
blami: Externalized Parallelism for a
Serial Web Server

Koos Kleven and Daniel Otero

Department of Computer Science and Engineering

CSE551: Operating Systems

University of Washington

{ koos42, oterod } @cs.washington.edu

ABSTRACT

Parallelizing complex services can be a daunting

task for any developer. Some services are inherently

limited to serial execution as a result of

technological restrictions.

We’ve designed, implemented, and evaluated blami,

a framework-agnostic, transparent, and entirely

external parallelizing proxy and load balancer.

Results show it to confer dramatic increases in

performance for high-stress, parallelizable

workloads. Moreover, it’s flexibility, extensibility,

and ease of deployment make it an ideal

performance solution for applications which cannot

be easily parallelized themselves.

INTRODUCTION

Ruby's rise in popularity, specifically when coupled

with the Rails web application framework, has been

prolific in the last few years. As of version 1.8.6,

however, Ruby was an entirely interpreted language

with an entirely user-level threading library. In

addition to the multiprogramming short-comings of

Ruby itself, the Rails framework is not remotely

thread safe. This com-bination of factors makes it

very difficult to leverage the ease of development

provided by Ruby on Rails when making large-scale

internet applications.

Mongrel, a web server made popular largely by its

simplicity, is often used to serve Rails applications.

Written in Ruby, Mongrel’s performance suffers as a

result of the aforementioned issues. First, because a

threaded Ruby application ultimately sits on top of a

single kernel thread, any Ruby thread that causes

kernel-level blocking also brings the application's

remaining threads to a grinding halt. Second, the

lack of thread safety in the Rails framework led the

creator of Mongrel to enforce mutual exclusion for

the entirety of Rails code. While Mongrel itself is

multi-threaded, no two threads can be executing

Rails code at the same time, effectively killing real

parallelism.

We have created blami (Balancing Load Across

Mongrel Instances), transparent middlebox software

capable of proxying requests to and from replicated

Mongrel servers for the purpose of introducing true

parallelism, though parallelism external to the

underlying application.

DESIGN GOALS

We maintained three core design goals during the

creation of blami:

1. Simplicity

2. Maximum protocol-agnosticism

3. Transparency and framework externality

Simplicity

It would have been possible to optimize blami

heavily to leverage the conventions used by Rails, or

to fully take advantage of the many performance

features built into the HyperText Transfer Protocol

(HTTP). To do this, however, we would largely

duplicate the functionality already built into the

requesting browsers and responding HTTP servers.

Worse still, blami would become outdated anytime

an aspect of Rails changed, or a feature was added to

the HTTP spec.

Our system was therefore designed to be the

simplest possible layer that could be inserted

between current client-server HTTP endpoints.

Though we sacrifice possible optimizations, and

therefore peak performance, in lieu of simplicity, we

dramatically ease the use, maintenance, and

configuration of our system.

Protocol-agnosticism

While blami was intended for use with Rails, and

therefore HTTP, it follows from designing for

simplicity that one would also maximize the

system’s level of protocol agnosticism. If it were

possible to open blami to other protocols and

applications without negatively impacting the design

process, it would only increase the value of such a

system.

To make blami Rails-compatible, at the very least,

put limits on how protocol-agnostic it could be. We

settled for supporting any stateless, TCP-based

protocol. A further, more subtle, restriction is that

the protocol cannot rely on anything but the content

of its messages (i.e. TCP/routing state cannot be

used).

Transparency and framework externality

Due to the vast and steadily-increasing popularity of

both Ruby and the Rails framework, it was

unrealistic to address these problems by introducing

branched changes in their core libraries. The cost of

adoption would be too great, especially for clients

with substantial time investmented in the existing

versions. In addition, our system would impose too

great an inconvenience if it somehow required that

either the client or Rails application be aware of the

existince of the middleware.

To avoid these issues, blami functions completely

transparently. Neither the client nor the service are

remotely aware of its man-in-the-middle behavior,

nor do any changes need to be made to the client or

server software or configuration.

Sacrifices

One of the major downsides to this form of process-

based parallelization is that it carries much more

overhead than a more purpose-built methodology.

Not only does the application suffer the overhead of

multiple copies of its executable in memory, but it

suffers further from the duplication of work between

instances of the application. For instance, if one

process serves a request for resource X and caches it,

that caching does nothing to increase the

performance of a different process. In fact, a user

could request the same resource from blami up to n

times (n being the level of back-end replication) and,

in the worst case, cause n different replicated

processes to miss their caches.

