
ParaTimer: A Progress Indicator for MapReduce DAGs∗

∗University of Washington Technical Report UW TR: #UW-CSE-09-12-02

Kristi Morton, Magdalena Balazinska, Dan Grossman
Computer Science and Engineering Department, University of Washington

Seattle, Washington, USA
{kmorton,magda,djg}@cs.washington.edu

ABSTRACT
Accurate progress estimation for parallel queries is a chal-
lenging problem that has received only limited attention.
The challenges are especially great when users are inter-
ested in estimates of time remaining rather than a count of
processed records. Previous work has focused only on time-
remaining estimates for single-site queries and a very limited
class of parallel queries, which exclude joins, data skew, node
failures, and other important challenges that arise in prac-
tice. In this paper, we present ParaTimer, a comprehensive
time-remaining indicator for parallel queries. ParaTimer
builds on previous techniques and makes two key contribu-
tions. First, it estimates the progress of parallel queries that
include joins, which requires a radically different approach
than in prior work. Second, it handles a variety of real sys-
tems challenges such as failures and data skew. To handle
unexpected changes in query execution times due to runtime
condition changes, ParaTimer provides users not only with
one but with a set of time-remaining estimates, each one
corresponding to a different carefully selected scenario.

Several parallel data processing systems exist. In this pa-
per, we target environments where declarative Pig Latin
queries are translated into MapReduce DAGs. We imple-
ment our estimator in the Pig system and demonstrate its
performance on experiments running on a real, small-scale
cluster.

1. INTRODUCTION
Whether in industry or in the sciences, users today need

to store, archive, and most importantly analyze increasingly
large datasets. For example, the upcoming Large Synoptic
Survey Telescope [17] is predicted to generate on the order
of 30 TB of data every day.

Parallel database management systems [1, 11, 14, 26, 27]
and other parallel data processing platforms [6, 8, 12, 15]
are designed to process such massive-scale datasets: they
enable users to submit declarative queries over the data
and they execute these queries in clusters of shared-nothing

servers. Although parallelism speeds-up query execution,
query times in these shared-nothing platforms can still ex-
hibit large intra-query and inter-query variance.

In such an environment, accurate, time-remaining
progress estimation for queries can be helpful both for users
and also for the system. Indeed, the latter can use time-
remaining information to improve resource allocation [28],
enable query debugging, or tune the cluster configuration
(such as in response to unexpected query runtimes).

Accurate progress estimation for parallel queries is a
challenging problem because, in addition to the challenges
shared with single-site progress estimators [3, 2, 19, 18,
21, 22], parallel environments introduce distribution, con-
currency, failures, data skew, and other issues that must
be taken into account. This difficult problem, however,
has received only limited attention. Our preliminary prior
work [23] provided accurate estimates, but only for a very
limited class of parallel queries, which exclude joins. We
also previously assumed uniform data distribution and the
total absence of node failures, two assumptions that are un-
reasonable in practice.

To address these limitations, we have developed Para-
Timer, a comprehensive time-remaining indicator for par-
allel queries. ParaTimer builds on previous techniques and
makes two key contributions. First, ParaTimer estimates
the progress of parallel queries that include joins, which re-
quires a radically different approach than in our prior work.
Second, it includes techniques for handling a variety of real
system challenges including failures and data skew. To han-
dle unexpected changes in query execution times such as
those due to failures, ParaTimer provides users not only with
one but with a set of time-remaining estimates that provide
useful bounds on the expected query execution times. We
call ParaTimer comprehensive because it provides this set
of bounds instead of a single best guess as the other estima-
tors do.

Many parallel processing systems exist. We developed
ParaTimer for Pig queries [24] running in a Hadoop clus-
ter [12], an environment that is a popular open-source paral-
lel data-processing engine under active development. While
the key ideas behind our technique are mostly not spe-
cific to the Pig/Hadoop setting, this environment poses sev-
eral unique challenges that have informed our design and
shaped our implementation. Most notable, a MapReduce-
style scheduler requires intermediate result materialization,
schedules small pieces of work at a time, and restarts small
query fragments when failures occur (rather than restarting
entire queries). All three properties affect query progress

1

and its estimates.
ParaTimer is designed to be accurate while remaining

simple and addressing the above Pig/Hadoop-specific chal-
lenges. At a high level, ParaTimer works as follows. For
basic progress estimation, ParaTimer builds on our prior
system Parallax1 [23]. Parallax estimates time-remaining
by breaking queries into pipelines and, for each pipeline,
estimating the amount of work to be done and the speed
at which that work will be performed. To get processing
speeds, Parallax relies on earlier debug runs of the same
query on input data samples generated by the user. Para-
Timer extends Parallax along two important directions.

First, Parallax handles only queries that comprise a se-
quence of MapReduce jobs. ParaTimer, on the other hand,
adds support for joins that can translate into MapReduce
trees or, more generally, MapReduce DAGs. To estimate
the progress of joins, ParaTimer includes a method to iden-
tify critical paths in the query plan and estimates progress
along that path, effectively ignoring other paths.

Second, ParaTimer provides support for a variety of prac-
tical challenges related to parallel query processing. Most
notable, ParaTimer handles failures and data skew. For
data skew that can be predicted and planned for, ParaTimer
takes it into account upfront. For failures and data skew that
cannot be completely pre-planned, ParaTimer takes a radi-
cally new strategy. Instead of showing users a single “best
guess” progress estimate, ParaTimer outputs a set of esti-
mates that bound the expected query execution time within
given possible variations in runtime conditions. An interest-
ing side-effect of this approach is that when a query time
goes outside ParaTimer’s initial bounds, a user knows that
there is a problem with either his query or the cluster. Para-
Timer’s output can thus help detect problems with queries
or cluster setup.

Today, parallel systems are being deployed at all scales
and each scale raises new challenges. In this paper, we fo-
cus on smaller-scale systems with tens of servers because
many consumers of parallel data management engines to-
day run at this scale2. We thus evaluate ParaTimer’s per-
formance through experiments on a small eight-node cluster
(set to a maximum degree of parallelism of 32 split into
16 maps and 16 reduces). We compare ParaTimer’s per-
formance against Parallax [23], three other state-of-the-art
single-node progress indicators from the literature [3, 19],
and Pig’s current progress indicator [25]. We show that
ParaTimer is more accurate than all these alternatives on a
variety of types of queries and system configurations. For
all queries we evaluated, ParaTimer’s average accuracy is
within 5% of an ideal indicator.

The rest of this paper is organized as follows. The next
section provides background on MapReduce, Hadoop, and
our prior work. Section 3 presents ParaTimer’s approach
to handling joins (and in general, MapReduce DAGs), fail-
ures, and data skew. Section 4 presents empirical results.
Section 5 discusses related work. Section 6 concludes.

2. BACKGROUND
In this section, we present an overview of MapReduce [6],

Pig [24], the naive progress indicator that currently ships
with Pig, and our recent work on the Parallax progress in-

1Name changed for double-blind reviewing
2http://wiki.apache.org/hadoop/PoweredBy

dicator for Pig [23].

2.1 MapReduce
MapReduce [6] (with its open-source variant Hadoop [12])

is a programming model for processing and generating large
data sets. The input data takes the form of a file that con-
tains key/value pairs. For example, a company may have
a dataset containing pairs with a sequence number and a
search log entry. Users specify a map function that iter-
ates over this input file and generates, for each key/value
pair, a set of intermediate key/value pairs. For example, a
map function could filter away uninteresting search log en-
tries and group the remaining ones by time. For this, the
map function must parse the value field associated with each
key to extract any required attributes. Users also specify a
reduce function that, similar to a relational aggregate op-
erator, merges or aggregates all values associated with the
same key. For example, the reduce function could count the
number of log entries for each time period.

MapReduce jobs are automatically parallelized and exe-
cuted on a cluster of commodity machines: the map stage is
partitioned into multiple map tasks and the reduce stage is
partitioned into multiple reduce tasks. Each map task reads
and processes a distinct chunk of the partitioned and dis-
tributed input data. The degree of parallelism depends on
the input data size. The output of the map stage is hash
partitioned across a configurable number of reduce tasks.
Data between the map and reduce stages is always materi-
alized. As discussed below, a higher-level query may require
multiple MapReduce jobs, each of which has map tasks fol-
lowed by reduce tasks. Data between consecutive jobs is also
always materialized.

