
Paxos Made Experimentally
Mark Zbikowski
Vince Zanella
Ryan McElroy

University of Washington

1. Introduction
One of the major trends in systems design is
moving from the client-server network paradigm
to so-called ‘cloud computing’. Rather than
having a small allotment of extremely expensive,
high performance servers, it is often much more
efficient to host a service on a large cluster of
commodity computers. As long as the
applications running on this type of system are
scalable, the clusters can be relatively cheaply
grown to enormous clusters of tens of thousands
of compute nodes. For a system like this to work,
however, not only must the application be
scalable, but the system software that provides
the infrastructure must provide reliability and
consistency guarantees, as well as be scalable
itself.

To build a system that meets the above
description, several key components are required.
One of them is a sub-service that can be used by
several replicated machines to reach consensus
on the current state. As one can imagine, when
the system hardware is a large cluster of
inexpensive machines connected over an
unreliable network, failures are guaranteed to
occur. Paxos is a distributed protocol that
enforces a consensus to be reached by the
participating machines before a new state is
agreed upon. It is well-described in several
papers, and our implementation borrows from the
designs presented in them[1][2][3][4][5]. It allows
new values to be proposed, and these values will
only be accepted if a majority of the participants
agree on the value. This allows progress to be
made in the presence of n/2 machine failures in a
group of n machines. This service can be applied
to a variety of applications. It can be used to keep

replicated databases or distributed hash tables
consistent, in holding new master elections, or in
Google’s case to grant course-grained locks in
distributed applications[1]. In this paper we
describe our implementation of Paxos using a
language known as Repy, which is a variant of
python. For testing and evaluation we also
implemented a distributed hash table that utilizes
Paxos to keep its replicated partitions consistent.
We evaluated the correctness of our system by
adding and deleting entries from the hash table
while machines in the distributed system were
taken offline and verifying liveness was
maintained. We evaluated performance and
scalability by adding clients to the system to
increase contention and by adding more nodes to
the set of machines running Paxos.

2. Implementation
The Paxos protocol was implemented in a variant
of the Python programming language called
Repy. The language is a subset of Python that
runs in a sandboxed execution environment for
protection of the host. This allows programs
written in Repy to be deployed on the research
testbed called Seattle. The Seattle testbed is a
cooperative network of donated compute
resources, where donating resources from a
machine allows one to acquire resources on other
machines in the network. We had originally
planned to deploy our Paxos and DHT
implementation on this network, but
unfortunately it was experiencing technical
problems and it was impossible to acquire a
stable set of resources. Instead, testing was done
on workstations in the Computer Science labs at
the University of Washington.

The Paxos algorithm has three different types of
members: proposers, acceptors, and learners. In
our implementation, each machine that is a Paxos
node has one instance of each of the three
members. A distinguished proposer is elected,
and all client requests to propose a new value are
directed to this distinguished proposer. The
distinguished proposer maintains authority
through heartbeat messages; a new distinguished
proposer is elected if a machine failure or
network partition is discovered due to a loss of
heartbeats. When a Paxos node does not receive a
distinguished proposer heartbeat message in a
timeout period, it issues a new decree to propose
itself as the new distinguished proposer. Most
Paxos nodes will come to this realization at
approximately the same time and will all issue
proposals to become the distinguished proposer
themselves. The Paxos algorithm handles the
multiple proposals, and depending on the
random, unique proposal numbers, one of the
machines will have their proposal accepted and
learned and will become the new distinguished
proposer. All clients using the Paxos instance
will then have their proposal requests directed to
this machine.

For handling messages, a message processor was
developed that allows message receipt and
processing to be fully asynchronous. An early
implementation had a synchronous message
queue that was drained every 10ms. The message
processor eliminated the need for a queue by
allowing each type of Paxos member to register
callbacks with the message processor, and any
time a message was received, the processor
would pass it to all of the callback routines
registered for that message type.

To ensure robustness to machine failures,
acceptor and learner members maintain a log to
use during restart and recovery. Acceptors log all
of the promises they have made and all of the

values they have accepted. This prevents an
acceptor from accepting a proposal number for a
given decree that is less than some proposal
number it accepted before it failed. Learners use
their log to repopulate their state history so that
upon recovery they can answer queries about
proposals they learned before they crashed.

The external API presented to the client allows
them to request new proposals of arbitrary
values, to query learned values, and to use an
RSVP system to receive notifications when their
proposed values are learned. The RSVP system
registers client-provided routines to be
dispatched when their requested proposal is
learned by the system.

For monitoring and debugging purposes, we
implemented an event-logging tool. Each Paxos
machine hosts a web server, and all Paxos events
are logged to the server. This allows easy
tracking of events when the system is deployed
over the Seattle testbed. Any of the Paxos nodes’
logs can be seen by visiting the web site the node
is hosting.

