
Bridging the Gap Between Intensional and
Extensional Query Evaluation in Probabilistic

Databases

Abhay Jha Dan Olteanu Dan Suciu
abhaykj@cs.washington.edu dan.olteanu@comlab.ox.ac.uk suciu@cs.washington.edu

September 16, 2009

Contents
1 Introduction 2

2 Background 3
2.1 Relational Operators on Probabilistic Databases 3
2.2 Intensional Evaluation . 4

3 Motivation 6
3.1 Unsafe Query via Safe Plans . 6
3.2 Complexity of Counting Conjunctive queries 6

4 Our Approach 8
4.1 Relational Operators over pL-relations 10

4.1.1 Selection . 10
4.1.2 Projection . 11
4.1.3 Join . 12

4.2 Inference over an And-Or Network 14
4.3 Analysis and Comparisons . 16

5 Experiments 17
5.1 Scalability . 19
5.2 Effect of FFD . 19
5.3 Effect of FDT . 20

6 Related Work 20

7 Conclusion and Future Work 22

1

Abstract

There are two broad approaches to query evaluation over probabilistic databases
: 1) Intensional Methods proceed by manipulating expressions over symbolic events
associated with uncertain tuples. This approach is very general and can be applied
to any query, but requires an expensive postprocessing phase, which involve some
general-purpose probabilistic inference 2) Extensional Methods, on the other hand
evaluate the query by translating operations over symbolic events to a query plan,
called a safe plan; extensional methods scale well, but they are restricted to safe
queries.

In this paper, we bridge this gap by proposing an approach that can trans-
late the evaluation of any query into extensional operators followed by some post-
processing that requires probabilistic inference. Our approach uses characteristics
of the data to adapt smoothly between the two evaluation strategies. If the query is
safe or becomes safe because of the data instance, then the evaluation is completely
extensional and inside the database. If the query/data combination departs from the
ideal setting of a safe query, then some intensional processing is performed, whose
complexity depends only on the distance from the ideal setting.

1 Introduction
Query Evaluation for Probabilistic Databases even over independent relations is known
to be a #P-hard problem [4]. There is a dichotomy for conjunctive queries without
self-joins which says every query is either in PTIME(safe) or #P-hard(unsafe). There
is an efficient way to evaluate the safe queries using just database operators[5, 11].
Unsafe queries, on the other hand, require the probabilistic inference approaches like
sampling[13], graphical models [17], DPLL [9] etc that are expensive and don’t scale
well.
There has been no similar work to translate the evaluation of unsafe queries to database
operators. This is because its a #P-complete problem and encompasses problems like
probabilistic inference, #SAT etc, for which symbolic approaches and more compli-
cated algorithms are required. Deploying them inside a database may not lead to much
benefit. In this paper, we propose an approach that tries to bridge this gap by combining
both approaches. In the first stage the evaluation is translated into database operators,
but the output is not a value, but a structure that is evaluated symbolically in the second
stage. If the query is safe or becomes safe because of the data instance, no work is done
in the second stage. In general, the initial problem is reduced to an inference problem
that may be much smaller than the original scale of data or just as bad depending on
the data. Hence this is the first approach which, to the best of our knowledge, makes a
smooth transition from safe queries to unsafe queries. It compares well with safe plans
on safe queries and is just as fast as other approaches when the query gets unsafe as
well.
We accomplish this by first translating the notion of safe from just query to query and
data i.e. any query can be safe depending on the data. We’ll see that two features of
the data: i)deterministic tuples and ii) functional dependencies, determine this safety
criterion. To solve the unsafe cases then, just like the intesional approaches, we pro-
pose a new model that can capture the correlations that are introduced during query

2

evaluation. We then extend the existing relational operators over independent relations
to work over these models, so that the safe part of the data(deterministic tuples and
ones satisfying FDs) is evaluated extensionally and the rest is pushed into the symbolic
evaluation to be done after query evaluation. Unsafe queries are #P-hard in general but
they are known to be in PTIME when you assume a parameter of the query/data, the
treewidth to be bounded. We study the parametrized complexity of our approach and
propose a parameter that is better than the ones proposed earlier in the literature.
Our approach performs just as well with the best known approaches in the three corner
cases : i) completely deterministic data ii) safe query iii)completely symbolic evalua-
tion ; and at the same time transitions smoothly in general in a mixed setting.

2 Background
We first review some basics of query evaluation semantics in probabilistic databases
below :
A Probabilistic Relation R = (R, ρ) represents a probability distribution over all the
subsets of R according to ρ : 2R → [0, 1] s.t.

∑
ω⊆R ρ(ω) = 1. Assuming ρ is clear

from the context, we use Pr(φ) to denote the marginal probability of a boolean formu-
lae φ over tuples of R i.e.Pr(φ) =

∑
ω|=φ ρ(ω).

To evaluate a boolean query q means computing Pr(q). In this paper, we are inter-
ested only in conjunctive queries q without self-joins. We further assume that q 6=
q1q2, V ars(q1) ∩ V ars(q2) = ∅, since otherwise q1,q2 are independent components
and Pr(q) = Pr(q1)Pr(q2). We will only be studying the data complexity and hence
the size of query is assumed to be bounded throughout the paper.

2.1 Relational Operators on Probabilistic Databases
Definition 2.1 For any relational operator ℘, the semantics given over probabilistic
relations are : ℘(R, ρ) = (℘R, ρ′) where for any ω ⊆ ℘R

ρ′(ω) =
∑

Ω⊆R,℘Ω=ω

ρ(Ω)

Independent Relations A relation where all tuples are assumed to be mutually inde-
pendent, is called an Independent Relation. Formally, its a pair (R, p), where p : R→
(0, 1] and represents the probabilistic relationR = (R, ρ), where for any ω ⊆ R :

ρ(ω) =
∏
t∈ω

p(t)
∏
t/∈ω

(1− p(t)) (1)

Consider the following syntax for projection,join operators on independent relations.

π(R, p) = (πR, pπ) (2)
(R1, p1) 1 (R2, p2) = (R1 1 R2, p1) (3)

3

where pπ(t) = 1 −
∏
πt′=t(1 − p(t′)) for t ∈ πR ; p1(t1 1 t2) = p1(t1)p2(t2) for

t1 ∈ R1 , t2 ∈ R2. The great thing about the above operators is that they can be easily
rewritten into database operators ; hence query evaluation is very fast and scalable.

Proposition 2.2 (R(x, y), p) 1x (S(x, z), q) is an independent relation iff ∀(a, b) ∈
R if p(a, b) < 1 then|{c | (a, c) ∈ S}| ≤ 1. We call 1 a 1-1 join if the aforementioned
condition is true.