2.2 Pig
To extend the MapReduce framework beyond the sim-

ple one-input, two-stage data-flow model and to provide a
declarative interface to MapReduce, Olston et. al devel-
oped the Pig system [24]. In Pig, queries are written in Pig
Latin, a language combining the high-level declarative style
of SQL with the low-level procedural programming model
of MapReduce. Pig compiles these queries into ensembles of
MapReduce jobs and submits them to a MapReduce cluster.

For example, consider the following SQL query, which cor-
responds to the example from Section 2.1.

SELECT S.time, count(*) as total
FROM SearchLogs S
WHERE Clean(s.query)
GROUP BY S.time

In Pig Latin, this example could be written as:

raw = LOAD ’SearchLogs.txt’
AS (seqnum,user,time,query);

filtered = FILTER raw BY Clean(query);
groups = GROUP filtered BY time;
output = FOREACH groups GENERATE $0 AS time, count($1) AS total
STORE output INTO ’Result.txt’ USING PigStorage();

This Pig script would compile into a single MapReduce
job with the map phase performing the user-defined filter
and outputting tuples of the form (time, searchlog-entry).
The reduce phase would then count the searchlog entries for
each distinct time value.

Because Pig scripts can contain multiple filters, aggre-
gations, and other operations in various orders, in general a

2

Map Task Reduce Task

Record Reader Map Combine Split

HDFS

file
K1,N1 K2,N2 K3,N3

Copy Sort Reduce

HDFS

file

Local storage

Figure 1: Detailed phases of a MapReduce Job.
Each Ni indicates the cardinality of the data on the
given link. Ki’s indicate the number of tuples seen
so far on that link. Both counters mark the begin-
ning of a new Parallax pipeline (Section 2.5).

query will not execute as a single MapReduce job but rather
as a directed acyclic graph (DAG) of jobs. For example, one
of the two sample scripts (script1) distributed with the Pig
system compiles into a sequence of five MapReduce jobs.

2.3 MapReduce Details
Each MapReduce job contains seven phases of execution,

as Figure 1 illustrates. These are the split, record reader,
map runner, combine, copy, sort, and reducer phases. The
split phase does minimal work as it only generates byte off-
sets at which the data should be partitioned. For the pur-
pose of progress computation, this phase can be ignored due
to the negligible amount of work that it performs. The next
three phases (record reader, map runner, and combine) are
components of the map and the last three (the copy, sort,
and reducer phases) are part of the reduce.

The record reader phase iterates through its assigned data
partition and generates key/value pairs from the input data.
These records are passed into the map runner and processed
by the appropriate operators running within the map func-
tion. As records are output from the map runner, they are
passed to the combine phase which, if enabled, sorts and
pre-aggregates the data and writes the records locally. If
the combine phase is not enabled, the records are sorted
and written locally without any aggregation.

Once a map task completes, a message is sent to waiting
reduce tasks informing them of the location of the map task’s
output. The copy phase of the reduce task then copies the
relevant data from the node where the map executed onto
the local nodes where the reduces are running. Once all
outputs have been copied, the sort phase of each reduce
task merges all the files and passes the data to the reducer
phase, which executes the appropriate Pig operators. The
output records from the reducer phase are written to disk
as they are created.

2.4 Pig’s Progress Indicator
The existing Pig/Hadoop query progress estimator pro-

vides limited accuracy (see Section 4). This estimator con-
siders only the record reader, copy, and reducer phases for its
computation. The record reader phase progress is computed
as the percentage of bytes read from the assigned data parti-
tion. The copy phase progress is computed as the number of
map output files that have been completely copied divided
by the total number of files that need to be copied. Finally,
the reducer progress is computed as the percentage of bytes
that have been read so far. The progress of a MapReduce

job is computed as the average of the percent complete of
these three phases. The progress of a Pig Latin query is
then just the average of the percent complete of all of the
jobs in the query.

The Pig progress indicator is representative of other indi-
cators that report progress at the granularity of completed
and executing operators. This approach yields limited ac-
curacy because it assumes that all operators (within and
across jobs) perform the same amount of work. This, how-
ever, is rarely the case since operators at different points in
the query plan can have widely different input cardinalities
and can spend a different amount of time processing each
input tuple. This approach also ignores how the degree of
parallelism will vary between operators.

2.5 Parallax Progress Estimator
Our prior work on the Parallax progress estimator [23]

is significantly more accurate than Pig’s original estimator,
but Parallax is designed to be accurate only for very sim-
ple parallel queries. It adapts and extends related work on
single-site SQL query progress estimation [3, 19] to parallel
settings.

Like in single-site estimators, Parallax breaks queries into
pipelines, which are groups of interconnected operators that
execute simultaneously. From the seven phases of a MapRe-
duce job, Parallax ignores two and constructs three pipelines
from the remaining five: (1) the record reader, map runner,
and combiner operations taken together, (2) the copy, and
(3) the reducer. In our experiments, however, we found that
the sort phase can impose a significant overhead and, hence,
ParaTimer accounts for it as a fourth pipeline.

Given a sequence of pipelines, Parallax estimates their
time remaining as the sum of time remaining for the cur-
rently executing and future pipelines. The time remaining
for each pipeline is the product of the amount of work that
the pipeline must still perform and the speed at which that
work will be done. Parallax defines the remaining work as
the number of input tuples that a pipeline must still process.
If N is the number of tuples that a pipeline must process in
total and K the number of tuples processed so far, the work
remaining is simply N −K.

Given Np, Kp, and an estimated processing cost αp (ex-
pressed in msec/tuple) for a pipeline p, the time-remaining
for the pipeline is αp(Np −Kp). The time-remaining for a
computation is the sum of the time-remainings for all the
jobs and pipelines. Of course, Np and αp must be estimated
for each future pipeline.

Estimating Execution Costs and Work Remaining
An important contribution and innovation of Parallax is its
estimation of pipeline per-tuple processing costs (the αp for
each pipeline). Previous techniques ignore these costs [3,
2], assume constant processing costs [19], or combine mea-
sured processing cost with optimizer cost estimates to bet-
ter weight different pipelines [18]. In contrast, Parallax es-
timates the per-tuple execution time of each pipeline by
observing the current cost for pipelines that have already
started and using information from earlier (e.g., debug) runs
for pipelines that have not started. This approach is espe-
cially well-suited for query plans with user-defined functions.
Debug runs can be done on small samples and are common
in cluster-computing environments.

Additionally, Parallax dynamically reacts to changes in

3

runtime conditions by applying a slowdown factor, sp to
current and future pipelines of the same type, though the
effectiveness of this factor has not been previously evaluated.

For cardinality estimates, Np, Parallax relies on standard
techniques from the query optimization literature. For pre-
defined operators such as joins, aggregates, or filters, car-
dinalities can be estimated using cost formulas. For user-
defined functions and to refine pre-computed estimates, Par-
allax can leverage the same debug runs as above.

We adopt the same strategy in this paper. We do not
study cardinality estimation and assume they are derived
using one of the above techniques. We also use α processing
costs computed from debug runs of the same query fragment.

Accounting for Dynamically Changing Parallelism
The second key contribution of Parallax is how it handles
parallelism, i.e., multiple nodes simultaneously processing a
map or a reduce. Parallelism affects computation progress
by changing the speed with which a pipeline processes in-
put data. The speedup is proportional to the number of
partitions, which we call the pipeline width.

Given J , the set of all MapReduce jobs, and Pj , the set
of all pipelines within job j ∈ J , the progress of a computa-
tion is thus given by the following formula, where Njp and
Kjp values are aggregated across all partitions of the same
pipeline and Setupremaining is the overhead for the unsched-
uled map and reduce tasks.

Tremaining = Setupremaining +
X
j∈J

X
p∈Pj

sjpαjp(Njp −Kjp)

pipeline widthjp

When estimating pipeline width, Parallax takes into ac-
count the cluster capacity and the (estimated) dataset sizes.
In a MapReduce system, the number of map tasks depends
on the size of the input data, not the capacity of the clus-
ter. The number of reduce tasks is a configurable parameter.
The cluster capacity determines how many map or reduce
tasks can execute simultaneously. In particular, if the num-
ber of map (or reduce) tasks is not a multiple of cluster
capacity, the number of tasks can decrease at the end of ex-
ecution of a pipeline, causing the pipeline width to decrease,
and the pipeline to slow down. For example, a 5 GB file, in
a system with a 256 MB chunk size (a recommended value
that we also use in our experiments) and enough capacity
to execute 16 map tasks simultaneously, would be processed
by a round of 16 map tasks followed by a round with only
4 map tasks. Parallax takes this slowdown into account by
computing, at any time, the average pipeline width for the
remainder of the job.

