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ABSTRACT
Most software is built by multiple people, and a version con-
trol system integrates evolving individual contributions into
a whole. Every engineer makes decisions about when to in-
corporate other team members’ changes, and when to share
changes with other team members. Sometimes, an engineer
performs these tasks too early, and in other cases performs
them too late. In this paper we address several questions to
determine if there are enough situations in practice where an
individual could benefit from explicit knowledge about the
relationship between their view of the software with respect
to other views of the software. In particular, we speculate (in
principle) at each moment in time about whether unrecog-
nized conflicts with teammates exist and whether there are
unnoticed opportunities for straightforward merging among
teammates.

To determine whether there are sufficient potential oppor-
tunities — needed to justify the design, implementation, and
evaluation of a speculative tool — we analyze existing source
code repositories. Across several open-source projects, we
compute and report results including how long conflicts per-
sist before they are resolved (a mean of 9.8 days) and how
long opportunities for a non-conflicting textual merge persist
(a mean of 11 days). In addition, for one of the projects, we
compare the persistence of textual conflicts vs. compilation
conflicts vs. testing conflicts. Our data show that there is
ample opportunity to benefit from speculative version con-
trol, justifying a tool design and implementation effort.

1. MOTIVATION
A software engineer continually applies commands such as

“lift this method to its superclass,”“incorporate my changes
with changes made by my team,” etc. The engineer gener-
ally has an expectation, but no certainty, of the effects and
consequences. For example, applying a command may cause
merge conflicts, compilation failures, or changes in test re-
sults, but the engineer only learns of such consequences after-
wards. We propose that an integrated development environ-
ment (IDE) can speculatively compute, in the background,
the consequences of potential commands an engineer may
apply. We expect that this added, precise information can
help the engineer make better decisions.

This paper focuses on a set of speculations specific to col-
laborative development. Most software is built by multi-
ple people, and a version control system integrates evolv-
ing individual contributions into a whole. Each individual’s
work deviates in varying degrees, over time, with respect to

shared views of the software. Every engineer makes decisions
about when to incorporate other team members’ changes,
and when to share changes with other team members. Some-
times, an engineer performs these tasks too early, and in
other cases, performs them too late. We posit that there
exists information that could allow engineers to make better
decisions. Our research is a search for that information.

Consider the following illustrative scenario. Melinda and
Bill are working on Features 1 and 2, respectively, of an op-
erating system. Over the course of a week, Melinda makes
some changes in her copy of the code; Bill does likewise in his
own copy. When all the Feature 1 tests pass, Melinda shares
her changes to the code repository. (We will define more
formally what we mean by “sharing changes” in Section 4.1.)
A day later, Bill verifies that the Feature 2 tests pass on his
copy of the code, and shares his changes to the central repos-
itory. There are no textual conflicts between Bill’s changes
and those of any other team member. However, the follow-
ing morning, the system test suite indicates a failure caused
by an interaction among the features. The developers must
review each change they made, remembering the reasoning
and rationale, to discover and understand the unintended
interaction of their features that broke the regression tests,
and to correct the problem. It would have been better for
Bill to be notified, before he shared his changes to the cen-
tral repository, that this operation would cause the tests to
fail. Even better, Bill could have been notified of the prob-
lem as soon as Melinda shared her changes, even before he
considered sharing his changes. Best of all, Bill and Melinda
could both have been notified as soon as they made local
commits whose combination destabilized the system, even
before either had shared those changes to the central repos-
itory. At that time, Bill and Melinda are engrossed in the
details of their changes and can resolve them more effectively
and quickly.

As a variation on the above scenario, suppose that Bill had
updated his copy of the code and run the full system tests
before sharing his changes. In this case, Bill and Melinda
would be in the same situation as before, with the same
hard task of remembering and reconciling their work, after
the fact. It is often infeasible or undesirable for a developer
to delay his work to run full system tests.

As a third scenario, suppose that Paul, who is working
on Feature 3, is worried about the possibility of a long-lived
unnoticed semantic conflict. He knows that the longer a
problem lingers, the harder it is to fix, so he wishes to nip any
such problem in the bud. Therefore, he regularly updates his
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copy of the code to incorporate Melinda’s and Bill’s changes.
In general, this works well. But occasionally, it causes Paul’s
system to break, and he has to waste a lot of time resolving
conflicts — sometimes repeatedly — in order to get back to
his own work. It would be better if Paul knew which commits
in the central repository he could safely incorporate into his
own work. He could choose to defer the others until his
feature was complete.

