
Modular Metatheory for Memory Consistency Models

Laura Effinger-Dean
University of Washington

effinger@cs.washington.edu

Dan Grossman
University of Washington
djg@cs.washington.edu

Abstract
We present a framework based on operational semantics for formal-
izing shared-memory multithreaded programming languages with
relaxed memory consistency models. The key feature of our frame-
work is a division of each system’s semantics into two modules,
the program semantics and the heap semantics. This modulariza-
tion allows elegant, concise, and reusable components. It is trivial
to use the same memory model with multiple languages and the
same language with multiple memory models.

We demonstrate the effectiveness of our framework by proving
several results. First, we give a semantics for the Partial Store Order
memory model, and prove that data-race-free programs exhibit
sequentially-consistent semantics using this model. Critically, we
did not need to define a specific language semantics to prove this
result. We assumed only that the language satisfies certain sanity
checks easily met by realistic languages. Second, we generalize the
notion of type safety to arbitrary memory models, and prove type
safety for a multithreaded simply-typed lambda calculus for any
type-preserving memory model. Finally, we present a model of the
MSI cache coherence protocol, and prove that it is semantically
equivalent to sequential consistency for any language.

We used the Coq proof assistant to carry out and mechanically
verify all our work. Our Coq code is freely available and was mod-
ularly designed to support reuse for future extensions and projects.

1. Introduction
Any multithreaded system with shared memory, whether it is a
programming language or a multicore processor, must specify a
memory consistency model, or memory model. The memory model
defines which values may be returned by a memory-read operation
in the course of a given execution. The simplest and most intuitive
memory model is sequential consistency, which guarantees a global
interleaving of memory operations consistent with each thread’s
program semantics. Unfortunately, sequential consistency is not
efficiently implementable for typical programming languages given
compiler transformations and modern multiprocessor hardware.

Therefore, most languages have relaxed memory models, which
weaken the ordering constraints of sequential consistency to allow
more legal behaviors. (Worse, many languages give no definition
at all, which is a glaring hole in their specification, but parallel im-
plementations are still not sequentially consistent.) Section 2 gives
additional background on the need for relaxed memory models and
what properties they should have to allow for reasonable language
semantics. By far, the most important property is the data-race-free
guarantee: programs with no data races behave as if the memory
model were sequential consistency.

1.1 The Need for Modularity
The semantics of relaxed memory models are tricky and subtle, re-
quiring experts to devote great resources to defining them and prov-
ing properties. As in any formal endeavor, they carefully model

the tricky aspects of what they are studying—possible memory
reorderings—while simplifying details that are presumably less im-
portant. As such, the “programming language” for most research in
this area is just threads emitting traces of memory and synchro-
nization operations. Only recently has there been work formalizing
relaxed memory models using operational semantics [8] rather than
trace reorderings [2, 3]. (See Section 8 for related work.)

Programming-language semantics are also tricky and subtle,
with experts developing well-suited techniques for reasoning about
sophisticated language constructs. For example, we have rich type
systems and metatheory that lets us prove safety properties. But
such research often ignores shared memory, or at best adds threads
that communicate via sequentially-consistent memory.

In short, proofs of the data-race-free guarantee and other mem-
ory model properties rarely use real language constructs, and proofs
of type safety and other language properties rarely use real memory
models. This is a disappointing reality for semantics and a poten-
tial practical problem given how counterintuitive concurrent inter-
actions can be.

We argue that the solution is not heroic efforts to build formal
semantics compounding the complexities of both worlds. Rather,
we need semantics that are modular, in which memory models and
the rest of the language can be defined independently, with a precise
interface connecting them. This paper presents our MemModel
framework, which embodies this approach and has allowed us to
prove a number of reusable results.

1.2 Our Approach
The key idea of our framework is to divide the semantics of a
shared-memory system into halves: the language model, which
describes the syntax and semantics of the program, and the memory
model, which describes the syntax and semantics of the heap. The
two parts are defined by independent operational semantics that
communicate over a clearly-delineated interface. Hence it is trivial
to pair any language model with any memory model to produce a
system. Section 3 presents this framework in detail.