Finally, given Tremaining, ParaTimer also outputs the per-
cent query completed, computed as a fraction of expected
runtime:

Pcomplete =
Tremaining

Tcomplete + Tremaining
(1)

where Tcomplete is the total query processing time so far. In
the paper, we use both Pcomplete and Tremaining to evaluate
estimators.

3. ParaTimer
In this section, we present ParaTimer: a progress indica-

tor for parallel queries that take the form of directed acyclic

graphs (DAGs) of MapReduce jobs. ParaTimer builds on
Parallax but takes a radically different strategy for progress
estimation. First, to support complex tree-shaped or DAG-
shaped queries such as those which include joins, ParaTimer
adopts a critical-path-based progress estimation technique:
ParaTimer identifies and tracks only those map and reduce
tasks on the query’s critical path (Section 3.1). Interestingly,
when the critical path includes many nodes executing in par-
allel, ParaTimer can monitor more of the nodes to improve
progress-estimation accuracy or fewer of the nodes to reduce
monitoring overhead. Additionally, ParaTimer is designed
to work well under a variety of adverse scenarios includ-
ing failures (Section 3.2) and data skew (Section 3.3). For
this, ParaTimer introduces the idea of providing users with
a set of estimated query runtimes assuming different execu-
tion scenarios (e.g., with and without failures or worst-case
and best-case schedule). Because each execution scenario
could be associated with a probability (i.e., probability of a
single failure, probability of two failures, etc.), these multi-
ple estimators can be seen as samples from the query-time
probability distribution function.

3.1 Critical-Path-Based Progress Estimation
To handle complex-shaped query plans in the form of trees

or DAGs, ParaTimer adopts the strategy of identifying and
tracking the critical path in a query plan. For this, Para-
Timer proceeds in four steps. First, it pre-computes the
expected task schedule for a query (Section 3.1.1). Second,
it extracts path fragments from this schedule (Section 3.1.2).
Third, it identifies the critical path in terms of these path
fragments (Section 3.1.3). Finally, it tracks progress on this
critical path (Section 3.1.4).

3.1.1 Computing the Task Schedule
To identify the critical path, ParaTimer first mimics the

scheduler algorithm to pre-compute the expected schedule
for all tasks and thus all pipelines in the query.

In this paper, we assume a FIFO scheduler, the default
in Hadoop. With a FIFO scheduler, jobs are launched one
after the other in sequence. All the tasks of a given job are
scheduled before any tasks of the next job get any resources.
Hence, the only possibility for concurrent execution of mul-
tiple jobs is when a job has fewer tasks remaining to run
than the cluster capacity, C. At that time, the remaining
capacity is allocated to the next job (unless it must wait for
the previous job to finish, as indicated by the DAG). Both
map and reduce task scheduling follow this strategy. Re-
duces are further constrained by the map schedule. They
can start copying data as soon as the first map task ends,
but the last round of data copy as well as the sort and re-
duce pipelines must proceed in series with the maps from
the same job.

Figure 2 shows an example query plan that includes a join
and enables inter-MapReduce-job parallelism in addition to
intra-job parallelism. Figure 3(a) shows a possible schedule
for the resulting map and reduce tasks in a cluster with
enough capacity for five concurrent map and five concurrent
reduce tasks.3 For clarity, the figure omits the copy and sort
pipelines but shows the map and reduce pipelines. In this
example, we assume that Job 1 has two map tasks and one
reduce task, Job 2 has six map tasks and one reduce task,

3In Hadoop terminology, we say that the cluster has five
map slots and five reduce slots.

4

 Job 1 foreach j
generate iLOAD Job 3

JOIN

DISTINCT

 Job 2 foreach j
generate iLOAD DISTINCT

Figure 2: Example Pig Latin query plan with a join
operator.

and Job 3 has one map task and one reduce task. As the
figure shows, the map tasks for Jobs 1 and 2 can execute
concurrently before the map tasks for Job 3 run. Reduce
tasks execute after their respective map tasks.

Given a DAG of MapReduce jobs, ParaTimer thus com-
putes a schedule, S, such as the one shown in Figure 3(a)
but including also copy and sort pipelines.

While pre-computing the schedule using the given sched-
uler algorithm, ParaTimer uses Parallax to estimate the
time that each pipeline will take to run. Given a sched-
ule, ParaTimer breaks the query plan into path fragments
as we describe next.

3.1.2 Breaking A Schedule into Path Fragments
Given a FIFO scheduler, a MapReduce task schedule has

a regular structure because, typically, batches of tasks are
scheduled at the same time. If all tasks in the batch process
approximately the same amount of data and do so at ap-
proximately the same speed, they all end around the same
time and a new batch of tasks can begin. For example, in
Figure 3(a), m11 and m12 form one such batch. When this
batch ends, another batch comprising tasks m24 and m25
begins. Tasks m21, m22, and m23 form yet another batch.
We call each such batch a round of tasks. A round of tasks
can be as small as one task. For example r1 forms its own
round of tasks. A round of tasks can be no larger than the
cluster capacity, C, which is five tasks in the example. More
precisely:

Definition 3.1. Given a schedule S, a task round, T , is
a set of tasks t ∈ S that all begin within a time δ1 of each
other and end within a time δ1 of each other.

δ1 defines how much skew is tolerable while still consid-
ering tasks to belong to the same round. This is a config-
urable parameter. We discuss skew further in Section 3.3.
In MapReduce systems, task rounds are typically scheduled
one after the other in sequence. More precisely, we say that
two rounds are consecutive if the delay between the end of
one round (the end of the last task in the round) and the
beginning of the next round (start time of the first task in
the new round) is no more than the setup overhead, δ2, of
the system (δ1 and δ2 are independent of each other).

Given the notion of consecutive path rounds, we define a
path fragment as follows:

Definition 3.2. A path fragment is a set of tasks all of
the same type (i.e., either maps or reduces) that execute in
consecutive rounds. In a path fragment, all rounds have the
same width (i.e., same number of parallel tasks) except the
last round, which can be either full or not.

Note that each task belongs to exactly one path fragment,
i.e., path fragments partition the tasks. Given the above

definition, the schedule in Figure 3(a) comprises the follow-
ing six path fragments: p1 = {m11,m12,m24,m25}, p2 =
{m21,m22,m23,m26}, p3 = {r1}, p4 = {r2}, p5 = {m3},
and p6 = {r3}.

It is worth noting that the map path fragments comprise
only map pipelines. Reduce path fragments, however, com-
prise copy, sort, and reduce pipelines.

To understand how these path fragments represent paral-
lel query execution, it is worth considering three job config-
urations:

Sequence of MapReduce Jobs. If a query comprises only
a sequence of MapReduce jobs, the tasks for different jobs
never overlap and we simply get one path fragment for each
job’s map tasks and a second one for each job’s reduce tasks.
The critical path is the sequence of all these path fragments
and our algorithm implicitly becomes equivalent to Parallax.

Parallel Map Tasks. In the absence of parallelism, a query
is thus a series of path fragments, all of width equal to
the cluster capacity (or less once fewer tasks remain). The
effect of parallelism is to divide the concurrently execut-
ing tasks into multiple “thinner” path fragments because
tasks from different jobs have different runtimes and vio-
late the “time difference < δ1” rule. Hence, when two jobs
execute concurrently, there are two path fragments oper-
ating simultaneously as in Figure 3(a). In our example, we
know the cluster will first executem11,m12,m21,m22,m23.
Because map tasks belong to two different jobs and are
thus likely to take different amounts of time, they are di-
vided into two path fragments p1 = {m11,m12,m24,m25}
and p2 = {m21,m22,m23,m26}. Conversely, if Par-
allax estimated Job 1’s map tasks to take longer than
Job 2’s map tasks, the fragments would be {m11,m12}
and {m21,m22,m23,m24,m25,m26}. Similarly, when N
queries execute in parallel (for any N ≤ C), there are N
path fragments operating simultaneously.

Parallel Reduce Tasks. When parallel jobs comprise both
map and reduce tasks, the number of path fragments further
increases. Path fragments that involve map tasks are iden-
tified as described above. We now discuss path fragments
in the reduce phases. We assume no data skew. We discuss
data skew in Section 3.3.