To make progress towards the collective goal, each engi-
neer vacillates away from and back towards the master ver-
sion as well as the copies of others in their teams. In the face
of imprecise information, each individual (1) may underesti-
mate how far they have deviated from others, likely causing
costly merges, undos, and repeated work, or (2) may overes-
timate how far they have deviated from others, scaring them
from incorporating others’ changes earlier.

We propose that an IDE can speculatively perform version
control operations (or any other software development ac-
tion), record the outcomes, and then make this information
unobtrusively available to developers. For example, when
Melinda and Bill are working on their own changes, the IDE
can speculate that they will need to merge their work with
the master version or with each other; the IDE can per-
form such merges, compile the code, and run the tests, all
in the background and in a separate workspace to prevent
affecting the developers’ ongoing work. Knowing the conse-
quences can help a developer to make better decisions, such
as resolving conflicts before they deepen or avoiding getting
distracted by a merge task.

This paper answers the question: do sufficient opportuni-
ties exist in practice that would allow a speculative mech-
anism like the one we have described to help programmers
better manage their integration activities? Specifically, we
analyze the space of software development projects and an-
swer several research questions about whether or not IDEs
can properly speculate about potential actions in a collabo-
rative environment and bring information that is unavailable
today to the attention of the engineers, reducing the time to
conflict discovery and increasing engineer confidence in safe
merges.

In our analysis of the histories of subsets of eight real-world
open-source programs, each with up to 1.5 million lines of
code and up to 100 developers, we found ample opportunities
for an IDE to deliver pertinent information about speculative
merges to the developer. First, we found that branching and
merging are widely used in today’s software development.
Second, we found that 17% of merges result in textual con-
flicts that require human intervention to resolve, presenting
opportunities for the IDE to both (1) warn the developer of
the conflict when it first happens and (2) increase the devel-
oper’s confidence that a merge will not result in a conflict,
allowing developers to share more often and diverge less from
each other in their development. Third, we found that tex-
tually conflicting branches persisted on average 10 days, and
sometimes as long as year, before being resolved. Similarly,
textually non-conflicting branches persisted for an averge of
11 days, and up to four months, without work being shared.
Further, when we applied deeper conflict analysis and exam-
ined merges that had no textual conflicts, we found that an
additional 19% (for a total of 38%) of the merges contained
compilation, halting, or behavioral conflicts that developers
would normally learn about even later, while a speculating
IDE could have predictied these conflicts and informed the

developers of their potential at a much earlier time.
The remainder of this paper is structured as follows. First,

Section 2 outlines the research questions we aim to answer.
Next, Section 3 describes some anecdotal evidence that in-
dustrial managers have a strong interest in an IDE with the
capabilities we describe here. Then, Sections 4 and 5 ana-
lyze eight real-world programs to answer our target research
questions. Finally, Section 6 describes how our work fits
within the related work in the field and Section 7 summa-
rizes our contributions.

2. RESEARCH QUESTIONS
We believe that by speculating a collaborating engineer’s

potential future actions, an IDE can provide useful infor-
mation about the engineer’s deviation from the rest of the
team. The primary contribution of this paper is an evalua-
tion of whether such information exists. Only if the answer
is affirmative does it make sense to build a tool and perform
a user study to determine whether the information is useful
to an engineer.

Thus, we pose the following research questions:

RQ-1 How often do conflicts occur?

RQ-2 How long do conflicts persist?

RQ-3 How much earlier could an IDE discover potential
conflicts with other developers than they are being re-
solved by engineers today?

RQ-4 How often could textually safe merges take place but
do not?

RQ-5 Can we capture data about other types of conflicts
that can occur in practice?

RQ-6 Are there high-order conflicts, such as ones that man-
ifest themselves through regression tests, that do not
manifest themselves in textual merge conflicts? That
is, is there any benefit to and IDE performing high-
order analyses?

3. AN INDUSTRIAL CORROBORATION
A private communication with (a friend who is) an indus-

trial development manager corroborated the basic scenarios
sketched in Section 1. The manager runs a software project
with a local team of 12 developers in North America and
with two remote teams of eight and of 17 developers, each in
India. He is increasingly concerned about keeping the source
code produced by his remote teams synchronized with his lo-
cal team’s code; specifically, he is concerned that the remote
teams are frequently deviating too far from the local team’s
branches, causing time consuming merges and wasted effort.

Given this context and absent any knowledge of our work,
he said (via instant messaging):

[We’d like an extension of] continuous in-

tegration, but providing additional detail

before you commit. In Eclipse parlance, each

developer’s IDE (remote or otherwise) would

maintain a shadow workspace, and using net-

worked updates derived from the local his-

tory deltas of all members of the team, you

would get instant feedback if someone is break-

ing the build or at least mucking with the



files you are thinking about changing or com-

mitting changes on. Why wait until you try

to merge?