Proof: The if part is easy and follows from the work on independent relations[5]. To
prove the other direction assume p(a, b) < 1 and (a, c1), (a, c2) ∈ S. Let (U, r) =
(R, p) 1 (S, q), then Pr(U(a, b, c1) ∧ U(a, b, c2)) = p(a, b)q(b, c1)q(b, c2) while
Pr(U(a, b, c1))Pr(U(a, b, c2)) = p2(a, b)q(b, c1)q(b, c2). But p(a, b)q(b, c1)q(b, c2) 6=
p2(a, b)q(b, c1)q(b, c2) unless p(a, b) = 1 or 0, a contradiction. ∴ the tuples U(a, b, c1)
and U(a, b, c2) are not independent. Hence proved. 2

[5] proved that equations (2) and (3) hold for a subset of conjunctive queries called
safe queries. Safe queries, hence have a plan(safe plan) where all joins are 1-1 irre-
spective of data instance or probability values. Its easy to show that this entails that
every join is of the form R(x) 1x S(x). We can in light of proposition 2.2 extend the
defintion of safe plans,queries so that its no longer agnostic of data.

Definition 2.3 A plan where all joins are 1-1 is called a safe plan. A query that has a
safe plan is called a safe query.

Note that depending on the data, a query may be in PTIME, yet not be safe. For
example R(x)S(x, y)T (y) is in PTIME if S is deterministic and the gaifman graph
representing S is complete-bipartite. But still there is no plan to evaluate this query
with the join and project operators defined in equations (2),(3). So definition 2.3 cap-
tures only the queries that can be evaluated by a database plan with the independent
join and project operators. [11] have a similar result where they rewrite queries using
FDs and queries that can be rewritten into a safe query admit a safe plan. Proposition
2.2 though offers an if and only if criterion.

To solve unsafe queries though, one has to be able to evaluate joins which are
not 1-1 and for that we need models more complicated than independent relations as
demonstrated by Proposition 2.2. Infact the problem is #P-complete for conjunctive
queries ; hence subsequently other approaches that deal with a more general set of
models have been proposed. Most of these approaches have been derived from the
literature of probabilistic inference[12, 2] which has proposed many models for repre-
senting correlations/dependencies along with the algorithms to infer probability of any
query. We talk about these approaches below :

2.2 Intensional Evaluation
In this paper we frequently use terms like intensional and symbolic evaluation to mean
the same thing : inference techniques that proceed by some sort of symbolic manipu-
lation i.e. where the resulting probability can’t be just expressed as a function of the

4

π−y(π−xR 1y π−zS) π−x,y,z(R 1y S)

r11 r12 r21 r22 s11 s12 s21 s22

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∨

∧ ∧

∨

Figure 1: Factor graphs for q = R(x, y)S(y, z) in example 2.5

input probabilities of the tuples as in the former case of safe queries. We classify the
existing approaches by the complexity of their model into two categories :

1. queries as dnf-formula:

Definition 2.4 Lineage:Given a boolean conjunctive query q over database D,
we denote by F (q,D), the dnf formulae one would get by grounding q with tuples
from D. Its common in literature to use the term lineage for F (q,D).

Example 2.5 Let q = R(x, y)S(y, z) andR = {(1, 1), (1, 2), (2, 1), (2, 2)}, S =
{(1, 1), (1, 2), (2, 1), (2, 2)} ; then F (q,D) ≡ r11s11∨r11s12∨r12s21∨r12s22∨
r21s11 ∨ r21s12 ∨ r22s21 ∨ r22s22.

These approaches[16, 9] have the same complexity of evaluating a boolean query
as counting the number of assignments of a boolean formulae expressed asF (q,D).
The way in which they evaluate it or come to this formulae may be different
though. For example one may choose to use bayesian networks or #SAT tech-
niques, but the underlying complexity would be determined by the structure of
the dnf-formula.

2. factoring lineage using query plans: Consider example 2.5 ; F (q,D) may be
rewritten as ((r11 ∨ r21) ∧ (s11 ∨ s12))∨((r12 ∨ r22) ∧ (s21 ∨ s22)). Its easy to
see that this representation is more efficient than the dnf representation. And in
fact one gets this representation if q is thought of as R′(y)S′(y) where R′(y) =
πyR(x, y) and S′(y) = πyS(x, y). [17] exploit this by modeling queries as
factor graphs, where there are two kinds of factors : AND,OR. An AND factor
is true iff its inputs are both true, and an OR factor is false iff both its inputs are
false ; just like conventional gates. Their model takes as input not a query, but a
query plan. So the same query may be expressed as two graphs. Figure 1 shows
how this approach would model the query in example 2.5 for two different plans.

The exact algorithms vary from sampling to message passing,etc., but these algo-
rithms are very general and could be used for both models. So we don’t delve into the
algorithms, rather into the model that is fed into these algorithms. As we will show
in the next section, the second model can theoretically outperform first model by any
arbritary margin.

5

3 Motivation
In this section, we outline two weaknesses in the existing approaches that we wish
to address. The first one expresses the need for a system with both extensional and
intensional techniques and second one shows how different ways to model query in
section 2.2 differ.

3.1 Unsafe Query via Safe Plans
Let qu : −R(x)S(x, y)T (y). Its known to be an unsafe query.

Now let R = {ai|1 ≤ i ≤ n},S = {(ai, bi)|1 ≤ i ≤ n},T = {bj |1 ≤ j ≤ n}.
By Proposition 2.2 qu can be evaluated completely extensionally by a safe plan. So
the existing systems could decide to evaluate qu by a safe plan in this case. Now add
the tuple (a1, bn) to S. The query is still almost safe ; so does it make sense to use an
intensional approach. In fact we can show that

Proposition 3.1
Pr(qu) = p(a1)P1 + (1− p(a1))P2

where P1,P2 are Pr(qu) evaluated over the databases with p(a1) = 1 and R(a1)
missing respectively.

Proof:

Pr(qu) = Pr(qu|R(a1))p(a1) + Pr(qu|¬R(a1))(1− p(a1))
= p(a1)P1 + (1− p(a1))P2

2

By Proposition 2.2, we have that both P1 and P2 can be evaluated efficiently by safe
plans. When n is very large, there can be an order of magnitude difference between
evaluating qu above intensionally and evaluating it by decomposing into two safe plans
as shown.

3.2 Complexity of Counting Conjunctive queries
The complexity of probabilistic inference algorithms viz. variable elimination, junction-
tree that have been employed by the other intensional approaches depend intimately on
a parameter of the input structure called treewidth. These algorithms have running time
exponential in treewidth and hence they are in PTIME iff treewidth is bounded.

Treewidth A hypergraph is a pair H = (V,E), where V is the set of vertices and
E ⊆ 2V is a set of subsets of V . With each dnf-formulae F =

∨n
i=1

∧k
j=1 aij , we

associate the hypergraph H(F) = (V,E), where V is the set of vars in F and

E = {{ai1, . . . , aik}|1 ≤ i ≤ n}

A tree-decomposition for a hypergraph H = (V,E) is a pair (X,T), where X =
X1, ..., Xn is a family of subsets of V , and T is a tree whose nodes are the subsets Xi,
satisfying the following properties

6

1.
⋃
Xi = V

2. ∀e ∈ E, ∃Xi s.t. e ⊆ Xi

3. For each v ∈ V , the set {Xi|v ∈ Xi} forms a connected component in T .

The width of tree-decomposition is max{|Xi| − 1|Xi ∈ X}. The treewidth tw(H) is
the minimum width among all possible tree-decompositions of H .
The treewidth of a dnf-formulaeF tw(F) is the treewidth of the associated hypergraph
H(F). We state the following well-known facts without proof.