This decoupling of the language model and the memory model
allows much of our formal proof infrastructure to be neither
memory-model- nor language-specific. For example, a proof of the
data-race-free guarantee for some memory model can state mini-
mal assumptions about the language model and then hold for any
language meeting those assumptions. We are unaware of any prior
work that applies such results to multiple languages. Conversely, a
proof of type safety for a programming language can state minimal
assumptions about the memory model. Similarly, we are unaware
of prior type-safety results that work for multiple memory mod-
els, or even for memory models other than sequential consistency.
In our approach, the possibly-complex memory model is held ab-
stract, and the type-safety proof is essentially no more difficult than
when assuming sequential consistency.

We call our system a “framework” because it is designed to
support future model and proof developments. Our focus has been

reusability and separation of concerns, enabling more sophisticated
memory models or programming languages later. We have done
all our work in Coq, finding Coq’s dependently-typed functional
kernel language, and in particular its module system, to be an ideal
match for stating and proving reusable theorems. Section 7 gives
an overview of our publicly-available Coq interfaces.

1.3 Contributions
Our primary contribution is a formal framework and associated Coq
library that makes it easy to integrate relaxed memory models into
formalisms of non-trivial programming languages and vice-versa.

We have also put our system to work, developing mechanized
proofs of theorems that exploit our decoupled approach to state
more general results than is possible when studying one program-
ming language with one memory model. Section 4 highlights the
benefits of our approach by presenting a proof of the data-race-
free guarantee for a write-buffering memory model similar to that
used by Boudol and Petri [8]. Section 5 presents a type-safety the-
orem that makes only very basic assumptions about the memory-
model half of the system, providing a template for how to establish
safety properties without picking a memory model. Finally, we use
MemModel to study a problem closely related to relaxed memory
models: the correctness of cache coherence protocols. Section 6
constructs a model of the MSI protocol [10] using our framework
and proves its equivalence to sequential consistency while making
no assumptions about the language model, essentially proving that
MSI caching is correct for any language.

In short, MemModel applies the principles of modularity and
abstraction to operational semantics for programming languages
with relaxed memory models. We believe our approach improves
the state of metatheory for an important and complex area of
programming-language semantics.

2. Background: Memory Models for Languages
Too many programming-language users, designers, and implemen-
tors are unaware of the need for and subtleties of memory mod-
els. A memory model is an essential part of a language’s seman-
tics, defining when reads and writes may be reordered. In single-
threaded programs, the answer is “never”: semantically, each read
must “see” the most recent write, but implementations can still re-
order accesses to disjoint locations without violating the language’s
semantics. However, with multiple threads, other threads could ob-
serve these reorderings.

The simplest memory consistency model, sequential consis-
tency [13], essentially disallows memory reordering: it requires a
single global order of memory operations that is consistent with
each thread’s program execution. Unfortunately, this model is too
burdensome for language implementations. First, no widely avail-
able multiprocessor guarantees it without using expensive memory
fences on all accesses to shared memory. Second, and generally
less appreciated, many compiler transformations—including be-
nign concepts like common-subexpression elimination—can have
the effect of reordering memory operations.

If not sequential consistency, then what? Relaxed memory mod-
els for programming languages must strike a delicate balance of
giving a usable language semantics while still allowing compil-
ers, run-time systems, and hardware sufficient latitude. To keep
the complexities hidden from most programmers, modern mem-
ory models provide the data-race-free guarantee originally articu-
lated by Adve for hardware [1, 2]: If every sequentially-consistent
program execution is data-race free (basically, no two threads can
read/write or write/write the same location simultaneously), then
every execution appears to be sequentially consistent. This guaran-
tee places the burden on programmers to avoid races by using syn-
chronization (e.g., locks), promising in return reasoning in terms of

memory interleavings. For language implementors, it allows sub-
stantial leeway, but essentially prevents reordering memory opera-
tions across synchronization operations or performing transforma-
tions that create new memory operations that introduce races.

For an unsafe language like C++, the data-race-free guarantee
is almost the end of the story, although the memory model has ad-
ditional features for code that needs data races to provide progress
guarantees (e.g., lock-free data structures). If a C++ program has a
data race, its semantics is undefined, much like a program that has
a buffer overflow. This approach is totally unacceptable for safe
languages: the semantics must ensure language and programmer
abstractions are enforced even for “bad” programs that have data
races. Otherwise, an execution could crash or, much worse, com-
promise security policies and other trusted modules.