There are three cases for reduce tasks:

• Case 1: Reduces run far apart from each other. This
is the case in the example in Figure 3(a). Reduces
run after their respective maps, but they are much
shorter than the maps and thus create long gaps be-
tween themselves. In this scenario, ParaTimer places
the reduces for different jobs in different path frag-
ments.

• Case 2: Reduces overlap. Let’s imagine that the re-
duce for Job 1 stretches all the way past the end of
Job 2’s map tasks. In this case, however, this reduce
still remains in its own path fragment because Job 2’s
reduce can run right after Job 2’s map tasks end in
another available slot. Hence, the path fragments are
the same as in Case 1.

• Case 3: Reduces run in sequence. Imagine case 2 but
with more reduce tasks for Job 1, enough to fill the
entire cluster capacity or more. In this last case, Job

5

(a)

m11 

m12 

m21 

m22 

m23 

m24 

m25 

m26  m3 

Map tasks

Reduce tasks

r1  r2  r3 

Job1 Job2 Job3

(b)

m11 

m12 

m21 

m22 

m23 

m24 

m25 

m26  m3 

Map tasks

Reduce tasks

r1  r2  r3 

Job1 Job2 Job3

m26’ X

Extra
latency

(c)

m11 

m12 

m21 

m22 

m23 

m24 

m25 

m26 

m3 

Map tasks

Reduce tasks

r1  r2  r3 

Job1 Job2 Job3

m12’ 

X

No Extra
latency

Figure 3: Possible execution schedule for jobs from Figure 2 on a cluster with 5 map and 5 reduce slots. (a)
Execution without failure. (b) Worst-case failure in terms of latency. (c) Failure adds a path fragment but
does not change latency

2 reduces will run directly after Job 1 reduces, form-
ing either one path fragment (if Job 2 reduces were a
multiple of cluster capability) or two (otherwise).

Once again, these reduce path fragments comprise the
copy, sort, and reduce pipelines. Early copies are ignored
for the purpose of path fragment identification: reduces are
assumed to run entirely after the corresponding map path
fragments end.

3.1.3 Identifying the Critical Path Fragments
Given a schedule and an assignment of tasks to path frag-

ments, it is easy to derive a schedule in terms of path frag-
ments where each path fragment is accompanied by a start

time and a duration. The start time of a path fragment is
simply the lowest start time of all tasks in the fragment. The
duration of the path fragment is the sum of the durations
of all the rounds (recall that by definition all tasks within a
path fragment have approximately the same duration, given
by Parallax).

Given a schedule expressed in terms of path fragments,
ParaTimer identifies the fragments on the critical path using
the following simple algorithm.

ParaTimer starts with the entire path-fragment schedule.
As long as there exist overlapping-in-time path fragments in
the schedule, perform the following substitutions:

• Case 1: If two overlapping path fragments start at the
same time, keep only the one expected to take longer.
In the example, p1 and p2 execute in parallel. Hence,
the shorter p1 fragment can be ignored.

• Case 2: If two overlapping path fragments start at dif-
ferent times, keep the one that starts earlier. Remove
the other one, but add back its extra time. In our
example, p2 and p3 overlap. Because the overlap is to-
tal, p3’s time can be ignored. However, if r1 stretched
past the end of m26, the extra time would be taken
into account on the critical path.

The end-result is a schedule in the form of a series, and
this is the critical path.

3.1.4 Estimating Time Remaining at Runtime
In the absence of changes in runtime conditions, path frag-

ments and the critical path can be identified once prior to
query execution. The path fragments on the critical path are
then monitored at runtime and their time-remaining com-
puted using Parallax. The time-remaining for the critical
path is the sum of these per-path-fragment time-remainings.
For path fragments that partly overlap, only their extra,
non-overlapping time is added.

Instead of monitoring all tasks in a path fragment on
the critical path, ParaTimer could monitor only a thread
of tasks within the path fragment (or some subset of these
threads), where a thread is a sequence of tasks from the
beginning to the end of a path fragment. This opportu-
nity enables ParaTimer to offer a flexible trade-off between
overhead and potential progress estimation accuracy: wider
path fragments can potentially smooth time-remaining es-
timates by smoothing away blips due to small inaccuracies
and variations in task completion times (although we did
not see significant differences in our experiments). Thinner
path fragments, however, can reduce monitoring overhead.
Furthermore, when tasks are grouped into path fragments,
ParaTimer can easily change which tasks it tracks at run-
time to better balance the monitoring load yet still track the
critical path.

Alternatively, ParaTimer could also monitor all pipelines
in an ongoing query (not just the critical path) and could
recompute the schedule at each time tick. This choice repre-
sents the maximum overhead and maximum accuracy mon-
itoring solution. In fact, when runtime conditions change,
the schedule and critical path must be recomputed dynam-
ically as we discuss next.

3.2 Handling Failures
The MapReduce approach has been designed for process-

ing massive-scale datasets with queries running across hun-
dreds or even thousands of nodes [6]. At that scale, failures
are likely to occur. For this reason, MapReduce is designed
to provide intra-query fault-tolerance. As a query executes,
MapReduce materializes the output of each map and reduce
task. If a task fails, the system simply restarts the failed
task, possibly on a different node. The task reprocesses its
materialized input data and materializes its output again
from the beginning.

Failures can significantly affect progress estimation. As
an example, Figure 3(b) and (c) shows two schedules for the
query from Figure 3(a) for two different failure scenarios.
Depending when the failure occurs, it may or may not affect
the query time and it may affect it by a different amount.

The challenge with handling failures is that the system,
of course, does not know ahead of time what failures, if
any, will occur. As a result, there is no way to predict the
running time for a query accurately. The best answer that
the system can provide about remaining query time is, “It
depends.”

To address this challenge, we take an approach that we call
comprehensive progress estimation. Instead of outputting
only one, best guess about the query time, ParaTimer out-

6

puts multiple guesses. Ideally, one would like to give the
user a probability distribution function of the remaining
query time. However, such a function would be difficult
to estimate with accuracy. Instead, we take the approach of
outputting a handful of select points on that curve.

3.2.1 Comprehensive Progress Estimation
For clarity of exposition, we refer to the standard Para-

Timer approach described in previous sections as the StdEs-
timator. We now describe possible additional estimates that
ParaTimer can output assuming that failures occur during
query execution.

One important estimator in the presence of failures is
what we call the PessimisticFailureEstimator. This estima-
tor assumes a single task execution will fail but that the
failure will have worst-case impact on overall query execu-
tion time. This estimator is useful because single-failures
are likely to take place and the estimator provides an up-
per bound on the query time in case they arise. The upper
bound is also useful because it approximates the time of an
execution with a single failure that could actually occur. An
example of upper bound that would be less useful would
be to assume the entire query is re-executed upon a failure
and to return as possible time-remaining the same value as
StdEstimator plus the value of StdEstimator at time zero
(basically the time-remaining plus the estimated total time
without failure). In most cases, PessimisticFailureEstimator
will return a much tighter upper bound.

Consider again the example in Figure 3. The StdEs-
timator would output the time remaining for the sched-
ule shown in Figure 3(a), while PessimisticFailureEstimator
would show the time for the schedule shown in Figure 3(b).
Even though the failure is worst-case, the query time is ex-
tended by only a small fraction.

Three conditions make a failure a worst-case failure. First,
the longest remaining task must be the one to fail. In the
example, the map tasks of Job 2 are the longest tasks to
run. Second, the task must fail right before finishing as this
adds the greatest delay. Third, the task must have been
scheduled in the last round of tasks for the given job and
phase. Indeed, if one of tasks m21 through m23 failed, the
query latency would not be affected.