While each remote team was able to keep its own code
consistent, they would stray from the two other teams re-
mote to them. Since the remote teams knew merging was
an expensive process, they would only do it once or twice
during their two-week code sprints. The downside to this, of
course, was that the project’s continuous integration system
was only compiling and testing the entire project once or
twice per sprint.

The manager observed:

This comes from problems keeping my local team,

and the two remote teams we work with in In-

dia [from diverging too much]. The remote

guys tend not to commit frequently enough to

get leverage out of our continuous integra-

tion builds, even after prompting. It is a

real challenge to know how far out of sync

[the remote teams] are [with the local team]

when their commits are not being merged in

regularly.

Ultimately, his desire was two-fold. First, he wanted to
know when the teams were deviating so he could prompt
them to merge before the situation got worse. Second, he
wanted the developers to be able to identify merge prob-
lems proactively and resolve them before the they became
so onerous that they were not completed until the end of the
sprint.

I want [my developers] to at least initiate

a conversation with the relevant parties when

the system says they have, or are just or about

to, walk into a conflicting situation. I also

want the system to give them a certain level

of trust of other developer’s changes so that

if [a merge] won’t cause a problem, they should

sync up.

His observation describes precisely the two notions of devi-
ation we are considering. Developers can (1) underestimate
how far they have deviated from others by introducing con-
flicts of which they are not aware, or (2) overestimate how
far they have deviated from others and fail to incorporate
others’ changes for fear of conflicts. The research questions
we address directly relate to the potential utility of a tool
that could help this manager and his teams.

4. CHARACTERIZATION OF TEXTUAL
CONFLICTS AND NON-CONFLICTS

Our work aims to to find opportunities for an IDE to bring
previously-unavailable information to the developer’s atten-
tion. Therefore, we measure how often and how early an
IDE could have discovered and delivered such information
to the developer. Our experiments use the histories of eight
real-world open-source projects varying in size up to 1.5 mil-
lion NCSL and developed by up to 100 collaborators. In this
section, we define our terminology (as there is no standard
terminology for version control activities), describe our sub-
ject programs, and describe the analyses and results related
to textual conflicts and non-conflicts across these subjects.
Our analysis is broken into three parts: how often branches

System KNCSL Description

Gallery3 45 Web-based photo album.
Insoshi 173 Social networking platform.
MaNGOS 520 Online game server.
Perl 599 Programming language.
Rails 118 Web application framework.
Samba 1,536 File and print services.
VLC 485 Portable multimedia player.
Voldemort 62 Structured storage system.

Figure 1: Eight subject programs we used to eval-
uate an IDE’s access to speculative information in
collaborative development environments.

and conflicts happen in these subject programs, how long
unrecognized conflicting branches persist, and how long the
potential for an unrecognized safe merge persists. Section 5
discusses our narrower analysis, of a single subject program,
that distinguishes among different kinds of conflicts (for ex-
ample, when textual merges succeed but compilation fails).

4.1 Distributed Version Control Terminology
Our specific analysis relies on developer use of distributed

version control systems, such as Git and Mercurial. The ad-
vantage for us is that, compared to the previously popular
centralized version control systems, such as CVS and Sub-
version, these distributed systems keep more of a project’s
history. This is partly due to the capabilities of these sys-
tems and partly because of the developer habits that they
enable or encourage.

The terminology is inconsistent among the different sys-
tems, so we will attempt to standardize our language for
this paper. In a distributed version control system, every
developer on a team has a copy of the repository on his or
her local machine. At any time, the developer can perform
a local commit, or simply a commit. A commit updates the
status of the local repository with a snapshot of the current
state of the developer’s code. The snapshot itself is also
called a commit. A developer may choose to share his or
her code with another developer at any time. In distributed
version control, sharing is typically called a push, and in
centralized version control, a commit. Finally, we will use
the term update to mean a request to get changes from an-
other repository. In distributed version control, sharing is
typically called pull, update, and/or merge. In centralized
version control, sharing is typically known as update.

A repository may have any number of branches, each typ-
ically intended for a particular line of development. These
branches may merge, which is essentially equivalent to a de-
veloper sharing his or her changes. Distributed repositories
typically have many more branches and more frequent merg-
ing, and they capture the intermediate state of a developer’s
work whereas the standard use of a centralized version con-
trol system does not. At any given time, the latest commit
in each branch is called a tip.