Fact 3.2 tw(Km×n) = min(m,n)

Fact 3.3 The treewidth of a hypergraph is at least as big as the treewidth of any of its
subgraph.

Now we are ready to characterise the treewidth of lineage F (q,D) of a conjunctive
query q.

Definition 3.4 A CQ q is called strictly hierarchical if q can be written asR1(x̄1) . . . Rm(x̄m)
s.t. x̄1 ⊆ . . . x̄m.

Theorem 3.5 If q is a strictly hierarchical query then ∀D tw(F (q,D)) < c for some
constant c. Otherwise ∀c ∃D s.t. tw(F (q,D)) > c.

Proof: Let Sg(x) for any variable x of q be the set of subgoals of q which contain the
variable x. We first prove that tw(F (q,D)) < k for any strictly hierarchical query q
with k subgoals by induction on k.

k = 1 : In this case H(F (q,D)) has no edges, and hence has treewidth 0.
k > 1 : By definition 3.4, one can order the variables of q so that x ≺ y if Sg(x) ⊂
Sg(y). Let x̄ be the variables at the top of hierarchy i.e. ∀y ∈ V ars(q), x ∈ x̄
Sg(y) ⊂ Sg(x) if y /∈ x̄ else Sg(x) = Sg(y). Then consider a subgoal R(x̄) con-
taining only x̄ as variables. There has to be a subgoal like this by definition of x̄. Let
(Xā, Tā) be the tree-decomposition of F (q′[ā/x̄], D), ā ∈ dom(x̄) where q′ is q with
subgoal R(x̄) removed. Consider

⋃
(X ′ā, Tā), where X ′ā = {x ∪ R(ā)|x ∈ Xā}. Its

easy to see that it represents a tree-decomposition for F (q,D), and its width is at most
k − 1 by IH.

Now consider q which is not a strictly hierarchical query. Then ∃x, y ∈ V ars(q)
s.t. Sg(x) ∩ Sg(y) = ∅. Let R(x, z̄, z̄1) and S(y, z̄, z̄2) be two subgoals of q s.t.
x /∈ z ∪ z2 and y /∈ z ∪ z1 and z1 ∩ z2 = ∅. If z̄ = ∅, then the hypergraph for
F (R(x, z̄1)S(y, z̄2), D) is just Km×n, where m = |R(x, z̄1)| and n = |S(y, z̄2)|. The
proof follows from facts 3.2 and 3.3. If z 6= ∅, then considerF (R(x, ā, z̄1)S(y, ā, z̄2), D)
and use the argument above again. 2

So this shows that only a subset of the safe or hierarchical queries have lineage of
bounded treewidth. But what is more important to observe is how the treewidth grows.

7

A cartesian product occurring in a subquery makes the treewidth of the query at least
the size of one of the two sets. So any query with many-many join will have high
treewidth lineage.
Now the first class of intensional methods as mentioned work with this model. Hence
this class of intensional methods can’t even compute safe queries in PTIME. Of course
one can use safe plans or other heuristics to simplify this lineage; [10] for example
observe that safe plans produce lineage that are of a particular form called 1OF. But
these don’t generalize to unsafe queries and this motivates the need for a general model
that would be in PTIME for safe queries.
Now lets consider the second model of factor graphs. The factor graph produced by
any safe plan is a tree. The inference algorithm used by [17] though first transforms
the factor graph into some other graph by decomposing each factor into factors of size
at most 3. Then the graph is moralized by connecting the parents, and the complexity
of inference depends on the treewidth of this graph. For safe queries, this graph has
treewidth at most two. But in general, we don’t know if the treewidth of this graph can
be bounded as a function of the treewidth of original factor graph and in fact different
transformations of the same graph may lead to different treewidth graphs [15]. We
settle this issue by proving that a boolean conjunctive query can be evaluated in PTIME
if there is a query plan whose corresponding factor graph has bounded treewidth. Our
aim now is to propose an approach that combines both goals listed in this section i.e.
pushes as much evaluation as possible into the database engine like in safe plans, but it
should be in PTIME if the treewidth of the factor graph is bounded.

4 Our Approach
And-Or Network An And-Or network N = (V,E, P, Lab) can be represented as
a directed acylic graph(DAG) G = (V,E), where Lab : V → {And,Or, Leaf} ;
P : E ∪ VL → [0, 1], where VL = {v | v ∈ V,@w ∈ V s.t. (w, v) ∈ E}. We call
these nodes in VL as the leaves of G. Lab(Vi) = Leaf iff its a leaf in G. Every
node in V is treated as a random boolean variable. Let x be a boolean assignment
over V . We use xv to denote x(v),v ∈ V and xW to denote x|W , W ⊆ V . For every
node v ∈ V , we define a conditional probability distribution, conditioned on its parents
par(v) = {w | (w, v) ∈ E} as

φ(xv = 1|xpar(v)) = 1−
∏

w∈par(v)

(1− xwP (w, v)) v is Or

=
∏

w∈par(v)

xwP (w, v) v is And

= P (v) v is leaf

The And-Or Network N , then represents a joint probability distribution over V ,
where

N (x) =
∏
v∈V

φ(xv|xpar(v))

8

For the sake of simplicity we useN to denote the distribution. Note thatN is a special
case of Bayesian Networks and hence represents a valid probability distribution. The
marginal probability N 0(y) where y is a boolean assignment to W ⊆ V , is given by

N 0(y) =
∑

x,xW=y

N (x)

Given a network N , we denote V,E by V (N), E(N) respectively.