PessimisticFailureEstimator assumes such a worse-case
scenario. For simplicity, however, instead of examining
the schedule carefully to determine the exact worst-case
scenario that is possible, PessimisticFailureEstimator ap-
proximates that scenario by simply assuming the longest
upcoming pipeline will fail right before finishing and will
fail at a time when nothing else can run in parallel. As
a result, PessimisticFailureEstimator produces the follow-
ing time-remaining value for a query Q comprising a set of
pipelines P partitioned into Pdone, Pscheduled, and Pblocked:

PessimisticFailureEstimator(Q) =

= StdEstimator(Q) +max∀p∈Pscheduled∪Pblocked (Parallax(p))

In addition to PessimisticFailureEstimator, ParaTimer
could output additional query time estimates. In partic-
ular, as the scale of a query grows and multiple failures
become likely, ParaTimer could output estimates that al-
low for multiple failures. Going in the other direction, if
users want tighter bounds than PessimisticFailureEstimator,
ParaTimer could output time-remaining assuming failures

that are not necessarily worst-case failures. ParaTimer’s
goal is to enable users to select from a battery of such addi-
tional query time bounds, depending on their system config-
uration and monitoring needs. However, we currently sup-
port and evaluate only the PessimisticFailureEstimator.

3.2.2 Adjusting Estimates after Failures
After a failure occurs, it is crucial to recompute all estima-

tors. There is no sense in the StdEstimator reporting zero-
failure execution time when we know a failure has occurred.
Just as the StdEstimator should account for one past fail-
ure and no future failures, the PessimisticFailureEstimator
should account for one past failure and another worst-case
future failure. In the example, as soon as task m26 fails
and m26′ starts, StdEstimator updates its schedule and re-
computes time remaining. Similarly, PessimisticFailureEs-
timator leverages the new StdEstimator and assumes that
m26′ will fail before finishing. Once m26′ ends, Pessimistic-
FailureEstimator will start returning a time-remaining that
assumes r2, the new longest remaining task, will fail.

In general, a failure can affect all not-completed path frag-
ments and the identity of the critical path, so it is necessary
to recompute these entities from the revised schedule. For
example, when a failure occurs, as illustrated in Figure 3(c),
the failure can stagger the tasks inside a path fragment by
more than value δ1, which requires separating these tasks
into two path fragments (e.g., m11, m12′ and m24 form two
path fragments after the failure). As the figure shows, a
failure can also cause some tasks to move to different path
fragments (e.g., m25′), possibly splitting them in two (not
shown in the figure). In other cases, such as when m26 fails,
path fragments remain the same. To correctly handle all
these cases, when a failure occurs, ParaTimer examines all
currently scheduled tasks and runs the scheduler forward to
get the correct new schedule, path fragments, and critical
path.

3.3 Handling Data Skew
So far, we assumed uniform data distribution and approx-

imately constant per-tuple processing times. Under these
assumptions, all partitions of a pipeline process the same
amount of data and end at approximately the same time.
Frequently, however, data and processing times are not dis-
tributed in such a uniform fashion but instead are skewed.
In this section, we address the problem of data skew, when
imbalance comes from an uneven distribution of data to par-
titions.

In a MapReduce system, skew due to uneven data distri-
bution can occur only in reduce tasks. It cannot arise for
map tasks because each map task processes exactly one data
chunk and all chunks (except possibly the last one) are of
the same size. We thus focus on the case of data skew in
reduce pipelines.

A possible schedule for a set of reduce tasks, where each
task processes a different amount of data could be as follows:

r11 

r12 

r21 

r22 

r23 

r26 

r24 

r25 

Reduce tasks Job1 Job2

When data skew occurs, we no longer have the nice, wide
path fragments that we had before. Instead, each slot in the

7

Algorithm 1 Estimates in presence of data skew

Input: Rscheduled: Set of scheduled reduce tasks
Input: Rblocked: Set of blocked reduce tasks
Input: n: Expected number of rounds
Output: UpperBoundEstimate and LowerBoundEstimate
1: // Compute time of r using Parallax
2: ∀r ∈ Rscheduled Timescheduled[r] = Parallax(r)
3: ∀r ∈ Rblocked Timeblocked[r] = Parallax(r)
4: Sort(Timescheduled) descending
5: Sort(Timeblocked) descending

6: UpperBoundEstimate = Timescheduled[0]+
Pn−1

i=0 Timeblocked[i]
7: RS = |Rscheduled|
8: RB = |Rblocked|
9: LowerBoundEstimate = Timescheduled[RS − 1]+

10:
PRB−1

i=RB−n Timeblocked[i]

cluster becomes its own path fragment.
If the MapReduce scheduler is deterministic, ParaTimer

can pre-compute the expected task schedule for a query. It
can then use it to reliably estimate the time on all path
fragments and identify the critical path.

The challenge is when the scheduler is not completely de-
terministic. In particular, the challenge arises when Para-
Timer does not know how tasks within a job will be sched-
uled exactly. As a consequence, ParaTimer cannot be cer-
tain of the query time because the schedule will affect that
time. To address this challenge, we also adopt the compre-
hensive estimation approach. That is, ParaTimer outputs
multiple estimates for the query. Each estimate gives the
expected query time under a different scenario.

For data skew, different estimates could be useful. We
propose to show users two estimates: an upper bound and a
lower bound on the expected query time. For a set of reduce
tasks, the approach works as follows:

Given a set of reduce tasks R and a cluster capacity C,
expressed in terms of number of slots, if cardinality esti-
mates point to data skew, ParaTimer considers that there
are C parallel path fragments for both the copy and reduce
pipelines. The expected number of rounds within each of
these path fragments is given by: n = dR

C
e. Before the tasks

in R start executing, ParaTimer reports the time of chaining
together either the n longest tasks (UpperBoundEstimate)
or n shortest tasks (LowerBoundEstimate).

Once the tasks start executing, we take R to contain just
the not-yet-completed tasks. We then partitition R into
two disjoint sets Rscheduled and Rblocked where Rscheduled ∩
Rblocked = ∅, Rscheduled∪Rblocked = R, and Rscheduled refers
to tasks that have started. We update n to be dRblocked

C
e.

We then report as an upper bound the time of chaining
together the longest currently executing task followed by
the n−1 longest unscheduled tasks and similar for the lower
bound as shown in Algorithm 1.

When multiple jobs are chained together, time-remaining
estimation errors accumulate and ParaTimer reports the
sum of all upper bounds as the upper bound. It reports
the sum of all lower bounds as the lower bound

Other upper and lower bounds are possible. In particular,
one could examine the current schedule more carefully to
make the bounds tighter. However, our current choices yield
useful results as we show next.

4. EVALUATION
In this section, we evaluate the ParaTimer estimator

!"#"

!"#$

!%#"

!%"%

!%"&

!%"'

!&#"

Map tasks

Reduce tasks ("#" (%#" (&#"

Job1 Job2 Job3

…
…

…

(""' (%"'

!&"'

(&"'
…

… …

!&")

!&&%

…

!%")

…

Figure 4: Parallel join experiment: Task schedule
for Pig Latin query comprising a join operator and
translating into three MapReduce jobs.

through a set of microbenchmarks. In each experiment, we
run a Pig Latin query in a real small-scale cluster. The input
data is synthetic with sizes up to 8GB and either uniform
or Zipfian data distribution.

We compare the performance of ParaTimer against that of
Parallax [23], Pig’s original progress estimator [25], and pre-
vious techniques for single-site progress estimation, in par-
ticular GNM [3], DNE [3], and Luo [19]. We reimplemented
the GNM, DNE, and Luo estimators in Pig/Hadoop. We
demonstrate that ParaTimer outperforms all these earlier
proposals on parallel queries with joins. We also show Para-
Timer’s performance in the presence of failures and data
skew and, for the latter, compare again against Parallax.

4.1 Experimental Setup and Assumptions
All experiments in this section were run on an eight-

node cluster configured with the Hadoop-17 release and Pig
Latin trunk from February 12, 2009. Each node contains
a 2.00GHz dual quad-core Intel Xeon CPU with 16GB of
RAM. The cluster was configured to a maximum degree of
parallelism of 16 concurrent map tasks and 16 concurrent
reduce tasks.

In all experiments, we use perfect cardinality estimates
(N values) in order to isolate the other sources of errors
in progress estimation. Both Parallax and ParaTimer are
demonstrated in two forms: Perfect, which uses N and α
values from a prior run over the entire data set; and 1%
which uses α collected from a prior run over a 1% sampled
subset (other sample sizes yielded similar results) and N
values from a prior run over the full data set.

4.2 Parallel Queries with Joins
In this section we investigate how well ParaTimer han-

dles Pig Latin queries containing a join operator through
two experiments with different critical path configurations.
Our experiments include a foreign-key join of two uniformly-
distributed data sets. All experiments in this section consist
of three jobs: the first two perform a DISTINCT operation
in parallel on two input data sets followed in sequence by a
third job that performs an equi-join of their outputs (as in
Figure 2).

