
Why so? or Why no?
Functional Causality for Explaining Query Answers

Alexandra Meliou Wolfgang Gatterbauer Katherine F. Moore Dan Suciu
Department of Computer Science and Engineering,

University of Washington, Seattle, WA, USA
{ameli,gatter,kfm,suciu}@cs.washington.edu

ABSTRACT
In this paper, we propose causality as a unified framework
to explain query answers and non-answers, thus generaliz-
ing and extending several previously proposed approaches of
provenance and missing query result explanations.

We develop our framework starting from the well-studied
definition of actual causes by Halpern and Pearl [13]. After
identifying some undesirable characteristics of the original
definition, we propose functional causes as a refined defi-
nition of causality with several desirable properties. These
properties allow us to apply our notion of causality in a
database context and apply it uniformly to define the causes
of query results and their individual contributions in several
ways: (i) we can model both provenance as well as non-
answers, (ii) we can define explanations as either data in
the input relations or relational operations in a query plan,
and (iii) we can give graded degrees of responsibility to indi-
vidual causes, thus allowing us to rank causes. In particular,
our approach allows us to explain contributions to relational
aggregate functions and to rank causes according to their
respective responsibilities. We give complexity results and
describe polynomial algorithms for evaluating causality in
tractable cases. Throughout the paper, we illustrate the
applicability of our framework with several examples.

Overall, we develop in this paper the theoretical founda-
tions of causality theory in a database context.

1. INTRODUCTION
When analyzing data sets and domains of interest, users

are often interested in explanations for their observations.
In a database context, such explanations concern results to
explicit or implicit queries. For example, “Why does my
personalized newscast have more than 20 items today?” Or,
“Why does my favorite undergrad student not appear on
the Dean’s list this year?” Database research that addresses
these or similar questions is mainly work on lineage of query
results, such as why [8] or where provenance [3], and very
recently, explanations for non-answers [17, 4]. While these

University of Washington CSE Technical Report 09-12-01.

approaches differ over what the response to questions should
be, all of them seem to be linked through a common underly-
ing theme: understanding causal relationships in databases.

Humans usually have an intuition about what constitutes
a cause of a given effect. In this paper, we define the fun-
damental notion of functional causality that can model this
intuition in an exact mathematical framework, and show
how it can be applied to encode and solve various causality
related problems. In particular, it allows us to uniformly
model the questions of Why so? and Why no? with re-
gards to query answers. It also effectively allows us to repre-
sent different approaches taken so far, thus illustrating that
causality is a critical element unifying important work in
this field.

We start with a simple illustrative example.

Example 1.1 (News feed). A user has a personalized
news feed that filters incoming news based on matching pre-
defined tags. Let relation K(tag) represent the table with the
user-defined tags, N(nid, story, tag) the incoming news, and
P (nid, story) the personalized news feed. For simplicity, we
assume one single tag per news item and ignore timestamps.
P can then be represented by the query

create view P

as select N.nid, N.story

from N

where exists (select *

from K

where K.tag=N.tag)

As a result, the view P will be a collection of news match-
ing the user’s preferences as shown in Fig. 1. The user may
now ask questions about this view. For example, “Why am
I getting so many stories about Indianapolis?” (5 in total).
The system should answer that the user’s keywords DB_conf,
Purdue, and Movies are causes with some kind of decreasing
responsibility. On the other hand, the user may have heard
that there should be far more news feeds on Indianapolis this
week and wonders “Why am I NOT getting MORE stories
about Indianapolis?” The system should suggest the lack of
the keyword Indy_500 in the user-defined relation K as pos-
sible cause (inserting it would increase the count from 5 to
8 articles on Indianapolis).

As illustrated in Example 1.1, we want to allow users to
ask simple questions based on the results they receive, and
hence, allow them to learn what may be the cause of any
surprising or undesirable answer. Such questions can refer

1

N(ews feeds)
nid story tag
1 ... the race of Indianapolis this year may ... Indy_500

2 ... economic downturn affected sensitive ... Business
3 ... with sequences shot in Indianapolis ... Movies

4 ... when President Obama meets former ally ... Obama
5 ... Indianapolis officials debating the budget ... Purdue

6 ... most amazing event in the US with few ... Burning_man
7 ... PODS held in Indianapolis this year ... DB_conf

8 ... discussed in a recent talk the options to ... Politics
9 ... VLDB conference this year in Singapore ... DB_conf
10 ... at the the Indianapolis Motor Speedway ... Indy 500

11 ... Indianapolis host to SIGMOD/PODS ... DB_conf

12 ... SIGMOD in Indianapolis promises to be ... DB_conf

13 ... more people in Indianapolis this year ... Indy_500

14 ... recent ranking held positive surprises for ... Purdue

K(eywords)
tag
Obama
DB_conf
Purdue
Burning_man
Movies
Afghanistan

P(ersonalized news)
nid story
3 ... with sequences shot in Indianapolis ...
4 ... when President Obama meets former ally ...
5 ... Indianapolis officials debating the budget ...
6 ... most amazing event in the US with few ...
7 ... PODS held in Indianapolis this year ...
9 ... VLDB conference this year in Singapore ...
11 ... Indianapolis host to SIGMOD/PODS ...
12 ... SIGMOD in Indianapolis promises to be ...
14 ... recent ranking held positive surprises for ...

Figure 1: Example of a personalized news-feed (P)
as a result of a query filtering all news (N) based on
user-defined keywords (K).

to either presence (Why so?) or absence (Why no?) of
results. Furthermore, the user should be provided with a
ranking of causes based on their individual contribution or
responsibility. Our ultimate goal is to define a language that
allows users to specify causal queries for given results. In
this paper, we lay the theoretical groundwork and define a
formal model that allows us to capture such causality-related
questions in a uniform framework.

Summary and outline. Section 2 analyzes causality in
Boolean networks in general: We start by reviewing exist-
ing definitions of counterfactual and actual causes (Sect. 2.1
to 2.2). We also illustrate problems of these previous def-
initions, and propose functional causes as a refined notion
of causality that mitigates these problems (Sect. 2.3). In
Sect. 3, we then describe and prove several desirable prop-
erties of functional causes. We also give complexity results
for general and restricted Boolean networks. Section 4 ap-
plies our general framework to give Why so? and Why no?
explanations to database queries. We show that our unify-
ing framework generalizes provenance as well as non-answers
(Sect. 4.1), handles contributions to aggregate functions by
ranking causes according to their responsibilities for the re-
sult (Sect. 4.2), and can also model causes other than tuples
(Sect. 4.3). We discuss related work in Sect. 5, point out
some directions for future work (Sect. 6), and give detailed
proofs and elaborated examples in the appendix.

2. CAUSALITY
This section discusses the two most established notions of

causality, then our new definition. The first is the notion
of counterfactual causes, which is intuitive and simple, but
very limited in its applicability. The second is the definition
of actual causes by Halpern and Pearl (HP from now on),

which can better reproduce common-sense causal answers
and has become central in the causality literature. We then
give our definition of functional causes which is a refinement
of the HP definition that can model more cases correctly and
has additional desirable properties for database applications.

General notions. We assume a set of Boolean random
variables which model a causal problem. A capital letter
(e.g. X) denotes a variable, and a lower case letter with
exponent 0 or 1 (e.g. x0) denotes a truth value. An event
is a truth value assignment to one or more variables (e.g.

X = x0). We use the vector sign (e.g. ~X) to denote an or-
dered or unordered set, depending on the context. A causal
model M is a tuple (~N,F) with ~N representing a set of vari-

ables, and F = {FN |N ∈ ~N} a set of structural equations

FN : {0, 1}|~PN | → {0, 1} that assign a truth value to N for

each value of its parents ~PN ⊆ ~N \{N}. The causal network
(CN) is the directed acyclic graph representing the depen-
dencies between the Boolean variables (like in a Bayesian
network). We call nodes without parents input variables and

the rest dependent variables, denoting them with ~X and ~Y ,
respectively. We associate to each dependent variable Y a
Boolean formula that determines its truth value Y (~X) based
on the values of the input variables. The Boolean formula of
a distinguished effect variable is denoted as Φ(~X). The effect
φ represents the event that the effect variable has its current
assignment φ =

(
Φ(~X) = Φ(~x0)

)
. Causality is always deter-

mined for a given actual assignment ~x0. The causal path is
the set of all descendants of a variable under consideration.
An external intervention [~S ← ~s1] for ~S ⊆ ~N considers a

modified causal model where each node N ∈ ~S is assigned a
truth value n1 that replaces its structural equation FN .

2.1 Counterfactual Causes
With deep roots in philosophy [18], the argument of cou-

nterfactual causality is that the relationship between cause
and effect can be understood as a counterfactual statement,
i.e. an event is considered a cause of an effect if the effect
would not have happened in the absence of the event.

Definition 2.1 (Counterfactual Cause [22]). The
event X=x0 is a cause of φ in a causal model M iff:

CC1. X=x0 ∧ φ
CC2. [X←¬x0]⇒ ¬φ
Example 2.2 (one thrower). Alice throws a rock at a

bottle and the bottle breaks. If Alice had not thrown the
rock, then the bottle would not have broken. Therefore, Alice
throwing the rock is a cause of the bottle breaking.

Shortcomings of Counterfactual Causes. Counter-
factual causality cannot handle slightly more complicated
scenarios such as disjunctive causes, i.e. when there are two
potential causes of an event.

Example 2.3 (two throwers [11]). Alice and Bob
each throw a rock at the bottle and it breaks. Had Alice
not thrown the rock, the bottle would still have broken. Ac-
cording to the counterfactual definition, Alice’s throw is not
a cause even though common sense suggests she should be.

Figure 2a shows an example of a simple causal network
for Example 2.3. The events of Alice and Bob throwing
rocks are modeled with truth value 1 for variables A and
B respectively, while Y models the effect variable (i.e. the
bottle breaking φ) which is true if either A or B is true.

2

1	

Fig_SimpleShooter	 12-‐8-‐2009	

A=1

B=1
Y =A∨B

(a)

2	

Fig_Shooter	 12-‐8-‐2009	

A=1

B=1 Y1 =ĀB

Y =A∨Y1

(b)

Figure 2: Two throwers. In both models, the bottle
breaks (Y = 1) if either Alice throws (A= 1) or Bob
throws (B= 1). Model b encodes the preemption of
Bob’s throw by Alice with an additional intermedi-
ate variable Y1 for Bob hitting the unbroken bottle.

2.2 Actual Causes
The HP definition of causality [13] is based on counterfac-

tuals, but can correctly model disjunction and many other
complications. The idea is that X is a cause of Y if Y coun-
terfactually depends on X under “some” permissive contin-
gency, where “some” is elaborately defined. This definition
is significant in causality theory. We present it here in an
abbreviated way and refer to [13] for details. Note that the

HP definition allows subsets of both input variables ~X and
dependent variables ~Y to be a cause of φ. In the following,
~Nc refers to a subset from all nodes of a network.

Definition 2.4 (Actual Cause [13], Def 3.1). The

event ~Nc(~x
0) = ~n0

c is a cause of φ in a causal model M iff:

AC1. Both ~Nc(~x
0) = ~n0

c and φ hold under assignment ~x0

AC2. There exists a partition (~Z, ~W) of ~N with ~Nc ⊆ ~Z

and an assignment (~n1
c , ~w1) of the variables (~Nc, ~W),

such that the following two conditions hold:

(a) [~Nc ← ~n1
i , ~W ← ~w1]⇒ ¬φ

(b) [~Nc ← ~n0
i , ~W

′ ← ~w′1, ~Z′ ← ~z′0] ⇒ φ, for all

subsets ~W ′ ⊆ ~W and ~Z′ ⊆ ~Z

AC3. ~Nc is minimal, i.e. no subset ~N ′c ⊂ ~Nc is a cause.

The heart of the definition is condition AC2, which is effec-
tively a generalization of counterfactual causes. The require-
ment is that there exists some assignment of the variables for
which ~Nc is counterfactual, and that this assignment does
not make any fundamental changes to the causal path of ~Nc.

The HP definition correctly handles disjunctive causes as
in Example 2.3, recognizing both Alice’s and Bob’s throws
as causes. Its use of the causal network makes it very flexible
in capturing different scenarios of causal relationships. For
example, it is easy to model preemption, i.e. when there are
two potential causes of an event and one preempts the other.

Example 2.5 (two throwers continued). Assume
that Alice’s rock hits the bottle first. Then Alice’s throw
would be considered a cause of the bottle breaking, but not
Bob’s. This precedence of Alice’s throw is not encoded in the
network of Fig. 2a (model a). It can be modeled by adding
the variable Y1 in Fig. 2b (model b): The bottle breaks if ei-
ther Alice throws, or if Alice doesn’t throw and Bob throws
(Y1 =1). The Boolean formulas for the effect, Φ(~X)=A∨B
or Φ(~X)=A∨ĀB for models a and b respectively, are equiv-
alent, but the causal relevance of variable B is not: Bob’s
throw is an actual cause in model a, but no in model b.

This result is intuitive, because Alice’s rock hits the bottle
first, breaking it and preempting that Bob can hit and break

it. While there exists an assignment of variables (A ← 0)
that makes Bob’s throw (B = 1) counterfactual, this assign-
ment changes the value of node Y1 from 0 to 1, establishing
a change in the causal path of B. Since there is no path
from B to Y that doesn’t go through Y1, B is not a cause.

Shortcomings of Actual Causes. The HP definition
of actual cause is well established in the causality literature,
but it does not correctly handle some cases, leading to non-
intuitive results. The following is a well-studied example (see
[22]), originally given by McDermott [21], for which the HP
definition does not match common sense, i.e. the commonly
accepted interpretation in philosophical circles.

10	

Fig_ShockC1	 11-‐30-‐2009	

A=1 C =(A ≡ B)

B=A

Figure 3: Shock C. Simple example where actual
causality fails to match common-sense: A is deter-
mined a cause of C according to the HP definition,
although C is always true.

Example 2.6 (Shock C [21]). Shock C is a game for
three players. A and B each have a switch which they can
move to the left or right. If both switches are thrown into
the same position, a third person C receives a shock. A does
not want to shock C. Seeing B’s switch in the left position,
A moves his switch to the right. B wants to shock C. Seeing
A’s switch thrown to the right, she now moves her switch to
the right as well. C receives a shock. Clearly, A’s move was
a cause of B’s move, and B’s move was a cause of C’s shock,
but A’s move was not a cause of C’s shock.

