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ABSTRACT

We present the design and evaluation of a flexible UHF
RFID reader suited for experimentation. Our reader is
built using the USRP software radio platform in conjunc-
tion with software we developed in the GNU Radio frame-
work. We believe this is the first inexpensive tool that
readily enables changes to the physical and MAC layer of
RFID systems. Our reader further has sufficient perfor-
mance to interoperate with commercial EPC Gen-2 RFID
tags and achieves roughly 75% of the range of a commer-
cial reader with comparable power. To support commu-
nication with commodity RFID tags, we aggressively re-
duced system latency from the 10s of milliseconds typical
of USRP applications to consistently under 500µs.

1. Introduction
Radio Frequency IDentification (RFID) is an

emerging wireless technology that allows small, in-
expensive computer chips to be remotely powered
and interrogated for identifiers and other information.
While there are many kinds of RFID, e.g., HF RFID
in credit cards, recent advances in RFID have focused
on passive UHF RFID as standardized by the EPC
Class-1 Generation-2 (Gen 2) specification in 2004 [6].

UHF RFID was originally developed as a replace-
ment for barcode identification systems. It provides
key advantages such as a read range of up to 10 me-
ters, non-line-of-sight operation, high inventory rates,
and rewritable product IDs. It has seen widespread
deployment for supply chain pallet tracking and is
rapidly being expanded to new applications. These
include large scale, item-level tracking of consumer
goods such as apparel[2] and books[1], and even the
tracking of people, e.g., multiple pilot studies in
which US school children are tracked as they enter
school buses and buildings. Earlier this year, the US
Passport Card and the New York and Washington
state enhanced drivers licenses were introduced which
have integrated Gen 2 RFID tags; this is intended to
reduce delays at border crossings. Additionally, as
the capabilities of RFID devices advance to include
storage and sensing [21], new uses that stretch the
application space even more will emerge.

Given this rapidly growing application space, un-
derstanding UHF RFID operation in practice and ex-

perimentating with realistic UHF RFID systems is of
significant interest. For instance, privacy and secu-
rity issues are central in any application that tracks
people directly or indirectly. Yet almost all work on
RFID security via lightweight cryptographic schemes
has been done via paper designs and analysis rather
than experimentation; we are aware of only one ex-
ception [5]. The reliability and performance of RFID
readers is also of importance, especially in dense, fine-
grained settings (such as item-level tracking) and for
demanding applications (such as searching over the
states of objects in a ubicomp application). How-
ever, there is almost no published information on
low-level RFID performance in these settings. Our
prior work on this topic concludes that current reader
systems suffer various performance degradations and
have ample opportunity for improvement [4]. And
looking forward, sensor-equipped RFID tags will pose
a new set of problems for researchers. This is because
the Gen 2 protocol was designed with object identi-
fication in mind rather than gathering sensor data.

This dearth of low-level experimentation with
RFID systems is a direct consequence of the cur-
rent lack of tools available to researchers. Existing
RFID readers are generally black box systems which
provide only limited configuration and return high-
level results that simply indicate identifiers of tags
that are in range. These systems do not provide the
low-level flexibility to observe or modify the MAC or
PHY layers, which makes the study of existing pro-
tocols difficult; let alone experimentation with alter-
native designs. Some high-end RFID test equipment
is available in the form of protocol analyzers, but it
is expensive (>100K) and of limited use in evaluat-
ing changes to the protocol as opposed to monitoring
operation.

In this paper, we present what we believe is the
first inexpensive, open-source platform for low-level
UHF RFID experimentation that gives users control
of the PHY and MAC layers. It consists of the Uni-
versal Software Radio Peripheral (USRP) hardware
and software that we have developed using the GNU
Radio framework that implements a EPC Class-1
Generation-2 reader. The use of this framework pro-
vides a high-level of flexibility allowing MAC and
PHY functionality to be changed by simply re-writing
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user-level software.
To the best of our knowledge, this is the first im-

plementation of an interactive, real-world network-
ing protocol implemented using the USRP. There has
been significant prior work that uses the flexibility
of the USRP to implement wireless protocols. How-
ever, moving functionality away from the NIC is at
odds with performance, particularly with respect to
the strict timing requirements of essentially all net-
work protocols. As a result, most experimentation
has been receive only or not done in real-time. Our
RFID reader, in contrast, operates with commodity
RFID tags.

Our contributions are twofold. The first is our flex-
ible RFID reader platform. In the body of the paper,
we benchmark our reader and report the results to
demonstrate that it provides a useful level of perfor-
mance even when compared to commercially available
RFID readers. We further describe potential applica-
tions of our reader to highlight how it enables RFID
experimentation, and present two example studies.

The second contribution is the set of techniques
that we use to meet the timing requirements of the
Gen 2 protocol. We reduce latency by identifying
bottlenecks in the GNU Radio architecture and us-
ing techniques to eliminate or tune internal buffers,
and schedule signal processing intelligently. The cu-
mulative effect of these techniques is to reduce our
system latency by almost two orders of magnitude
from the typical 10s of milliseconds to reliably under
500 µs.

The remainder of this paper is organized as follows.
In Section 2 we present the goals of this study and
discusses the challenges. Section 3 and 4 provide tar-
geted introductions to the two technologies that are
key to understanding our work, namely Gen 2 RFID,
and the USRP and GNU Radio. We then present
the architecture of our reader, and the techniques we
use to reduce system latency in Sections 5 and 6. In
Section 7 we evaluate our reader performance, and in
Section 8 we discuss applications. We then describe
related work and conclude.

2. Goals and Challenges
Our goal is to develop a Gen 2 RFID transceiver

that can communicate with commercial tags while
giving researchers complete control over the physi-
cal and MAC layers of the protocol. Such tranceiver
flexibility would enable the detailed study of current
RFID systems, and provide a platform for experimen-
tally validating proposed protocols; both of which are
difficult using current platforms.