The schedule of the first join experiment is depicted in Fig-
ure 4. This experiment runs for approximately 28 minutes.
Job 1 processes 1 GB of data through four parallel maps
and 16 reduces. Job 2 processes 4.2 GB of data through 17
map tasks and 16 reduces.

Figures 5 and 6 show the results for ParaTimer, Paral-
lax, Pig’s existing indicator, and the other single-site indi-

8

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

/<2

DEF

GE;

C+1

'"./,0,--,@

'"./,0,A<730

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

/<2

DEF

GE;

C+1

'"./,0,--,@

'"./,0,A<730

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

/<2

DEF

GE;

C+1

'".(B1BA<730

/30H3)*.(B1BA<730

'"./,0,A<730

Figure 5: Parallel join experiment: Time-remaining
estimates for parallel query with join. 4.2 GB and
1 GB data sets, eight-node cluster. Task schedule
as in Figure 4

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

/<2

DEF

GE;

C+1

'".(B1BA<730

/30H3)*.(B1BA<730

'"./,0,A<730

Figure 6: Parallel Join Experiment: Time-
remaining estimates for parallel query with join.
4.2 GB and 1 GB data sets, eight-node cluster. Task
schedule as in Figure 4

cators from the literature (GNM [3], DNE [3], and Luo [19]).
In these figures, the x-axis shows the real percent-time re-
maining for the query and the y-axis shows the estimated
percent-time remaining. Hence, the closer a curve is to the
x = y trend-line, the smaller the estimation error.

We report both the average and maximum across the in-
stantaneous errors for all experiments in this section. The
instantaneous error is computed as in [3]:

error =

˛̨̨̨
100 ∗ (ti − t0)

(tn − t0)
− fi

˛̨̨̨
(2)

where fi is the reported percent-time done estimate, ti is
the current time, tn is the time when the query completes,
and (ti -t0)/(tn-t0) represents the actual percent-time done.

Overall, ParaTimer does very well with average error un-
der 1.6% and maximum error under 7.1% The error is mostly
concentrated at the end of the execution of the final round
of map tasks in job 2. In this case optimistic estimates are
reported but only for a brief amount of time. ParaTimer
assumes that, in the absence of changes to external condi-
tions, a pipeline will process data at constant speed. Para-
Timer does not account for an extra blocking combine phase
that is sometimes performed at the end of a map pipeline.4

4The combine phase processes the data one chunk at the
time in parallel with the rest of the pipeline but may some-

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

/<2

DEF

GE;

C+1

'".(B1BA<730

/30H3)*.(B1BA<730

'"./,0,A<730

Figure 7: Parallel Join Experiment. Time-
remaining estimates for parallel query with join.
4 GB and 1 GB data sets, eight-node cluster. Task
schedule as in Figure 4 but without m217

A more refined model could improve these estimates, but
would complicate the implementation.

Parallax has good average error (6-8%), but has high max-
imum error (18-19%). Since Parallax assumes a serial sched-
ule of jobs consisting of job 1 followed by jobs 2 and 3, it
incorrectly assumes that each job will execute with access to
full cluster resources and will run one after the other. As-
suming serial execution leads to pessimistic estimates. As-
suming access to full cluster capacity leads to optimistic es-
timates. In this configuration, the serial assumption weighs
more heavily and the estimate is pessimistic.

Figure 5 demonstrates that, as expected, indicators from
the literature that are designed for single-site systems cannot
be directly applied to a parallel setting. All of them have
average errors > 11% and maximum errors > 28%

The next join experiment uses the same Pig Latin script
as before, but this time job 2 processes a 4GB input data set,
which creates 16 map tasks. The schedule of tasks for this
experiment is similar to Figure 4, except m217 is omitted.
However, the critical path has changed and is computed
through the first job’s map tasks and the second job’s map
tasks m213 through m216. Figure 7 shows the results. The
experiment ran for approximately 25 minutes.

ParaTimer performs similarly well to the previous join
experiment, with average errors under 1.6% and maximum
errors under 7.2%. Parallax’s average errors are in the 3-5%
range and maximum errors are as high as 21%. Parallax’s
errors are due to the incorrect assumption that the second
job’s map tasks will be running at full cluster capacity. It
expects the pipeline width to be close to 16 for the execution
of these maps, when in fact the pipeline width starts as 12
and drops to 4 after the first job’s maps complete. Because
of this assumption, the estimates trend optimistic.

Overall, ParaTimer thus significantly outperforms Paral-
lax, reducing maximum errors in the presence of joins from
approximately 20% to approximately 7% in our experiments.

4.3 Failures
In this section we examine the robustness of ParaTimer

through four single-task failure scenarios. We start with the
query schedule from Figure 4 and test different configura-
tions of failures on or off the critical path and either changing
or not that critical path. The following table summarizes the

times block that pipeline.

9

experimental configurations:
Where failure occurs

Changes critical path Other path Critical path
No A C
Yes B D

Given the schedule from Figure 4, to obtain case A, we
fail map task m104 at 195 seconds into its execution (around
35% complete). The scheduler selects the next available map
task (here: m213) and schedules it in place of the failed one
resulting in a schedule analogous to that in Figure 3(c). Ex-
periment C is similar to A except that we fail m201 around
59 seconds into its execution. m201 then gets rescheduled
alongside m217. In both cases, the query time before and
after failure remains the same as the latency for the extra
tasks can be hidden by the execution of m217. Since both
graphs look almost the same, due to space constraints, we
show only results for one experiment.

Figure 8 shows the results for experiment C. For fail-
ures, we find it easier to reason about time-remaining rather
than percent-time done. In Figure 9, we show results
from experiment C again but, this time, in terms of time-
remaining. In this figure, the black trend-line shows the
actual time-remaining for the query. Curves above this line
over-estimate time-remaining. Curves below the line under-
estimate time-remaining.

As discussed in Section 3.2, ParaTimer produces multi-
ple estimates in the case of failures: StdEstimate and Pes-
simisticFailureEstimate. StdEstimate is represented as Per-
fect and 1% ParaTimer in the figures. PessimisticFailureEs-
timate appears as PessimisticEstimate. Finally, we present
an additional estimate, referred in this section as FailureEs-
timate, which provides an estimate in between StdEstimate
and PessimisticEstimate. Before a failure occurs, FailureEs-
timate (like PessimisticFailureEstimate) is cautious and ac-
counts for a failure of the longest-running task among all
current and future pipelines. However, once a failure occurs,
it assumes that no more failures will occur for the remainder
of that job’s pipeline. At this point, its time-remaining esti-
mate is equivalent to StdEstimate but only until the end of
that pipeline at which time, FailureEstimate assumes that
a failure will occur again.

In the case of experiments A and C, since the query time
is not affected by the failure, StdEstimate shows the correct
time-remaining throughout query execution with an average
error below 2% in both experiments. The PessimisticFail-
ureEstimate over-estimates the time throughout most of the
execution. At time 1500 seconds, once the long-running map
tasks from Job 2 end, PessimisticFailureEstimate correctly
updates itself by assuming only one of the remaining short
tasks can fail. Finally, FailureEstimate correctly follows Pes-
simisticFailureEstimate before failure and StdEstimate after
the failure and until the end of the map tasks. It then fol-
lows PessimisticFailureEstimate again. The overestimation
of the query-time by PessimisticFailureEstimate is 15% on
average. It is a bit high at 30% right before the job2 map
tasks end because of the large difference in execution times
for the two types of tasks.

To obtain Case B, we fill-up the path fragment compris-
ing tasks {m201, . . . ,m212,m217} to form a new path frag-
ment with tasks {m201, . . . ,m212,m217, . . . ,m228}. With
this setup, there is no more room to hide any restarted tasks.
We then fail task m104 after 296 seconds (at 53% complete).

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

E,<-+03;4*<7,*3

/344<7<4*<);4*<7,*3

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

E,<-+03;4*<7,*3

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

E,<-+03;4*<7,*3

/344<7<4*<);4*<7,*3

Figure 8: Failure case C, percent-done.

! "!! #!!! #"!!

$%&'()*+,-./*0.-(,1,12*34.%5

!6

#6

76

8
4
&,-
(
&.
9
*+
,-
.
/0
.
-
(
,1
,1
2
*3
4
.
%
5

!"#$%&#'()*&%+

:;<*+=.19*>,1.