This example can be modeled with the causal network from
Fig. 3 and structural equations

B = A

C = (A ≡ B) = AB ∨ ĀB̄

under actual assignment A=1, and hence B=1, C=1. The
effect φ under consideration is C = 1. Here, and contrary
to common sense, A= 1 is an actual cause of C = 1: Take
~W = {B} with b1 = 1. Then AC2(a) holds: [A← 0, B ←
1]⇒ ¬φ. Also AC2(b) holds: ~Z \ ~Nc \{C} is empty, and for

either ~W ′= ~W or ~W ′= ∅, C is 1 because of A← 1. Hence,
the HP definition does not deliver the common-sense answer
for this example, making A the cause of a tautology.

Appendix B.1 gives more details on the Shock C example,
and shows that the HP definition cannot handle this exam-
ple even with a more elaborate causal network, while the
following definition of functional causality can.

2.3 Functional Causes
A fundamental challenge in applying causality to queries

is that causality is defined over an entire network: it is not
enough to know the dependency of the effect on the input
variables, we also need to reason about intermediate depen-
dent nodes. This requirement is difficult to carry over to
a database setting, where we care about the semantics of a
query rather than a particular query plan. Our approach
is to represent a causal network with two appropriate func-
tions that semantically capture the causal dependencies of a

3

11	

Fig_OverviewFigureFC	 12-‐21-‐2009	

...
	

...
	

X1 =x0
1

Xn =x0
n

�X �Y (�x0)

...
	

...
	 ...
	

...
	

�S

...
	

Xi =x0
i Yj(�x0)

cause effect

Figure 4: FC framework: the causal network is par-
titioned into the input variables ~X with cause under
consideration Xi, and dependent variables ~Y with
effect variable Yj. Support ~S ⊆ ~X \ {Xi} corresponds
to permissive contingency from the HP framework.

network. The two key notions we need for that are potential
functions and dissociation expressions.

Figure 4 represents a causal network in our framework.
In contrast to the HP approach, only input variables from
~X can be causes and part of permissive contingencies. As
in the HP approach, every dependent node Y is described
by a structural equation FY , which assigns a truth value
to Y based on the values of its parents. The Boolean for-
mula ΦY of Y defines its truth assignment based on the
input variables ~X, and is constructed by recursing through
the structural equations of Y ’s ancestors. For example, in
Fig. 2b, ΦY (~X) = A ∨ (Ā ∧ B), where ~X = {A,B}. We

denote as Φ(~X) = ΦYj (~X), where Yj is the effect node, and
we say that the causal network has formula Φ. The potential
function PΦ is then simply the unique multilinear polyno-
mial representing Φ. It is equal to the probability that Φ is
true given the probabilities of its input variables.

Definition 2.7 (Potential Function). The potential

function PΦ(~x) of a Boolean formula Φ(~X) with probabilities
~x = {x1, . . . , xk} of the input variables is defined as follows:

PΦ(~x) =
∑

~ε→{0,1}k

(
k∏

i=1

xεii

)
Φ(~ε), xεii =

{
xi if εi =1
1− xi if εi =0

The potential function is a sum with one term for each
truth assignment ~ε of variables ~X. Each term is a product
of factors of the form xi or 1−xi and only occurs in the sum
if the formula is true at the given assignment (Φ(~ε) = 1).
For example, if Φ = X1∧(X2∨X3) then PΦ = x1x2(1−x3)+
x1(1−x2)x3+x1x2x3, which simplifies to x1(x2+x3−x2x3).

We ground our framework on potential functions because
they allow us to extend functional causes to probabilistic
databases, a topic that we briefly discuss in Sect. 6. For the
deterministic settings of this paper, we use delta notation to
denote changes ∆P in the potential function due to changes
in the inputs: Given an actual assignment ~x0 and a subset of
variables ~S, we define ∆PΦ(~S) := PΦ(~x0)−PΦ(~x0⊕~S), where

~x0⊕ ~S (denoting XOR) indicates the assignment obtained by

starting from ~x0 and inverting all variables in ~S.
We use dissociation expressions (DE) to semantically cap-

ture differences in causality between networks with logically
equivalent boolean formulas (e.g. Fig. 2):

Definition 2.8 (Dissociation Expression). A disso-
ciation expression with respect to a variable X0 is a Boolean

expression defined by the grammar:

Ψ ::=X ∈ ~X

Ψ ::=σ(Ψ1,Ψ2, . . . ,Ψk),

X0 ∈ V (Ψi) ∪ V (Ψj)⇒ V (Ψi) ∩ V (Ψj) ⊆ {X0}

where V (Ψi) is the set of input variables of formula Ψi.

Dissociation expressions allow us to semantically capture
with a boolean formula the effect of a variable along dif-
ferent network paths, by disallowing a variable from being
combined with X0 in more than one subexpression. For ex-
ample, in the network of Fig. 5a, variable A contributes to
the causal path of B at two locations. This “independent”
influence can be represented by the dissociation expression
Ψ = A1 ∨ (Ā2 ∧ B), which essentially separates A into two
variables. Ψ′ = A∨(Ā∧B) is not a valid DE with respect to
B, because for its subexpressions, Ψ′1 = A and Ψ′2 = Ā∧B,
it is B ∈ V (Ψ′1) ∪ V (Ψ′2) but V (Ψ′1) ∩ V (Ψ′2) = {A}6⊆{B}.
Note however that Ψ′ is a DE w.r.t A, as no variable is
combined with A in more than one subexpression.

We demonstrate how Ψ captures semantically the net-
work structure: to check actual causality of B in the net-
work of Fig. 5a, we need to determine the value of Y for
a setting {A = 0, B = 1} while forcing Y1 to its original
value, as part of condition AC2(b). The dissociation expres-
sion Ψ(A1, A2, B) = A1 ∨ (Ā2 ∧B), with potential function
PΨ(a1, a2, b) = a1+b−a1b−a2b+a1a2b, allows us to perform
the same check by simply computing PΨ(0, 1, 1). In this case
PΨ(0, 1, 1) = 0 6= PΨ(1, 1, 1), which was the original variable
assignment, meaning that the change in assignment altered
values on the causal path.

To link dissociation expressions to a boolean formula of a
causal network, we define expression folding.

Definition 2.9 (Expression Folding). Given function

f : ~X ′ → ~X mapping variables ~X ′ to ~X, the folding (F , f)

of a dissociation expression Ψ(~X ′) defines a formula Φ =
F (Ψ), s.t:

Ψ ::= X′ ⇒ F(X) = f(X′)

Ψ ::= σ(Ψ1,Ψ2, . . . ,Ψk)⇒ F(Ψ) = σ (F(Ψ1),F(Ψ2), . . . ,F(Ψk))

For example, f({A1, A2, B}) = {A,A,B} defines a folding
F from Ψ = A1∨(Ā2∧B) to the formula Φ = A∨(Ā∧B). In
simple terms, a DE Ψ with a folding to Φ, is a representation
of Φ in a larger space of input variables. The use of more
inputs captures the distinct effect of variables on the causal
path, thus providing the necessary network semantics. We
use |Ψ| to denote the cardinality of the input set of Ψ. Then
|Ψ| ≥ |Φ|, and if |Ψ| = |Φ| then Ψ = Φ.

Theorem 2.10 (DE Minimality). If D the set of all

DEs w.r.t. X0 ∈ ~X with a folding to Φ(~X), then ∃ unique
Ψi ∈ D of minimum size: |Ψi| = min

Ψ∈D
|Ψ| and ∀j 6= i,

|Ψj | = |Ψi| ⇒ Ψj = Ψi.

The DE of minimum size replicates those variables, and only
those variables, that affect the causal path at more than one
location. It is simply called the dissociation expression of Φ,
and can be represented as a network (dissociation network of

Φ), with input nodes ~Xt (Fig. 5b). A folding maps ~Xt back

to the original input variables: ~X = f(~Xt). The reverse

mapping is denoted ~Xt = [~X]t = {Xi | f(Xi) ∈ ~X}.

4

3	

Fig_TreeTransforma4on1	 12-‐8-‐2009	

A=1

B=1 Y1 =ĀB

Y =A∨ĀB

(a)

4	

Fig_TreeTransforma4on2	

A1 =1

A2 =1

B=1 Y1 =Ā2B

12-‐8-‐2009	

Y =A1∨Ā2B

(b)

Figure 5: A causal network CN (a) and its dissocia-
tion network DN (b) with respect to B.

Definition 2.11 (Functional Cause). The event
Xi =x0

i is a cause of φ in a causal model iff:

FC1. Both Xi =x0
i and φ hold under assignment ~x0

FC2. Let PΦ and PΨ be the potential functions of Φ and
its DE w.r.t. Xi, respectively. There exists a sup-
port ~S ⊆ ~X\{Xi}, such that:

(a) ∆PΦ(~S,Xi) 6= 0

(b) ∆PΨ(~S′t) = 0, for all subsets ~S′t ⊆ [~S]t

Here, ∆PΦ(~S,Xi) denotes ∆PΦ(~S∪Xi). Condition FC2(b)
is analogous to AC2(b) of the HP definition, which requires
checking that the effect does not change for all possible com-
binations of setting the dependent nodes to their original
values. Similarly, FC ensures that no part of the changed
nodes (the support ~S) is counterfactual in the dissociation
network. Note that the functional causality definition does
not have a minimality condition (equivalent to AC3), as it
is directly applied to single literals. As implied by [9] and
[12], only primitive events can be causes when dealing with
input variables, and therefore a minimality condition is not
necessary.

Intuition. The definition of functional causes captures
three main points: (i) a counterfactual cause is always a
cause, (ii) if a variable is not counterfactual under any pos-
sible assignment of the other variables, then it cannot be a
cause, and (iii) if X = x0 is a counterfactual cause under

some assignment that inverts a subset ~S of the other vari-
ables, then no part of ~S should be by itself counterfactual.

We revisit the rock thrower example to demonstrate how
FC (like AC) can handle preemption. In Sect. 3.2 and
Sect. B.1, we show how functional causality successfully han-
dles cases where the HP definition does not give the intu-
itively correct result, as in Example 2.6 (Shock C).

Example 2.12 (two throwers revisited). The min-
imal dissociation expression for Φ = A∨(Ā∧B) with respect
to B is Ψ = A1 ∨ (Ā2 ∧B), and is depicted in Fig. 5. Then:

PΦ = a+ b− ab
PΨ = a1 + b− a1b− a2b+ a1a2b

For ~S = {A}, ∆PΦ(B, ~S) 6= 0. If (F, f) the folding of Ψ

into Φ, then [~S]t = {A1, A2}, and ∆PΨ(A1) 6= 0, so B is
not a cause.

Hence, the definition of functional causes effectively cap-
ture the difference between the two networks for the two
thrower example (Fig. 2) while only focusing on the input
nodes. In the case of the simple network, PΦ = PΨ and
for ~S = {A}, B can be shown to be a cause. However,
in the more complicated network, the potential function of
the dissociation expression gives priority to A’s throw and
determines that B is not a cause of the bottle breaking.

If the causal network is a tree, then the causal formula
is itself a dissociation expression with potential PΦ. Then,
(FC2) simplifies to: (a) ∆PΦ(~S,Xi) 6= 0 and (b) ∀~S′ ⊆ ~S :

∆PΦ(~S′) = 0. Causal networks which are trees form an im-
portant category of causality problems as they model many
practical cases of database queries, and they are character-
ized by desirable properties, as we show in Sect. 3.4.

Responsibility. Responsibility is a measure for degree
of causality, first introduced by Chockler and Halpern [6].
We redefine it here for functional causes.

Definition 2.13 (Responsibility). Responsibility ρ of

a causal variable Xi is defined as 1

|~S|+1
where ~S the mini-

mum support for which Xi is a functional cause of an effect
under consideration. ρ := 0 if Xi is not a cause.

Responsibility ranges between 0 and 1. Non-zero responsi-
bility (ρ > 0) means that the variable is a functional cause,
ρ = 1 means it is also a counterfactual cause.

3. FORMAL PROPERTIES
Functional causality encodes the semantics of causal struc-

tures with the help of potential functions which are depen-
dent only on the input variables. In this section we demon-
strate that reasoning in terms of functional causality pro-
vides a more powerful and robust way to reason about causes
than actual causality. In addition, we give a transitivity re-
sult and use it to derive complexity results for certain types
of causal network structures.

3.1 CC ⊆ FC ⊆ AC
Functional causes are a refined notion of actual causes.

Even though the definition of AC does not exclude depen-
dent variables, functional causality does not consider them
as possible causes, as their value is fully determined from
the input variables. The relationship of functional causality
of input variables to actual and counterfactual causality is
demonstrated in the following theorem.

Theorem 3.1 (CC-FC-AC Relationship). Every X =
x0 that is a counterfactual cause is also a functional cause,
and every X = x0 that is a functional cause is also an actual
cause.

As we have seen with the Shock C example (Example 2.6),
the HP definition of actual causes is too permissive and de-
termines variables to be causes which should intuitively not
be such. The definition of functional causality fixes these
problems. Appendix B.1 gives a detailed treatment of the
Shock C example, both from FC and AC perspectives, and
also provides insight into the problems of actual causality.

3.2 Causal Network Expansion
Functional, as well as actual causes, rely on the causal

network to model a given problem. The two different models
of the thrower example displayed in Fig. 2 demonstrate that
changes in the network structure can help model priorities
of events, which in turn can redefine causality of variables.

In Example 2.5, B is removed as a cause by the addition
of an intermediate node in the causal network structure that
models the preemption of the effect by node A (Alice’s rock
is the one that breaks the bottle). This change is also visible
in the causal Boolean formula, which is transformed from
Φ = A∨B to Φ1 = A∨ (Ā∧B). As we know from Boolean

5

7	

Fig_HPproblem1simple	 12-‐9-‐2009	

A=1

B=1
Y =Y1∨B

Y1 =A∨B̄

(a)

6	

Fig_HPproblem1	 12-‐9-‐2009	

A=1

B=1
Y =Y1∨Y2

Y1 =A∨B̄

Y2 =B

(b)

Figure 6: Expansion can cause problems for the HP
definition: Introducing node Y2 in (b), which merely
repeats the value of B, does not change function
Y (~X), but makes A an actual cause.

algebra, the two formulas are equivalent as they have the
same truth tables. However, they are not causally equivalent,
as they yield different causality results.

Therefore, the grammatical form of the Boolean expres-
sion is important in determining causality, and the fun-
ctional definition captures that through dissociation expres-
sions. It is important to understand how changes in the
causal network affect causality, and whether we can state
meaningful properties for those changes.

We define causal network expansion in a standard way by
the addition of nodes and/or edges to the causal structure.
A network CNe with formula Φe is a node expansion (re-
spectively edge expansion) of CN with formula Φ if it can
be created by the addition of a node (respectively edge) to
CN, while Φe ≡ Φ. CNe is a single-step expansion if it is
either a node or an edge expansion of CN.