To provide a low barrier of entry for experimenta-
tion, our transceiver should be based on common off
the shelf components, and must not use specialized

or custom built hardware. Additionally, it should not
require that users have FPGA expertise, nor a deep
background in signal processing.

To meet these goals, our system is built using the
Universal Software Radio Peripheral (USRP) and the
GNU Radio signal processing toolkit. The USRP
is a low-cost, general purpose RF front-end for soft-
ware radio development. This device interfaces with
a standard PC via USB, with essentially all signal
processing being performed on the host using GNU
Radio.

With this, the Gen 2 protocol can be implemented
completely in software giving unprecedented control
over the behavior of the transceiver. Additionally,
the architecture of GNU Radio allows for a highly
modular transceiver design. This enables us to local-
ize the PHY and MAC layers of the Gen 2 protocol
so that researchers can focus only on those aspects of
the protocol in which they are interested.

Using the USRP and GNU Radio for our
transceiver is ideal in terms of flexibility. However,
the platform has limitations with respect to capabil-
ity. Previous work has highlighted two major lim-
itations when using the platform to implement real
world prototocols.

First, the maximum signal bandwidth that can be
supported is approximately 8 MHz. This precludes
the implementation of protocols such as 802.11 and
WiMAX which use much larger channels. Fortu-
nately, the bandwidth requirements of the Gen 2 pro-
tocol are minimal and are well within the capabilities
of the USRP.

The second major limitation is transceiver latency.
Performing signal processing in software at the host
greatly increases system latency compared to conven-
tial hardware tranceivers. Specifically, the platform
incurs the latency cost of the low rate USB interface,
a series of buffers in the receive and transmit chains,
and the fact that the GNU Radio software is run-
ning on a general purpose computer on top of an OS.
Previous work using the USRP and GNU Radio has
shown transceiver latency on the order of tens of mil-
liseconds, far too high for implementing most wireless
MAC protocols.

Because the Gen 2 protocol is designed for use
with very low cost, low capability devices, i.e. sim-
ple RFID tags that cost only a few cents, the timing
requirements of the MAC are relaxed compared to
most protocols. Depending on the system configu-
ration, the maximum time in which an ACK must
be sent can be as high as 500 µs. While this is much
greater than is seen with other wireless protocols, it is
two orders of magnitude lower than prior implemen-
tations have achieved. Consequently, reliably meet-
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ing the timing requirements of commercial tags was
the major challenge to implementing our transceiver.

3. Class-1 Generation-2 RFID Primer
In this section we describe the essential features of

Gen 2 RFID to highlight the functionality that our
reader must implement, paying special attention to
timing considerations.

The Gen 2 standard defines communication be-
tween RFID readers and passive RFID tags in the
900 MHz band. A reader transmits information to a
tag by modulating an RF signal, and the tag receives
both down-link information and the entirety of its
operating energy from this RF signal. For up-link
communication, the reader transmits a continuous
RF wave (CW) which assures that the tag remains
powered, and the tag communicates by modulating
the reflection coefficient of its antenna. By detecting
the variation in the reflected CW, a reader is able
to decode the tag response. This is referred to as
“backscattering”.

3.1 Physical Layer
The Gen 2 down-link uses Amplitude Shift Keying

(ASK), where bits are indicated by brief periods of
low amplitude, and Pulse-Interval Encoding (PIE),
where the time between low amplitude periods differ-
entiates a zero or a one. The reader can choose pulse
durations that result in data rates ranging from 26.7
kbps to 128 kbps.

Through the use of a structured down-link pream-
ble the tag determines the pulse lengths being used
by the reader, and also what data rate should be used
by the tag for up-link communication. These settings
allow for an ASK up-link with a frequency ranging
from 40 kHz to 640 kHz. Along with setting the up-
link frequency, the reader also sets one of four up-link
encodings, namely FM0, Miller-2, Miller-4, or Miller-
8. The Miller encodings are more robust to error but
have a lower data rate as there are more subcarrier
cycles per bit. The up-link frequency along with the
up-link encodingdetermines the data rate, which can
range from 8 kbps to 640 kbps.

3.2 MAC Layer
The Gen 2 MAC protocol is based on Framed Slot-

ted Aloha [19]. Each frame, or Query Round, has
a number of slots and tags reply in one randomly
selected slot per frame. Figure 1 shows the reader
and tag transmissions that make up a Query Round.
First, the reader can optionally transmit a Select
command which limits the number of active tags in
the round. A Query command is then transmitted
which determines the up-link data encoding and spec-
ifies the number of slots in the Query Round.

When a tag receives a Query command it chooses
a random slot in which to reply, and if it chooses
slot 0 it responds immediately with a random 16-
bit number (RN16 ). After receiving the RN16 the
reader sends an ACK command which includes the
RN16, and the tag backscatters its ID (referred to
as EPC in the figure). The randomized slot selection
and three way hand-shake arbitrates channel access
between multiple tags, with the 128 bit ID being sent
only after the channel has been reserved.

After a tag transmits its ID, a subsequent
QueryRepeat command causes the tag to be inac-
tive during subsequent Query Rounds. Additionally,
a QueryRepeat signals the end of the slot. The re-
maining tags decrement their slot counter and trans-
mit the RN16 if their slot counter reaches 0. After
iterating through all of the slots the reader begins an-
other Query Round, possibly changing the number of
slots to best accomodate the remaining tags. A series
of Query Rounds is performed until no tags reply as
this indicates that all tags have been read.

3.3 Timing

The Gen 2 protocol defines strict timing require-
ments for reader to tag communication as shown in
Figure 1. In particular, the timing between depen-
dent transmissions, such as the RN16 and ACK, are
precisely specified. For our purposes, T1 and T2 are
of particular interest. These timing requirements are
specified in terms of the up-link frequency and are in-
dependent of the up-link encoding. Hence, when us-
ing lower up-link frequencies the timing requirements
are relaxed.

