 

dynamically generated content at the replicate level. 

We believed that this caching was an entirely 

application-specific feature of Mongrel, and chose to 



disallow it so as to better understand the raw 

performance gains offered by parallelizing. Note that 

Mongrel could still cache static files. 

Testing Infrastructure 

We used two different means to generate traffic to 

our proxy. At the outset of testing, we used Seattle, a 

distributed computation framework, to request 

resources as specified by particular testing 

workloads. Seattle granted us use of small slices of 

“vessels,” each of which could run our test code 

written in a subset of Python. 

Seattle proved to be problematic for our tests. The 

wide disparity in quality of network connections 

among our vessels led to dramatically unpredictable 

and outlier-ridden results. While our problem may 

have been solved by increasing the size of our vessel 

set, we failed to do so in a timely manner, forcing us 

to pursue other options. 

In Seattle’s stead, we made use of access to 

University of Washington laboratory machines 

spread throughout the Paul Allen Center for 

Computer Science and Engineering. We wrote a 

distributed bot using Python that would, from each 

of the testing lab machines, repeatedly request 

resources matching a given workload for a specified 

period of time. The bot also spaces requests by a 

semi-randomized interval to avoid network 

congestion. 

Evaluation Tools 

To ease data-gathering and analysis, we created 

Gnosis (a tongue-in-cheek suggestion of “divine 

insight and knowledge”). Gnosis is, itself, a Ruby on 

Rails application. Somewhat ironically, it is both the 

application to which we proxied blami during our 

tests, and the application which gathered metrics for 

the proxy’s performance under various loads. 

Connectivity to the Gnosis database is built into 

blami, and every completed request (initial client 

request through to full response) is logged, along 

with several metrics, to this database. Gnosis then 

has several features to allow intuitive presentation of 

information, and can assemble cumulative statistics 

over a series of requests. This system allowed us to 

look at throughput in both requests per unit time and 

bytes per unit time, average latency per request, as 

well as maximum, minimum, and average requests 

per unit time per host. 

Workloads 

To test the effect of our parallelism under different 

loads, we built several somewhat contrived 

workloads into Gnosis’s evaluation features. These 

workloads included: 

1. Trivial: Simply returns the text “Hi!” 

without going to disk or interacting with a 

database. We expected to see virtually no 

difference in performance with this 

workload, as it would theoretically tax the 

system very little. 

2. Normal: Fairly light reading from a 

database, loading of a template from disk, 

and rendering of that template. We expected 

to see some improvement in performance 

with increase in parallelism, but were 

skeptical about the degree to which 

performance would improve. 

3. Disk-bound: Better referred to as IO-bound, 

perhaps, this workload returned a file at 

random from a group of one hundred 5-

megabyte files. Its design was intended to 

make any caching of static resources 

impossible, forcing disk reads and long 

network writes. As a result, we expected 

very low request throughput. Because a 

single-threaded server would be more 

efficient when reading a large file from disk, 

we expected the serial server to perform best 

on this workload. 

4. CPU-bound: A profoundly wasteful 

workload, this one simply burns processor 

cycles on an arduous computational task 

intended to take around five seconds on an 

unloaded machine. Parallelism, we thought, 

would undoubtedly improve performance on 

this workload. 

blami Instances 

We tested each one of the above workloads on five 

different instances of blami, each designed to expose 

the performance characteristics of a particular degree 

of parallelism and load balance strategy. The 

following table describes these instances. 



Balance Strategy Parallelism 

Round Robin (control) 1 replicate 

Round Robin (small) 5 replicates 

Round Robin (large) 10 replicates 

Least Loaded (small) 5 replicates 

Least Loaded (large) 10 replicates 

 

RESULTS 

Performance Graphs 

The following graphs summarize the observed 

performance of each instance over the various 

workloads tested. For ease of reading, larger 

versions are provided at the end of the paper. 

 

 

 

 

 

 

 

 

Analysis 

Trivial: As expected, there was little performance 

variation in the trivial workload. Despite servicing 

almost two thousands requests in less than one 

minute, CPU never so much as approached 

maximum load in even the control case. Without a 

sufficiently taxing load, parallelism conferred no 

benefits. 