Definition 3.2 (Expansion). A network CNe is an ex-
pansion of network CN iff ∃ set {CN1,CN2, . . . ,CNk} with
CN1 = CN and CNk = CNe, such that CNi+1 is a single
step expansion of CNi, ∀i ∈ [1, k].

Networks represented by the formulas Φ1 = A∨ (Ā∧B) and
Φ2 = (A ∧ B̄) ∨ B are both expansions of Φ = A ∨ B, but
note that Φ1 and Φ2 are not expansions of one another.

As shown by the thrower example, network expansion can
remove causes. As the following theorem states, it can only
remove, not add causes.

Theorem 3.3. If CNe with formula Φe is an expansion
of CN with formula Φ and Xi = x0

i is a cause in φe then
Xi = x0

i is also a cause in φ.

Specifically in the case where no negation of literals is
allowed, changes to the structure do not affect the causality
result.

Theorem 3.4. If CNe with formula Φe is an expansion of
CN with formula Φ that does not contain negated variables
then φ and φe have the same causes.

The properties of formula expansion are important, as
they prevent unpredictability due to causal structure changes.
Note that the Halpern and Pearl definition does not handle
formula expansion as gracefully. Figure 6 demonstrates with
an example that the HP definition allows introducing new
causes with expansion. A = 1 is not a cause in the simple
network of Fig. 6a but becomes causal after adding node Y2

in Fig. 6b. Therefore, network expansion is unpredictable
for actual causes, as there are examples where it can both
remove (Fig. 2) or introduce new causes (Fig. 6). This is a

strong point for our definition, as causality is tied to the net-
work structure, and erratic behavior due to minor structure
changes, as is the case in this example, is troubling.

3.3 Functional causes and transitivity
Functional causality only considers input nodes in the

causal network as permissible causes for events1. Under this
premise, the notion of transitivity of causality is not well-
defined, since dependent variables (such as B in the Shock
C example 2.6) are never considered permissible causes of
events in their descendants. In order to ask the question of
transitivity, we allow a dependent variable Y1 to become a
possible cause in a modified causal model M ′ with Y1 as ad-
ditional input variable. We achieve this with the help of an
external intervention [Y1 ← y0

1], setting the variable to its

actual value y0
1 . The new model is then M ′ = (~N,F ′) with

modified structural equations F ′ = F\{FY1}∪{F ′Y1
}, where

F ′Y1
= y0

1 , and hence new input variables ~X ′ = (~X, Y1) with

original assignment ~x′0 = (~x0, y0
1).

We can now ask the question of transitivity as follows:
Assume that an assignment X = x0 is a cause of Y1 = y0

1

in a causal model M . Further assume that Y1 = y0
1 is a

cause of Y2 = y0
2 in the modified network [Y1 ← y0

1]. Is
then X = x0 a cause of Y2 = y0

2 in the original network
M? In agreement with recent prevalent (yet not undisputed)
opinion in causality literature [15, 22], functional causality
is not transitive, in general.

Corollary 3.5 (Non-transitivity). Functional cau-
sality is not transitive, in general.

Consider again the shock C example 2.6. A=1 is a functio-
nal cause of B= 1, and B= 1 is a functional cause of C= 1
in the modified model [B ← 1]. However, A =1 is not a
functional cause of C=1 (see Sect. B.1 for details).

Intransitivity of causality is not uncontroversial [19] and
humans generally feel a strong intuition that causality should
be transitive. It turns out that functional causality is actu-
ally transitive in an important type of network structure
that relates to this intuition: Transitivity holds if there is
no causal connection between the original cause (X) and
the effect (Y2) except through the intermediate node (Y1).
This property allows us to deduce a lower complexity for
determining causality in restricted settings in Sect. 3.4.

Definition 3.6 (Markovian). A node N is Markovian
in a causal network CN iff there is no path from any ancestor
of N to any descendent of N that does not pass through N .

Proposition 3.7 (Markovian transitivity). Given a
causal model M in which X=x0 is a cause of Y1 = y0

1 with
responsibility ρ1, and in which Y1 is Markovian. Further as-
sume that Y1 =y0

1 is a cause of Y2 =y0
2 with responsibility ρ2

in the modified causal model [Y1 ← y0
1]. Then X = x0 is a

cause of Y2 =y0
2 in M with responsibility

ρ = (ρ−1
1 + ρ−1

2 − 1)−1

1This restriction avoids dealing with problematic, inconsis-
tent assignments of variables, which turns out to be one prin-
cipal reason why the HP definition gives counter-intuitive
results. See Appendix B.1 for a detailed discussion.

6

3.4 Complexity
Analogous to Eiter and Lukasiewicz’s result that deter-

mining actual causes for Boolean variables is NP-hard [9],
determining functional causality is also NP-hard, in general.

Theorem 3.8 (Hardness). Given a Boolean formula Φ
on causal network CN and assignment ~x0 of the input vari-
ables, determining whether Xi = x0

i is a cause of φ = Φ(~x0)
is NP-hard.

Even though determining functional causality is hard, there
are important cases that can be solved in polynomial time.

Trees. If the causal network is a tree, then the dissociation
network is the same as the causal network and there is a
single potential function. Determining causality on a tree
can be simplified, as a result of the Markovian transitivity
property Prop. 3.7 and the fact that all nodes in a tree are
Markovian.

Lemma 3.9 (Causality in Trees). If Xi = x0
i is a

cause of the output node Y in a tree causal network, and
~p = {X,Y1, Y2, . . . , Y } the unique path from X to Y , then
every node in ~p is a functional cause of all of its descendants
in ~p. Consequently, X is a cause of all Yi ∈ ~p.

Following from Lemma 3.9, causality in cases of tree-
shaped causal structures with bounded arity (number of par-
ents per node) is decidable in polynomial time.

Theorem 3.10 (Trees with arity ≤ k). Given a tree-
shaped causal network with formula Φ and bounded arity
and actual assignment ~x0 of the input variables, determi-
ning whether Xi = x0

i is a cause of φ = Φ(~x0) is in P.

An even better result is given by Theorem 3.11, that cov-
ers the case of causal structures where the function at every
node is a primitive boolean operator (AND, OR, NOT), without
any restrictions on the arity.

Theorem 3.11 (Trees with Primitive Operators).
Given a tree causal network with formula Φ where the func-
tion of every node is a primitive boolean operator, i.e. AND,
OR, NOT, and assignment ~x0 of the input variables, determi-
ning whether Xi = x0

i is a cause of φ = Φ(~x0) is in P.

As demonstrated by Olteanu and Huang in [25], the lin-
eage expressions of safe queries do not have repeated tuples.
Lineage expressions for conjunctive queries with no repeated
tuples correspond to causal networks that are trees. Follow-
ing directly from Theorem 3.11, we get complexity results
for safe queries.

Corollary 3.12 (Causes of Safe Queries). Deter-
mining the causes of safe queries can be done in polynomial
time.

In these tractable cases, due to the transitivity property,
responsibility can also be computed in polynomial time, us-
ing the formula of Prop. 3.7.

Positive DNF and CNF. Another important category of
tractable networks are those that correspond to DNF and
CNF formulas with no negated literals. This category covers
important cases of join queries in a database context.

N(ews feeds)
nid story source
1 ... schools celebrate Indiana’s birthday ... IndyStar
2 ... economic downturn affected sensitive ... NYTimes
3 ... with sequences shot in Indianapolis ... IndyStar
4 ... House Approves Bill That Would Ease ... NYTimes
5 ... new Bill approved yesterday ... IndyStar
6 ... PODS held in Indianapolis this year ... NYTimes
7 ... discussed in a recent talk the options to ... NYTimes
8 ... Swine Flu Death Toll at 10,000 Since ... NYTimes
9 ... Indianapolis welcomes SIGMOD/PODS ... IndyStar

F(iltered feed)
story
... schools celebrate Indiana’s birthday ...
... economic downturn affected sensitive ...
... with sequences shot in Indianapolis ...
... House Approves Bill That Would Ease ...
... PODS held in Indianapolis this year ...
... discussed in a recent talk the options to ...
... Swine Flu Death Toll at 10,000 Since ...

Figure 7: News feed with aggregated data from dif-
ferent sources (above), the filtered feed (below).

Theorem 3.13 (Positive DNF). Given a positive DNF
formula Φ and assignment ~x0 of the input variables, deter-
mining whether Xi = x0

i is a cause of φ = Φ(~x0) is in
PTIME.

Theorem 3.14 (Positive CNF). Given a positive CNF
formula Φ and assignment ~x0 of the input variables, deter-
mining whether Xi = x0

i is a cause of φ = Φ(~x0) is in
PTIME.

4. EXPLAINING QUERY RESULTS
In this section, we show how causality can be applied to

address examples from the database literature, like prove-
nance and “Why Not?” queries, as well as examples show-
casing causality of aggregates. We also demonstrate how our
causality framework can model different types of elements
that can be considered contributory to a query result, like
query operations instead of tuples.

4.1 Why So? and Why No?
We revisit our motivating example (Example 1.1), but in-

troduce a slight variation that aggregates data from different
news sources to demonstrate how functional causality can be
used to answer Why So? and Why No? questions.

Example 4.1 (News aggregator). A user has access
to the News feed relation N, depicted in Fig. 7. N contains
news articles from two different sources, the NY Times and
the local IndyStar. The user likes to read the local news
from IndyStar, but she prefers the NY Times with regards
to broader US or world news. Hence, she does not want to
read on topics from IndyStar that are also covered by NY
Times. Her filtered feed is constructed by the query

select N.story

from N

where N.source=‘NYTimes’

or not exists (

select *

from N as N1

where topic(N1.story)=topic(N.story)

and N1.source=‘NYTimes’)

7

where topic() is a topic extractor modeled as a user-defined
function. The user’s filtered feed will contain stories from
NY Times, and only those stories from IndyStar that NY
Times does not cover. Simply, if SNY is an article in NY
Times covering a topic, and SI an article in IndyStar about
the same topic, whether the user will see this topic in her
feed or not follows a causal model similar to that of Fig. 5a,
with boolean formula Φ = SNY ∨ (S̄NY ∧ SI). The topic
appears in F if it appears in either NY Times or IndyStar,
but the first gets priority.

When asking what is the cause of getting an article on
Indiana’s birthday, the user gets tuple 1 from relation N, as
it is counterfactual. When asking what is the cause of seeing
an article on PODS, she gets the NY Times article (tuple
6), even though IndyStar also had a story about it (tuple 9).
The analysis is equivalent to the rock thrower example.

The framework can be used in a similar fashion to respond
to“Why No?” questions. Assume tuple t10 =(10,’... im-

migration officials arrest 300...’,NYTimes), which was
present in yesterday’s news feed, but was since then re-
moved. Tuple t10 is a functional cause to the Why No?
question: “Why do I not see news on immigration”, as it is
counterfactual. Its removal from the feed caused the absence
of immigration topics in the user’s filtered view.

4.2 Aggregates
We next show how functional causality can be applied to

determine causes and responsibility for aggregates. We focus
here only on positive integers and give complexity results for
Why so? and Why no? for Why is SUM ≥ c? and Why
is SUM 6≥ c?.

Notation. Let Ω ∈ {SUM, MAX, AVG, MIN, COUNT} be an ag-

gregate function Ω(~V) evaluated over a multiset of values ~V
from the domain of positive integers, i.e. vi ∈ N. Consider
a view R with a certain attribute A over which we evalu-
ate the aggregate function. Let ~T be a tuple universe under
consideration (i.e. a set of tuples which we consider possible
or, simply, the cross product of the active domains for each
attribute in R), ~T+ ⊆ ~T the subset of tuples that is in R (i.e.

that is true under current assignment) and ~T− = ~T − ~T+

be those tuples from the tuple universe which are missing
(i.e. who are false under current assignment). Denote ~X the
vector of Boolean variables where Xi is true or false de-
pending on whether the corresponding tuple ti ∈ T is in T+

or not. We write Ω(~X) as notational shortcut for Ω evalu-

ated over the subset of ~V + ⊆ ~V for which the corresponding
Boolean value is true: ~V + = {vi | vi ∈ V ∧ xi = 1}. For
example, SUM(~x0) can stand for the query select SUM(R.A)

from R if R contains tuples with values from ~V in the at-
tribute R.A. Let op ∈ {≥, >,≤, <,=, 6=}. An aggregate con-
dition ω0 op c for a given constant c is a Boolean expression
that is true or false for given assignment ~x0.

Definition 4.2 (Why so? and Why no?). Let ω0 =
Ω(~x0) be the value of an aggregate function for current as-
signment ~x0. The question of Why so? (respectively, Why
no?) for a condition ω0 op c that is true (respectively, false)
under the current assignment corresponds to the question of
which set of tuples {ti} from the tuple universe with original
assignment x0

i = 1 (respectively, 0) is a cause of the event
φ =

(
ω0 op c = true

)
(respectively, false) with responsibil-

ity ρi.

R
A

t2 20 x2 =1
t3 30 x3 =1
t5 100 x5 =1
SUM 150

T −R
A

t1 10 x1 =0
t4 50 x4 =0

(a)

Why SUM(~x0)≥ Why SUM(~x0) 6≥

ti x0
i 20 30 40 60 130 160 180 210 220

t1 0 − − − − − 1 − 1
2
−

t2 1 1
3
− 1

2
− − − − − −

t3 1 1
3

1
2

1
2
− 1 − − − −

t4 0 − − − − − 1 1 1
2
−

t5 1 1
3

1
2

1
2

1 1 − − − −

(b)

Figure 8: Sum example. (a): Relation R with tuples

from tuple domain ~T . (b): Responsibility ρi of ti for
Why so? (SUM(~x0)≥c) and Why no? (SUM(~x0) 6≥c).

Example 4.3 (Sum example). Consider a tuple universe
~T = [(10), (20), (30), (50), (100)] and a view R(A) with the

subset of tuples ~R = {(20), (30), (100)}. Now consider the
query select SUM(R.A) from R executed over the view R
which returns 150. In our notation, this is represented with
a vector ~V = [10, 20, 30, 50, 100], current assignment ~x0 =
[0, 1, 1, 0, 1], and SUM(~x0) = 150 (see Fig. 8a).

Why SUM ≥ c?: t3 is a cause of SUM(~x0) ≥ 30 with re-
sponsibility 1

2
. FC2(a): SUM(~x1) 6≥ 30 for ~x1 = [0, 1, 0, 0, 0].

FC2(b): SUM(~x1∗) ≥ 30 for every assignment ~x1∗ with x1∗
3 =

1 and any subset of {x1
5 = 0} inverted to its original assign-

ment. In contrast, t2 is not a cause: While FC2(a) holds for
~x1 = [0, 0, 0, 1, 0] with SUM(~x1) 6≥ 30 (and then t2 would be
counterfactual), FC2(b) is not fulfilled for ~x1∗ = [0, 1, 0, 0, 0].
Why SUM 6≥ c?: t4 is a cause of

(
SUM(~x0) ≥ 180

)
= false,

as both x4 and the condition are false under current assign-
ment, but would hold for ~x1 = [0, 1, 1, 1, 1].