T1 specifies the time at which a tag must begin
its response to a reader command, measured from
the last rising edge of the reader command to the
first rising edge of the tag response. T1 is defined
as 10 times the period of a single up-link cycle with
an accuracy of approximately +/- 2 µs. For instance,
T1 is approximately 250 µs when using an up-link
frequency of 40 kHz and 15.6 µs when the up-link is
set to 640 kHz.

T2 specifies the maximum allowable time in which
a reader must respond to a tag response. If a reader
fails to respond within this period, the reader com-
mand will be ignored by the tag. For instance, if a
reader fails to send an ACK within T2 the tag will
not transmit its identifier. The maximum T2 is spec-
ified to be 20 times the period of an up-link cycle,
which results in T2 being 500 µs and 31.25 µs when
using up-link frequencies of 40 and 640 kHz respec-
tively.

4. The USRP and GNU Radio
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Figure 1: Gen 2 Protocol (Courtesy of EPCglobal)

The USRP is an open-source, general purpose plat-
form for software radio development. When used in
conjunction with the GNU Radio toolkit, it enables
rapid prototyping of radio systems and low-level wire-
less experimentation. The flexibility, low cost, and
vibrant user community of the USRP and GNU Ra-
dio make it an attractive architecture for our RFID
transceiver.

4.1 USRP

The USRP provides an interface between four 64
Msps analog to digital converters (ADCs), four 128
Msps digital to analog converters (DACs), and a USB
2.0 interface for communication with a host com-
puter. Daughterboards are available for the USRP
that convert RF signals to and from an intermedi-
ate frequency (IF) that is within range of the ADCs
and DACs. These daughterboards enable operation
at a range of frequencies including the 900 MHz ISM
band at which Gen 2 RFID operates. The USRP can
be equipped with two daughterboards that function
independently, which enables simultaneous transmit
and receive.

While the USRP sampling rate is 64 Msps, the USB
interface acts as a bottleneck and the signal must be
decimated at the USRP. This results in a maximum
effective sampling rate of 8 Msps, and approximately
an 8 MHz band being received at the host. Addition-
ally, transceivers must allocate USB bandwidth to
both the receive and transmit streams. As the sam-
pling rate of the ADC and DAC are constant, this is
achieved by controlling the decimation and interpo-
lation rates of the USRP.

4.2 GNU Radio
The GNU Radio toolkit is a software library and

runtime system designed as a counterpart to the
USRP. It provides signal processing blocks, such as
filters, and infrastructure for composing blocks into
signal processing flowgraphs. Flowgraphs are imple-
mented as user level Python applications which con-
figure the USRP and specify the connections between

Figure 2: Block Diagram of our Reader Archi-
tecture

the C++ based signal processing blocks. These flow-
graphs then execute using the GNU Radio runtime
system, which connects the blocks using FIFOs and
provides a scheduler that controls the flow of samples
through the graph. By implementing custom signal
processing blocks, GNU Radio can be used to realize
a wide range of wireless protocols.

4.3 Hardware

5. Reader Software Architecture

Using the USRP and GNU Radio, we implemented
a flexible Gen 2 reader. Our GNU Radio based soft-
ware architecture uses standard blocks provided by
the toolkit, along with custom blocks that implement
the Gen 2 specific functionality. We first give an
overview of the architecture and describe how it is
configured. We then describe in detail the function-
ality of our custom blocks.

5.1 Overview

Figure 2 shows the block diagram of our reader ar-
chitecture with our custom blocks highlighted. The
first GNU Radio block in the receive chain is the
source which pulls received samples in from the ker-
nel and feeds the flowgraph. The samples are passed
first to a matched filter which is configured to max-
imize the signal-to-noise ratio (SNR) of tag trans-
missions. As the Gen 2 up-link uses amplitude shift
keying (ASK), the output of the filter is transformed
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from a stream of complex I and Q values to a stream
of amplitude values.

The resultant signal is then sent to the Tag Re-
sponse Gate which acts as a signal gate, only ungating
the incoming signal when a tag response must be de-
coded. When ungated, the signal is passed through a
clock recovery block which resamples the tag response
and outputs one sample per subcarrier cycle. These
samples then enter the Gen 2 Decoder and Transmit-
ter which implements the protocol specific behavior
and generates the ASK modulated reader commands
for transmission. These commands are then sent to
the sink where they are passed to the kernel for trans-
mission to the USRP.

5.2 Configuration
The configuration parameters for our architecture

can be broken into three categories; USRP config-
uration, Gen 2 protocol parameters, and GNU Ra-
dio block parameters. USRP configuration for our
transceiver consists solely of setting the frequency in
the range of 902-928 MHz. For reasons discussed in a
later section, the decimation and interpolation rates
are fixed.

All Gen 2 MAC parameters can be configured, such
as the number of slots in the frame and the up-
link encoding. The down-link and up-link rates in
Gen 2 are determined by the pulse widths used dur-
ing the preamble that precedes the Query command;
these pulse widths are exposed as configuration op-
tions. Based on the up-link PHY parameters the
pulse width for the matched filter is set, along with
the filter decimation in order to provide two samples
per subcarrier cycle as required by the clock recovery
block.

5.3 Tag Response Gate
The Gen 2 protocol uses a reader talk first commu-

nication paradigm, which means that a tag transmis-
sion can only occur immediately following a reader
command. Thus, the Tag Response Gate only passes
the received signal to the downstream block after a
reader command is detected. After the tag response
has been decoded a signal is sent to the Tag Response
Gate which gates the signal until the next reader com-
mand is received. By gating the signal, computation
is reduced as clock recovery and tag decoding are ex-
ecuted only as needed.

The Tag Response Gate also increases the modu-
larity of our implementation. The block simply de-
tects the last pulse of a reader command and passes
through the tag response. Consequently, tag response
signal processing and MAC implementation is local-
ized and separated into one or more downstream

blocks. This allows for the “dropping in” of different
signal processing algorithms and application specific
protocol behavior.