4.2 Subject Programs
To evaluate our approach we chose a sample set of systems

that use the Git distributed version control system; these
systems are summarized in Figure 1. We selected several
recognizable systems from the list of projects maintained by
the Git project, as well as some highly-ranked systems on



Historical Merges Potential Merges
Project # committers # commits total clean conflict % conf. total clean conflict % conf.

Gallery3 24 5,292 563 483 80 14% 7,460 6,189 1,271 17%
Insoshi 15 1,318 114 87 27 24% 1,742 1,006 736 42%
MaNGOS 27 3,750 176 118 58 33% 4,994 3,902 1,092 22%
Perl 52 34,795 1,394 1,155 235 17% 6,210 5,237 973 16%
Rails 53 13,089 393 336 57 15% 10,970 7,922 3,048 28%
Samba 59 59,390 750 649 100 13% 6,051 3,702 2,349 39%
VLC 100 38,362 57 47 10 18% 1,815 1,672 143 8%
Voldemort 23 1,324 167 128 39 23% 4,807 3,222 1585 33%

Total 353 157,320 3,614 3,003 606 17% 44,049 32,852 11,197 25%

Figure 2: Summary of the nature of the development of eight collaborative projects. The emphasized cells
indicate those part of the analysis for which we sampled only a portion of the very large project history.

GitHub.1 We only dismissed potential systems if they had
fewer than 10 developers and 1000 commits.

4.3 Conflict Frequency
The first question we asked about collaborative environ-

ments is “How often do conflicts happen?” However, in order
to be able to place the answer to that question in context,
we must first answer “How often do branches happen in col-
laborative environments?”

Figure 2 indicates the number of branches that existed at
any given point in time. During virtually all of the develop-
ment time, each of these projects had at least two branches.
This first finding indicates that an IDE would, at the very
least, have alternate branches of development which it could
speculate could be merged. Further, on average, each branch
contained 44 commits.

Figure 2 also shows how often merges happened in the sub-
ject projects. The number of merges ranged from 57 for VLC
to 1,394 for Perl. Of these merges, 17% had textual conflicts,
meaning that Git could not merge the two relevant branches
itself and required human effort. This finding leaves open the
possibility that an IDE could have detected these conflicts
earlier than the time when the developers first attempted to
merge the branches, and could have warned the developers
about the conflicts while the relevant code was still fresh in
their minds. We will examine this possibility in Section 4.4.
The other 83% of the merges had no textual conflicts, leaving
open the possibility that an IDE could have let the develop-
ers know that it was safe to incorporate others’ changes at
an earlier time, reducing the deviation between the branches.
We will examine this possibility in Section 4.5.

Finally, we generated all possible potential merge points.
These are all pairs of commits that, at some point in time,
were both the tips of their respective branches. These pairs
represent the potential merges a developer could expect to
execute at any given time. Because of the large number of
these merge points and the time necessary to attempt each
merge, for some of the projects with very large histories, we
were only able to analyze a subset of the potential merges,
indicated in emphasis in Figure 2. We found that, on av-
erage, 25% of the potential merges would have resulted in
a textual conflict, again possibly allowing the IDE to notify
the developer early of a potential conflict and, conversely, in-
crease a developer’s confidence in the 75% of the cases that
had no textual conflicts.

1http://github.com

4.4 Textually Conflicting Branch Persistence
Section 4.3 showed that branches are common. How fre-

quent are the conflicts, and how long do they persist? This
information addresses our research question “How much ear-
lier, if at all, could an IDE discover a potential conflict than
it is being discovered by engineers today?”

We examined the development history of four of our sub-
ject programs (Gallery3, Insoshi, MaNGOS, and Voldemort)
to quantify the lifespan of a conflict. We considered only
branches that at some point merged in the history, thus en-
suring that conflicts between branches that were never in-
tended to merge do not corrupt our results.

For each program, we performed the following analysis.
First, we found all pairs of coexisting branch tips in the
repository. That is, for every point in time, for every latest
commit in a branch, we paired it with the latest commit in
each of the other branches at that time. These pairs rep-
resent what an IDE could have observed in a collaborative
environment at the time of development. Second, for each
pair, we determined whether the commits could be merged
using Git’s built-in merging mechanism and whether that
merge resulted in a conflict. Whenever we detected a con-
flict, we found the commit in the repository that resulted
in a persistent merge of those branches. Sometimes, these
merges happened immediately after the introduction of a
conflict while other times, they merged almost a year later
with hundreds of new commits occurring during that time.
Finally, we ignored conflicts between a pair of tips that was
already evidenced by an earlier pair. That is, we did not dou-
ble count the conflicts; if two branches conflicted, we counted
only the longest life of the conflict, and not the conflicts of
the pairs that may occur prior to the actual merge.