Augmenting an And-Or Network Given N = (V,E, P, Lab) and a new node w /∈
V , we grow the And-Or Network by connecting w to few or none of the nodes in V
as its parents. We represent this operation by N ′ = N

n

∪ (w,E′, P ′, lab) = (V ∪
{w}, E ∪ E′, P ∪ P ′, Lab ∪ {(w, lab)}), where E′ ⊆ V × {w}. If E′ = ∅, then lab
has to be leaf and P ′ ∈ [0, 1]; else lab is And/Or and P ′ : E′ → [0, 1]. It should be
easy to see that N ′ is also a valid And-Or Network. We can similarly extend it to add
not just one vertex w, but a set of vertices W all of the same label lab.

pL-Relation : Relations with Partial Lineage A pL-relation R = (R, p, l,N),
where p : R → [0, 1], l : R → V (N), and N is an And-Or network ; represents a
probability distribution ρ over all subsets ω of R as

ρ(ω) =
∑

z:V (N)→{0,1}

N (z)
∏
t∈ω

z(l(t))p(t)
∏
t/∈ω

(1− z(l(t))p(t)) (4)

We often use t ∈ R to mean t ∈ R. Its easy to show that ρ is a probability distribution,
as will be clear from the following discussion.
To understand this definition better, lets consider the case where N has just one node
ε with P (ε) = 1. So N (z) = 1 if z(ε) = 1 else 0. The lineage for every tuple is ε.
Hence equation (4) can be seen to be the same as equation (1), the probability distribu-
tion of the independent relation (R, p). R therefore is an independent relation in this
case.
On the other hand, assume every tuple has a different lineage l and ∀t p(t) = 1 ; then
ρ(ω) = N (z), where z(l(t)) = 1t∈ω . Hence in this case the relation just represents
an And-Or Network N . Between these two extremes(an And-Or network,independent
relation) as we discuss below, the pL-relation represents a combination of many inde-
pendent relations each weighted according to the probability distribution of an And-Or
network.
For each z, ρ(ω) is N (z) times the probability of the world ω in an independent rela-
tion Rz = (R, pz), where pz(t) = z(l(t))p(t). Let ρz be the distribution function for
Rz , then

ρ(ω) =
∑

z:V (N)→{0,1}

N (z)ρz(ω)

where
∑
z:V (N)→{0,1}N (z) = 1. Hence

∑
ω ρ(ω) = 1.

So a pL-relation compactly represents a convex combination of many independent re-
lationsRz . Such distributions are often called mixture models or hierarchical models in

9

1
2

n

.5

.5

.5

A p l

Cond

N = ε

A p
1

l

..
2 .5

..
n .5

1 x

N =
1
.5
ε

x

A p l
1

2 2
..
n n

.5

.5

.5

B

1 n .5

1pL

A B p l
1 1 .5
2

1

2 .25
x

..
n n .25
1 n .5 x

B p l
1
2

..
n
n

.5

.25

..

.25

.5

..

IndProj
B p l
1 .5 x
2 .25

..
n 1 y

Dedup

B p l
1
2

..
n

.5

.5

.5

.. ..

N =
1

x
y

.5

.25

B p l
1
2
..
n

.25 x
.125
.. ..

IndProj
p l

ε

y.5

Dedup
p l

z

N =

1

.5

ε

.5
ε

x y
.25

z

1

.25 .5
pn

ε
ε

ε

ε

ε

ε
ε

ε
ε

ε

ε

x
ε

ε
x

ε

R

S

T

ε

ε

ε 1pL

ε

.5 y

.25 x

pn

.5

pn = 1− (1− .125)n−2

Figure 2: Evaluating q : −R(x)S(x, y)T (y). Pr(q) is given by N 0(z = 1). P values
for leaves and edges in N are written besides them.

AI and statistics. The idea is to first pick one distribution(Rz) with some probability(N (z))
and then choose a world(ω) from the picked distribution(according to ρz). As we al-
ready learnt from proposition 2.2, the independent relation model is not enough to
represent the intermediate distributions resulting from relational operators. We defined
pL-relation because as we will see, this can compactly represent the intermediate dis-
tributios and is still closed with respect to relational operators.

4.1 Relational Operators over pL-relations
4.1.1 Selection

Given a pL-relationR = (R, p, l,N), andA ⊆ attribs(R), we will show that σA=aR =
R′ = (σA=aR, p, l,N). Let ρ and ρs denote the probability distributions ofR andR′
respectively. Then∑

ω,σω=ω′

ρ(ω) =
∑

z:V (N)→{0,1}

N (z)
∑

ω,σω=ω′

ρz(ω)

=
∑

z:V (N)→{0,1}

N (z)ρsz(ω
′)

= ρs(ω′)

The equality between first and second equations follows from the semantics of selection
over independent relations. HenceR′ = R by definition 2.1.

10

4.1.2 Projection

Given a pL-relationR = (R, p, l,N), andA ⊂ attribs(R), we want to compute πAR.
For the sake of simplicity, we describe this operation in two stages.

1. Independent Project This is just like the independent project operation for inde-
pendent relations, except that here we project only on tuples with same lineage
l. The result in not a valid pL-relation since we could have duplicate tuples,
but we still abuse the notation to represent this intermediate distribution by a
pL-relation by appending the lineage as a column L inside the relation. Let
A′ = A ∪ {l}. We compute R′ = (πA′R, p′, l′,N) ; where l′(a) = a.L,
p′(a) = 1−

∏
πA′ t=a

(1− p(t)).
Figure 2 has two Independent Projection operations, listed as IndProj. The first
one is inconsequential, as there are no candidate tuples for independent project.
But consider the second IndProj operator that projects the tuples (i, .125, ε), 2 ≤
i ≤ n− 1 on l to (pn, ε). Note that this operation doesn’t change N .

2. Deduplication Now we describe how to calculate πAR′, by removing dupli-
cate tuples. Define Pj = {(a, a′) | πAa′ = a, a′ ∈ R′}. Let S = {a |
#{a′|Pj(a, a′)} > 1}. Define l′′(a) = l′(a) if a /∈ S else h({(l′(a′), p′(a′))|Pj(a, a′)}),
where h is some hash function ; E = {(l′′(a), l′(a′)) | Pj(a, a′), a ∈ S} and
Q(l′′(a), l′(a′)) = p′(a′). Let V = {l′′(a) | a ∈ S}. Define an And-Or network
M = N

n

∪ (V,E,Q,Or).
FormallyR′′ = (πAR, p′′, l′′,M), where

p′′(a) = p′(a) if a ∈ S
1 otherwise

Theorem 4.1 R′′ = πAR

Proof: Let ρ and ρ′′ denote the probability distributions of R and R′′ respectively.
Then ∑

ω,πω=ω′

ρ(ω) =
∑

z:V (N)→{0,1}

N (z)
∑

ω,πω=ω′

ρz(ω) (5)

=
∑

z:V (N)→{0,1}

N (z)
∏
t∈ω′

pp(t)
∏
t/∈ω′

(1− pp(t)) (6)

where pp(t) = 1−
∏
πt′=t(1− z(l(t′))p(t′)). This follows from the projection seman-

tics over independent relations. Note that if t /∈ S, then ∃ks.t.∀t′πt′ = t z(t′) = k.
∴ pp(t) = 1 −

∏
πt′=t(1 − z(k)p(t′)) = z(k) (1−

∏
πt′=t(1− p(t′))). This can be

11

easily verified by setting z(k) to 0/1 and comparing both sides. Now

ρ′′(ω′) =
∑

z′′:V (M)→{0,1}

M(z′′)
∏
t∈ω′

z′′(t)p′′(t)
∏
t/∈ω′

(1− z′′(t)p′′(t))(7)

=
∑

z:V (N)→{0,1}

N (z)
∏
t∈ω′

p′′′(t)
∏
t/∈ω′

(1− p′′′(t)), where (8)

p′′′(t) =
{
z(l′′(t′)) (1−

∏
πt′=t(1− p(t′))) t /∈ S

φ(zl(t) = 1|z′′′par(l(t))) t ∈ S and (9)

φ(zl(t) = 1|z′′′par(l(t))) = 1−
∏
πt′=t

(1− z(l(t′))p(t′)) (10)

= pp(t) (11)

Equation (8) follows from (7) since for t ∈ S, p′′(t) = 1, hence z(l(t)) can be assumed
to be ω|t for the new lineage variables which are all from S. From equations (6),(8)
the proof follows. 2

4.1.3 Join

Before we join two pL-relations, we need to go through an operation conditioning,
which as the name suggests conditions on a tuple in the relation.