To make matters worse, blami’s protocol-

agnosticism makes it impossible for intelligent load

balancing based on what is being requested by a

client. In the case of HTTP, the middlebox would

have to understand the content of HTTP headers to a

degree that it would even recognize equivalent

requests, and subsequently redirect them to the same

back-end server. As should be apparent, this would

be fairly easy to do poorly. One could, for example,

recognize resources that appeared to be static.

However, to do such intelligent load balancing

correctly, especially given the very dynamic nature

of today’s web applications, blami would need a

tremendous amount of HTTP-specific “knowledge.”

While we do require that the serviced protocol be

stateless, many clients nonetheless try to be “smart.”

If a client application relied on being connected to

the same back-end server throughout multiple

requests in order to function properly, its behavior

might be irregular.

SYSTEM DESIGN

Concurrency Model

Rather than using multithreading, an event-driven

architecture was used instead. This was beneficial in

a number of ways. First, it vastly simplified

implementation, as concurrency within blami was

not an issue. While it would be possible to run

multiple proxies in separate threads, each thread

would be self-contained and thus no synchronization

of any kind would be required.

The event-driven architecture also has performance

benefits over a threaded approach. Eliminating

synchronization inherently aids performance by

eliminating cycles wasted on locking and state

duplicated in multiple threads. For the benefits of

serial execution to be realized, however, that serial

execution must not waste resources (e.g. idle CPU).

By deconstructing each client-to-server round trip

into its constituent non-blocking parts, and by

performing other operations during blocking, our

event-driven control flow efficiently multiplexes

requests without substantially decreasing

performance.

Architecture

blami behaves like any other web server. It accepts

connections on a specified port, opens each

connection on a new port, fulfills client requests

over the created connections, and then closes

connections when they are no longer needed.

The difference between a traditional server and

blami is that it does none of the work to compute the

appropriate response. Behind it run any specified

number of replicates, the parallelized back-end

servers tasked with doing the “real” computation. As

soon as blami receives a client request, it chooses a

replicate based on defined criteria (see “Load

Balancing” below) and forwards the request to that

replicate. When the replicate responds, blami then

returns the response to the corresponding client.

While we designed blami with Rails and Mongrel

clusters in mind, and thus made it easy to run it on

the same machine as its back-end replicates, this is

by no means necessary. It would be perfectly easy to

offer much greater degrees of parallization by

moving replicates to different machines with their

own plentiful resources. However, we anticipate that

in the common case, blami would be used for small-

to-medium deployments of Rails on a single

machine.

Control Flow

There are three basic events in the blami event

model: accept, read, and write. Whenever an event

is triggered, it is added to a queue of events to be

handled. Each event is handled serially in the order

that it was generated.

When an instance of blami’s ZokaServer – the

event-driven server that powers the system – is

created, it is given a port on which to accept

connections. When a connection request arrives on

this port, an accept event is triggered. When

handled, a connection is created with the requesting

client, as is a connection to a replicate chosen to

service this client’s request. This pairing of client to

replicate will exist as long as the two connections

remain open. It is then up to the client and the

protocol as to when the connection should close.

When data arrives on a socket, whether its endpoint

is a client or a replicate, a read event is triggered.

Reading comes in two flavors. Either there will be

data ready to be read, or what waits is an end-of-

stream notification, in which case the connection

must eventually be closed. When data is read, it is

immediately added to the pending data queue for the

corresponding connection. For instance, any data

received from a replicate will be enqueued for

sending back to the associated client.

If an end-of-stream request is received, the

connection can be closed only after all relevant

responses have been written back. For instance, in

the diagram above, it would be inappropriate to

sever the connection with the client when they

request to close. If blami were to terminate the

connection then, there would be no connection to

write responses back to when they arrived from the

corresponding replicate. Before severing a

connection with a client, one must ensure that the

corresponding replicate connection is no longer in

use, and that there is no pending data waiting to be

written back to the client.

Any time that a read occurs, with the exception of

an end-of-stream message, data will have been read

which needs to be forwarded to the opposing party.

If reading from the client, data must be forwarded to

the replicate, and vice versa. Thus, at the end of a

read, the corresponding connection is marked to

notify when it is available to write. It is when the

connection becomes writable that a write event is

triggered.