Figure 3 shows the conflict persistence data for our four
subject programs. In these four programs, 20% of the branch
pairs that did eventually merge conflicted textually. These
conflicts, on average, persisted for 9.8 days and developers
made, on average, 11.6 commits, on each branch, before
merging. Thus, a speculative IDE with access to the collab-
orative environment could, on average, have let developers
know 9.8 days and 11.6 commits earlier about an existing
conflict. In the worst case, one conflict in MaNGOS per-
sisted for 334 days and included 676 commits along one of
its branches.

The 9.8 day average, although significant, is muddied by
some limitations of our evaluation approach. Specifically,
the repository can tell us when a conflict first arose and

http://github.com


Conflicting Branches
Project Merges Conflicting Branches % Conflicting time # commits

mean max mean max

Gallery3 563 80 14% 3.1 days 57 days 7.5 229
Insoshi 114 27 24% 11.7 days 101 days 9.4 81
MaNGOS 176 58 33% 8.2 days 334 days 17.6 676
Voldemort 167 39 23% 25.7 days 147 days 12.8 89
Total 1020 204 20% 9.8 days 334 days 11.6 676
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Figure 3: Conflict Persistence.

when the developers resolved it. However, the repository
does not tell us (1) when the developers may have found out
about the the conflict, (2) if the developers began resolv-
ing the conflict as soon as learning of its existence, and (3)
had the developers known about the conflict earlier, would
they have done anything differently to resolve it. Such in-
formation is unavailable from version control repositories.
However, these shortcomings do not alter the fact that the
information about the conflict was available earlier, and that
the IDE could have brought it to the developers’ attention at
that time, allowing the developers to make a better-informed
decision about how to proceed.

Because textual conflicts are a subset of all possible con-
flicts, our analysis is conservative. Two branches may merge
cleanly from Git’s textual perspective, but the merged re-
sult may fail to compile, fail to pass a test suite, or fail
along some other analysis dimension. Thus, the numbers we
have provided in this section are an underestimate of the
times the IDE can provide conflict information to the de-
veloper. (Again, Section 5 discusses other types of conflicts,
how the IDE can leverage other types of analysis to bring
the developer more information on these conflicts, and how
incorporating this analysis affects our estimates.)

The lifespan of a conflict addresses one of our research
questions: whether an IDE could provide engineers with in-
formation about potential conflicts early in the development
process. This question is aimed toward one of the two di-
vergence phenomena we described: engineers mistakenly be-
lieving that they have diverged less from their collaborators
than they in fact have. Bringing the existence of conflicts to
their attention may help alleviate this misconception.

4.5 Textually Safe Branch Persistence
The lifespan of a conflict only covers one dimension of the

problem. Here we describe what information is available to
the IDE with regard to the second phenomenon: engineers
mistakenly believing that they have diverged more from their
collaborators than they in fact have.

At such times, an engineer may not incorporate a collabo-
rator’s changes for fear that such incorporation could break
the engineer’s code. Unnecessarily keeping one’s code out of
date can cause greater deviations and more-severe conflicts
than if the safe changes are incorporated early and often.
The logical counterpart to our analysis of an IDE’s ability
to detect conflicts is the analysis of the ability to detect safe
merges so that the IDE could inform the developer that it is
safe to incorporate others’ changes.

Again, we examined the development history of four of our
subject programs, Gallery3, Insoshi, MaNGOS, and Volde-
mort, and again, we ignored branches that, to date, have not
merged because the developers’ intent for those branches is
unclear. Just as before, for each program, we found all pairs
of coexisting branch tips in the repository. We then, for
each pair, determined whether the commits could be merged
using Git’s built-in merging mechanism and whether that
merge resulted in a conflict. Whenever Git’s mechanism
succeeded, we knew that the branches could have merged
textually cleanly. We then found the time in the repository
when the branches actually merged. As before, we ignored
pairs of tips that were already evidenced by an earlier pair
and thus did not double count; if two branches merged tex-
tually cleanly, we counted only the longest life of the clean
merge, and not the possible clean merges that may occur
prior to the actual merge.