5.4 Gen 2 Decoder and Transmitter
The Gen 2 Decoder and Transmitter block decodes

the symbols of the tag transmissions, implements the
Gen 2 MAC protocol, and generates the amplitude
modulated reader commands. The input to the block
is a stream of samples with one sample per subcar-
rier cycle. This allows us to detect the preamble of
the tag response via correlation, and the subsequent
bits are then decoded also using a a correlator. By
correlating for individual bits we take advantage of
the processing gain inherent in the Miller up-link en-
codings.

We provide functions that generate ASK modu-
lated Gen 2 commands. For example, to generate
a Query command the gen query() function uses the
configured PHY and MAC layer parameters to con-
struct the bit level command, calculate the CRC, and
transforms these bits to the ASK modulated signal.

The complete Gen 2 MAC protocol is implemented.
Tag IDs include a CRC, and if the ID passes the
checksum a QueryRepeat is sent and a NAK is sent
otherwise. The number of tags is configurable, and
the reader determines the correct number of slots for
each Query Round. As tags are read, the reader recal-
culates the appropriate number of slots and modifies
this for the next round. When all tags have been
read, the reader powers down for 1 ms. The number
of times that the readers powers up and reads tags is
configurable.

For analysis, our reader writes data to a log file.
Each entry is labeled with the command or tag re-
sponse name, and consists of the time the event hap-
pened in microseconds and the decoded bits and SNR
values when appropriate. To reduce the overhead of
logging data our implementation stores the complete
trace in memory, only writing to disk when the reader
powers down.

6. Reducing System Latency
A key challenge for our reader is that the flexibil-

ity of the USRP and GNU Radio comes at the cost
of high transceiver latency. The acceptable system
latency for a Gen 2 reader is determined by the up-
link rate and is 20 times the period of a single up-
link cycle. This means that our reader must have
a latency of no more than 500 µs to operate with
commodity tags using a 40 kHz up-link. To achieve
this, our reader implementation had to be highly op-
timized in order to communicate with commodity
RFID tags. Aside from optimizing our software, we
also attempted to increase the performance of our
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Figure 3: System Diagram

host computer. Specifically, we use a host machine
with a quad-core 3.2 GHz Xeon processor running
the Linux 2.6.20-16-lowlatency kernel, and the GNU
Radio runtime is given the highest priority.

In this section we first discuss the sources of latency
when using the USRP and GNU Radio, particularly
for low bandwidth applications. We then describe
the techniques we use to reduce the impact of each
of these sources, showing experimental results that
pinpoint the effect these have on system latency.

6.1 Sources of Latency
Latency in our receive chain can be attributed to

four factors:

1. The period of time from when a signal hits
the antenna until it is digitized, processed, and
placed in the receive FIFO on the USRP.

2. The time from when a sample is placed in
the USRP receive FIFO until it is transmitted
across the USB bus and received by the host.

3. The time a sample spends in the USB receive
buffer on the host before it reaches the first GNU
Radio signal processing block.

4. The time it takes for GNU Radio to process a
given signal

Analogs of the first three of these are experienced
again, in the reverse direction, for the transmit chain.
The latency cost of (1) is a constant 16 µs, and cannot
be reduced.

Figure 3 shows the subsystems composing the path
to and from the USRP and GNU Radio. As an ex-
ample, we will explain its functioning for the receive
chain. The received RF signal is digitized and the
samples are placed in the 10 kB RX FIFO on the
USRP. The rate at which the FIFO fills, and the du-
ration represented by each sample, is determined by
the USRP decimation rate set by the GNU Radio ap-
plication. USB packets have a 512 byte payload and
hence contain 128, 4 byte samples. These packets

are only sent when full and only if the host has suf-
ficient buffer space to receive them. The maximum
sustainable data rate across the USB is 8 Msps, and
the bandwidth must be shared between the receive
and transmit signals. Selecting the appropriate deci-
mation rate has a large impact on (2).

The Linux USB subsystem on the host maintains
a set of USB Request Blocks (URBs), which are es-
sentially buffers that store samples until GNU Radio
is ready to process them. The “Fast USB” subsys-
tem, which is part of GNU Radio, is responsible for
draining these URBs and resubmitting them to be
refilled by the kernel. Whenever the GNU Radio
source block requests more samples, all full URBs
are drained. However, if all receive URBs are full the
USRP will begin to drop samples, and if no URBs
are full when the source requests samples the “Fast
USB” subsystem will block. The size and number of
URBs is set by the application and largely impacts
(3).

Finally, (4) depends on the complexity of the sig-
nal processing and the number of samples that are
processed for a given signal.

6.2 Eliminating the Transmit Buffer
An RFID reader must send a continuous RF wave

(CW) to power and communicate with tags. How-
ever, there is a 32 kB buffer in the sink block of
the GNU Radio flowgraph, some number of trans-
mit URBs in the kernel, and another 10 kB FIFO
on the USRP. When transmitting at the maximal 8
Msps these transmit buffers introduce over 1 ms of
system latency as the buffers are always kept full and
reader commands are enqueued at the tail. Addition-
ally, transmitting at 8 Msps leaves no USB bandwidth
for receiving samples. As we must receive as well as
transmit, the sample rate of the CW could be reduced
as much as possible leaving the remainder of the USB
bandwidth for receive. However, this results in a 250
ksps transmit sample rate incurring 40 ms of latency
caused by the transmit buffers. Even if the size of
the host transmit buffer is reduced, the 10 kB buffer
on the USRP introduces significant, and unnecesary,
latency.

To eliminate this latency, we modified the FPGA
of the USRP to send the CW independently. With
this modification, the USRP continually sends a sine
wave at the highest transmit power. Our reader only
transmits reader commands, and when a packet ar-
rives from the host the USRP begins transmitting the
samples and when the transmission is complete, the
USRP returns to sending the CW. This assures an
empty transmission buffer on the host and effectively
bypasses the transmit buffer completely. Because the
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CW is a fundamental but simple aspect of the Gen 2
protocol, moving this functionality to the FPGA sig-
nificantly reduces latency without greatly reducing
the flexibility of our system.