Load Balancing

In order to allow flexibility and experimentation

with respect to load balancing, we built an interface

for a load balancing strategy, and allow blami to run

with any valid implementation. We were only able

to create two implementations ourselves, however.

Round Robin balance strategy, not surprisingly,

implements a round robin scheduling system for

client requests over the available replicates. Least

Loaded balance strategy, on the other hand, routes

new requests to the replicate with the fewest

incomplete requests pending.

EVALUATION

We carried out a series of twenty tests with different

proxy settings and replication factors in an attempt

to evaluate the performance of the system.

Machine Setup

Our system tests were performed using an instance

of blami hosted on a MacBook Pro. The test

machine had a dual-core Intel Core2 Duo

(clockspeed 2.33Ghz) processor and 2GB of main

memory. The machine ran an instance of the blami

proxy, which in turn relied on up to ten (varied

based on the test) instances of Mongrel serving the

same Rails application. The Mongrel instances were

also run locally on the test machine. As a further

detail, the Rails application (served, again, by

Mongrel) was run in development, rather than

production mode. Effectively, this had the effect of

turning off caching of any machine code or

dynamically generated content at the replicate level.

We believed that this caching was an entirely

application-specific feature of Mongrel, and chose to

disallow it so as to better understand the raw

performance gains offered by parallelizing. Note that

Mongrel could still cache static files.

Testing Infrastructure

We used two different means to generate traffic to

our proxy. At the outset of testing, we used Seattle, a

distributed computation framework, to request

resources as specified by particular testing

workloads. Seattle granted us use of small slices of

“vessels,” each of which could run our test code

written in a subset of Python.

Seattle proved to be problematic for our tests. The

wide disparity in quality of network connections

among our vessels led to dramatically unpredictable

and outlier-ridden results. While our problem may

have been solved by increasing the size of our vessel

set, we failed to do so in a timely manner, forcing us

to pursue other options.

In Seattle’s stead, we made use of access to

University of Washington laboratory machines

spread throughout the Paul Allen Center for

Computer Science and Engineering. We wrote a

distributed bot using Python that would, from each

of the testing lab machines, repeatedly request

resources matching a given workload for a specified

period of time. The bot also spaces requests by a

semi-randomized interval to avoid network

congestion.

Evaluation Tools

To ease data-gathering and analysis, we created

Gnosis (a tongue-in-cheek suggestion of “divine

insight and knowledge”). Gnosis is, itself, a Ruby on

Rails application. Somewhat ironically, it is both the

application to which we proxied blami during our

tests, and the application which gathered metrics for

the proxy’s performance under various loads.

Connectivity to the Gnosis database is built into

blami, and every completed request (initial client

request through to full response) is logged, along

with several metrics, to this database. Gnosis then

has several features to allow intuitive presentation of

information, and can assemble cumulative statistics

over a series of requests. This system allowed us to

look at throughput in both requests per unit time and

bytes per unit time, average latency per request, as

well as maximum, minimum, and average requests

per unit time per host.

Workloads

To test the effect of our parallelism under different

loads, we built several somewhat contrived

workloads into Gnosis’s evaluation features. These

workloads included:

1. Trivial: Simply returns the text “Hi!”

without going to disk or interacting with a

database. We expected to see virtually no

difference in performance with this

workload, as it would theoretically tax the

system very little.

2. Normal: Fairly light reading from a

database, loading of a template from disk,

and rendering of that template. We expected

to see some improvement in performance

with increase in parallelism, but were

skeptical about the degree to which

performance would improve.

3. Disk-bound: Better referred to as IO-bound,

perhaps, this workload returned a file at

random from a group of one hundred 5-

megabyte files. Its design was intended to

make any caching of static resources

impossible, forcing disk reads and long

network writes. As a result, we expected

very low request throughput. Because a

single-threaded server would be more

efficient when reading a large file from disk,

we expected the serial server to perform best

on this workload.

4. CPU-bound: A profoundly wasteful

workload, this one simply burns processor

cycles on an arduous computational task

intended to take around five seconds on an

unloaded machine. Parallelism, we thought,

would undoubtedly improve performance on

this workload.

blami Instances

We tested each one of the above workloads on five

different instances of blami, each designed to expose

the performance characteristics of a particular degree

of parallelism and load balance strategy. The

following table describes these instances.