We found that, in these four programs, 80% of the branch
pairs (the complement to the 20% conflicting branch pairs)
that did eventually merge had no textual conflicts. These
branches, on average, persisted for 11 days and developers
made, on average, 11.5 commits on each branch before merg-
ing. Thus, on average, developers using the speculative IDE
could have known about safe merging and could possibly
have stayed up-to-date 11 days and 11.5 commits earlier. In
the worst case, one branch pair in Voldemort persisted for
138 days and another in Gallery3 persisted for 232 commits
without a merge, while any and all of the number of possible
merges along the way would have been textually clean.



Non-Conflicting Branches
Project Merges Non-Conflicting Branches % Non-Conflicting time # commits

mean max mean max

Gallery3 563 483 86% .65 days 7.4 days 14.3 232
Insoshi 114 87 76% 3.4 days 39 days 6.3 64
MaNGOS 176 118 67% 2.4 days 10 days 5.8 44
Voldemort 167 128 77% 35 days 138 days 9.7 77
Total 1020 816 80% 11 days 138 days 11.5 232
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Figure 4: Textually Safe Merge Persistence.

Figure 4 shows the persistence of textually safe branches
for our four subject programs. Again, the log-scale his-
togram demonstrates the approximately power-law-like dis-
tribution of the conflict lifespan.

Just as with conflict detection, learning information about
textually safe merges from repositories has its limitations.
The 11-day improvement in mean time to incorporating oth-
ers’ changes is significant, but the repository does not tell us
(1) when the developers knew merging was safe, (2) if the
branches merged as soon as the developers knew it was safe,
and (3) whether knowing about the merging safety would
have influenced the developers to act differently. Neverthe-
less, the fact remains that the information about the textu-
ally safe merge was available earlier, and that the IDE could
have brought it to the developers’ attention at that time, al-
lowing the developers to make a well-informed decision about
how to proceed.

In contrast to the textual conflict analysis, our analysis
here is not conservative. That is, we found that 80% of
branches did not conflict textually, whereas they may have
had higher-level conflicts related to compilation, testing, and
other analysis. In Section 5, we will discuss the other types
of conflicts that can take place and how incorporating this
analysis affects our estimates. However, it should be noted
that whatever error is present in our estimates of this section,
it directly benefits the estimates of Section 4.4.

5. HIGH-ORDER CONFLICTS
The most common and familiar kind of conflict identi-

fied in version control is a textual conflict. When developer
Melinda shares her code with developer Bill, the version con-
trol system will examine Melinda’s and Bill’s changes since
their last share. Even if they both made changes, but those
changes are in independent files, or even distant parts of
the same files, the merge of the two branches will execute
smoothly. However, if Melinda and Bill changed the same,
or proximate lines of the same files, the version control sys-
tem will declare a a conflict and ask either Melinda, or Bill,

or both, to resolve the conflict by hand.
However, textual conflicts are only one kind of a conflict.

Even though branches may merge without conflicting tex-
tually, the resulting code may fail to compile, fail to pass a
unit test suite, fail a set of system tests, fail in some quali-
ties of service, or fail along some other dimension of analysis.
When an IDE speculates merges and presents the developer
with information on that merge, it could present not only
textual conflicts but also these higher-level conflicts. Access
to this information would allow the developer to make better
informed decisions about the affects of sharing.

To determine whether these high-order conflicts occur fre-
quently enough to warrant the IDE attempting to observe
them, we further analyzed the Voldemort system. We first
determined how many of the branches that were textually
safe were not safe from the points of view of three high-order
analyses: compilation, halting of the test suite, and behav-
ior. We then, examined a merge that failed the behavioral
analysis and a merge that failed the compilation analysis, as
two case studies of impact of such analysis.

We now describe the three types of high-order analysis
we performed. Compilation analysis attempted to compile
the speculated merges of two branches; of the 128 branch
pairs that were textually safe, 12 (9.4%) failed to compile.
Halting analysis executed a set of tests over those specu-
lated merges that compiled successfully; of the 116 branch
pairs, 4 (3.4%) entered infinite loops. Behavioral analysis
executed a test suite over those speculated merges that did
not enter infinite loops to examine the correctness of the pro-
gram’s behavior; of the 112 branch pairs, 8 (7.1%) failed at
least one test that the tips of the branches used to speculate
the merge passed.

Figure 5 illustrates our high-order analysis results. Over-
all, of the 167 branch points in Voldemort, 104 (62%) con-
tained no conflicts. For the other 63 (38%), the IDE could
have reported information on a conflict to the developer
when it first became available.
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Figure 5: High-order conflict analysis revealed that
14% of all branch pairs and 19% of those branch
pairs that were textually safe were deemed unsafe
by one of our high-order analyses.