Figure 8b shows responsibility for different values of con-
stant c in Example 4.3 and illustrates that responsibility for
SUM is not monotone. In order to compute responsibility
for a tuple ti, one must find the smallest set of tuples that,
when inverted (i.e. either inserted or deleted) make tuple
ti counterfactual for the condition. We next give complex-
ity results for the SUM aggregator and show that evaluating
causality for SUM ≥ c is already hard for one relation.

Lemma 4.4 (Sum possible causes). If a tuple ti is a
cause to a Why SUM ≥ c? (respectively, Why SUM 6≥ c?)
question, then ti is true (respectively, false) under the ac-
tual assignment.

Proposition 4.5 (Why so? = Why no?). Answers to
the question Why SUM ≥ c? for an aggregate condition
(SUM ≥ c) = true are the same as Why SUM 6≥ c? for its
inverse (SUM 6≥ c) = false.

Theorem 4.6 (Sum hardness). Determining Why SUM

≥c? is NP-complete even for one single input relation.

Theorem 4.7 (Sum pseudo-PTIME). Determining re-
sponsibility of a tuple with value v for

(
SUM(~x0) ≥ c

)
= true

for one single input relation allows a pseudo-polynomial time
algorithm O

(
n(ω0 − c+ v)

)
where ω0 = SUM(~x0).

Example 4.8 (News Feed continued). We will now
revisit our motivation example (Example 1.1). The user

8

Author Title Price Publisher
Epic of Gilgamesh $150 Hesperus

Euripides Medea $16 Free Press
Homer Iliad $18 Penguin
Homer Odyssey $49 Vintage
Hrotsvit Basilius $20 Harper
Longfellow Wreck of the Hesperus $89 Penguin
Shakespeare Coriolanus $70 Penguin
Sophocles Antigone $48 Free Press
Virgil Aeneid $92 Vintage

Figure 9: Books in “Ye Olde Booke Shoppe” [4].

may be surprised by the increased occurrence of Indianapolis
in her personalized feed (5 in total) during a certain week,
which is a deviation from the norm. The user can ask a
causality query, “Why are there more than 3 occurrences of
Indianapolis?”. This is a Why So? query about the COUNT

on a join between two tables (N and K). The system can
calculate the responsibilities of the user’s keyword for this
aggregate being more than expected. In this case, the respon-
sibilities for the keywords DB_conf, Purdue and Movies are
1, 1

2
and 1

2
respectively. This is because DB_conf is a cou-

nterfactual cause of COUNT> 3, while the others are causes
with support of size 1. This result is intuitive, as there more
articles with the DB_conf tag (SIGMOD/PODS happening
in Indianapolis), than stories with tags Movies or Purdue.

Similarly, a user may have actually expected to see more
news about Indianapolis than the ones she’s getting: “Why
aren’t there more than 6 stories on Indianapolis?”. The sys-
tem can identify the keyword Indy_500 as a cause, as it is
counterfactual: adding it to the user’s keyword list makes
the COUNT more than 5. Presented with that causality result,
the user may decide to include the new keyword in her feed.

4.3 Causes beyond tuples
Provenance and non-answers commonly focus on tuples

as discrete units that have contribution to a query result.
Our causality framework is not restricted to tuples, but can
model any element that could be considered contributory to
a result. To showcase this flexibility, we pick an example
from Chapman and Jagadish [4] that models operations in
workflows as possible answers to “Why not?” questions.

Example 4.9 (Book Shopper [4], Ex. 1). A shopper
knows that all “window display books” at Ye Olde Booke
Shoppe are around $20, and wishes to make a cheap pur-
chase. She issues the query: Show me all window books.
Suppose the result from this query is (Euripides, “Medea”).
Why is (Hrotsvit, “Basilius”) not in the result set? Is it not a
book in the book store? Does it cost more than $20? Is there
a bug in the query-database interface such that the query was
not correctly translated?

Ye Olde
Books

Select Books
<=$20

Apply Season
Criteria

Window
Books

Workflow input Workflow output
MANIPULATION 1 MANIPULATION 2

Figure 10: Variation of the query workflow from [4].

Chapman and Jagadish consider a discrete component of a
workflow, called manipulation, as an explanation of a “Why

5	

Fig_WhyNotExample1	 12-‐10-‐2009	

M2

M1

Y =M1∧Y1

Y1 =M̄1∨M2

(a)

6	

Fig_WhyNotExample2	 12-‐10-‐2009	

M1,1

M1,2

Y =M1,1∧Y1

M2 Y1 =M̄1,2∨M2

(b)

Figure 11: The causal network of Example 4.9 (a),
and its DN with respect to M2 (b).

not?” query. The workflow describing the query of the ex-
ample is shown in Fig. 10. Roughly, a manipulation is con-
sidered picky for a non-result if it prunes the tuple. For
example, manipulation 1 of Fig. 10 is picky for “Odyssey”,
as it costs more than $20. Equivalently, a manipulation is
frontier picky for a set of non-results, if it is the last in the
workflow to reject tuples from the set. In this framework,
the cause of a non-answer will be a frontier picky manipula-
tion.

In Example 4.9, tuple t =(Hrotsvit, “Basilius”) passes the
price test, but is cut by manipulation 2 as it doesn’t satisfy
the seasonal criteria. The causal network representing this
example is presented in Fig. 11a. Input nodes model the
events: M1: manipulation 1 is not potentially picky with re-
spect to t, and M2: manipulation 2 is not potentially picky
with respect to t. At the end, the tuple appears only if nei-
ther manipulation is picky: M1 ∧M2. Intermediate node Y1

encodes the precedence of the manipulations in the work-
flow. A tuple will be stopped at point Y1 of the workflow
if M2 is picky but M1 was not: M1 ∧ M̄2. It will pass this

point if the opposite holds, so Y1 = M1 ∧ M̄2 = M̄1 ∨M2,
and Y = M1 ∧ Y1.

Applying the FC framework for M1 = 1 (M1 is not picky),
and M2 = 0 (M2 is picky), correctly yields that M2 is the

only cause: ~S = ∅, ∆IΦ(M2) 6= 0. If both manipulations
were potentially picky (M1 = 0 and M2 = 0), the FC defini-
tion again correctly picks M1 as the only cause with support
~S = {M2} (even though M2 is potentially picky, the tuple
never gets to it), which agrees with the Why not? frame-
work that selects as explanation the last manipulation that
rejected the tuple.

5. RELATED WORK
Our work is mainly related and unifies ideas from three

main areas: research on causality, provenance, and missing
query result explanations.

Causality. Causality is an active research area mainly
in logic and philosophy with their own dedicated workshops
(see e.g. [1]). The most prevalent definitions of causality are
based on the idea of counterfactual causes, i.e. causes are ex-
plained in terms of counterfactual conditionals of the form
If X had not occurred, Y would not have occurred. This
idea of counterfactual causality can be traced back to Hume
[22]. The best known counterfactual analysis of causation in
modern times is due to Lewis [18]. In a databases setting,
Miklau and Suciu [23] define critical tuples as those which
can become counterfactual under some value assignment of
variables. Halpern and Pearl [13] (HP in short) define a
variation they call actual causality. Roughly speaking, the
idea is that X is a cause of Y if Y counterfactually depends
on X under “some” permissive contingency, where “some” is

9

elaborately defined. Later, Chockler and Halpern [6] define
the degree of responsibility as a gradual way to assign cau-
sality. Eiter and Lukasiewicz [9] show that the problem of
detecting whether X = x0 is an actual cause of an event
is ΣP

2 -complete for general acyclic models and NP-complete
for binary acyclic models. They also give an alleged proof
showing that actual causality is always reducible to primi-
tive events. However, Halpern [12] later gives an example
for non-primitive actual causes, showing this proof to ignore
some cases under the original definition. Chockler et al. [7]
later apply causality and responsibility to binary Boolean
networks, giving a modified definition of cause which, as we
show in Sect. B.2, introduces new counter-intuitive prob-
lems and, despite claims to be otherwise, is not equal to the
original HP definition of actual cause.

Our definition of functional cause builds upon the HP
definition, but extends it with several desirable properties:
causes are always primitive input variables, network expan-
sion cannot create new causes, and the definition fixes in-
tuitive examples where the HP-definition does not follow
consensus in the causality literature. It is these properties
that allow us to apply our causality framework to a database
setting in Sect. 4.

Provenance. Approaches for defining data provenance
can be mainly divided into three categories: how, why, and
where provenance [3, 5, 8, 10]. In particular for the “why so”
case, we observe a close connection between provenance and
causality, where it is often the case that tuples in the prove-
nance for the result of a positive query result are causes.
While none of the work on provenance mentions or makes
direct connections to causality, those connections can be
found. The work by Buneman et al. [3] makes a distinc-
tion between why and where provenance that can be con-
nected to causality as follows: why provenance returns all
tuples that can be considered causes for a particular result,
and where provenance returns attributes along a particular
causal path. Green et al. [10] present a generalization for all
types of provenance as semirings; finding functional causes
in a Boolean tree, if taken in a provenance context, yields
degree-one polynomials for provenance semirings. View data
lineage, as presented by Cui et al. [8] also addresses aggre-
gates but lacks a notion of graded contribution and returns
all tuples that contribute to an aggregate.

In contrast, our approach can rank tuples according to
their responsibility, hence our approach allows to determine
a gradual contribution with counterfactual tuples ranked
first. Also, in contrast to our paper, most of the work on
provenance has little or no connection to the philosophical
groundwork on causality. We take this work and signifi-
cantly adapt it so that it can be applied to databases.

Missing query results. Very recent work has focused
on the question “why no”, i.e. why is a certain tuple not
in the result set? The work by Huang et al. [17] presents
provenance for potential answers and never answers. In the
case that no insertions or modifications can yield the desired
result - usually for privacy or security reasons - the system
declares that particular tuple a never answer. Both Huang’s
work and Artemis [14] handle potential answers by provid-
ing tuple insertions or modifications that would yield the
missing tuples. Alternatively, Chapman and Jagadish [4] fo-
cus on which manipulation in the query plan eliminated a
specific tuple. Lim et al. [20] adopt a third, explanation-
based, approach. This approach aims to answer questions

such as why, why not, how to, and what if for context-aware
applications, but does not address a database setting.

Our work, unifies the above approaches in the sense that
we model both, tuples or manipulations as possible causes
for missing query answers. Also, our approach unifies the
problem of explaining missing query answers (why is a tuple
not in the query result) with work on provenance (why is a
tuple in the query result).

Other. Minsky and Papert initiated the study of the
computational properties of Boolean functions using their
representation by polynomials and call this the arithmetic
instead of the logical form [24, p.27]. This method was later
successfully used in complexity theory and became known
as arithmetization [2].

6. CONCLUSIONS AND FUTURE WORK
In this paper, we defined functional causes, a rigorous

and extensible definition of causality encoding the seman-
tics of causal structures with the help of powerful potential
functions. Through theoretical analysis of its properties, we
demonstrated that our definition provides a more powerful
and robust way to reason about causes than other estab-
lished notions of causality. Albeit NP-hard in the general
case, common categories of causal networks that correspond
to interesting database examples (e.g. safe queries) prove to
be tractable. We presented several database examples that
portrayed the applicability of our framework in the context
of provenance, explanation of non-answers, as well as aggre-
gates. We demonstrated how to determine causes of query
results for SUM and COUNT aggregates, and how these can be
ranked according to the causality metric of responsibility.

Overall, with this work we establish the theoretical foun-
dations of causality theory in the database context, which
we view as a unified framework that deals with query result
explanations. It also brings forth many interesting problems
that can be explored in future work.

This paper focused on deterministic cases; we plan to ex-
tend our framework to probabilistic data in the future. The
fact that functional causes are based on the use of potential
functions makes this extension straightforward: the set of
Boolean variables ~X for tuples in the deterministic case be-
comes a set of probabilities ~x. Note that this would not be
possible if the causality definition had used just the Boolean
formulas. Potential functions also have the additional ad-
vantage that they can be analytically manipulated as op-
posed to Boolean functions. We currently investigate the
properties of their derivatives with the intuition that they
reveal another facet of causality, particularly with regard to
aggregates and probabilities.

Acknowledgements. We like to thank Christoph Koch
for valuable insights, and Chris Ré for helpful discussions in
early stages of this project.

10

7. REFERENCES
[1] International multidisciplinary workshop on causality. IRIT,

Toulouse, June 2009. http://www.irit.fr/MICRAC/colloque/

articles/extended_abstract_Micrac.pdf.
[2] L. Babai and L. Fortnow. Arithmetization: A new method in

structural complexity theory. Computational Complexity,
1:41–66, 1991.

[3] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In ICDT, 2001.

[4] A. Chapman and H. V. Jagadish. Why not? In SIGMOD,
2009.

[5] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends in
Databases, 1(4):379–474, 2009.

[6] H. Chockler and J. Y. Halpern. Responsibility and blame: A
structural-model approach. J. Artif. Intell. Res. (JAIR),
22:93–115, 2004.

[7] H. Chockler, J. Y. Halpern, and O. Kupferman. What causes a
system to satisfy a specification? ACM Trans. Comput. Log.,
9(3), 2008.

[8] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of
view data in a warehousing environment. ACM Trans.
Database Syst., 25(2):179–227, 2000.

[9] T. Eiter and T. Lukasiewicz. Complexity results for
structure-based causality. Artif. Intell., 142(1):53–89, 2002.
Conference version in IJCAI, 2002.

[10] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, 2007.

[11] N. Hall. Two concepts of causation. In J. Collins, N. Hall, and
L. A. Paul, editors, Causation and Counterfactuals. MIT
Press, 2004.

[12] J. Y. Halpern. Defaults and normality in causal structures. In
KR, 2008.

[13] J. Y. Halpern and J. Pearl. Causes and explanations: A
structural-model approach. Part I: Causes. Brit. J. Phil. Sci.,
56:843–887, 2005. Conference version in UAI, 2001.

[14] M. Herschel, M. A. Hernández, and W. C. Tan. Artemis: A
system for analyzing missing answers. PVLDB,
2(2):1550–1553, 2009.

[15] C. Hitchcock. The intransitivity of causation revealed in
equations and graphs. The Journal of Philosophy,
98(6):273–299, 2001.

[16] M. Hopkins and J. Pearl. Clarifying the usage of structural
models for commonsense causal reasoning. In In Proceedings
of the AAAI Spring Symposium on Logical Formalizations of
Commonsense Reasoning, 2003.

