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1. Introduction 
One of the major trends in systems design is 
moving from the client-server network paradigm 
to so-called ‘cloud computing’. Rather than 
having a small allotment of extremely expensive, 
high performance servers, it is often much more 
efficient to host a service on a large cluster of 
commodity computers. As long as the 
applications running on this type of system are 
scalable, the clusters can be relatively cheaply 
grown to enormous clusters of tens of thousands 
of compute nodes. For a system like this to work, 
however, not only must the application be 
scalable, but the system software that provides 
the infrastructure must provide reliability and 
consistency guarantees, as well as be scalable 
itself. 
 
To build a system that meets the above 
description, several key components are required. 
One of them is a sub-service that can be used by 
several replicated machines to reach consensus 
on the current state. As one can imagine, when 
the system hardware is a large cluster of 
inexpensive machines connected over an 
unreliable network, failures are guaranteed to 
occur. Paxos is a distributed protocol that 
enforces a consensus to be reached by the 
participating machines before a new state is 
agreed upon. It is well-described in several 
papers, and our implementation borrows from the 
designs presented in them[1][2][3][4][5]. It allows 
new values to be proposed, and these values will 
only be accepted if a majority of the participants 
agree on the value. This allows progress to be 
made in the presence of n/2 machine failures in a 
group of n machines. This service can be applied 
to a variety of applications. It can be used to keep 

replicated databases or distributed hash tables 
consistent, in holding new master elections, or in 
Google’s case to grant course-grained locks in 
distributed applications[1]. In this paper we 
describe our implementation of Paxos using a 
language known as Repy, which is a variant of 
python. For testing and evaluation we also 
implemented a distributed hash table that utilizes 
Paxos to keep its replicated partitions consistent. 
We evaluated the correctness of our system by 
adding and deleting entries from the hash table 
while machines in the distributed system were 
taken offline and verifying liveness was 
maintained. We evaluated performance and 
scalability by adding clients to the system to 
increase contention and by adding more nodes to 
the set of machines running Paxos. 
 

2. Implementation 
The Paxos protocol was implemented in a variant 
of the Python programming language called 
Repy. The language is a subset of Python that 
runs in a sandboxed execution environment for 
protection of the host. This allows programs 
written in Repy to be deployed on the research 
testbed called Seattle. The Seattle testbed is a 
cooperative network of donated compute 
resources, where donating resources from a 
machine allows one to acquire resources on other 
machines in the network. We had originally 
planned to deploy our Paxos and DHT 
implementation on this network, but 
unfortunately it was experiencing technical 
problems and it was impossible to acquire a 
stable set of resources. Instead, testing was done 
on workstations in the Computer Science labs at 
the University of Washington. 



 

The Paxos algorithm has three different types of 
members: proposers, acceptors, and learners. In 
our implementation, each machine that is a Paxos 
node has one instance of each of the three 
members. A distinguished proposer is elected, 
and all client requests to propose a new value are 
directed to this distinguished proposer. The 
distinguished proposer maintains authority 
through heartbeat messages; a new distinguished 
proposer is elected if a machine failure or 
network partition is discovered due to a loss of 
heartbeats. When a Paxos node does not receive a 
distinguished proposer heartbeat message in a 
timeout period, it issues a new decree to propose 
itself as the new distinguished proposer. Most 
Paxos nodes will come to this realization at 
approximately the same time and will all issue 
proposals to become the distinguished proposer 
themselves. The Paxos algorithm handles the 
multiple proposals, and depending on the 
random, unique proposal numbers, one of the 
machines will have their proposal accepted and 
learned and will become the new distinguished 
proposer. All clients using the Paxos instance 
will then have their proposal requests directed to 
this machine. 

 

For handling messages, a message processor was 
developed that allows message receipt and 
processing to be fully asynchronous. An early 
implementation had a synchronous message 
queue that was drained every 10ms. The message 
processor eliminated the need for a queue by 
allowing each type of Paxos member to register 
callbacks with the message processor, and any 
time a message was received, the processor 
would pass it to all of the callback routines 
registered for that message type.  

 

To ensure robustness to machine failures, 
acceptor and learner members maintain a log to 
use during restart and recovery. Acceptors log all 
of the promises they have made and all of the 

values they have accepted. This prevents an 
acceptor from accepting a proposal number for a 
given decree that is less than some proposal 
number it accepted before it failed. Learners use 
their log to repopulate their state history so that 
upon recovery they can answer queries about 
proposals they learned before they crashed. 

 

The external API presented to the client allows 
them to request new proposals of arbitrary 
values, to query learned values, and to use an 
RSVP system to receive notifications when their 
proposed values are learned. The RSVP system 
registers client-provided routines to be 
dispatched when their requested proposal is 
learned by the system.  