5.1 Malformed Non-Code Resource
On October 10, a developer successfully merged two tips

(50b74 and 00c35). Tip 00c35 was edited 17 times while
the branch was alive and the last commit on this branch
occurred only 8 minutes before the merge. Tip 50b74 had
not been edited in the previous 48 days. Although the patch
between these two tips was very large (63,413 lines), the
merged system successfully executed its test suite. However,
the merged system failed 15 tests: while 14 of them failed in
both 50b74 and 00c35, one test, (voldemort.store.http.-
HttpStoreTest::testBadPort()) did not fail either tip be-
fore the merge, but did in the merged system. Thus some
unintended behavioral interaction between the two branches’
changes broke this test. Further investigation revealed that
the merge invalidated one of the metadata files, cluster.xml.
In this case, if the IDE had let the developers know that
it was safe to merge earlier, the problem could have been
avoided completely.

5.2 Build Breaks After Merge
On November 9, a developer successfully merged tips c77a4

and 7f776. Tip 7f776 was edited 11 times while the branch
was alive; tip c77a4 was edited 3 times. Both tips had been
modified within 4 days of the merge. While the merge had
no textual conflicts, the code failed to compile: 4 compila-
tion errors resulted from referencing a missing type Proto-

BuffAdminClientRequestFormat. Eight minutes after this
merge, the developer merged in another tip (68e3b), which
resolved the compilation problem.

In this case, the IDE could have speculatively told the
developer about the compilation error that would arise af-
ter the merge. With this information, the developer may
have chosen to do the merges in an alternate order to avoid
the problem and ensure other developers were not adversely
affected.

6. RELATED WORK
In this section, we discuss the states-of-the-art in version

control systems, collaborative awareness, mining software
repositories, and continuous development, and compare and
contrast them to this paper’s contributions.

6.1 Version Control Systems
Rochkind introduced the first source code control system

in 1975 [19]. Since then, numerous similar systems — charac-
terized by a centralized shared repository — have been devel-
oped and deployed, among them RCS [26], CVS [8], Subver-
sion [4], and others. More recently, a set of distributed ver-
sion control systems have been developed including Bazaar,
Mercurial, and Git.2 These systems do not rely on a cen-
tralized repository, allow more freedom to the collaborators
in terms of branching, merging, and keeping multiple repos-
itories, and are less dependent on network availability.

The distinctions between the conventional and distributed
version control approaches are significant, as are the dis-
tinctions among specific version control systems [5, 14, 16].
These distinctions do not, however, affect our research in
fundamental dimensions. The only exception to this might
be that distributed version control systems encourage more
frequent branching and merging, which likely provides addi-
tional opportunities for speculation [27]. In any case, Perry
et al. [17] empirically document the variations, and conse-
quences of the variations with respect to quality and sched-
ule, in how software teams perform work in parallel.

6.2 Collaborative Awareness
There is significant related literature that addresses, in

varying dimensions, the importance of increasing awareness
of the activities among members of collaborative software
teams. Earlier studies documented the use of existing tools
such as mailing lists and chat systems to increase aware-
ness among team members [9]. FASTDash [3] is an example
of an interactive visualization designed to augment existing
software development tools with a specific focus on helping
people understand what other team members are doing; they
produce a spatial representation of the shared code base to
highlight these activities. Dewan and Hegde [6] reported on
the CollabVS can smooth collaborative version control by
identifying conflicts by analyzing dependencies among pro-
gram elements in checked-out versions.

A collection of results by Sarma and colleagues include
tools that support cooperative software development tasks,
with a primary focus on aspects of social dependencies [24,
23, 1]. Their Palant́ır work, in particular, has similar motiva-
tions to ours: “[P]roviding workspace awareness to users will
enable them to detect potential conflicts earlier, as they oc-
cur. Ideally developers can then proactively coordinate their
actions to avoid those conflicts” [24, p. 1]. Palant́ır contrasts
with our approach by showing which developers are changing
which artifacts by how much. Our approach, on the other
hand, considers not only identifying conflicts earlier but also
considers when updates can take place safely earlier; also,
we consider multiple levels of conflicts — textual, syntactic,
and behavioral.

Sarma, Redmiles, and van der Hoek [25] not only empir-
ically assess the benefits of collaborative awareness for con-
figuration management, but they also compare their assess-
ment to those provided by FASTDash [3] and CollabVS [6].
In contrast to these three studies, which use observational
and laboratory studies, our approach is analytic in assess-
ing the potential for benefits. In addition, we look not only
for conflicts but also for missed safe merging opportunities.
That said, our analysis is consistent with these studies in

2http://bazaar.canonical.com, http://mercurial.
selenic.com, and http://git-scm.com, respectively.

http://bazaar.canonical.com
http://mercurial.selenic.com
http://mercurial.selenic.com
http://git-scm.com


confirming the potential for better coordination of individ-
ual and team repositories.