To test our Paxos implementation in a real-world
application that would utilize it, we built a
distributed hash table. The DHT has a top-level
that exposes an interface to its clients and then
has multiple partitions, each storing a subset of
the keys into the hash table. The top level of the
DHT passes (key, value) insert requests and key
delete requests to the appropriate partition. For
reliability, both the top level and the partitions of
the hash table are replicated. To maintain
consistency across the replicas, Paxos is used to
ensure each replica executes the same set of
insert and delete operations. This guarantees that
when any operation requested by the client is
accepted by a quorum of the Paxos nodes, each
replica of a partition of the hash table will be
consistent with the other replicas. It is possible

that a client’s requested operation will fail to
reach consensus among the Paxos nodes, but it is
not possible for a key to be added or deleted in
one replica of a hash table partition but not in
another one of the replicas. As long as n/2+1
machines of the Paxos instance remain functional
and connected in the network, consensus can be
reached and progress can be made in servicing
client requests.

3. Results
The graphs in figures 1-9 depict the performance
characteristics of the distributed hash table under
different configurations and loads.

The two variables are the number of nodes
participating in the system and the number of
clients pushing new values into the distributed
hash table. In each setup, the hash table had five
partitions replicated across the nodes. Nodes
consisted of UW CSE undergraduate lab
computers (hostnames colin, romieu, aliakc,
stelian, amlia, maxk, jgarzik, hch, garloff, ajk,
tori, ralf, mhw, philb, and simon). The system
was programmed in the Repy language, a Python
derivative that is part of the Seattle distributed
systems testing environment.

The first three graphs show performance with
three nodes in the distributed hash table
responding to one, two, and four clients each
sequentially pushing 100 values into the hash
table (ie, in the four client case, each of the four
clients were running simultaneously, and each
client sequentially set values in the hash table).
The next three graphs show the system
performance set up with seven nodes and one,
two, and four clients. The final three graphs show
the performance of the hash table when 15 nodes
are participating, again with one, two, and four
clients pushing new values into the hash table.

In each of the graphs, the x-axis denotes the trial
number (out of 100) and the y-axis denotes the

time from the proposal of the value to the
acceptance of that value. Fewer than 100 trials
denotes lost set commands; these may have failed
for a variety of reasons, including temporary
network failures leading to lost requests or RSVP
packets, timeouts, and so on.

Figure 1: 100 DHT operations with 1 client and 3 Paxos nodes

Figure 2: 100 DHT operations with 2 clients and 3 Paxos
nodes

Figure 3: 100 DHT operations with 4 clients and 3 Paxos
nodes

Figure 4: 100 DHT operations with 1 client and 7 Paxos nodes

Figure 5: 100 DHT operations with 2 clients and 7 Paxos
nodes

Figure 6: 100 DHT operations with 4 clients and 7 Paxos
nodes

Figure 7: 100 DHT operations with 1 client and 15 Paxos
nodes

Figure 8: 100 DHT operations with 2 clients and 15 Paxos
nodes

Figure 9: 100 DHT operations with 4 clients and 15 Paxos
nodes

In general, the more nodes and the more clients,
the higher the average latency, and the more high
latency requests there are. In the highly resource-
limited environment Seattle provides (even with
modified restriction files), this is not entirely
unexpected. The one exception to this trend is the
two client, seven node case, where performance
is better than with a single client.

4. Conclusion
This project involved synthesizing and
implementing many of the concepts studied in
CSE 551, including system design, concurrency,
parallelism, networking, scalability, and
distributed system design. It was a great exercise
in exploring the complexities of developing a
distributed protocol running on faulty machines
running over an unreliable network. Furthermore,
measuring the performance of the system to
determine its response to different system setups
and loads forced us to understand the limits of the
system we implemented, and provides a solid
direction for future improvement. While our
experimental results didn’t show our
implementation to be highly scalable, the Paxos
protocol isn’t inherently scalable. Our
implementation requires on the order of n
messages per decree, and the breakdown
becomes clear when scaled up to 15 machines.

2

References
[1] Mike Burrows “The Chubby lock service for
loosely-coupled distributed systems” OSDI,
November, 2006.

[2] Chandra, Griesemer, Redstone, “Paxos Made
Live – An Engineering Perspective”. ACM
PODC 2007.
[3] Lamport, “Paxos Made Simple”. ACM
SIGACT News, 2001.
[4] Mazieres, “Paxos Made Practical”.
[5] onathan Kirsch and Yair Amir, “Paxos for
System Builders”, Jonathan Kirsch and Yair
Amir, 2008

	1. Introduction
	2. Implementation
	3. Results
	4. Conclusion