#?*@(=(+,-.=

@.=A.%&*@(=(+,-.=

B(,)'=.84&,-(&.

@.44,-,4&,%84&,-(&.

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

E,<-+03;4*<7,*3

! "!! #!!! #"!! $!!! $"!!

%&'()*+,-./0+1/.)-2-23+45/&6

!7

#7

$7

87

9
5
'-.
)
'/
:
+,
-.
/
01
/
.
)
-2
-2
3
+4
5
/
&
6

!"#$%&#'()*&%+

;<=+,>/2:+?-2/

#@+A)>),-./>

A/>B/&'+A)>),-./>

C)-*(>/95'-.)'/

A/55-.-5'-&95'-.)'/

! "!! #!!! #"!! $!!! $"!!

%&'()*+,-./0+1/.)-2-23+45/&6

!7

#7

$7

87

9
5
'-.
)
'/
:
+,
-.
/
01
/
.
)
-2
-2
3
+4
5
/
&
6

!"#$%&#'()*&%+

;<=+,>/2:+?-2/

#@+A)>),-./>

A/>B/&'+A)>),-./>

C)-*(>/95'-.)'/

A/55-.-5'-&95'-.)'/

! "!! #!!! #"!! $!!! $"!!

%&'()*+,-./0+1/.)-2-23+45/&6

!7

#7

$7

87

9
5
'-.
)
'/
:
+,
-.
/
01
/
.
)
-2
-2
3
+4
5
/
&
6

!"#$%&#'()*&%+

;<=+,>/2:+?-2/

#@+A)>),-./>

A/>B/&'+A)>),-./>

C)-*(>/95'-.)'/

A/55-.-5'-&95'-.)'/

Figure 9: Failure case C, time-remaining

For case D, we use the same setup but fail task m201, which
is on the critical path, at 676 seconds into its execution (at
93% complete). In both cases, the critical path changes and
the time-remaining increases after the failure. Figure 10
shows the time-remaining curve for experiment D (exper-
iment B has similar shape). As expected, before the fail-
ure happens, StdEstimate provides a lower-bound on query
execution while PessimisticFailureEstimate and FailureEs-
timate are providing an upper-bound on query execution.
This is exactly the desired behavior. The span between the
two is small. The upper bound over-estimates query time by
8% while the lower-bound underestimates it by at most 10%.
After the failure, all estimators adjust their predictions as
expected.

Overall, the ParaTimer approach to query-time estima-
tion in the presence of failures thus works very well for all
these different failure configurations.

4.4 Data Skew
The goal of the experiments in this section is to measure

how well ParaTimer handles data skew, which results from
an imbalance in the distribution of the data processed per
task or partition. Recall from Section 3.3 that such skew
arises only in reduce pipelines.

We run two experiments. Each one comprises a Pig Latin
script that performs a GROUP-BY operation through a sin-
gle MapReduce job. Moreover, the script loads an 8 GB
data set with a Zipfian distribution on the key used by the
GROUP-BY operator, which results in data skew in the re-
duce pipeline.

For the first experiment, we manually configured the Pig
Latin script to produce a single round of 16 reduce tasks.

10

! "!! #!!! #"!! $!!! $"!!

%&'()*+,-./0+1/.)-2-23+45/&6

!7

#7

$7

87

9
5
'-.
)
'/
:
+,
-.
/
01
/
.
)
-2
-2
3
+4
5
/
&
6

!"#$%&#'()*&%+

;<=+,>/2:+?-2/

#@+A)>),-./>

A/>B/&'+A)>),-./>

C)-*(>/95'-.)'/

A/55-.-5'-&95'-.)'/

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

E,<-+03;4*<7,*3

! "!! #!!! #"!! $!!! $"!!

%&'()*+,-./0+1/.)-2-23+45/&6

!7

#7

$7

87

9
5
'-.
)
'/
:
+,
-.
/
01
/
.
)
-2
-2
3
+4
5
/
&
6

!"#$%&#'()*&%+

;<=+,>/2:+?-2/

#@+A)>),-./>

A/>B/&'+A)>),-./>

C)-*(>/95'-.)'/

A/55-.-5'-&95'-.)'/

! "!! #!!! #"!! $!!! $"!!

%&'()*+,-./0+1/.)-2-23+45/&6

!7

#7

$7

87

9
5
'-.
)
'/
:
+,
-.
/
01
/
.
)
-2
-2
3
+4
5
/
&
6

!"#$%&#'()*&%+

;<=+,>/2:+?-2/

#@+A)>),-./>

A/>B/&'+A)>),-./>

C)-*(>/95'-.)'/

A/55-.-5'-&95'-.)'/

! "!! #!!! #"!! $!!! $"!!

%&'()*+,-./0+1/.)-2-23+45/&6

!7

#7

$7

87

9
5
'-.
)
'/
:
+,
-.
/
01
/
.
)
-2
-2
3
+4
5
/
&
6

!"#$%&#'()*&%+

;<=+,>/2:+?-2/

#@+A)>),-./>

A/>B/&'+A)>),-./>

C)-*(>/95'-.)'/

A/55-.-5'-&95'-.)'/

Figure 10: Failure case D, time-remaining

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

'"./,0,--,@

/30D3)*./,0,--,@

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

/<2

DEF

GE;

C+1

'".(B1BA<730

/30H3)*.(B1BA<730

'"./,0,A<730

Figure 11: Simple data skew experiment. Percent
time-remaining estimates in the presence of Zipfian
skew 8GB data set (32 maps, 16 reduces), eight-node
cluster. Skew occurs in the reduce phase

In that case, ParaTimer can predict the schedule with cer-
tainty: all reduce tasks will be scheduled concurrently. It
can thus reliably identify and follow the critical path. It
produces a “best guess” estimate from this offline, pre-
computed critical path. For the second experiment, we dou-
ble the number of reduce tasks. In this scenario, ParaTimer
may not know exactly how tasks will be scheduled and must
thus output an upper- and lower-bound estimate. The re-
sults for the first experiment are in Figure 11 and for the
second experiment in Figures 12. The first experiment ran
in 49 minutes and the second in 45 minutes.

Figure 11 shows that, as expected, ParaTimer’s “best
guess” estimate is accurate for the simple case of data skew
with a single round of reduce tasks and thus a predictable
schedule. Average errors are 1.4% for Perfect ParaTimer
and 3.2% for 1% ParaTimer. The maximum errors for both
were under 7.3%.

ParaTimer additionally produces accurate estimates for
a more complex data skew scenario with less predictable
schedules. Here “best guess” was within 5% average error
for 1% ParaTimer and within 3% for Perfect ParaTimer.
As expected, Figure 12, shows the “best guess” estimates
between the upper and lower bound curves. Furthermore,
the bounds provide reasonable estimates: lower bound un-
derestimates the query time by 12% while the upper bound
overestimates it by at most 9%.

In both data skew experiments, Parallax produces signif-
icantly less accurate estimates. For both experiments, the
average error was within 11% with very high maximum er-

!" #!" $!" %!" &!" '!!"

()*+,-./0120344.5".6178-3*39

!"

:!"

'!!"

;
4
*<7
,
*3
=
./
01
2
03
4
4
.5
"
.6
1
7
8
-3
*3
9 !"#$%&#'()*&%+

>?@.A03B=.C<B3

'"./,0,A<730

/30D3)*./,0,A<730

/,0,A<730.E8830F1+B=

/,0,A<730.C1G30F1+B=

! "!! #!!! #"!! $!!! $"!!

%&'()*+,-./0+1/.)-2-23+45/&6

!7

#7

$7

87

9
5
'-.
)
'/
:
+,
-.
/
01
/
.
)
-2
-2
3
+4
5
/
&
6

!"#$%&#'()*&%+

;<=+,>/2:+?-2/

#@+A)>),-./>

A/>B/&'+A)>),-./>

A)>),-./>+CDD/>EF(2:

A)>),-./>+?FG/>EF(2:

Figure 12: Complex data skew experiment. Percent
time-remaining estimates in the presence of Zipfian
skew 8GB data set (32 maps, 32 reduces), eight-node
cluster

rors in the 30-40% range. Parallax’s accuracy suffers be-
cause it assumes that each reduce partition processes a uni-
form amount of data. Since it does not take this skew into
account, it produces overly-optimistic estimates for both ex-
periments.