Conditioning This operation takes a pL-relation R and a tuple tu ∈ R and returns
another pL-relation Cond(R, tu) = (R, p′, l′,N

n

∪ (w, ∅, p(tu), leaf), where

p′(t) = p(t) t 6= tu

1 t = tu

l′(t) = l(t) t 6= tu

w t = tu

Conditioning, written as Cond, is the first operation done in figure 2. R is conditioned
on the tuple (1, 0.5, ε). All conditioning does is change the probability of the tuple to
1, assign to it a new lineage x, and then add x as a leaf in the And-Or network N with
P (x) = 0.5.

Lemma 4.2 Cond(R, tu) andR represent the same distribution.

Proof: Let ρc, ρ denote the probability distributions corresponding to Cond(R, tu)

12

andR. Then for any world ω ⊆ R

ρc(ω) =
∑

z:V→{0,1}

N (z)Itu∈ωp(tu)
∏

t∈ω,t6=tu

p(t)z(l(t))
∏
t/∈ω

(1− p(t))

+ N (z)Itu/∈ω(1− p(tu))
∏
t∈ω

p(t)
∏

t/∈ω,t6=tu

(1− p(t))

=
∑

z:V→{0,1}

N (z)
∏
t∈ω

p(t)z(l(t))
∏
t/∈ω

(1− p(t))

= ρ(ω)

2

Definition 4.3 Define R1 1pL R2 = (R1 1 R2, p
12, l12,N 12), where the new vari-

ables are defined below. Let

S = {(t1, t2) | l1(t1) 6= ε ∧ l2(t2) 6= ε ∧ t1 ∈ R1 ∧ t2 ∈ R2}

and g be a hash function, then

l12(t1 1 t2) =

 g (l1(t1), l2(t2), p1(t1), p2(t2)) (t1, t2) ∈ S
l1(t1) l2(t2) = ε
l2(t2) l1(t1) = ε

p12(t1 1 t2) =
{
p1(t1)p2(t2) (t1, t2) /∈ S

1 (t1, t2) ∈ S

Let V = {l12(t1 1 t2) | (t1, t2) ∈ S} ;
E = {(l12(t1 1 t2), l1(t1)), (l12(t1 1 t2), l2(t2)) | (t1, t2) ∈ S} ;
∀e = (l12(t1 1 t2), l1(t1)) ∈ E define Q(e) = p1(t1) and vice-versa. N 12 =
(N1]N2)

n

∪ (V,E,Q, Ānd).

Definition 4.4 Define c− Set(R1,R2) = {t ∈ R1 | p1(t) < 1 ∧#{{t} 1 R2} > 1}

Proposition 4.5 R1 1pL R2 = R1 1 R2 if c−Set(R1,R2) = c−Set(R2,R1) = ∅.

Proof: Let ρ1, ρ2, ρ denote the probability distributions of R1,R2,R1 1pL R2. Let
N = N1]N2, V = V (N). Then∑

ω11ω2=ω

ρ1(ω1)ρ2(ω2) =
∑

z:V→{0,1}

N (z)
∑

ω11ω2=ω

ρ1
z(ω1)ρ2

z(ω2) (12)

=
∑

z:V→{0,1}

N (z)
∏
t∈ω

pj(t)
∏
t/∈ω

(1− pj(t)) where(13)

pj(t) = z(l1(t1))p1(t1)z(l2(t2))p2(t2) (14)

We can assume that z(ε) = 1, since otherwise the probability is 0(P (ε) = 1). So if
(t1, t2) /∈ S, then its easy to see that pj(t) = z(l12(t))p12(t)(just enumerate the cases

13

when either or both of lineage is ε). Now lets analyze ρ.

ρ(ω) =
∑

z:V (N 12)→{0,1}

N 12(z)
∏
t∈ω

z(l12(t))p12(t)
∏
t/∈ω

(1− z(l12(t))p12(t))(15)

=
∑

z:V (N)→{0,1}

N (z)
∏
t∈ω

pz(t)
∏
t/∈ω

(1− pz(t)) where (16)

pz(t) =
{

z(l12(t))p12(t) t = t1 1 t2, (t1, t2) /∈ S
φ(zl(t) = 1|zpar(l12(t))) otherwise and (17)

φ(zl(t) = 1|zpar(l12(t))) = z(l1(t1))p1(t1)z(l2(t2))p2(t2) (18)
(19)

The proof then follows from equations (13) and (16). 2

This tells us that to compute the join of any two pL-relations, it suffices to first
condition them and do the join as stated in definition 4.3.
Note that the And-Or network remains a DAG after each of the above operations. Fig-
ure 2 illustrates our approach on the motivating example in section 3.1. To compute
R 1 S, we first condition on the tupleR(1) since there are two tuples in S withA = 1.
Then we perform 1pL. Projection is carried out by first Independent Project(IndProj)
and then Deduplication(Dedup). For the next join, no conditioning is needed as its a
1-1 join. The final probability is given by N 0(z = 1).

4.2 Inference over an And-Or Network
Theorem 4.6 Let N be an And-Or network and G = (V (G), E(G)) be the directed
graph representation of it. Let G be the undirected graph obtained by ignoring the
direction of edges in G. Then given any W ⊆ V (G) and ϕ : W → {0, 1}, the
marginal probability N 0(ϕ) can be computed in time O(V (G)) if tw(G) < k for
some constant k.

Proof: First we state a known fact about treewidth that will enable us to present the
algorithm in a simpler way.

Fact 4.7 Let tw(G) = k ; then G can be expressed as G = G1 ∪ G2 where G1, G2

are two subgraphs of G s.t. |V (G1)∩ V (G2)| <= k and ∀v1 ∈ V (G1) \ V (G2), v2 ∈
V (G2) \ V (G1) : (v1, v2) /∈ E(G).