6.3 Mining Software Repositories
Extracting data from existing software repositories as a

way to learn about more effective methods to develop soft-
ware has become increasingly common over the past decade.
In general, research in this area identifies one or more gen-
eral questions and then assess one or more repositories to
find information material to those questions, often seeking
correlations among various metrics.

An early effort by Ball et al. [2] extracted metrics such
as coupling — based on the probability that two classes are
modified together — and used the metrics to assess the re-
lationship between implementation decisions and the evo-
lution of the resulting system. A number of later efforts
mine version histories to determine functions that must likely
be modified as a group [28], to identify common error pat-
terns [13], to predict component failures [15], etc.

Our effort contrasts, to a large degree, with these efforts in
at least two dimensions. First, the property we are assessing
— unexploited and promising opportunities to incorporate
or share changes with others on a team — appears to be dis-
tinct. Second, we are mining only to determine if this prop-
erty occurs frequently enough to justify the development of
a supporting mechanism. Other mining efforts tend to look
for patterns that might inform more general software devel-
opment improvements (for instance, allocating more quality
assurance resources to more error-prone components).

6.4 Continuous Development
Our approach can be characterized, or perhaps more accu-

rately inspired by, the notion of continuous merging. Thus,
it is related to a number of other approaches to continuous
computation in the context of software development.

Over two decades ago Henderson and Weiser [10] proposed
a programming environment modeled on spreadsheets, in
which the program being developed was continuously ex-
ecuted as it was being edited; they explicitly anticipated
powerful personal computers as requirements for effective
implementation. They pursued dimensions of VisiProg for
several years [12], but for nearly two decades afterward the
primary focus in this area — to a limited degree, at least —
was on incremental computation for general program manip-
ulation [18, 11] without a concentration on environments, per
se.

Modern programming environments provide continuous
compilation. The environment maintains the project in a
compiled state as it is edited, speeding software develop-
ment in two ways. First, the developer receives rapid feed-
back about compilation errors on every save, allowing for
quick correction while that code is fresh in the developer’s
mind. Secondly, the developer is freed from deciding when
to compile, meaning that when it is time to run or test the
code, no intervening compilation step is necessary.

Continuous testing [20, 21, 22, 7] uses excess cycles on a
developer’s workstation to continuously run regression tests
in the background. It is intended to reduce the time and
energy required to keep code well-tested and prevent regres-
sion errors from persisting uncaught for long periods of time.
The vision is that after every keystroke, the developer knows
immediately (without taking any extra action) whether the
change has broken the tests. Continuous testing has gained

some traction in the development community.
These continuous approaches are reactive, albeit very fast.

In contrast, our notion of speculative version control relies
instead on computing (and perhaps presenting, depending on
the user interface and user preferences) contingent informa-
tion about version control operations before the programmer
has even considered taking the associated speculative action.

7. CONTRIBUTIONS
In today’s distributed collaborative environment for soft-

ware development, it is easy for members of engineering
teams to become unaware of how far they may have diverged
from their teammates. In this paper, we set out to learn
whether adequate opportunities exist for an IDE to provide
pertinent information to developers to (1) inform them of po-
tential conflicts early, and (2) increase their confidence when
their work does not conflict with that of others. By study-
ing eight real-world projects, each with up to 1.5 million
lines of code and up to 100 developers, we found that there
are ample opportunities for an IDE to deliver such informa-
tion to the developers. In particular, branches are abundant
in software development and 17% of these branches contain
textual conflicts that persist for an average of 10 days before
they are resolved. Further, non-conflicting branches persist
for an average of 11 days without developers sharing their
work. Finally, higher-order analysis revealed that another
19% of the branches do not conflict textually but do con-
flict syntactically or behaviorally. These findings justify the
creation of a mechanism within an IDE to bring speculative
merge information to the attention of the developer.

Perhaps primarily because we were acutely attuned to
these issues, during the collaborative development of the
software infrastructure for the experiments described ear-
lier, we repeatedly encountered times when we wanted to
synchronize our view of the source code with that of the oth-
ers but usually did not do so because we were scared that
such synchronization would break our view. While advance
conflict warning may perhaps prevent costlier problems, in
our recent experience and consistent with our analysis, safe
merge detection would likely be used more often by the de-
velopers to increase their confidence and comfort level with
respect to how far they are diverging from the rest of their
team.
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