5. RELATED WORK
Several relational DBMSs, including parallel DBMSs, pro-

vide coarse-grained progress indicators for running queries.
Most systems simply maintain and display a variety of statis-
tics about (ongoing) query execution [4, 5, 7, 10] (e.g.,
elapsed time, number of tuples output so far). Some sys-
tems [7, 10] further break a query plan into steps (e.g., op-
erators), show which of the steps are currently executing,
and how evenly the processing is distributed across proces-
sors. Pig/Hadoop’s existing progress estimator [25] takes
a similar approach. It shows a percent-remaining estimate
but has low accuracy (Figure 5) because it assumes all oper-
ators process data at the same speed. Our approach strives
to estimate time remaining with significantly more accuracy.

There has been significant recent work on developing
progress indicators for SQL queries executing within single-
node DBMSs [3, 2, 18, 19, 21, 22], possibly with concurrent
workloads [20]. In contrast, ParaTimer focuses on the chal-
lenges specific to parallel queries: distribution across multi-
ple nodes, concurrent execution, failures, and data skew.

Chaudhuri et al. [3] maintain upper and lower bounds on
operator cardinalities to refine their estimates at runtime.
These bounds are not analogous to ParaTimer’s bounds.
Chaudhuri et al. use bounds only to correct their single best-
guess estimate of query progress when original cardinality
estimates are incorrect or to produce approximate estimates
with provable guarantees in the presence of join skew [2]. In
contrast, ParaTimer focuses on producing multiple useful
guesses on query times. Further, ParaTimer’s guesses are
also not necessarily absolute upper and lower bounds but
rather additional estimates for different possible conditions.

In follow-on work, Chaudhuri et al. [2] study the problem
of join skew in single-node estimators, where different input
tuples contribute to very different numbers of output tuples.
In contrast, we focus on data skew across partitions of an
operator and do not consider join skew.

In preliminary prior work, we developed Parallax [23],
the first non-trivial time-based progress estimator for par-

11

allel queries. However, Parallax only works for very simple
queries in mostly static runtime conditions. In contrast,
ParaTimer’s approach works for parallel queries with joins
and in the presence of data skew and failures.

Query progress is related to the cardinality estimation
problem. There exists significant work in the cardinality es-
timation area including recent techniques [21, 22] that con-
tinuously refine cardinality estimates using online feedback
from query execution. These techniques can help improve
the accuracy of progress indicators. They are orthogonal to
our approach since we do not address the cardinality esti-
mation problem in this paper.

Query optimizers have a model of query cost and compute
that cost when selecting query plans. These costs, how-
ever, are designed for selecting plans rather than comput-
ing the most accurate time-remaining estimates. As such,
optimizer’s estimates can be inaccurate time-remaining in-
dicators [9, 19]. Ganapathi et al. [9] use machine learning
to predict query times before execution. In contrast, we
focus on providing continuously updated time-remaining es-
timates during query execution taking runtime conditions
such as failures into account.

Work on online aggregation [13, 16] also strives to pro-
vide continuous feedback to users during query execution.
The feedback, however, takes the form of confidence bounds
on result accuracy rather than estimated completion times.
Additionally, these techniques use special operators to avoid
any blocking in the query plans.

Finally, query schedulers can use estimates of query com-
pletion times to improve resource allocation. Existing tech-
niques for time-remaining estimates in this domain [28],
however, currently use only heuristics based on Hadoop’s
progress counters, which leads to similar limitations as in
Pig’s current estimator.

6. CONCLUSION
We presented ParaTimer, a system for estimating the

time-remaining for parallel queries consisting of multiple
MapReduce jobs running on a cluster. We leveraged our
earlier work that determines operator speed via runtime
measurements and statistics from earlier runs on data sam-
ples. Unlike this prior work, we support queries where mul-
tiple MapReduce jobs operate in parallel (as occurs with
join queries), where nodes fail at run-time, and where data
skew exists. The essential techniques involve identifying the
critical path for the entire query and producing multiple
time estimates for different assumptions about future dy-
namic conditions. We have implemented our approach in
the Pig/Hadoop system and demonstrated that for a range
of queries and dynamic conditions it produces quality time
estimates that are more accurate than existing alternatives.

7. ACKNOWLEDGEMENTS
The ParaTimer project is partially supported by NSF CA-

REER award IIS-0845397, NSF CRI grant CNS-0454425,
gifts from Microsoft Research and Yahoo!, and Balazinska’s
Microsoft Research New Faculty Fellowship. Kristi Morton
is supported in part by an AT&T Labs Fellowship.

8. REFERENCES
[1] C. Ballinger. Born to be parallel: Why parallel origins give

Teradata database an enduring performance edge.
http://www.teradata.com/t/page/87083/index.html.

[2] S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When can
we trust progress estimators for SQL queries. In Proc. of
the SIGMOD Conf., Jun 2005.

[3] S. Chaudhuri, V. Narassaya, and R. Ramamurthy.
Estimating progress of execution for SQL queries. In Proc.
of the SIGMOD Conf., Jun 2004.

[4] DB2. SQL/monitoring facility.
http://www.sprdb2.com/SQLMFVSE.PDF, 2000.

[5] DB2. DB2 Basics: The whys and how-tos of DB2 UDB
monitoring. http://www.ibm.com/developerworks/db2/
library/techarticle/dm-0408hubel/index.html, 2004.

[6] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In Proc. of the 6th OSDI
Symp., 2004.

[7] M. Dempsey. Monitoring active queries with Teradata
Manager 5.0. http:
//www.teradataforum.com/attachments/a030318c.doc,
2001.

[8] D. J. DeWitt, E. Paulson, E. Robinson, J. Naughton,
J. Royalty, S. Shankar, and A. Krioukov. Clustera: an
integrated computation and data management system. In
Proc. of the 34th VLDB Conf., pages 28–41, 2008.

[9] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox,
M. Jordan, and D. Patterson. Predicting multiple metrics
for queries: Better decisions enabled by machine learning.
In Proc. of the 25th ICDE Conf., pages 592–603, 2009.

[10] Greenplum. Database performance monitor datasheet
(Greenplum Database 3.2.1). http://www.greenplum.com/
pdf/Greenplum-Performance-Monitor.pdf.

[11] Greenplum database. http://www.greenplum.com/.

[12] Hadoop. http://hadoop.apache.org/.

[13] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Proc. of the SIGMOD Conf., 1997.

[14] IBM zSeries SYSPLEX. http:
//publib.boulder.ibm.com/infocenter/\\dzichelp/v2r2/
index.jsp?topic=/com.ibm.db2.doc.admin/xf6495.htm.

[15] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequential
building blocks. In Proc. of the European Conference on
Computer Systems (EuroSys), pages 59–72, 2007.

[16] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and A. Pol.
A disk-based join with probabilistic guarantees. In Proc. of
the SIGMOD Conf., pages 563–574, 2005.

[17] Large Synoptic Survey Telescope. http://www.lsst.org/.

[18] G. Luo, J. F. Naughton, C. J. Ellman, and M. Watzke.
Increasing the accuracy and coverage of SQL progress
indicators. In Proc. of the 20th ICDE Conf., 2004.

[19] G. Luo, J. F. Naughton, C. J. Ellman, and M. Watzke.
Toward a progress indicator for database queries. In Proc.
of the SIGMOD Conf., Jun 2004.

[20] G. Luo, J. F. Naughton, and P. S. Yu. Multi-query SQL
progress indicators. In Proc. of the 10th EDBT Conf., 2006.

[21] C. Mishra and N. Koudas. A lightweight online framework
for query progress indicators. In Proc. of the 23rd ICDE
Conf., 2007.

[22] C. Mishra and M. Volkovs. ConEx: A system for
monitoring queries (demonstration). In Proc. of the
SIGMOD Conf., Jun 2007.

[23] K. Morton, A. Friesen, M. Balazinska, and D. Grossman.
Estimating the progress of mapreduce pipelines. In Proc. of
the 26th ICDE Conf. (To appear), 2010.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In Proc. of the SIGMOD Conf., pages
1099–1110, 2008.

[25] Pig Progress Indicator. http://hadoop.apache.org/pig/.
[26] A. Pruscino. Oracle RAC: Architecture and performance.

In Proc. of the SIGMOD Conf., page 635, 2003.
[27] Vertica, inc. http://www.vertica.com/.

[28] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in

12

heterogeneous environments. Proc. of the 8th OSDI Symp.,
2008.

13