6.3 Rate Matching GNU Radioread()s

Previous work using the USRP and GNU Radio
has shown system latencies on the order of 10s of
milliseconds [22], with latency increasing as the sam-
ple rate decreases. To determine the root cause of
this behavior we replicated their experiment, includ-
ing the use of eight 2048 byte (512 samples) USB
Request blocks. In our experiment, we used two host
machines HOST1 and HOST2, each equipped with a
USRP with two attached 900 MHz daughterboards.
HOST1 emits a pulse once per second. HOST2 uses
a simple pulse detector to detect the falling edge of
the pulse and immediately transmits a shorter pulse
in response. Both the original pulse and the response
pulse are received at HOST1 and the time between
the pulses is measured. It should be emphasized that
the time between the two pulses does not depend on
HOST1, and the interval between the two pulses is
an accurate measure of the total system latency of
HOST2. We measure the time from the falling edge
of the first pulse to the rising edge of the response
pulse.

The prior work, and the GNU Radio documen-
tation, states that latency in the receive chain de-
pends largely on the choice of USB Request Block
size. However, we found the effects of this design
choice are superseded by the behavior of the GNU
Radio scheduler and source block. The scheduler only
schedules the source block when all previous samples
have been processed by the flowgraph, and it tells the
source to produce enough samples to completely fill
the input buffer of the downstream block. This buffer
is hardcoded to be 16 kB, or 4096 samples.

Figure 4 shows the maximum round trip time

(RTT) of our simple edge detector as we vary the
request size of the read() function call; read() is a
blocking function called by the source that blocks un-
til the request can be satisfied. When requests are for
4096 samples, the default for GNU Radio, the latency
of our system closely matches the microbenchmarks
presented in [22]. This latency is largely due to GNU
Radio blocking until more samples arrive at the host,
particularly at low sample rates. At 8 Msps 4096
samples represents 512 µs worth of signal while at
250 ksps the same number of samples represents over
16 ms worth of signal. Because the signal of interest,
the last edge of a bit for instance, will be randomly
located in a given block of 4096 samples it will incur
256 µs of latency on average (in the 8 Msps case).
We refer to this as the fundamental latency, as it is
an unavoidable result of packetizing a continuous sig-
nal.

To reduce the fundamental latency, we reduced the
read() request size to 2048, 1024, and 512 samples,
and the RTT decreased monotonically as one would
expect. However, with a request size of 512 samples
the overhead was such that our application was un-
able to support 8 Msps. With a more computation-
ally intensive signal processing graph, or if the graph
has a highly variable workload, selecting a static re-
quest size that minimizes latency while not introduc-
ing excessive overhead is difficult.

Fortunately, the appropriate request size can be de-
termined dynamically by simply requesting the num-
ber of samples that are already available at the host.
This approach, which we refer to as rate matching,
eliminates latency due to blocking and limits over-
head by processing all available samples at once.
To implement rate matching we modified the read()
function to be non-blocking and to return all samples
that have been received by the host. In our experi-
ment, system latency with rate matching enabled saw
the same performance as the 512 sample case, but it
also supported 8 Msps with latency below the 1024
sample case. When rate matching is used the bot-
tleneck for low bandwidth applications becomes the
USB Request Block size.

6.4 Reducing USB Request Block Size

In the previous experiment we used 512 sam-
ple USB Request Blocks (URBs), which are the
blocks that transfer samples from the kernel to user
space. Consequently, a 512 sample read() request size
equates to one URB; i.e. even rate matching will
block if there are less than 512 samples available in
the kernel. When rate matching is enabled, the user
configurable URB size does affect system latency.

Figure 5 shows the maximum RTT as we reduce
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Figure 6: SDR reader latency with default
scheduler. Post-filter sample rate fixed at 250
ksps

the URB size to 128 samples (512 bytes), the min-
imum size given that the USRP firmware transmits
128 sample packets across the USB. As mentioned
previously, the 512 sample case can now support 8
Msps due to rate matching changing the request size
dynamically. However, as we reduce the URB size
the kernel to userspace overhead increases to a point
where we are unable to support 8 Msps with 256
sample blocks, or 4 Msps with 128 sample blocks.
However, for this simple signal processing graph, the
maximum RTT when using rate matching with 128
sample URBS is 340 µs at 2 Msps, which is within
the latency and bandwidth requirements for “Gen 2”
RFID. Consequently, our reader implementation uses
rate matching with 128 sample URBs.

6.5 Reducing Sample Rate at the Host
Along with reducing the fundamental latency, over-

all system latency can be lowered by reducing the
computation of the signal processing. This can be
achieved by optimizing algorithms, but also by reduc-
ing the number of samples that must be processed for
a given signal. As “Gen 2” RFID has up-link rates in

200

400

600

800

.25 .5 1 2 4 8

Prefilter Sample Rate (MS/s)

R
T

T
 (

us
ec

)

Figure 7: SDR reader latency with protocol
aware scheduler. Post-filter sample rate fixed
at 250 ksps

the 40-640 kHz range, the matched filter in our reader
implementation additionally reduces the sample rate
via decimation.

Figure 6 shows the RTT of our “Gen 2” reader
when we fix the post filter sample rate to 250 ksps,
sufficient to support a 125 kHz uplink, while varying
the USRP sample rate (and the decimation rate of
the matched filter, in order to maintain the 250 ksps
output rate). The RTT is measured by reading a
commercial RFID tag with our reader, and measuring
the time from the last bit of the tag’s RN16 to the
first bit of the reader ACK. The measurement is done
using the infrastructure presented in [4].

With a prefilter sample rate of 250 ksps, where the
USRP streams samples at 250 ksps and the filter per-
forms no decimation, the max RTT is similar to the
250 ksps case seen in Figure 5 for the simple edge de-
tector. However, the RTT is reduced when streaming
samples from the USRP at a higher rate, and then
reducing the sample rate with the filter on the host.
This is because the fundamental latency is reduced
by increasing the sample rate but the signal process-
ing graph must process fewer samples, which reduces
processing time. The benefits of this approach are
minimal beyond 2 Msps, where the maximum RTT
is 469 µs. This is sufficient to interoperate with com-
mercial tags using a 40 kHz uplink.