Normal: The big surprise in our testing was to find 

that the performance under our “normal” load 

improved dramatically when parallelism was 

introduced. We expected some improvement, but in 

the best case, request throughput improved by 71% 

over the control. We attribute this to the fact that the 

normal workload, while not nearly as taxing as the 

IO- and CPU-bound workloads, was sufficiently 

taxing so as to bring a single-threaded server to its 

knees. Thanks to database and other disk interaction, 

each request took about an order of magnitude 

longer than the each trivial workload request. As a 

result, the communication and protocol overheads 

per request were far lower, proportionally, allowing 

the benefit of parallel processes running on distinct 

physical processors to take effect. 



Disk-bound: This was no surprise. The control out-

performed the parallelized proxy instances, though 

not dramatically. The reasoning behind this seems 

fairly straightforward. When reading a large file 

from disk, the process goes fastest when the read is 

uninterrupted. Each context switch or interrupting 

seek not only consumes time, but also forces another 

disk seek to resume reading. Each seek wastes 

valuable time, and the disk takes a moment to ramp 

back to full bandwidth, making a schizophrenic 

concurrent proxy a poor match for this workload. 

CPU-bound: While it was obvious that CPU-bound 

tasks would favor parallelism most, we did not see 

the performance we hoped. Despite twofold 

increases in throughput upon parallelization, there 

was virtually no difference in performance between 

instances with varying degrees of parallelization. 

Possible reasons for this discrepancy between 

hypothesized and observed behavior are discussed 

below. 

Balance Strategies 

Unfortunately, no test seemed to reveal a clear 

strength of one balance strategy over the other. 

Pitfalls 

Once we began analyzing test results it became 

immediately obvious that our testing machine was 

flawed. We saw next to no variation between 

degrees of parallelism, and for good reason. With 

five replicates (our “small” replication factor), we 

were already overpowering the number of physical 

CPUs by more than a factor of two processes per 

processor. When increasing to ten replicates, we 

weren’t helping parallelism at all; we were merely 

further overloading our dual-core machine. 

This was no more evident then in the CPU-bound 

workload tests. Given a ten-way parallelized 

application that is entirely CPU-bound, one 

absolutely should see speedup as the degree of 

parallelism increases, but only if the hardware 

supporting the application is truly parallel. Ours was 

severely limited.  

FUTURE WORK 

The most glaring omission in our results was that of 

successful non-standard load balancing strategies. 

We had very little luck coming up with strategies 

that didn’t fail from the outset. 

One of the obvious extensions to our existing Least 

Loaded balance strategy would have been to add a 

mechanism to enforce some form of fairness. 

Fairness is important in many scenarios, ranging 

form casual resource starvation to malicious Denial-

of-Service attack. Our balance strategy interface, 

thanks to being able to record the start and end times 

of transactions, would be well-suited to building 

such a mechanism. An obvious approach would be 

to keep track of the number of pending requests per 

client and restrict that number to some non-

threatening threshold. No doubt others exist as well. 

Another interesting area of research would be in 

breaking what limitations blami demands. Without 

ties to stateless protocols or TCP, blami could 

evolve into an entirely protocol-agnostic proxy and 

load balancing system. This would have all sorts of 

uses, including local network congestion control, 

mediation between different loads and protocols 

(e.g. bittorrent, streaming media, chat, web traffic, 

etc.), and exposure of multiple potentially-

conflicting services through a single host address 

and port. 

CONCLUSION 

We sought to increase the performance of poorly-

multiprogrammed Ruby on Rails HTTP applications 

by introducing parallelism over the entire application 

stack. We then showed that the same principle could 

be abstracted to serve any stateless TCP protocol. 

We implemented our concept in the form of blami, 

an event-driven, semi-protocol-agnostic parallelizing 

proxy and load balancer. Our evaluation clearly 

demonstrated substantial speed up over single 

instances of serial back-end servers, though we were 

unable to achieve diversity in load balancing, 

perhaps as a result of our limited testing equipment. 

Finally, we proposed opportunities for further 

exploration of and improvement on blami’s 

underlying approach to improving performance. 



 

 

 

 



 

 

 

 

 

 