Let G = G1 ∪ G2 where G1, G2 are as in Fact 4.7. Let G12 = G1 ∩ G2. For the
sake of simplicity we’ll assume no leaf nodes by connecting every leaf node to itself ;
this way its the parent of itself. It can be treated as And/Or ; doesn’t make a difference.
This way P is defined only for edges. Also given S, z : S → {0, 1}, we use Sz to
denote {s | z(s) = 1}.
Given two graphsH1,H2,H2 ⊆ H1, we defineH1	H2 = (V (H1), E(H1)\E(H2)).
Also let parH(v) = {w | (w, v) ∈ E(H)}, for any graph H and v ∈ V (H). Given
any subgraph H of G and W ⊆ V (H) ; x, y, z : W → {0, 1}, define

Sx,y,z(H,W) =
∑

x′:V0(H)→{0,1}
x′V =xW

∏
v/∈W

φ(x′v|x′parH(v))
∏
v∈Wz

parH(v)6=∅

φ(yv|x′parH(v)) (20)

14

where V0(H) = W ∪ {v | v ∈ V (H),∃w (v, w) ∈ E(H) ∨ (w, v) ∈ E(H)}. Clearly

N 0(ϕ) = Sϕ,ϕ,1(G,W)

Note that forG, V0(G) can be assumed to be the same as V (G) since removing isolated
vertices doesn’t change the sum ; and after connecting leaves to themselves parG(v) 6=
∅ for any v. We will now address the problem of evaluating Sx,y,z(G,W) in general
for any G,W .
Let GU = G12 ∪W . We decompose the above sum as :

Sx,y,z(G,W) =
∑

a:V (G12)\V (W)→{0,1}

Sx]a,y]a,z]1(G,GU) (21)

(22)

Note that the conditional probability functions φ of And-Or Networks have the property
that φ(xv|yV) = φ(xv|yV ′)φ(x|yV ′′) or 1 − φ(xv|yV ′)φ(x|yV ′′) for any two disjoint
subsets V ′, V ′′ of V . This is the crucial property that we will use in the proof of this
theorem and the following lemma.

Lemma 4.8

Sx,y,z(G,GU) =
∑

z′:V0z(G12)→{0,1}

((∏
v∈V0z(G12)

C(v, y, z′)
)
Sx,y

′,z′′(G12, G12)(23)

× Sx,y
′,z′′(G1 	G12, GU ∩G1)Sx,y

′,z′′(G2 	G12, GU ∩G2)
)

(24)

where V0z = {v | v ∈ Vz(G12), parG	G12(v) 6= ∅}; y′v = 0 if v is an Or gate else 1 ;
z′′v = 0 if zv = 0 else z′v .

C(v, y, z′) =

0 if z′v = 0 ∧ yv = y

(1)
v

−1 if z′v = 1 ∧ yv 6= y
(1)
v

1 otherwise

Proof: ForH1, H2 subgraphs ofG s.t. V (H2) ⊆ V (H1),x′ : V (H1)→ {0, 1},y, z :
V (H2)→ {0, 1}, define

TH1(H2, x, y, z) =
∏
v/∈H2

φ(x′v|x′parH1(v))
∏

v∈H2z
parH1(v) 6=∅

φ(yv|x′parH1(v))

We will show that

TG(GU, x′, y, z) =
∑

z′:V0z(G12)→{0,1}

∏
v∈V0z(G12)

C(v, y, z′)TG12(G12, x
′, y, z)(25)

× TG1	G12(GU ∩G1, x
′, y, z)TG2	G12(GU ∩G2, x

′, y, z)(26)

The lemma then follows if one sums over both sides such that x′GU = x. Note that
given x, the sums S over G1	G12 and G2	G12 are independent while that over G12

15

is not really a sum, but fixed by the assignments x, y, z. The above equation essentially
shows that each term can be broken down into these independent components which
when summed over prove the lemma.
We prove equation (25) by induction over G. The base graph has all the nodes, but no
edges. This case is trivial since both sides are 1. Now we add edges by adding every
vertex to all of its parents. Lets suppose w was the last vertex to be added to form G
and G′ be the previous graph in which w wasn’t connected to its parents. We consider
two cases

1. w ∈ V (G1)\V (G12) : assumew /∈ GU . Then TG(GU, x′y, z) = φ(x′w|x′parG(w))TG′(GU, x
′, y, z)

and TG1	G12(GU∩G1, x
′, y, z) = φ(x′w|x′parG(w))TG′1	G12(GU∩G1, x

′, y, z)
as well. Hence we have both L.H.S and R.H.S are multiplied by the same factor.
w ∈ GU can be similarly proved and the case when w ∈ V (G2) \ V (G12) is
also similar.

2. w ∈ G12 : W.l.o.g assume w is an And node. We will only show the case when
yw = 0 ; the other case is easy to see after this one. If zw = 0 , then there is no
difference in the sum, so assume zw = 1. Also if parG	G12(w) = ∅, then this
is just like the previous case where only term TG12 is affected. Let parG(w) =
W p = W p

1] W
p
2] W

p
12, where W p

i = parGiw. Then φ(yw|x′Wp) = 1 −∏
j=1,2,12 φ(yw|x′Wp

j
). ∴ TG(GU, x′, y, z) = TG′(GU, x′, y, z)−TG′(GU, x′, y, z)

∏
j=1,2,12 φ(yw|x′Wp

j
).

Also note that
TG12(G12, x

′, y, z′) = TG′12(G′12, x
′, y, z)φ(yw|x′Wp

12
) if z′w = 1 and TG′12(G′12, x

′, y, z)
otherwise ; similar equality holds for for TG2	G12 and TG1	G12 . This case
also follows by plugging the values in equation (25), once we observe that
C(v, y, z′) = C(v, y, z), z′w = 0 and −C(v, y, z′) otherwise.

2

The above lemma provides an inductive way of calculating SG using SG1 , SG2 . So
one can proceed by dynamic programming and calculate SG by repeatedly applying
fact 4.7. 2

4.3 Analysis and Comparisons
In section 3.2, we claimed that a query can be evaluated in PTIME if there is plan for
which the factor graph has bounded treewidth. This actually follows from theorem 4.6,
since the factor graphs are a special case of And-Or networks. But we want to analyze
the complexity of our approach for which we need to find the treewidth of the And-Or
network generated by our algorithm. We will show that it is at most the treewidth of
the factor graph. It could be lot lesser in size as demonstrated in figure 2 ; and also
lesser in treewidth because of hashing, as we will show later on.

Proposition 4.9 Given a query plan, let G be the And-Or Network output by our algo-
rithm and F be the factor graph; then tw(G) ≤ tw(F).