6.6 Managing the GNU Radio Scheduler

Reducing the sample rate at the host sufficiently
reduced latency to enable interoperation with com-
mercial tags, but just barely. To increase our margin
of error, we implement protocol aware scheduling to
further reduce system latency. With protocol aware
scheduling, once a tag response preamble is detected,
the block requests exactly the number of samples that
make up the remainder of the tag response. This is
in contrast to the default behavior where the next
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request would result in all available samples being
passed to the flowgraph by the source block. This
default behavior results in either, 1) the early stages
of the flowgraph processing more samples than are
necessary, increasing compute time, or 2) the flow-
graph processing the sample in small chunks when,
in this case, blocking is appropriate as we know ex-
actly how many samples to wait for.

Figure 7 shows the RTT of our reader with proto-
col aware scheduling enabled, and shows that making
use of protocol knowledge can significantly reduce la-
tency. This is because the block makes requests sized
to precisely encompass the tag reply. However, as
the URBs still comprise 128 samples, the time gran-
ularity with which the requests can be satisfied de-
pends on the prefilter sample rate. For example, if
the block requests 12 µs worth of samples (3 samples
at 250 ksps) in order to process the rest of the tag
reply, a 250 ksps prefilter sample rate will return 512
µs worth of data whereas at 8 Msps only 16 µs will
be returned. In the former, 500 µs of latency is intro-
duced compared to only 4 µs in the latter case. This
is why the gains are larger for lower prefilter sample
rates. Beyond 2 Msps the benefits are outweighed
by the overhead of high sample rates as described
earlier. By using protocol aware scheduling the max-
imum RTT is approximately 300 µs at 2 Msps, well
below the 500 µs required by the “Gen 2” protocol.

Previous results had shown minimum latencies for
full duplex USRP based systems to be on the order of
10s of milliseconds. Furthermore, microbenchmarks
suggest best case latencies on the order of 3 ms. In
our implementation, we were able to achieve maxi-
mum latencies of around 300 µs by addressing each
of the major bottlenecks in the system. Along with
having the FPGA transmit the “Gen 2” continous
wave (bypassing the cost of the transmit buffer) and
using the smallest USB Request Block available, we
presented two techniques of more general interest:

• Rate matching, which automatically processes
the number of samples that matches the process-
ing speed to the sample rate. This eliminates
blocking and minimizes overhead, reducing av-
erage latency.

• Protocol aware scheduling, which uses knowl-
edge of the protocol and the physical layer to
optimize requests for samples. This minimizes
the latency for a given operation.

7. Gen 2 Reader Evaluation
In this section we present an evaluation of our

reader to show how well it performs, with a focus
on the degree to which the transceiver can be used
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Figure 8: Performance of our Gen 2 Reader

for further research. Additionally, we discuss the lim-
itations of our reader and identify how it can be im-
proved.

7.1 Experimental Setup
For all experiments in this evaluation, we use Alien

”Omni-Squiggle” tags attached to a sheet of poster
board with the tags being approximately 4 feet off
the ground. Our reader uses a 40 kHz up-link, and
has an output power of 75 mW as measured by a
power meter. Unless noted, we use a ThingMagic in-
tegrated bi-static antenna that has two independent
antennas housed in a single enclosure. The exper-
iments were conducted in a standard office setting,
and we attempted to produce ideal conditions for the
reader; i.e. line of sight with minimal objects in the
area. As a comparison, we use the ThingMagic Mer-
cury 5e reader and related experiments are conducted
without moving the tags.

7.2 Reader Performance

For our reader to be useful it must be able to read
tags reliably at a range of at least a few feet. We per-
formed an experiment reading a single tag repeatedly
at increasing distances while measuring the read suc-
cess of each Query. At each distance we performed
5000 Query attempts. Figure 8 shows three met-
rics: 1) the percentage of Query commands where the
RN16 from the tag was decoded by the reader, thus
causing an ACK to be sent, 2) the percent where the
ACK elicited an ID which was decoded by the reader,
and 3) the percent where the decoded ID passed the
CRC check.

The first thing to notice is that the tag can be
read from up to six feet, which meets our threshold
for usability; beyond 6 feet the tag was never read.
Second, even at six feet ACKs were sent nearly 40% of
the time, while received IDs fell to below 10%. This
is because there is no error detection in the RN16,
so an ACK is sent whenever a preamble is detected
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even if some of the bits in the RN16 were decoded
incorrectly. One interesting finding is that IDs rarely
failed the CRC check; if the preamble was detected
the ID was generally error-free.

Figure 9, which shows the SNR for ACKs and IDs,
gives some insight into this behavior. All of the IDs
that failed the CRC, and more than two thirds of
failed ACKs (those which did not result in an ID
being sent), were received with an SNR below 12 dB.
In contrast, approximately 60% of successful ACKs
and IDs were received with a better than 12 dB SNR.
Hence, a successful ACK is a strong indicator that
the subsequent ID will be decoded correctly. This
is a benefit of the two stage handshake of the “Gen
2” protocol, with the first stage being a short 16 bit
response that effectively filters out weak tags before
the 128 bit ID is sent. It should also be noted that in
[16] the authors show that a 13 dB SNR is necessary
to achieve a BER of 10−3 in “Gen 2” systems. At
least for IDs, our reader only saw bit errors below this
threshold, and above this we see good success for both
ACKs and IDs. This indicates that our demodulater
implementation performs reasonably well.

7.3 Comparison to a Commercial Reader
As our reader generally requires a high SNR for

reliable communication, we know that our receiver is
not ideal. However, to determine how much range we
could attain given a better implementation we per-
formed a series of experiments.