 

For monitoring and debugging purposes, we 
implemented an event-logging tool. Each Paxos 
machine hosts a web server, and all Paxos events 
are logged to the server. This allows easy 
tracking of events when the system is deployed 
over the Seattle testbed. Any of the Paxos nodes’ 
logs can be seen by visiting the web site the node 
is hosting. 

 

To test our Paxos implementation in a real-world 
application that would utilize it, we built a 
distributed hash table. The DHT has a top-level 
that exposes an interface to its clients and then 
has multiple partitions, each storing a subset of 
the keys into the hash table. The top level of the 
DHT passes (key, value) insert requests and key 
delete requests to the appropriate partition. For 
reliability, both the top level and the partitions of 
the hash table are replicated. To maintain 
consistency across the replicas, Paxos is used to 
ensure each replica executes the same set of 
insert and delete operations. This guarantees that 
when any operation requested by the client is 
accepted by a quorum of the Paxos nodes, each 
replica of a partition of the hash table will be 
consistent with the other replicas. It is possible 



that a client’s requested operation will fail to 
reach consensus among the Paxos nodes, but it is 
not possible for a key to be added or deleted in 
one replica of a hash table partition but not in 
another one of the replicas. As long as n/2+1 
machines of the Paxos instance remain functional 
and connected in the network, consensus can be 
reached and progress can be made in servicing 
client requests. 

 

3. Results 
The graphs in figures 1-9 depict the performance 
characteristics of the distributed hash table under 
different configurations and loads. 
 
The two variables are the number of nodes 
participating in the system and the number of 
clients pushing new values into the distributed 
hash table. In each setup, the hash table had five 
partitions replicated across the nodes. Nodes 
consisted of UW CSE undergraduate lab 
computers (hostnames colin, romieu, aliakc, 
stelian, amlia, maxk, jgarzik, hch, garloff, ajk, 
tori, ralf, mhw, philb, and simon). The system 
was programmed in the Repy language, a Python 
derivative that is part of the Seattle distributed 
systems testing environment. 
 
The first three graphs show performance with 
three nodes in the distributed hash table 
responding to one, two, and four clients each 
sequentially pushing 100 values into the hash 
table (ie, in the four client case, each of the four 
clients were running simultaneously, and each 
client sequentially set values in the hash table). 
The next three graphs show the system 
performance set up with seven nodes and one, 
two, and four clients. The final three graphs show 
the performance of the hash table when 15 nodes 
are participating, again with one, two, and four 
clients pushing new values into the hash table. 
 
In each of the graphs, the x-axis denotes the trial 
number (out of 100) and the y-axis denotes the 

time from the proposal of the value to the 
acceptance of that value. Fewer than 100 trials 
denotes lost set commands; these may have failed 
for a variety of reasons, including temporary 
network failures leading to lost requests or RSVP 
packets, timeouts, and so on. 
 

 
Figure 1: 100 DHT operations with 1 client and 3 Paxos nodes 
 

 

 
Figure 2: 100 DHT operations with 2 clients and 3 Paxos 
nodes 



 
Figure 3: 100 DHT operations with 4 clients and 3 Paxos 
nodes 

 
Figure 4: 100 DHT operations with 1 client and 7 Paxos nodes 
 

 
Figure 5: 100 DHT operations with 2 clients and 7 Paxos 
nodes 
 

 
Figure 6: 100 DHT operations with 4 clients and 7 Paxos 
nodes 

 
Figure 7: 100 DHT operations with 1 client and 15 Paxos 
nodes 
 

 
Figure 8: 100 DHT operations with 2 clients and 15 Paxos 
nodes 
 



 
Figure 9: 100 DHT operations with 4 clients and 15 Paxos 
nodes 
 

In general, the more nodes and the more clients, 
the higher the average latency, and the more high 
latency requests there are. In the highly resource-
limited environment Seattle provides (even with 
modified restriction files), this is not entirely 
unexpected. The one exception to this trend is the 
two client, seven node case, where performance 
is better than with a single client. 
 

4. Conclusion 
This project involved synthesizing and 
implementing many of the concepts studied in 
CSE 551, including system design, concurrency, 
parallelism, networking, scalability, and 
distributed system design. It was a great exercise 
in exploring the complexities of developing a 
distributed protocol running on faulty machines 
running over an unreliable network. Furthermore, 
measuring the performance of the system to 
determine its response to different system setups 
and loads forced us to understand the limits of the 
system we implemented, and provides a solid 
direction for future improvement. While our 
experimental results didn’t show our 
implementation to be highly scalable, the Paxos 
protocol isn’t inherently scalable. Our 
implementation requires on the order of n  
messages per decree, and the breakdown 
becomes clear when scaled up to 15 machines.  
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