[17] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the
provenance of non-answers to queries over extracted data.
PVLDB, 1(1):736–747, 2008.

[18] D. Lewis. Causation. The Journal of Philosophy,
70(17):556–567, 1973.

[19] D. Lewis. Causation as influence. The Journal of Philosophy,
97(4):182–197, 2000.

[20] B. Y. Lim, A. K. Dey, and D. Avrahami. Why and why not
explanations improve the intelligibility of context-aware
intelligent systems. In CHI, 2009.

[21] M. McDermott. Redundant causation. The British Journal for
the Philosophy of Science, 46(4):523–544, 1995.

[22] P. Menzies. Counterfactual theories of causation. Stanford
Encylopedia of Philosophy, 2008.

[23] G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. In SIGMOD, 2004.

[24] M. L. Minsky and S. Papert. Perceptrons - expanded edition:
An introduction to computational geometry. MIT Press, 1987.

[25] D. Olteanu and J. Huang. Secondary-storage confidence
computation for conjunctive queries with inequalities. In
SIGMOD, 2009.

[26] J. Pearl. Comment: Graphical models, causality and
intervention. Statistical Science, 8(3):266–269, Aug. 1993.

[27] J. Pearl. Causality: models, reasoning, and inference.
Cambridge University Press, Cambridge, U.K., 2000.

APPENDIX
A. NOMENCLATURE

~N Set of Boolean random variables
~X Set of input variables
~Y Set of dependent variables: ~Y = ~N \ ~X
M = (~N,F) Boolean causal Model with nodes ~N = ~X∪ ~Y and

functional equations F = {FN |N ∈ ~N}. FX for
an input variable X is its actual assignment x0.

~x0, ~y0 Actual truth assignment of input variables, and
resulting truth assignment for dependent vari-
ables: Xi(~x

0) = x0
i , Yi(~x

0) = y0
i

[~S ← ~s1] External intervention replacing the structural

equation FN for each node N in ~S with a truth
assignment n1

CN Causal Network of a causal model

Φ(~X) Boolean formula for the effect in the CN. Corre-
sponds to Yj(~X) for chosen effect variable Yj

φ Effect under consideration. Event of Φ(~X) =
Φ(~x0), i.e. the effect variable having its actual as-
signment φ = (Yj = y0

j)

DE,DN Dissociation Expression, Dissociation Network
t : N1 → N2 Transformation from network N1 to network N2.

t : CN→ DN represents the transformation from
a causal to a dissociation network.

[~V]t Mapping of a set of nodes ~V from network N1 to
N2 under transformation t : N1 → N2

~Xt, ~Yt Sets of Boolean variables in DN : ~Xt = [~X]t and
~Yt = [~Y]t for t : CN→ DN

~x, ~y Sets of functional variables in CN
~xt, ~yt Sets of functional variables in DN
PΦ(~x), PΨ(~xt) Potential functions in CN and DN, respectively
∆PΦ(Xi) Change in potential function by inverting input

Xi: ∆PΦ(Xi) = PΦ(~x0)− PΦ(1− x0
i , ~x

0 \ {xi})
~x0 ⊕ ~S the assignment obtained by starting from ~x0 and

inverting all variables in ~S: {1 − s0i |Si ∈ ~S} ∪
{~x0\~s}

∆PΦ(~S) Change in potential function by inverting all vari-

ables in ~S: ∆PΦ(~S) = PΦ(~x0)− PΦ(~x0 ⊕ ~S)
~S Subset of ~X chosen for condition FC2(b)

[~S]t Set ~St ⊆ ~Xt that corresponds to ~S ⊆ ~X: ~St =

{Xij |Xi ∈ ~S}

B. DETAILS SECTION 2

B.1 Details on AC and FC for Shock C
In Sect. 2.2, we showed that the HP definition of actual

causes incorrectly models A=1 to be a cause of C=1 in the
Shock C example. We also mentioned but did not show that
functional causes can model this example correctly. Here,
we give the details on this issue. In particular, we show
that functional causes can model common sense causality
correctly (i.e. B’s decision to be mean is a cause for C being
shocked) with the help of appropriate policy variables, while
actual causes cannot, even with the help of more complex
network structure2. We then give an intuitive explanation
of why and where the HP definition of actual causes fails.

Note that the Shock C example [21] is an important ex-
ample from the philosophical literature that illustrates that

2Halpern and Pearl stress the importance of careful causal
modeling [13, Sec. 6], implying that actual causes can handle
cases correctly given the appropriately modeled network.

11

http://www.irit.fr/MICRAC/colloque/articles/extended_abstract_Micrac.pdf
http://www.irit.fr/MICRAC/colloque/articles/extended_abstract_Micrac.pdf

causality is not transitive, in general3. When philosophers
[15, 22] and HP [13] argue for intransitivity of causality,
they use examples similar to this one as arguments. Out of
the many examples, Shock C is the most compelling case,
and the HP definition does not model it correctly. When
HP argue for intransitivity of causality, they first have to
tweak this example into some modification [13, Example
4.3] where their definition happens to work correctly. In
contrast, the definition of functional causes does give the
correct attribution of causes given the appropriate network.
Also note that the Shock C example is structurally equiva-
lent to the king-assassin-bodyguard example [22, Sec. 4.3],
another counterexample to the HP definition.

Example B.1 (Shock C - Model 1). In Example 2.6,
we used the causal model in Fig. 12, i.e. structural equations

B = A

C = (A ≡ B) = AB ∨ ĀB̄

under actual assignment A= 1, and hence B= 1, C = 1. In
our notation, the set of input variables is ~X = {A} and the

set of dependent variables ~Y = {B,C}. The effect ϕ under
consideration is C = 1.

10	

Fig_ShockC1	 11-‐30-‐2009	

A=1 C =(A ≡ B)

B=A

Figure 12: Model 1: Simple causal model for the
Shock C example. Both A= 1 and B = 1 are actual
causes, neither of them is a functional cause for C=1.

AC: Here, and contrary to common sense, both A = 1
and B = 1 are actual causes of C = 1: (i) A = 1 is an

actual cause for ~W = {B} with b1 = 1. Then AC2(a) holds:

[A← 0, B← 1] ⇒ ¬φ. Also AC2(b) holds: ~Z \ ~Nc \ {C} is

empty, and C is 1 for either ~W ′= ~W or ~W ′=∅, because of
A←1. (ii) B=1 is an actual cause for ~W =∅.

FC: There is no functional cause of C= 1 as its formula
is a tautology. B is a dependent variable and hence B = 1
not a permissible cause. A is the only input variable. Since
it is not a counterfactual cause and there is no other input
variable to invert for ~S, it is not a functional cause either.

The appropriate intuition is that C = 1 holds no matter
what the assignment of the leaf nodes are. Hence there is
no cause. If we want to model B’s decision to be mean as
a possible cause, we need to model his “intention” with an
appropriate policy variable as shown next.

3Several philosophers have taken issue with the idea of cau-
sality being intransitive (e.g. [19]) as it seems counter intu-
itive at first sight. This resonates with Pearl [27, p. 237]
asking “why transitivity is so often conceived of as an in-
herent property of causal dependence”. He continues: “One
plausible answer is that we normally interpret transitivity
to mean the following: If (1) X causes Y and (2) Y causes Z
regardless of X, then (3) X causes Z.” In Sect. 3.3 we have
formalized this observation and given a concrete Markovian
criterium as sufficient criterium for functional causality to
be transitive.

Example B.2 (Shock C - Model 2). We use the more
elaborate causal model from Fig. 13 with structural equations

B = (M ≡ A) = MA ∨ M̄Ā

C = (A ≡ B) = AB ∨ ĀB̄

under actual assignment ~x0 = {A = 1,M = 1}, and hence
~y0 = {B=1, C=1}. The intuition is that player B now has
the option to be either mean (M = 1) and follow the decision
of A with MA, or not to be mean (M̄ or M=0) and do the
opposite of A, i.e. M̄Ā. The motivation is to introduce
a new leaf policy variable whose actual assignment M = 1
models a permissible modified cause, i.e. B’s decision to be
mean as a leaf node.

12	

Fig_ShockC3	 11-‐30-‐2009	

A=1

M =1

C =(A ≡ B)

B=MA ∨ M̄Ā

Figure 13: Model 2: Causal model with explicit pol-
icy variable M modeling B’s decision to be mean. All
three A= 1, M = 1, and B= 1 are actual causes for C
being shocked according to the HP definition. Only
B’s decision to be mean (M=1) is a functional cause
according to our definition, which arguably better
represents the common sense interpretation.

AC: Here again A = 1 is an actual cause of C = 1. In
addition, M=1 and B=1 are causes. Details are the same
as in Example B.1.

FC: M=1 is a functional cause with responsibility 1 (i.e.
a counterfactual cause) of C=1, but A=1 is not. (i) A=1

is not a functional cause: First try ~S = ∅ (equivalent to
counterfactual cause). ∆PΦ(A) = 0, hence it fails FC2(a).

Second try ~S = {M}. Then FC2(a) holds: ∆PΦ(A,M) 6= 0.
However, FC2(b) fails for S′ = S = {M}: ∆PΦ(M) 6= 0.
Hence, A = 1 is not a functional cause. (ii) M = 1 is a
functional cause with responsibility 1, i.e. a counterfactual
cause. Inverting M when ~S=∅ inverts C.

Intuition for the AC failure and FC success. The
reasons for the HP definition to give undesired results seem
to be twofold: (1) The HP definition allows ~W to be chosen
from any node in the causal network, i.e. including nodes
in the causal path from the alleged cause Xi to the effect
variable Yj ; and (2) it allows to give the actual assignment

n1
k = n0

k to nodes in ~W , i.e. without inverting them. In
contrast, our definition of functional causes makes the fol-
lowing changes: (1) we only consider leaf nodes as possi-

ble contingencies (i.e. to include in ~S). (2) Since we only
consider input nodes, we have some implicit minimality cri-
terion for ~S. If a variable Xk does not have to be inverted
(x1

k = x̄0
k) to make another variable a cause, it does not have

to be included in ~S. (3) We only consider input variables
(i.e. leaf nodes) as permissible causes. This has intuitive,
practical, and also philosophical appeal: an intermediate
dependent variable should not be credited with being cause,
it is rather some decision to follow some structural depen-
dency (i.e. some policy) rather than another that makes an
intermediate node a “visible” cause. As illustrated with Ex-
ample B.2, we can always introduce new policy variables to

12

a network to analyze the causal effects of structural equa-
tions of intermediate nodes4. We used this idea in Sect. 4.3
to showcase the why-not approach from Chapman and Ja-
gadish [4] in Example 4.9. Here, we again use this idea to
explicitly model B’s decision to be mean as an independent
input variable in ~X, and hence a possible functional cause.

B.2 The CHK definition for Boolean Circuits
Chockler, Halpern and Kupferman (CHK from now on)

give a reformulated definition of actual cause for Boolean cir-
cuits with [7, Def. 2.4] and argue that binary acyclic causal
models are equivalent to Boolean circuits, i.e. Boolean causal
networks where intermediate nodes represent the Boolean
operations ∧, ∨, or ¬, and negations occurs only at the level
above the input nodes. As we will show with a simple ex-
ample, this CHK definition of causality for a Boolean circuit
is not equivalent to the original HP definition5.

Example B.3 (Loader [16]). For a firing squad con-
sisting of shooters B and C, it is A’s job to load B’s gun.
In an instance of this problem shown in Fig. 14, A loads B’s
gun (A=1), B does not shoot (B=0), but C shoots (C=1),
and the prisoner dies (Y =1).

Y1 =A∧B

7	

Fig_LoaderShooter	 12-‐28-‐2009	

A=1

C =1

B=0
Y =Y1∨C

Figure 14: A loads B’s gun, but B does not shoot.
C shoots and the prisoner Y dies.

AC: The HP definition (as well as our FC definition)
conclude that A is not a cause. This is in accordance with
our intuition that A cannot be a cause of the prisoner dying
if the gun A loads was not fired.

CHK: The causal network of Fig. 14 corresponds to a
Boolean circuit with only AND/OR gates. According to [7,
Def. 2.4], A is a cause of gate Y if there is an assignment
that makes A “critical”, i.e. counterfactual in our notation.
This assignment exists and is (b1 = 1, c1 = 0). Hence, ac-
cording to the CHK definition, A=1 is a cause for Y =1.

Analysis of the CHK definition. The decisive differ-
ences that the CHK definition makes over the original HP
definition are twofold: (1) The CHK definition does not in-
spect the causal path, i.e. the possible changes that a new
assignment inflicts to the other gates (e.g. here on Y1). (2)

The CHK definition does not check inverting all subsets of ~S.
For example, in the loader example, the prisoner would not
have died for the subset ~S′ = {c1 =0} ⊆ S, which indicates
that A=1 should not be a cause.

While our definition of functional cause also focuses on
the input variables only, we made two crucial modifications
that avoid new problems such as the loader example, and
remedy existing problems of the original HP definition with

4This idea of pushing causes to the input nodes seems to
be implicit in Pearl [26]. Pearl states that “any external
intervention (on a structural function) can be represented
graphically as an added parent node”.
5[7, p. 20:6] implies equality to the Boolean formulation of
Eiter and Lukasiewicz [9] which is not true.

cases such as the the Shock C example: (1) We use dissocia-
tion expressions that allow us to manipulate subsets of dis-
sociated input variables while testing causality, and hence,
manipulate the relevant causal path only. (2) We test for

all subsets of the support ~S, and hence, verify the causal
relevance of the input variable under consideration.

B.3 Expression Folding
Proof Theorem 2.10 (DE Minimality). For all ex-

pressions in D, there exists a folding to Φ. This means that
every Ψ ∈ D is syntactically equivalent with Φ, but may
have one or more instances of variables replaced with new
variables. If ∃Ψ ∈ D such that |Ψ| = |Φ|, then there is a 1
to 1 correspondence of variables from Ψ to Φ and therefore
Ψ = Φ. Assume Ψ ∈ D of minimum size. Obviously, if
|Ψ| = |Φ|, then ∀Ψ′ ∈ D with |Ψ′| = |Ψ|, Ψ′ = Ψ.

We now look at the case where |Ψ| > |Φ|. Assume Ψ,Ψ′ ∈
D of minimum size, so |Ψ| = |Ψ′|. For Φ = σ(Φ1,Φ2, . . . ,Φk),
∃F such that Φi =F(Ψi), where Ψ = σ(Ψ1,Ψ2, . . . ,Ψk), and
∃F ′ such that Φi =F ′(Ψ′i), where Ψ′ = σ(Ψ′1,Ψ

′
2, . . . ,Ψ

′
k).

So F(Ψi) = F ′(Ψ′i). From definition of folding, this holds
for all subexpressions Φi of Φ.