First, using the same set up as the previous exper-
iment we read the tag using the ThingMagic reader,
with the tag and antenna remaining in the same po-
sition. To assure the same output power we used a
power meter and decreased the output of the Thing-
Magic reader until it matched that of our reader; i.e.
75 mW.

Second, we used our reader and replaced the inte-
grated bi-static antenna with two independent anten-
nas. We positioned the receive antenna a few inches
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Figure 10: Reader Range

from the tag and placed the transmit antenna along-
side the bi-static antenna used in the previous exper-
iments.

When comparing RFID readers, gross tags read per
second is a misleading metric as PHY layer behavior
makes direct comparison difficult[4]. However, given
that the ThingMagic reader only returns performance
information in terms of gross tags per second, this is
the metric we use for our comparison. While abso-
lute comparisons cannot be made, the trends in per-
formance are worth consideration.

Figure 10 shows the gross tags read per second
when using the ThingMagic reader with the inte-
grated anteanna, our reader using the same antenna,
and our reader when the receive antenna is placed
near the tag. Our reader succesfully reads the tag
more times per second out to approximately 6 feet,
beyond which it cannot read the tag at all. This
higher read rate is a result of our implementation
performing a single Query and powering down for 2
ms between Queries, where the ThingMagic reader
performs a series of Queries and powers down for ap-
proximately 40 ms between rounds.

The ThingMagic reader can read the tag out to 8
feet while our reader has a range of only 6 feet. To
determine if this was a hard limit, or indicated a lim-
itation of the ThingMagic reader, we can compare to
the results when our reader had its receive antenna
close to the tag. In this case, our reader can success-
fully read the tag at 8 feet, with little degradation in
performance compared to only 1 foot. Beyond 8 feet
we were unable to read the tag even once, and upon
examining our logs we found that no preambles had
even been detected. This tells us that the tag does
not receive enough power to operate at 9 feet, and
regardless of the receiver performance the tag cannot
be read. Thus, we see that the range of our reader
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Figure 11: Error free IDs for tags at 3 ft

is approximately 75% of the optimal given its output
power.

7.4 Reading Multiple Tags

When attempting to read more than one tag, we
found it difficult to find an arrangement of tags where
all tags could be read reliably. We experimented to
determine why we had so much trouble reading a col-
lection of tags.

Our reader implementation uses a statically config-
ured frequency while commercial readers frequency
hop across 50. To determine how this impacts our
reader, we placed four tags at three feet and mea-
sured the percentage of IDs that passed the CRC
check for each tag. For IDs that failed the checksum
we look at the first nibble that was decoded, which
is unique for each tag, and if it matched we consider
it an error for that tag. While this introduces in-
accuracy in our evaluation, we saw that errors were
generally well distributed in the ID.

Figure 11 shows the success rate for each tag, and
indicates that no single frequency reliably reads all
tags. In this particular arrangement, tag four can
be read reasonably well only at 920 MHz, but tag
one performs poorly at this frequency. This is due to
multipath effects which result in frequency selective
fading. We explore this problem in a later section.

7.5 Discussion

Considering we use no specialized hardware in our
implementation, we are pleased with the read range of
our Gen 2 reader. In particular, we feel that a range
of 6 feet is sufficient for RFID experimentation. Com-
mercial readers generally use hardware such as direc-
tional couplers to limit the CW signal that bleeds
into the receive chain, and sharp cut-off bandpass fil-
ters that suppress all but the tag response; both of
these decrease noise in the system. Additionally, our

reader has an output of only 75 mW, and the range
may be increased by using a high-power amplifier in
the transmit chain. However, the goal of our study is
to provide a low-cost, low-complexity solution for re-
searchers interested in RFID. As such, we leave eval-
uating the benefits of additional hardware to future
work.

Based on our experiences, we found that we need
to integrate frequency hopping capability into our
implementation. Fortunately, the USRP should be
capable of changing frequencies on the order of 100
µs, and the Gen 2 standard requires that the reader
be powered down for at least 1 ms after changing
channels. Consequently, integrating frequency hop-
ping should be straightforward.

8. Applications
By providing flexibility at both the PHY and MAC

layers and enabling detailed feedback from the re-
ceiver, our Gen 2 transceiver can be applied to a wide
range of applications. First, it can be used as a tool to
understand the underlying PHY and MAC layer be-
havior of RFID systems. This is difficult when using
commercial platforms as they provide limited config-
urability and the underlying behavior must be largely
inferred.

Second, it can be used with standard tags to ex-
plore ways to enhance the Gen 2 protocol. For in-
stance, reader techniques to increase the performance
of Gen 2 systems can be experimentally validated,
and non-standard uses of the Gen 2 protocol can be
developed.

We present two studies as examples. First, we use
the PHY layer flexibility to determine the precise ef-
fects of multipath in UHF RFID systems. Second,
we implement and prototype a technique to rapidly
estimate the number of tags in a population

8.1 Understanding Multipath Effects
Fading due to multipath is a well known prob-

lem in UHF RFID systems. However, previous work
has considered this problem from the viewpoint of
the tag[15], or by examining overall reader perfor-
mance as was done in our previous work[4]. While we
could show that fading reduced reader performance,
we could not determine exactly how it interacted with
the reader to cause this effect. This was because com-
mercial platforms must frequency hop due to FCC
regulations and they do not give detailed feedback as
to error rate or signal strength.

With our transceiver we can specify a single fre-
quency for reading tags and we can gather detailed
measurements to resolve questions we previously left
unanswered. For our experiment, we read a single tag
using five different center frequencies. We can then
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Figure 12: Fading at distance
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Figure 13: Fading when moving RX antenna

use the error rates of the IDs to infer the effects of
fading.

Figure 12 shows the percentage of successfully re-
ceived IDs for different frequencies as distance is in-
creased from one to to fouer feet. We see that fre-
quency has a significant effect on success rate even
at short distances, and the effects of fading can be
significant; at 3 feet the difference in success rate be-
tween 905 and 915 MHz is almost 90%. Additionally,
we found that constructively interfering lobes were
also evident, as is the case for 915 MHz at four feet.