Proof: Consider any operator(selection/projection/join). Its easy to observe from the
algorithm that the graph constructed by our approach is actually a subgraph of the
factor graph. From Fact 3.3, the result follows. 2

16

Actually, the treewidth of the two approaches would be exactly the same if it weren’t
for hashing. Note that whenever we create new And/Or nodes, we do so by hashing
its parents. This may reduce the treewidth of the graph. For example take the query
q : −R(x)S(x, y)T (y), where R = T = {ai, pi | 1 ≤ i ≤ n}, S = {(ai, aj , 1) |
1 ≤ i, j ≤ n}, and S is deterministic. This is actually in PTIME as we briefly men-
tioned in section 2.1. But the treewidth of the factor graph is n. This is because the
graph can’t capture the fact that S is deterministic. Now consider what happens when
we project R 1x S on y. R 1 S = {(ai, aj , xi, pi) | 1 ≤ i, j ≤ n}, where we have
added the lineage xi to tuples (ai,). Independent Project does nothing ; but after dedu-
plication the result is {(aj , y, 1) | 1 ≤ j ≤ n}, where y = h ({(xi, pi) | 1 ≤ i ≤ n}),
h is some hash function. Note that all the tuples have the same lineage. After the next
join all these tuples having the same lineage will be useful in independent project. At
last the And-Or network left would be a tree connecting y to all xi, 1 ≤ i ≤ n. This
shows how hashing can actually make intractable problems tractable at times. Note
that in the earlier example S did not have to be deterministic; even if all its tuples had
the same probability, the result would still hold.

5 Experiments
With Proposition 2.2 and Definition 2.3, we shifted the definition of safety from merely
query to both query/data. The main contribution of this paper is to be able to evaluate
efficiently not only the safe queries but also those which are almost safe i.e. when there
are very few tuples which violate the 1-1 join condition expressed in Proposition 2.2.
We define the following two criterion to quantify how safe the query/data is :

1. fraction of tuples violating FD(FFD) : Note that R(x, z) 1x S(x, y) is a 1-1join
if x→ y, x→ z hold on S,R respectively ;R(x) 1x S(x, y) is 1-1join if x→ y
held on S. Given a query plan, we find out the fraction of tuples that violate this
condition. For e.g. |{a | a ∈ R ∧ ∃b1, b2 b1 6= b2 ∧ (a, b1), (a, b2) ∈ S}|/|R| in
case of π−y(T (y) 1y π−x(R(x) 1x S(x, y))). Note that we count the tuples in
R and not in S; so |{y | (a, y) ∈ S}| could be 2 or 20, but the fraction of tuples
violating FD would be same. When this number is 0, query plan is safe; as more
and more tuples violate this condition, we expect the computation to get more
Intensional.

2. fraction of non-deterministic tuples(FDT) : R(x) 1x S(x, y) is infact also a 1-
1join if R is deterministic. Given a query plan, we can then find the set of tuples
that we expect to be deterministic for the plan to be safe. This metric measures
the fraction of those tuples that are not deterministic. When this ratio is 0, the
plan is again safe and as it appraoches 1, the evaluation gets more intensional.

We will measure the performance of our algorithm vs another system MayBMS[8] as
we vary these two metrics.

DataSet/Queries We will experiment with Path queries and Star queries. They are
listed in table 1, along with the join-ordering used for their plan. To generate the data,

17

Name Query Join Order
P1/S1 q(h) : −R1(h, x)S1(h, x, y)R2(h, y) R1, S1, R2

P2 q(h) : −R1(h, x)S1(h, x, y)S2(h, y, z)R2(h, z) R1, S1, S2, R2

P3 q(h) : −R1(h, x)S1(h, x, y)S2(h, y, z)S3(h, z, u)R2(h, u) R,S1, S2, S3, T

S2 q(h) : −R1(h, x)T1(h, x, y, z)R2(h, y)R3(h, z) R1, T1, R2, R3

S3 q(h) : −R1(h, x)T2(h, x, y, z, u)R2(h, y)R3(h, z)R4(h, u) R1, T2, R2, R3, R4

Table 1: Query/Plans used for experiments

we take the parameters rf , rd ∈ [0, 1],fanout,N,m and generate the tables as follows :
Ri : All tablesRi, i ≤ 4 have the same schema, sayRi(H,A). Then we set dom(H) =
[N], dom(A) = [m] and generate Ri accordingly. The probability of each tuple is set
to 1 with probability 1− rd, otherwise anything in (0, 1).
Si : For any Si(H,A,B), we add tuples iteratively as follows : for each h ∈ [N], a ∈
[m] with probability 1 − rf , we choose at random b ∈ [m] and add (h, a, b) to Si ;
otherwise we choose at radom a number f from 2 to fanout and then radomly select
b1, . . . , bf ∈ [m] and add (h, a, bj), j ≤ f to Si. For the sake of uniformity we want
|σH=hSi| to bem and hence the above process is stopped as soon as for any h, we have
added m tuples with H = h and we start with h+ 1. Every tuple is non-deterministic
here.
Ti : We illustrate for T1(H,A,B,C) and T2 follows similarly. Use the previous con-
struction of Si to generate T ′1(H,B,C). And then generate T1(H,A,B,C), where for
each h ∈ [N], a ∈ [m], we choose b, c from πB,CσH=hT

′
1 just as we chose b from [m]

in the case of Si. This process controls the FD violations of B → C and A → B,C.
Here again the tuples are all non-deterministic.
The rationale of generating the data as discussed above is that it ensures that at most
rf fraction of tuples violate the functional dependencies that make the query safe; and
all the base tables Rj have rd fraction of tuples deterministic. If rf = 0 or rd = 0,
then the query is safe. N controls the number of boolean queries executed while m
controls the size of each query. The construction above ensures that the size of each
relation is actually exactly N∗m. fanout is a parameter that determines how dense the
data is; the extensional part isn’t affected much by this choice, but dense data means
higher treewidth and so to keep problem tractable, we want small fanout. On the other
hand we don’t want the data to be too sparse, so that each query is essentially just many
small queries and hence m loses its meaning. So fanout is chosen experimentally for
the right balance.

Setup The experiments were run on a Windows Server 2003 machine with Quad
Core 2.0GHz, 8GB of RAM. Our implementation was done in java, wherein the pro-
gram sends a batch of sql statements to an SQL Server 2005 database, which in turn
writes the resulting output And-Or Network relationally to a temp table read by the
same program. So after the execution of sql commands, the program has an And-Or
Network on which it does exact inference using its tree-decomposition. The program
to do inference isn’t very optimized, since optimizing this part isn’t the focus of our
paper.

18

5.1 Scalability
In the first experiment we wanted to demonstrate that when the query is almost safe,
then our approach will scale while other existing approaches can’t. So we generated
the tables with N = 100,m = 10000, rf = 0.01, rd = 1, fanout = 4. This means
that we are evaluating 100 boolean queries, each with 10,000 clauses over tables of size
1M. There is only 1% of tuples that violate FDs though. We are not using determinism
at all, and every tuple is non-deterministic. Figure 5.1 shows the execution time of our
system(Partial Lineage) vs MayBMS. Note that as the queries get more complex, the
difference in running time gets even bigger. Our execution times are better by an order
of magnitude in this condition, which is to be expected as the query is almost safe in
this case; MayBMS though cannot recognize and take advantage of this.