If |Ψ′s| = |Ψs| for all subexpressions Φs of Φ, then Ψ′ =
Ψ. Assume Φs some subexpression of Φ (or Φ itself), such
that ∃i, j such that |Ψs,i| < |Ψ′s,i| and |Ψs,j | > |Ψ′s,j |, while
|Ψs| > |Ψ′s|. Such Φs has to exist because |Ψ′| = |Ψ|. That
means that Ψs 6= Ψ′s.

Construct Ψ∗s = σ(Ψs,1,Ψs,2, . . . ,Ψ
′
s,j , . . . ,Ψs,k). So Ψ∗s

is the same as Ψs, apart from subexpression Ψs,j which is
replaced with Ψ′s,j . Then ∃ folding from Ψ∗s to Φs and |Ψ∗s | <
|Ψs|. This means that the DE Ψ∗ that results from replacing
Ψs with Ψ∗s in Ψ is also a DE for Φ and |Ψ∗| < |Ψ|, which
is a contradiction. Therefore Ψ = Ψ′.

C. DETAILS SECTION 3

C.1 Functional vs Actual Causes
Proof Theorem 3.1 (CC-FC-AC Relashionship). If

Xi = x0
i is a counterfactual cause, then it has functional re-

sponsibility ρ = 1 (for ~S = ∅, ∆PΨ(Xi) 6= 0), and therefore
is a FC.

We will show that every FC is an AC. Obviously, condition
FC1 implies AC1. We need to show that AC2 holds.

If Xi = x0
i is a functional cause of effect φ defined by

Boolean formula Φ(~X), then ∃~S ⊂ ~X\{Xi} s.t. ∆PΨ(Xi, ~S) 6=
0 and ∀~S′t ⊆ [~S]t ∆PΨ(~S′t)=0.

We pick ~Z to be the causal path, and ~W the rest of the
nodes. Assume ~W x = ~W ∩ ~X, ~W y = ~W\ ~W x. We pick

assignment ~wx′ as follows: wx
j
′ = ¬x0

j if Xj ∈ ~S and wx
j
′ =

x0
j otherwise. All nodes in ~W y are descendants of ~W x, so we

assign ~wy ′ as the inferred values from assignment ~wx′. ~w′ =
~wx′ ∪ ~wy ′. From ∆PΨ(Xi, ~S) 6= 0 it follows that Φ(x′i ←
¬x0

i , ~w
′) = ¬φ, so AC2(a) is satisfied.

Assume some ~W ′ ⊆ ~W and some ~Z′ ⊆ ~Z, where ~Z is the
causal path of Xi in CN.

Set ~SW ′ = {Xj : Xj ∈ ~W ′ and w′j = ¬x0
j}. Obviously,

~SW ′ ⊆ ~S. Also, set ~SZ′ = [~X]t∩ANC(~Z′), where ANC(~Z′)

the group of all ancestors to any node in ~Z′. Finally, set ~S′t =
~SW ′\~SZ′ , so ~S′t ⊆ [~S]t. Setting ~SZ′ to the original values,

ensures that all nodes in ~Z′ are set to their original values z∗.
Therefore, PΨ(¬~sw′

0, ~x0\~sw′) = Φ(x0
i , ~W

′ ← ~w′, ~Z′ ← ~z∗).

13

Since ∆PΨ(~S′t) = 0, Φ(x0
i , ~W

′ ← ~w′, ~Z′ ← ~z∗) = Φ(~x0),
condition AC2(b) is satisfied.

Condition AC3 is obvious, as Xi is a single literal, and
therefore Xi = x0

i is an actual cause.

C.2 Formula Expansion
In this section we give formal definitions of formula ex-

pansion.

Definition C.1 (Node Expansion). Node expansion of
a network CN with formula Φ to a network with formula Φe

is the addition of a node V ′ along an edge (V,U) of the causal
network CN, such that Φe ≡ Φ, and none of the formulas of
the dependent nodes change.

Definition C.2 (Edge Expansion). Edge expansion of
a network CN with formula Φ to a network with formula Φe

is the addition of an edge (V, V ′) in CN, such that Φe ≡ Φ,
and none of the formulas of the dependent nodes apart from
V ′ change.

Definition C.3 (Single Step Expansion). A network
CNe with formula Φe is a single-step expansion of network
CN with formula Φ if it is either a node or edge expansion
of CN.

Definition C.4 (Expansion). A network CNe with for-
mula Φe is an expansion of network CN with formula Φ iff
there exists ordered set of networks {CN1,CN2, . . . ,CNk}
with CN1 = CN and CNk = CNe, such that CNi+1 is a
single step expansion of CNi, ∀i ∈ [1, k].

Lemma C.5. If Xi = x0
i is a cause of effect φe in CN

with formula Φe, which is a single step expansion of formula
Φ, then Xi = x0

i is also a cause of effect φ in formula Φ.

Proof. Assume Ψ the DE of Φ and Ψe the DE of Φe. For
simplicity we say Xi is a cause, meaning Xi = x0

i is a cause.
t and T represent the dissociation network transformations
of CN and CNe respectively, with respect to Xi: t : CN →
DN , T : CNe → DNe. So, [~X]t the input nodes of DN ,

and [~X]T the input nodes of DNe. We use the term potent
to refer to variables in the causal network that map to more
than one variable in the dissociation network.

For easiness of representation, we also write P 0
Ψ(¬~s0) to

denote PΨ(¬~s0, ~x0\~s), in other words, all the variables ap-
pearing in the argument list of P 0

Ψ are set to the denoted
values, and the ones not appearing to their original values
given by ~x0.

Since Xi is a cause of φe, ∃~S such that ∆PΦe(~S,Xi) 6= 0

and ∆PΨe(~S′T) = 0, ∀~S′T ⊆ [~S]T .

By definition of expansion, Φe(~X) = Φ(~X), and therefore

PΦ = PΦe , which means that ∆PΦ(~S,Xi) 6= 0 for the same

set ~S.
If Φe is a node expansion of Φ, then PΨ = PΨe , and

therefore Xi is a cause of φ.
If Φe is an edge expansion of Φ, by the addition of an edge

(v, u), then node v may become potent with respect to Xi

in Φe. If v is not potent, then [X]t = [X]T , and therefore
PΨe = PΨ, which means that Xi is also a cause of φ.

If v is potent with respect to Xi, then DNe contains a
set of replicated nodes ~V ′ of ~V (node v and its ancestors),
which are not contained in DN , so [X]t ⊂ [X]T . Denote

as ~Xv the subset of ~X that are ancestors of v, and ~Xv′ the

subset of ~X that are ancestors of the replica v′ in DNe.
Then ~XT = ~Xt ∪ ~Xv′ .

If ~Xv ∩ [~S]T = ∅, then { ~Xv ∪ ~Xv′} ∩ ~ST = ∅. Then,
~St = ~ST , and for any ~S′t ⊆ ~St, ~S

′
t is also a subset of ~ST .

That means that P 0
Ψ(¬~s′t0) = P 0

Ψe
(¬~s′t0) = PΨe(~x0), which

means that ∆PΨ(~s′t) = 0.

If ~Xv ∩ ~ST 6= ∅, then ~Xv′ ∩ ~ST 6= ∅. Then ~St ⊂ ~ST , as
~Xv∩~St 6= ∅, but ~Xv′∩~St = ∅. For any ~S′t ⊆ ~St, ~X

′
v = ~S′t∩ ~Xv,

and ~X ′v′ its replicated equivalent in DNe. ∃~S′T = ~S′t ∪ ~X ′v′ ,

and ~S′T ⊆ ~ST . Also, by definition of expansion,

P 0
Ψ(¬~x′v0,¬~s′t0\~x′v) =

= P 0
Ψe

(¬~x′v0,¬~x′v′
0,¬~s′t0\~x′v) = PΨe(~x0)

Therefore, ∆PΨ(~S′t) = 0, ∀~S′t ⊂ ~St in all cases of expan-
sion, which means that Xi is a cause of φ.

Lemma C.6. If Xi = x0
i is a cause of effect φ in CN with

formula Φ, and Φe a single step expansion of Φ that does
not contain negated variables, then Xi = x0

i is also a cause
of effect φe formula Φe.

Proof. For the most part, this proof is similar to the
proof of Lemma C.5.

Assume Ψ the DE of Φ and Ψe the DE of Φe. For simplic-
ity we say Xi is a cause, meaning Xi = x0

i is a cause. t and
T represent the dissociation network transformations of CN
and CNe respectively, with respect to Xi: t : CN → DN ,
T : CNe → DNe. So, [~X]t the input nodes of DN , and

[~X]T the input nodes of DNe. We use the term potent to
refer to variables in the causal network that map to more
than one variable in the dissociation network.

For easiness of representation, we also write P 0
Ψ(¬~s0) to

denote PΨ(¬~s0, ~x0\~s), in other words, all the variables ap-
pearing in the argument list of P 0

Ψ are set to the denoted
values, and the ones not appearing to their original values
given by ~x0.

Since Xi is a cause of φ, ∃~S such that ∆PΦ(~S, xi) 6= 0 and

∆PΨ(~S′t) = 0, ∀~S′t ⊆ [~S]t.

By definition of expansion, Φe(~X) = Φ(~X), and therefore

PΦ = PΦe , which means that ∆PΦe(~S,Xi) 6= 0 for the same

set ~S.
If Φe is a node expansion of Φ, then PΦ = PΦe and PΨ =

PΨe , and therefore Xi is a cause of φe.
If Φe is an edge expansion of Φ, by the addition of an

edge (v, u) node v may become potent with respect to Xi

in Φe. If v is not potent, then [X]t = [X]T , and therefore
PΨe = PΨ, which means that Xi is also a cause of φe.

If v is potent with respect to Xi, then DNe contains a
set of replicated nodes ~V ′ of ~V (node v and its ancestors),
which are not contained in DN , so [X]t ⊂ [X]T . Denote

as ~Xv the subset of ~X that are ancestors of v, and ~Xv′ the
subset of ~X that are ancestors of the replica v′ in DNe.
Then ~XT = ~Xt ∪ ~Xv′ .

If ~Xv ∩ [~S]t = ∅, then { ~Xv ∪ ~Xv′} ∩ [~S]T = ∅. Then,
~ST = ~St, and for any ~S′t ⊆ ~ST , ~S′t is also a subset of ~St.
That means that P 0

Ψe
(¬~s′t0) = P 0

Ψ(¬~s′t0) = Φe(~x0), which

means that ∆PΨe(~S′t) = 0.

If ~Xv ∩ ~St 6= ∅, then ~Xv ∩ ~ST 6= ∅ and ~Xv′ ∩ ~ST 6= ∅. For
any ~S′T ⊆ ~ST , denote ~X ′v = ~Xv ∩ ~S′T and ~X ′v′ = ~Xv′ ∩ ~S′T .

Assume ~Xc ⊆ ~X ′v is the set of all variables in ~X ′v that have
an equivalent in X ′v′ , i.e. their replicas are in ~X ′v′ . Then

14

~X ′v and ~X ′v′ can be rewritten as follows: ~X ′v = ~X1 ∪ ~Xc and
~X ′v′ = ~X ′2 ∪ ~X ′c. The replicas of ~X1, ~X2, and ~Xc in DNe are
~X ′1, ~X ′2 and ~X ′c respectively, so ~X ′1 6⊂ ~X ′v′ and ~X2 6⊂ ~X ′v.

Also, denote ~S′′T = ~S′T \{ ~X ′v ∪ ~X ′v′}.

∆PΨe(~S′t) = PΨe(~x0)− P 0
Ψe

(¬~x0
1,¬~x0

c ,¬~x′20,¬~x′c0,¬~s′′T 0)

Also, we know that ∆PΨ(~s′t) = 0, ∀~S′t ⊆ ~St. Assign S′t =
~X1 ∪ ~X2 ∪ ~Xc ∪ ~S′′T and ~S′′t = ~S′t\{ ~X1 ∪ ~X2 ∪ ~Xc}. Then

S′t ⊆ ~St, and therefore:

P 0
Ψ(¬~x0

1,¬~x0
2,¬~x0

c ,¬~s′′t 0) = PΨ(~x0)

By definition of expansion:

P 0
Ψe

(¬~x0
1,¬~x0

2,¬~x0
c ,¬~x′10,¬~x′20,¬~x′c0,¬~s′′t 0) =

= P 0
Ψ(¬~x0

1,¬~x0
2,¬~x0

c ,¬~s′′t 0)⇒

P 0
Ψe

(¬~x0
1,¬~x0

2,¬~x0
c ,¬~x′10,¬~x′20,¬~x′c0,¬~s′′t 0) = PΨ(~x0)

We compute P 0
Ψe

(¬~x0
1,¬~x0

c ,¬~x′20,¬~x′c0,¬~s′′T 0), re-written
as: P 0

Ψe
(¬~x0

1, ~x
0
2,¬~x0

c , ~x
′
1
0,¬~x′20,¬~x′c0,¬~s′′t 0).

Since variables are not negated, PΨ and PΨe are monotonous.
Therefore:

PΨ(~x0) =P 0
Ψe

(¬~x0
1,¬~x0

2,¬~x0
c ,¬~x′10,¬~x′20,¬~x′c0,¬~s′′t 0) ≤

≤ P 0
Ψe

(¬~x0
1, ~x

0
2,¬~x0

c , ~x
′
1
0,¬~x′20,¬~x′c0,¬~s′′t 0) ≤

≤ P 0
Ψe

(~x0
1, ~x

0
2, ~x

0
c , ~x
′
1
0, ~x′2

0, ~x′c
0,¬~s′′t 0) =

P 0
Ψ(~x0

1, ~x
0
2, ~x

0
c , [¬~s′′t]0�) = PΨ(~x0)

Therefore, P 0
Ψe

(¬~x0
1,¬~x0

c ,¬~x′20,¬~x′c0,¬~s′′T 0) = PΨ(~x0), which
means that ∆PΨe(~s′t) = 0, and Xi is a cause of φe.

These two lemmas lead to the general theorems of formula
expansion presented in Sect. 3.2.

Proof Theorem 3.3 (Formula Expansion). Since Φe

is an expansion of Φ, ∃ ordered set of formulas {Φ1,Φ2, . . . ,Φk}
with Φ1 = Φ and Φk = Φe, such that Φi+1 is a single step
expansion of Φi, ∀i ∈ [1, k].

As shown in Lemma C.5, if Xi = x0
i is a cause of φi then

it is also a cause of φi−1, ∀i ∈ [2, k]. Therefore, if Xi = x0
i a

cause of φk, it is also a cause of φ1.