Fading in RFID systems results in bit errors be-
cause it reduces the power of the back-scattered sig-
nal. However, fading can occur due to the transmit
path, resulting in less signal being reflected from the
tag, and also due to the receive path from the tag to
the receive antenna. To consider the effect for each
path independently we performed two sets of experi-
ments.

First, we place the tag at two feet and use two
independent antennas, one for transmit and one for

receive. We then compare the success rate when the
receive antenna is moved approximately 1 foot lat-
erally from the original position while maintaining
the same distance to the tag. Second, we place the
tag just beyond 8 feet, and place the receive antenna
inches away from the tag to determine the effect of
fading on the forward path.

The results for both experiments are shown in Fig-
ure 13. Moving the receive antenna only a few inches
results in drastically different performance for the dif-
ferent frequencies. In the first position nearly all IDs
had bit errors at both 920 and 925 MHz, while in
the second position 920 MHz sees a success rate of
over 75%. This indicates that fading on the reverse
channel significantly affects bit-error rate.

Looking at the case where the receive antenna is
close to the tag, we see a second effect of fading. Here,
three out of the five frequencies see very high success
rates while the remaining two see no IDs at all. In
this case, fading on the forward path results in the
tag not receiving enough energy to power up.

These results show that fading degrades perfor-
mance in two ways; bit-errors due to low signal
strength and tags not harvesting enough energy to
respond. As fading on the reverse channel plays a
significant role in bit-errors, this effect could be mit-
igated by using multiple receive antennas where at
least one would be likely to avoid fading for a given
frequency.

8.2 Fast Tag Count Estimation
Techniques for rapidly estimating the number of

tags in a population are desirable for a number of
applications. First, if the size of the population may
vary significantly an estimate of the number of tags
would allow the reader to choose the correct number
of slots before beginning to inventory the tags. Sec-
ond, for many applications the reader may not need
to know the IDs of all the tags but instead may be
interested only in how many tags are present. For
example, a supply chain applications may only need
to verify that the correct number of items are on a
pallet.

To count the number of tags using a commercial
reader, all tag IDs must be read which incurs the
overhead of transmitting the ACK and ID ; this over-
head increases significantly in the presence of errors.
An alternative is to forgo sending ACKs and simply
detect the number of RN16s transmitted during a
round. By increasing the number of slots, the like-
lihood of a collision for a given number of tags can
be reduced to acceptable levels and the number of
tags can be accurately determined. Additionally, in
the presence of errors such a technique could indicate
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Figure 14: Number of Occupied Slots

how many tags were left unread.
The theoretical basis for a fast tag estimation tech-

nique was presented in[13] and was based on detect-
ing slots with zero, one, or multiple tag replies. As
an initial prototype of a such a system, we modified
our reader so that it did not send ACKs but instead
simply detected slots where an RN16 was transmit-
ted. To detect transmissions, we considered the SNR
during the slot and used a cutoff of 6 dB, as this
was just below the SNR for which we could reliably
decode tag transmissions.

Figure 14 shows the results for our system when
detecting tag responses for four tags using a varying
number of slots. As the number of slots increased
the number of Query Rounds that detected four tag
responses increased because collisions are reduced.
However, we found that our simple SNR based tech-
nique resulted in a significant number of false posi-
tives, indicated by rounds that detected more than
4 tags. Also, we saw many false negatives as indi-
cated by the fact that with 64 slots and 4 tags, many
rounds detected only three tags while the probability
of a collision is low.

While the quantitative results for our tag estima-
tion scheme are unsatisfying, they do show the value
of a software defined MAC protocol for investigat-
ing proposed techniques. To conduct this study only
a single line needed to be changed that ignored the
result of the preamble detection.

9. Related Work
There is a variety of existing experimental work

on RFID in the literature. [3, 14] provide a custom
fabricated platform in which signal processing is im-
plemented in an FPGA. The RFID Guardian[18] is
another custom platform, but is not compatible with
the Gen 2 standard and provides very limited flexi-

bility at the physical and MAC layers. In contrast to
these systems, our work is implemented using stan-
dard hardware and the complete Gen 2 protocol is
implemented as a user process on the host.

The USRP and GNU Radio have also been used
to study interactive communications protocols. [10,
8, 9, 7, 11] use the USRP to study the effects of
cross layer enhancements on network performance for
both hand-rolled physical layers [7, 11] and 802.15.4
[8, 9, 10]. [17, 20] implemented systems to moni-
tor HF RFID building and subway access systems.
Our previous work[4] implemented a Gen 2 moni-
toring system to measure commercial Gen 2 reader
performance.

Note that in all of this work, software radio nodes
communicated only as a transmitter or a receiver, but
never both simultaneously. Katti et al [12] emulate
an interactive protocol by slowing the MAC timing
on a hand-rolled communication scheme several or-
ders of magnitude to overcome the long latencies. In
contrast to all of this related work, we present here
the first implementation of a real-time, interactive
transceiver for a commercial, standardized communi-
cations protocol using a commodity software radio.

10. Conclusion

We present a Gen 2 UHF RFID reader developed
using the USRP and GNU Radio which can commu-
nicate with commodity RFID tags at up to 6 feet. As
the complete Gen 2 protocol is implemented in soft-
ware, our reader gives a high degree of flexibility with
respect to both the MAC and PHY layers of the sys-
tem. This flexibility enables low-level RFID research
which is not possible using commercial platforms.

To operate with commodity tags, the system la-
tency of our reader must be below 500 µs. We present
techniques that reduce the latency of the USRP and
GNU Radio so that we can reliably meet this timing
constraint. We then evaluate our reader performance
and compare this to a commercial reader with com-
parable power, and show that we achieve 75% of the
read range while using no specialized hardware. We
also discuss potential applications of our reader, and
present two initial studies as examples. Our software
defined Gen 2 reader provides a flexible and capable
development platform that extends the application
space of UHF RFID systems.
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