Figure 3: Execution time with 1% FD violations

28 56 88

1088

2467

5604

0

1000

2000

3000

4000

5000

6000

P1 P2 P3

Query

ti
m

e
(m

s
)

Partial Lineage

MayBMS

28 67 106

1088

2441

4737

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

S1 S2 S3

Query

ti
m

e
(m

s
)

Partial Lineage

MayBMS

5.2 Effect of FFD
We now want to measure the influence of FFD on execution time. Here the parameters
chosen were N = 10,m = 1000, rd = 1, fanout = 3. rf was varied from 0 to 1 and
rd is 1 to make sure that we don’t have any influence of FDT factor. We have chosen
a smaller scale for this problem because as rf gets bigger, query gets increasingly
intractable and execution times shoot up considerably. Figure 4 plot the execution
time vs rf . Note that as you increase rf , the data gets denser and the treewidth also
increases. So there is another factor at work here as well. As one can observe from
the plots, at one point the execution time shoots up considerably, which is the moment
when treewidth has increased to the point where exact computation is no more feasible.
The realm of exact computation lies only uptil this point, and after this one must resort
to approximate computations. The focus of this paper is only on exact query evaluation,
so we are not concerned with the intractable region of high treewidth. Observe though
that in the tractable region the slope is not very high, which is an encouraging sign. This
shows that if it weren’t for treewidth, our method gracefully scales as the query/data
change from safe to increasingly unsafe. The line representing MayBMS isn’t very
interesting to look at, since it seems because of some poor choice of heuristics their
estimate of treewidth isn’t very good; and hence their running time shoots up much

19

before it really should. The lesson to take away from these graphs is that our system
transitions smoothly as data gets unsafe until the point the problem gets intractable.

Figure 4: Effect of FFD

5.3 Effect of FDT
This is the same experiment as the last one, except that now we set rf = 1, so every
tuple violates FDs, but we vary rd from 0 to 1. When rd = 1, then the queries are
very hard to compute and both systems will fare poorly. We want to observe the cases
when rd is small, making the problem tractable. And we observe that in these cases,
our system performs very well for low values of rd, as illustrated in Figure 5.

6 Related Work
Query Evaluation on Probabilistic Databases has been well studied in past years and
many different approaches have been proposed. In exact evaluation, [5] showed that
safe queries can be evaluated completely extensionally by reducing inference to database
operators. But they restricted themselves to only safe plans. [11] proposed a way to

20

Figure 5: Effect of FDT

evaluate safe queries via any plan; the evaluation being still inside the database, but
they augment the tables with random variables, like c-tables. In contrast, the other
approaches, which are more general and can evaluate any query, tend to have a dis-
connect between the evaluation of the tuple and computing their probability. [16] first
compute the tuples along with their lineage, and then evaluate the probability using the
lineage. [17] construct a Bayesian Network, instead of lineage, and evalaute the answer
probability of tuples by doing inference over these networks. Our approach breaks this
disconnect by leveraging the database to do some probability computation even in case
of unsafe queries.
Exact Evaluation is not always feasible for unsafe queries, and hence many approxi-
mation strategies[14, 6] have also been proposed, based on sampling. There are other
approximate inference approaches in graphical models[7, 3, 18] that can also be lever-
aged. Note that these approximation strategies can be used on the And-Or Networks as
well; hence our method complements the existing inference algorithms. Our method
basically reduces the original problem into an inference problem of smaller scale. This
means it takes less time to sample the data and more samples mean better approxima-
tion.

21

7 Conclusion and Future Work
We showed how one can leverage the characteristics of the data to push probability
computations inside the database, even for #P-hard unsafe queries. The existing meth-
ods could either evaluate only safe queries or they did the entire probability computa-
tion in an intensional way outside the database. We have shown a way to bridge the two
approaches, showing that one doesn’t have to choose one or the other paradigm. Even
unsafe queries can be evaluated efficiently in a scalable way, and extensional methods
don’t always have to output the exact probability as output. Another way to think of
our approach is that it’s a way of reducing the scale of problem, while still preserving
the complexity. Hence it complements the exisiting works on top-k query evaluations,
approximate/exact computations. We also study the parametrized complexity of our
algorithm and give the best theoretical guarantees proposed so far for this problem.
But we leave many questions unanswered. Its open how to choose a query plan, that
(i)minimizes the size of output network or (ii)minimizes the treewidth of the output net-
work. Note that answering (ii) is very crucial, since our algorithm being exponential
in treewidth is very sensitive to it. We don’t know the query complexity of finding the
optimal query plan(minimum treewidth). For the simple queries that we considered, it
is same as the optimal query plans in the traditional sense, but its not clear thats true in
general. Also we need to extend the approach to solve self-joins and evaluate queries
over more complicated models. With more complicated models, we may not be able
to do many computations extensionally, and hence this raises the question whether the
second stage symbolic evaluation that we do outside the database can be converted to
database operators. When the scale of the data is huge and treewidth is very small,
there would clearly be an advantage in doing this.

References
[1] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational pro-

cessing of uncertain data. In ICDE, pages 983–992, 2008.

[2] R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J. Spiegelhalter. Probabilistic
Networks and Expert Systems. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1999.

[3] P. Dagum and M. Luby. An optimal approximation algorithm for bayesian infer-
ence. Artif. Intell., 93(1-2):1–27, 1997.

[4] N. Dalvi and D. Suciu. Management of probabilistic data: foundations and chal-
lenges. In PODS, pages 1–12, New York, NY, USA, 2007. ACM Press.

[5] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
In VLDB, pages 864–875, 2004.

[6] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas. Mcdb:
a monte carlo approach to managing uncertain data. In SIGMOD Conference,
pages 687–700, 2008.

22

[7] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to varia-
tional methods for graphical models. Machine Learning, 37(2):183–233, 1999.

[8] C. Koch. Maybms: A system for managing large uncertain and probabilistic
databases. In C. Aggarwal, editor, Managing and Mining Uncertain Data, chap-
ter 6. Springer-Verlag, 2009.

[9] C. Koch and D. Olteanu. Conditioning probabilistic databases. PVLDB,
1(1):313–325, 2008.

[10] D. Olteanu and J. Huang. Using obdds for efficient query evaluation on proba-
bilistic databases. In SUM, pages 326–340, 2008.

[11] D. Olteanu, J. Huang, and C. Koch. Sprout: Lazy vs. eager query plans for tuple-
independent probabilistic databases. In ICDE, pages 640–651, 2009.

[12] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[13] C. Re, N. N. Dalvi, and D. Suciu. Query evaluation on probabilistic databases.
IEEE Data Eng. Bull, 2006.

[14] C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic
data. In ICDE, pages 886–895, 2007.

[15] I. Rish. Efficient reasoning in graphical models. PhD thesis, 1999. Chair-Dechter,
Rina.

[16] A. D. Sarma, M. Theobald, and J. Widom. Exploiting lineage for confidence
computation in uncertain and probabilistic databases. In ICDE, pages 1023–1032,
2008.

[17] P. Sen and A. Deshpande. Representing and querying correlated tuples in proba-
bilistic databases. In In ICDE, 2007.

[18] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In
NIPS, pages 689–695, 2000.

23