Balance Strategy Parallelism

Round Robin (control) 1 replicate

Round Robin (small) 5 replicates

Round Robin (large) 10 replicates

Least Loaded (small) 5 replicates

Least Loaded (large) 10 replicates

RESULTS

Performance Graphs

The following graphs summarize the observed

performance of each instance over the various

workloads tested. For ease of reading, larger

versions are provided at the end of the paper.

Analysis

Trivial: As expected, there was little performance

variation in the trivial workload. Despite servicing

almost two thousands requests in less than one

minute, CPU never so much as approached

maximum load in even the control case. Without a

sufficiently taxing load, parallelism conferred no

benefits.

Normal: The big surprise in our testing was to find

that the performance under our “normal” load

improved dramatically when parallelism was

introduced. We expected some improvement, but in

the best case, request throughput improved by 71%

over the control. We attribute this to the fact that the

normal workload, while not nearly as taxing as the

IO- and CPU-bound workloads, was sufficiently

taxing so as to bring a single-threaded server to its

knees. Thanks to database and other disk interaction,

each request took about an order of magnitude

longer than the each trivial workload request. As a

result, the communication and protocol overheads

per request were far lower, proportionally, allowing

the benefit of parallel processes running on distinct

physical processors to take effect.

Disk-bound: This was no surprise. The control out-

performed the parallelized proxy instances, though

not dramatically. The reasoning behind this seems

fairly straightforward. When reading a large file

from disk, the process goes fastest when the read is

uninterrupted. Each context switch or interrupting

seek not only consumes time, but also forces another

disk seek to resume reading. Each seek wastes

valuable time, and the disk takes a moment to ramp

back to full bandwidth, making a schizophrenic

concurrent proxy a poor match for this workload.

CPU-bound: While it was obvious that CPU-bound

tasks would favor parallelism most, we did not see

the performance we hoped. Despite twofold

increases in throughput upon parallelization, there

was virtually no difference in performance between

instances with varying degrees of parallelization.

Possible reasons for this discrepancy between

hypothesized and observed behavior are discussed

below.

Balance Strategies

Unfortunately, no test seemed to reveal a clear

strength of one balance strategy over the other.

Pitfalls

Once we began analyzing test results it became

immediately obvious that our testing machine was

flawed. We saw next to no variation between

degrees of parallelism, and for good reason. With

five replicates (our “small” replication factor), we

were already overpowering the number of physical

CPUs by more than a factor of two processes per

processor. When increasing to ten replicates, we

weren’t helping parallelism at all; we were merely

further overloading our dual-core machine.

This was no more evident then in the CPU-bound

workload tests. Given a ten-way parallelized

application that is entirely CPU-bound, one

absolutely should see speedup as the degree of

parallelism increases, but only if the hardware

supporting the application is truly parallel. Ours was

severely limited.

FUTURE WORK

The most glaring omission in our results was that of

successful non-standard load balancing strategies.

We had very little luck coming up with strategies

that didn’t fail from the outset.

One of the obvious extensions to our existing Least

Loaded balance strategy would have been to add a

mechanism to enforce some form of fairness.

Fairness is important in many scenarios, ranging

form casual resource starvation to malicious Denial-

of-Service attack. Our balance strategy interface,

thanks to being able to record the start and end times

of transactions, would be well-suited to building

such a mechanism. An obvious approach would be

to keep track of the number of pending requests per

client and restrict that number to some non-

threatening threshold. No doubt others exist as well.

Another interesting area of research would be in

breaking what limitations blami demands. Without

ties to stateless protocols or TCP, blami could

evolve into an entirely protocol-agnostic proxy and

load balancing system. This would have all sorts of

uses, including local network congestion control,

mediation between different loads and protocols

(e.g. bittorrent, streaming media, chat, web traffic,

etc.), and exposure of multiple potentially-

conflicting services through a single host address

and port.

CONCLUSION

We sought to increase the performance of poorly-

multiprogrammed Ruby on Rails HTTP applications

by introducing parallelism over the entire application

stack. We then showed that the same principle could

be abstracted to serve any stateless TCP protocol.

We implemented our concept in the form of blami,

an event-driven, semi-protocol-agnostic parallelizing

proxy and load balancer. Our evaluation clearly

demonstrated substantial speed up over single

instances of serial back-end servers, though we were

unable to achieve diversity in load balancing,

perhaps as a result of our limited testing equipment.

Finally, we proposed opportunities for further

exploration of and improvement on blami’s

underlying approach to improving performance.