Proof Theorem 3.4 (Exp. of Positive Formulas).
As shown by Theorem 3.3, if something is a cause of φe, then
it is also a cause of φ. We now need to show that if Xi = x0

i

is a cause of φ, then it is also a cause of φe.
Since Φe is an expansion of Φ, ∃ ordered set of formulas
{Φ1,Φ2, . . . ,Φk} with Φ1 = Φ and Φk = Φe, such that Φi+1

is a single step expansion of Φi, ∀i ∈ [1, k].
As shown in Lemma C.6, if Xi = x0

i is a cause of Φi−1

then it is also a cause of Φi, ∀i ∈ [2, k]. Therefore, if Xi = x0
i

a cause of Φ1, it is also a cause of Φk.

C.3 Markovian transitivity
Proof Prop. 3.7 (Markovian transitivity). Here we

denote as IYi the potential function of formula ΦYi , and
PYi the potential function of the DE of ΦYi . To simplify
notation, we omit the non-negated terms in the potential
functions. So we write P (¬~s0) meaning P (¬~s0, ~x0\~s0).

Assume X is a functional cause of Y1 with responsibil-
ity ρ1. Then there exists ~SY1 ⊆ ~X ∩ ANC(Y1), such that

∆IY1(X, ~SY1) 6= 0, and ∀~S′t ⊆ [~SY1]t, ∆PY1(~S′t) = 0, and
ρ1 = 1

|~SY1
|+1

Also, in the mutilated network, Y1 is a cause of a Y2

with responsibility ρ2, then ∃ a minimum set ~SY2 ⊆ ~X ∩
{ANC(Y2)\ANC(Y1)}, such that ∆IY2(X, ~SY2) 6= 0, and

∀~S′t ⊆ [~SY2]t ∆PY2(~S′t) = 0, where IY2 and PY2 the poten-
tial functions of Y2 in the mutilated CN and corresponding
DN. Also, ρ2 = 1

|~SY2
|+1

. Obviously, ~SY1 ∩ ~SY2 = ∅ and

[~SY1]t ∩~[SY2]t = ∅. Since Y1 is markovian, no ancestors of
Y1 connect to the rest of the network without going through
Y1. Therefore, nodes in [~SY1]t also do not connect to the
rest of the network without going through Y1.

Assume Φ is the Boolean formula at Y2 on the complete
network. Also, denote ~XY1 = { ~X\X}∩ANC(Y1) and ~XY2 =

{{ ~X\X}∩ANC(Y2)}\ ~XY1 . Then IΦ(~x) = IΦ(x, ~xY1 , ~xY2) =

IY2(IY1(x, ~xY1), ~Xx2). Similarly, in the DN we get: PΦ(~x) =
PY2(PY1(x, ~xY1), ~xY2).

Set ~S = ~SY1 ∩ ~SY2 . IΦ(¬x0,¬~s0) = IΦ(¬x0,¬~s0
Y1
,¬~s0

Y2
) =

IY2(IY1(¬x0,¬~s0
Y1

),¬~s0
Y2

) = IY2(¬y0
1 ,¬~s0

Y2
) = ¬y0

2 . There-

fore, ∆IΦ(X, ~S) 6= 0.

Assume set ~S′t ⊆ [~S]t. Set ~S1 = ~S′t ∩ [~SY1]t and ~S2 =
~S′t ∩ [~SY2]t. Clearly, ~S1 ∩ ~S2 = ∅. Then, PΦ(¬~s′t0) =
PΦ(¬~s0

1,¬~s0
2) = PY2(PY1(¬~s0

1),¬~s0
2) = PY2(y0

1 ,¬~s0
2) = y0

2 .

Therefore, ∆PΦ(~S′t) = 0 for any ~S′t. Therefore, X is a fun-
ctional cause of Y2.
~S is also minimal, as ~SY1 and ~SY2 are minimal and disjoint.

Therefore, X is a cause of Y2 with responsibility

ρ =
1

|~S|+ 1
=

1

|~SY1 |+ |~SY2 |+ 1
= (ρ−1

1 + ρ−1
2 − 1)

C.4 Complexity of functional cause
Proof Theorem 3.8(Complexity). In this proof, we de-

note with IΦ the potential function of a formula Φ, and with
PΦ the potential function of the DE of Φ. Note that Ψ rep-
resents a 3DNF formula, and not a DE of Φ.

We use a reduction, inspired by the proof [9, Theorem
3.3], from the non-tautology problem of a 3DNF : given a

3DNF propositional formula Ψ over a set of variables ~X =
{X1, . . . , Xn}, is there a truth assignment for ~X that makes
Ψ false.

We transform an instance of the 3DNF tautology prob-
lem to a problem of determining whether a variable is a
functional cause as follows. We create a dependent variable
for every conjunct Cj in Ψ with ~C = {C1, . . . , Ck}. Every
variable Xi connects to every Cj it is part of. Eventually
every Cj has 3 incoming edges. We also create a separate
input node X0 and an output node Y with incoming edges
from X0 and all the Cj ∈ ~C, which applies the OR func-
tion to its inputs. The final output node Y has formula
Y = X0 ∨ C1 ∨ . . . ∨ Ck = X0 ∨Ψ (see Fig. 15).

Assume initial assignment X0 = 1 and any assignment ~x0

for ~X. Also name Φ the Boolean formula representing node
Y . We will show that Ψ is a tautology, iff X0 = 1 is not a
cause of Y = 1. (1) If Ψ is a tautology, then Y = 1 for all

assignments, and therefore 6 ∃~S such that ∆IΦ(X0, ~S) 6= 0,
as the potential function of the formula is also always 1. (2)

15

8	

Fig_HardnessReduc7onForFC	 12-‐9-‐2009	

...
	

...
	

X0 =1

X1

Xn

C1

Ck

C2

Y =X0∨C1∨. . .∨Ck

Figure 15: Reduction from 3DNF tautology to de-
termining functional causes in a Boolean network.

If Ψ is not a tautology, then there exists an assignment ~x1

for which Ψ(~x1) = 0. We assign ~S = {Xi |x1
i 6= x0

i }. Then,

clearly, ∆IΦ(X0, ~S) 6= 0, as IΦ(¬x0,¬~s0, ~x0\~s) = 0. Also,

for any S′, ∆PΦ(~S) = 0, as Φ = 1 for X0 = 1. Therefore, if
Ψ is not a tautology, X0 = 1 is a cause.

By this, we have shown that determining whether a vari-
able is a functional cause of an event in a Boolean causal
network is NP-hard in the size of the network.

Proof Lemma 3.9 (Causality in Trees). If the causal
network is a tree, then every node is Markovian. That means
that there is a single path from any variable Xi to the effect
variable Y , consisting of variables ~p = {Y1, . . . , Y }.

In a tree causality is transitive (Prop. 3.7): if Xi is a cause
of Yj ∈ ~p, and Yj is a cause of Y , then Xi is a cause of Y .

We will show that if Xi is not a cause of Yj ∈ ~p, then Xi

cannot be a cause of Y .
Assume that Xi is a cause of Y . Then ∃~S such that

∆PY (Xi, ~S) 6= 0 and ∀~S′ ⊆ ~S, ∆PY (~S′) = 0. Set ~SY =
~S ∩ A(Yj), where A(Yj) the subset of ~X that are ancestors

of Yj . Also set ~SR = ~S\~SY .

If ~S is inverted, Xi is counterfactual for Y :

PYk (¬x0
i ,¬~s0, ~x0\{xi, ~s}) 6= PY (x0

i ,¬~s0, ~x0\{xi, ~s})

Since there is only one path from Xi to Y through Yj , then

Yj has to also flip values when ~S ← ¬~s0 and Xi ← ¬x0
i ,

meaning ∆PYj (Xi, ~SY) = ∆PYj (Xi, ~S) 6= 0. Also, Yj should
have its original value when Xi is set to its original value
with ~S inverted, otherwise Xi would not be counterfactual
for Y . So, ∆PYj (~SY) = 0.

Assume ~S′Y ⊆ ~SY . ∆PY (~S′Y ∩ ~SR) = 0, which means that

∆PYj (~S′Y) = 0.
Therefore, Yj also has to be a cause of Y .

Proof Theorem 3.10(Restricted Arity). Follows di-
rectly from Lemma 3.9. Since the tree has restricted ar-
ity ≤ k, determining causality of a node for its immediate
descendant is polynomial. Also, because of transitivity, as
shown in Lemma 3.9 to show that X is a cause of Y it suf-
fices to show that every node in the path ~p = {Y1, . . . , Y } is
a cause to its immediate descendant. The length of the path
grows with logn, and therefore determining whether X is a
cause of Y is in P.

Proof Theorem 3.11(Primitive Operators). Assume
Yj is the immediate descendant of Yi in a tree causal net-
work. If the function of Yj is a primitive boolean operator,
i.e. AND, OR, NOT, it can be decided in polynomial time if Yi

is a cause of Yj .

Case A: Yj is an AND node

Set ~SY = parents(Yj)\{Yi}. If y0
j = 1, then Yi is a cause

because it is counterfactual. If y0
j = 0 and y0

i = 1, then Yi is
not a cause because the AND function is monotone, so setting
Yi to 0 will not invert Yj under any contingency. If y0

j = 0

and y0
i = 0, ∃~S ⊆ ~X that sets ~SY to true. This is always

possible because in a tree every input node participates in
the formula exactly once. Therefore, Yi becomes counter-
factual for ~S, and Yj is always 0 when Yi is set to y0

i = 0,

which means that ∆PΦ(~S′t) = 0 for any S′t. This means that
when y0

j = 0 and y0
i = 0, Yi is a cause of Yj . Therefore, it

is determined in constant time whether a node is a cause of
its immediate descendant AND node.

Case B: Yj is an OR node

Set ~SY = parents(Yj)\{Yi}. If y0
j = 0, then Yi is a cause

because it is counterfactual. If y0
j = 1 and y0

i = 0, then Yi is
not a cause because the OR function is monotone, so setting
Yi to 1 will not invert Yj under any contingency. If y0

j = 1

and y0
i = 1, ∃~S ⊆ ~X that sets ~SY to false. This is always

possible because in a tree every input node participates in
the formula exactly once. Therefore, Yi becomes counter-
factual for ~S, and Yj is always 1 when Yi is set to y0

i = 1,

which means that ∆PΦ(~S′t) = 0 for any S′t. This means that
when y0

j = 1 and y0
i = 1, Yi is a cause of Yj . Therefore, it

is determined in constant time whether a node is a cause of
its immediate descendant OR node.

Case B: Yj is an NOT node
Causality can be determined in constant time because

there is a single input to the node.

Therefore it is decidable in constant time whether Yi is
a cause of its immediate descendant Yj . That means that
to show that X is a cause of Y it suffices to show that
every node in the path ~p = {Y1, . . . , Y } is a cause to its
immediate descendant, each of which steps can be done in
constant time. The length of the path grows with logn, and
therefore determining whether X is a cause of Y is in P.

Proof Theorem 3.13 (Positive DNF). Assume Φ a for-
mula in DNF with no negated literals. Also, as shown by
Theorem 3.4 the network structure does not alter causality,
so we will assume a star network.

Case A: Φ = 1
There is polynomial transformation of Φ to a minimal

form Ψ, such that Ψ = Φ and Ψ only contains the minterm
clauses of Φ. For example, if Φ = (A ∧ B) ∨ (A ∧ B ∧ C) ∨
(C ∧ D), Ψ = (A ∧ B) ∨ (C ∧ D). The transformation is
polynomial, as Ψ includes a clause Ci of Φ only if 6 ∃Cj that
contains a subset of the literals of Ci. We will show that a
variable Xi is a functional cause of Φ, iff Xi ∈ Ci, where Ci a
clause of Ψ that evaluates to true under current assignment,
and x0

i = 1.
First of all, if Xi is not in Ψ, then Xi is not a cause of Φ,

as there is no assignment that makes Xi counterfactual for
Ψ and therefore for Φ, as Ψ = Φ. Therefore, Xi cannot be
a cause of Φ.

If Xi is in Ψ, but ∀Ci ∈ Ψ that contain Xi, Ci evaluates
to false, then Xi cannot be a functional cause, because of
monotonicity since there is no negation. Any set ~S that
makes Xi counterfactual, has to contain the variables of
Ci whose initial assignment was 0, denote them with set
~Sc ⊂ ~S, and ~S′ = ~S\~Sc. Then Ψ(¬x0

i ,¬~s0
c ,¬~s′

0
) = 0 and

16

Ψ(x0
i ,¬~s0

c ,¬~s′
0
) = 1. Ψ can be written as Ψ = Ci ∨ Ψ′.

This means that Ψ′(¬~s0) = 0. Therefore, Ψ(x0
i , ~s

0
c ,¬~s′

0
) =

(C0
i) ∨Ψ′(¬~s′0) = 0, which means that ∆PΦ(~S′) 6= 0, so Xi

is not a cause.
Also, if x0

i = 0, because of monotonicity, it is not possible
to switch a formula from 1 to 0, by flipping Xi from 0 to 1.

Now, if Xi ∈ Ci, where Ci a clause of Ψ that evaluates
to true under current assignment, and x0

i = 1, we select
~S = {Xj |Xj /∈ Ci and x

0
j = 1}. Then, if we write Ψ =

Ci∨Ψ′, we know that Ψ′(¬~s0) = 0, because Ψ contains only
minterms. That means that every clause Cj has at least one
variable that is not in Ci, and therefore can be negated by
the above choice of ~S. This makes Xi counterfactual with
contingency ~S. Also Φ = Ψ, therefore ∆PΦ = ∆PΨ. Since
Xi is counterfactual, ∆PΨ(Xi, ~S) 6= 0, and ∆PΨ(~S) = 0.

Also, ~S does not contain any variables of Ci, and therefore,
for any subset of ~S, Ci is true, and therefore Ψ is also true.

Therefore, Xi is a cause of Φ, iff Xi ∈ Ci, where Ci a
clause of Ψ that evaluates to true under current assignment,
and x0

i = 1, and this can be determined in polynomial time.
Case B: Φ = 0
We again define the minterms transformation of Φ to Ψ,

but this time by first eliminating the variables whose initial
assignment is 1. For example, if Φ = (A ∧ B) ∨ (C ∧ D) ∨
(A∧E), with initial assignment (a, b, c, d, e)0 = (0, 1, 0, 1, 0),
then Ψ = A∨D. The clause (A∧E) get eliminated because
of the presence of minterm A. Similarly, we will show that
Xi is a cause of φ, iff Xi ∈ Ci, where Ci a clause of Ψ, and
x0
i = 0.
First of all, if Xi is not in Ψ, then Xi is not a cause of

Φ, because either x0
i = 1, which eliminates it as a possible

cause because of the monotonicity argument, or there was
a minterm in Ψ that caused its elimination. To make Xi

counterfactual in Φ through clause Ci, we need to invert all
the variables Xj ∈ Ci for which x0

j = 0 (~Sc = {Xj |Xj ∈
Ci and x0

j = 0}). But because there is a minterm in Ψ,
that contains a subset of these variables, the inversion would
switch Cj to true. Xi will not be counterfactual unless we
also invert at least one variable Xk ∈ Cj for which x0

k = 1.

So ~S = ~Sc ∪ {Xk}. Then ∆PΦ(Xi, ~S) 6= 0, but for ~S′ = ~Sc,

∆PΦ(~S′) 6= 0, which means that Xi is not a cause.

If Xi ∈ Ci and Ci ∈ Ψ, set ~S = {Xj |Xj ∈ Ci and x
0
j =0}.

That makes Xi counterfactual in Ψ (and also in Φ), as we
know that there are no other clauses in Ψ that contain a
subset of ~S causing them to result to true. Also, obviously,
for any subset of ~S, Ψ as well as Φ result to 0, which is the
initial assignment.

Therefore, Xi is a functional cause of Φ, iff Xi ∈ Ci, where
Ci a clause of Ψ, and x0

i = 0, and this can be determined in
polynomial time.

Proof Theorem 3.14 (Positive CNF). Assume Φ a for-
mula in CNF with no negated literals. Also, as shown by
Theorem 3.4 the network structure does not alter causality,
so we will assume a star network.

Case A: Φ = 1
We define the maxterms transformation of Φ to Ψ, also

eliminating variables with initial assignment 0. Due to mono-
tonicity, any variable Xi with x0

i = 0 cannot be a cause. As
an example, if Φ = (A ∨ B ∨ C) ∧ (A ∨ B) ∧ (A ∨ D), and
initial assignment (a, b, c, d) = (1, 1, 1, 0), then Ψ = A. This
is because the clause (A ∨ B ∨ C) gets eliminated because

of the presence of maxterm (A ∨ B), and because D = 0,
(A∨B) also gets eliminated because of the creation of max-
term A. We will show that Xi is a functional cause of Φ = 1
iff Xi ∈ Ψ, which is computable in polynomial time.

If Xi /∈ Ψ, then either x0
i = 0, in which case Xi cannot

be a cause, or Xi was part of an eliminated clause Ci. Ci =
C′i ∨ Xi was eliminated because there was another clause
Cj ∈ Φ which can be split into Cj = C+

j ∨ C
−
j , so that

C−j evaluated to 0 under given assignment, and C+
j ⊆ C′i.

If Xi is a cause in Φ, then ∃~S, s.t. ∆PΦ(¬Xi,¬~S) 6= 0

and ∀~S′ ⊆ ~S, ∆PΦ(~S) = 0. There has to be ~Sc ⊆ S, such

that ~Sc = {Xj |Xj ∈ C′i and x0
j = 1}, in other words, we

need to set to 0 all variables in C′i in order to make Xi

counterfactual, and C′i has to contain at least one variable
set to true, otherwise Xi would not have been eliminated.
Since C+

j ⊆ C′i, then C+
j ⊆ ~Sc. That means that inverting

~Sc would set Cj to false. For Xi to be counterfactual, ~S
also needs to contain at least one variable from C−j , call it

X−c . However, for ~S′ = ~S\{X−c }, Cj would be set to false,

so ∆PΦ(~S′) 6= 0, which means that Xi cannot be a cause.

If Xi ∈ Ci ∈ Ψ then set ~S = {Xj |Xj ∈ C′i and x0
j = 1},

where Ci = C′i∨Xi. Inverting ~S does not invert Ψ (or Φ), as
there is no Cj ∈ Φ or Ψ that is Cj ⊆ C′i, otherwise Ci would
have been eliminated since Cj would have been a maxterm.

Therefore Xi is counterfactual with contingency ~S. Also
∀~S′ ⊆ ~S ∆PΦ(~S′) = 0, as no clause can be negated if we
invert fewer positive terms due to monotonicity. Therefore
Xi is a cause.

Since the transformation from Φ to Ψ is polynomial, cau-
sality of Xi can be determined in polynomial time.

Case B: Φ = 0
From Φ we construct Ψ, which just contains the maxterms

of Φ. For example, if Φ = (A∨B ∨C)∧ (A∨B)∧ (A∨D),
then Ψ = (A ∨ B) ∧ (A ∨D). It is always Ψ = Φ. We will
show that Xi is a functional cause of Φ, iff Xi ∈ Ci, where
Ci a clause in Ψ that evaluates to false.

Assume that Xi is a cause of Φ in clause Ci = C′i ∨ Xi.
Then ∃~S, such that ∆PΦ(¬Xi,¬~S) 6= 0 and ∀~S′ ⊆ ~S,

∆PΦ(~S) = 0. If C′i evaluates to 1 under given assignment,

then ~S has to contain ~Sc = {Xj |Xj ∈ C′i and x0
j = 1}. Also

every clause Cj 6≡ Ci, has to be set to true after the inver-

sion of ~S, otherwise Xi would not be counterfactual. That
means that ~S should also contain a subset ~SR that sets all
other clauses to 1. But then, for ~S′ = ~S\Sc, the formula will
evaluate to 1, because C′i will evaluate to one along with all
other clauses, which would make Xi not a cause. Therefore,
C′i evaluates to 0 under given assignment. Still, the fact
that ~S contains a variable Xj from every clause other than
Ci means that every clause contains a variable Xj that is
not contained in C′i. Therefore, 6 ∃Cj such that Cj ⊆ C′i,
and therefore Ci is a maxterm. Therefore, if Xi is a functio-
nal cause of Φ, then Xi ∈ Ci, where Ci a clause in Ψ that
evaluates to false.

If Xi ∈ Ci, where Ci a clause in Ψ that evaluates to false,
then set ~S = {Xj |Xj /∈ Ci and x

0
j = 0}. That will set all

clauses apart from Ci to true. That is guaranteed because Ci

is a maxterm, and therefore, 6 ∃Cj ⊆ C′i, where Ci = C′i∨Xi.

Then Xi is counterfactual for Ψ and Φ, and also, ∀~S′ ⊆ ~S
∆PΦ(~S′) = 0, as Ci is stuck to false. Therefore, Xi is a
functional cause.

Since the maxterm transformation is polynomial, causa-

17

lity of Xi can be determined in polynomial time.

D. DETAILS SECTION 4

D.1 Complexity of aggregates
Proof Lemma 4.4 (Sum possible causes). Assume ω0

the result of a summation query and ~X+ the set of all the
true tuples, and ~X− the false ones.

Case A: Q=Why SO?, op=“≥”: φ = (ω0 > c) = 1.
Assume Xi ∈ X−. If Xi is a cause of φ, there must exist

support ~S ⊆ ~X\{Xi} such that ∆P (Xi, ~S) 6= 0. Also ~S is

partitioned into ~S+ = ~S ∩ ~X+ and ~S− = ~S ∩ ~X−. Assume
ωs, ω+

s , ω−s the sum of values in ~S, ~S+ and ~S− respectively,
and ωt the value of t. Then ω0−ω+

s +ω−s +ωt < c⇒ ω+
s >

ω0 − c+ ω−s + ωt > 0. So, ~S+ 6= ∅.
Also, ω0−ω+

s +ω−s +ωt < c⇒ ω0−ω+
s < c−ωt−ω−s < c

because all values are positive. Therefore, for ~S′t = ~S+ ⊆ ~S,
∆P (~S′t) 6= 0, so a false tuple cannot be a cause of case A.

Case B: Q=Why SO?, op=“≥”: φ = (ω0 < c) = 1.
Assume Xi ∈ X+. If Xi is a cause of φ, there must exist

support ~S ⊆ ~X\{Xi} such that ∆P (Xi, ~S) 6= 0. Also ~S is

partitioned into ~S+ = ~S ∩ ~X+ and ~S− = ~S ∩ ~X−. Assume
ωs, ω+

s , ω−s the sum of values in ~S, ~S+ and ~S− respectively,
and ωt the value of t. Then ω0−ω+

s +ω−s −ωt > c⇒ ω−s >
c− ω0 − c+ ω+

s + ωt > 0. So, ~S− 6= ∅.
Also, ω0−ω+

s +ω−s −ωt > c⇒ ω0 +ω−s > c+ωt +ω+
s > c

because all values are positive. Therefore, for ~S′t = ~S− ⊆ ~S,
∆P (~S′t) 6= 0, so a true tuple cannot be a cause of case B.

Case C: Q=Why NO?, op=“≤”: φ = (ω0 < c) = 0.
Assume Xi ∈ X−. If Xi is a cause of φ, there must exist

support ~S ⊆ ~X\{Xi} such that ∆P (Xi, ~S) 6= 0. Also ~S is

partitioned into ~S+ = ~S ∩ ~X+ and ~S− = ~S ∩ ~X−. Assume
ωs, ω+

s , ω−s the sum of values in ~S, ~S+ and ~S− respectively,
and ωt the value of t. Then ω0−ω+

s +ω−s +ωt < c⇒ ω+
s >

ω0 − c+ ω−s + ωt > 0. So, ~S+ 6= ∅.
Also, ω0−ω+

s +ω−s +ωt < c⇒ ω0−ω+
s < c−ωt−ω−s < c

because all values are positive. Therefore, for ~S′t = ~S+ ⊆ ~S,
∆P (~S′t) 6= 0, so a false tuple cannot be a cause of case C.

Case C: Q=Why NO?, op=“≥”: φ = (ω0 > c) = 0.
Assume Xi ∈ X+. If Xi is a cause of φ, there must exist

support ~S ⊆ ~X\{Xi} such that ∆P (Xi, ~S) 6= 0. Also ~S is

partitioned into ~S+ = ~S ∩ ~X+ and ~S− = ~S ∩ ~X−. Assume
ωs, ω+

s , ω−s the sum of values in ~S, ~S+ and ~S− respectively,
and ωt the value of t. Then ω0−ω+

s +ω−s −ωt > c⇒ ω−s >
c− ω0 − c+ ω+

s + ωt > 0. So, ~S− 6= ∅.
Also, ω0−ω+

s +ω−s −ωt > c⇒ ω0 +ω−s > c+ωt +ω+
s > c

because all values are positive. Therefore, for ~S′t = ~S− ⊆ ~S,
∆P (~S′t) 6= 0, so a true tuple cannot be a cause of case D.

Proof Prop. 4.5 (Why so? = Why no?). The premise
of this statement is straightforward: If ω0 the SUM value,
and t is a cause of φ = (ω0 ≥ c) =true. Define condition
ψ = (ω0 < c) = (ω0 6≥ c). Clearly φ⇒ ¬ψ, so if t is a cause
of φ it is also a cause of ¬ψ.

Similarly, if t is a cause of ψ (ω0 < c)=true, then ψ ⇒ ¬φ,
and therefore t is also a cause of SUM6≥ c.

Proof Theorem 4.6 (Sum hardness). We will use a re-
duction from the subset sum problem (SSP): given n positive
numbers and a target bound c, find a subset of the numbers
summing to c. More formally: Let ~V = [v1, . . . , vn] with

Initialize all K(0, j) = 0 and all K(d, 0) =∞
for j = 1 to n

for d = 1 to ω0 − c+ v
if d < vj: K(d, j) = K(d, j − 1)
else: K(d, j) = min[K(d− vj , j − 1) + 1,K(d, j − 1)]

return min[K(ω0 − c+ 1), . . . ,K(ω0 − c+ v)]

Figure 16: Pseudo-polynomial time algorithm to de-
termine causes for sum over one input relation in
O(n(ω0 − c+ v)).

vi ∈ N+ be a given vector of positive integers, c a positive
integer, and define Ω(~X) as the dot product Ω(~X) = ~X~V ,

with ~X = [x1, . . . , xn] and xi ∈ {0, 1}, 1 ≤ i < n represents
a vector of binary variables. The subset sum problem is to
find an assignment of binary values ~x0 so that Ω(~x0) = c.

We reduce the above SSP problem to the following Why
so? problem. Construct an ordered set of tuples ~T ′ with
one attribute corresponding to the values of the vector ~V ′

with v′i = vi, i ∈ {1, . . . , n} and v′n+1 = 1. Now consider the
aggregate SUM(~x′0) for actual assignment ~x′0 with x′0i = 1 for
i ∈ {1, . . . , n+ 1}. Then t′n+1 is a Why so? explanation for
the aggregate condition

(
SUM(~x′0) ≥ c+ 1

)
= true iff there

is one assignment ~x′1 with x′1n+1 for which SUM(~x′1) = c.
Hence, we have reduced SSP to determining causality of

tuples for the SUM aggregate.

Proof Theorem 4.7 (Sum pseudo-PTIME). Determi-
ning responsibility of a tuple t with value v for a Why
so? aggregate condition

(
SUM(~x0) ≥ c

)
= true is solvable in

pseudo-polynomial time O(nc) using the following dynamic
programming algorithm.

Consider the new set ~V ∗ that consists of all values of ~V
that are true under current assignment except for the value
v. Let ω∗ = SUM(~V ∗). Then we have to find a minimal

subset ~V ′∗ ⊆ ~V ∗ whose values add up to a value in the closed
interval [ω∗ − c+ 1, ω∗ − c+ v]. Now define the subproblem

K(d, j)

as the minimum subset size |~V ′′∗| with values summing up
to d for the subset of values {v1, . . . , vj}. We then express
K(d, j) in a way that either value vj is needed to achieve
the minimal value, or it isn’t needed:

K(d, j) = min[K(d− vj , j − 1) + 1,K(d, j − 1)]

The answer we seek is the minimal value of {K(d, n) |ω0 −
c+1 ≤ d ≤ ω0−c+v}. The algorithm then consists of filling
out a two-dimensional table, with n rows and ω0− c+ v+ 1
columns, hence in O(n(ω0 − c+ v)) time (Fig. 16).

18

	1 Introduction
	2 Causality
	2.1 Counterfactual Causes
	2.2 Actual Causes
	2.3 Functional Causes

	3 Formal Properties
	3.1 CC FC AC
	3.2 Causal Network Expansion
	3.3 Functional causes and transitivity
	3.4 Complexity

	4 Explaining Query Results
	4.1 Why So? and Why No?
	4.2 Aggregates
	4.3 Causes beyond tuples

	5 Related Work
	6 Conclusions and Future Work
	7 References
	A Nomenclature
	B Details Section 2
	B.1 Details on AC and FC for Shock C
	B.2 The CHK definition for Boolean Circuits
	B.3 Expression Folding

	C Details Section 3
	C.1 Functional vs Actual Causes
	C.2 Formula Expansion
	C.3 Markovian transitivity
	C.4 Complexity of functional cause

	D Details Section 4
	D.1 Complexity of aggregates