Therefore, the data-race-free guarantee is not part of the def-
inition of relaxed memory models for safe languages. Rather, it
is a theorem one proves about a model. Because the models in-
volve subtle concurrent interactions and sets of legal reorderings,
the proofs are difficult even for trivial languages like memory traces
or basic assembly languages. The Java Memory Model [14] is a
notable attempt to provide a usable precise memory model for a
safe, high-level language. It is referred to so often not because it is
perfect or ideal but because few other language communities have
even made an attempt to define a memory model for their language.
It is our hope that our work in this paper will make this crucial en-
deavor less daunting by making memory models a more modular
component of language semantics.

Research on memory models in the languages community has
centered on imperative languages such as C++ [7], Java [14] and
the x86 architecture [19], but functional languages are not immune
to the complexities of mutable memory. First, it is common to
have threads communicate via shared-memory updates even if most
computation is side-effect-free. Second, implementations of func-
tional languages must write to read-only objects—e.g., at initial-
ization, to update unevaluated thunks as in Haskell [15], or during
garbage collection. Ensuring such imperative updates do not vio-
late program semantics is difficult. For example, the Java Memory
Model is substantially complicated by final (read-only) fields.

3. The MemModel Framework
This section introduces the MemModel semantic framework. The
key to our approach is to divide the semantics of a system into two
components: the heap semantics and the program semantics. Mod-
ularizing our semantics this way accelerates the research process
and makes theoretical results more easily generalizable. Heaps in
our framework are active: they may take steps that the program is
unaware of. Similarly, the heap is not aware of all program steps.
Mutual steps are taken by both the heap and the program.

3.1 Preliminaries
Figure 1 presents syntactic constructs shared by all the models
discussed in this paper. We assume a program state is a pool of
threads, each identified by a thread ID θ. Threads allocate, read, and
write heap locations r, and acquire and release mutual-exclusion
locks l. For simplicity, locks are not allocated dynamically. The
symbol v represents a value, which is language-specific and will be
defined in Section 3.3.

Models in our framework are tied together by the notion of
actions. An action a represents a step that is visible both to the
program and to the heap, such as a heap write or a lock acquire.
There are six types of actions that a thread may perform: allocating
location r with initial value v; reading value v from location r;
writing value v to location r; spawning a new thread with ID θ;
acquiring a lock l; and releasing a lock l.

Thread IDs θ ∈ ThreadID
Locations r ∈ Location

Locks l ∈ Lock

Mutual actions a ::= ref(r, v) | rd(r, v) | wr(r, v)
| sp(θ) | acq(l) | rel(l)

Program actions α ::= pure | a
Effects σ ::= (θ, α) | ε

Heap effects h ::= (θ, a) | ε
Program effects p ::= (θ, α)

Traces t ::= · | t, σ

Figure 1. Common syntax shared by all models in our framework.

Every step taken by a model is decorated with an effect σ, which
describes which action the step performed. If thread θ performs
action a, then the step’s effect is the pair (θ, a). If a step by thread
θ has no effect on the heap (e.g., a beta reduction), then the step’s
effect is (θ, pure). The third type of effect is the empty effect ε,
which corresponds to steps taken by the heap that are invisible to
the program (such as flushing a value from a cache).

We further distinguish two types of effects: heap effects h and
program effects p. These effects describe actions “visible to” the
memory and language models, respectively. h does not include pure
effects, while p does not include the empty effect. Both h and p
include mutual effects.

A trace t is a list of effects. erase(t) is the trace obtained by
removing all empty effects from t.

Throughout this paper we make use of a generic map type. We
write M : k ⇒ v for a map M from keys k to values v. The empty
map is []. The map in which every key has a default value of v0 is
[∗ 7→ v0]. The value stored for key k in map M (if any) is M(k).
The new map created by updating map M to hold value v for key
k is M [k 7→ v]. The new map created by removing the mapping
for key k (if any) from map M is M |k. The domain of a map M
is dom(M). We will assume that two maps M and M ′ are equal if
dom(M) = dom(M ′) and M(k) = M ′(k) for all k ∈ dom(M).

3.2 Memory Models
Our framework has two distinct kinds of models. The first is the
memory model, which gives the syntax and semantics for the heap.
The heap is responsible for allocating new locations and tracking
the values stored at each location, as well as the state of locks.

A memory model has three components:

1. A set of heaps Heap. We use the symbol H to represent an
element drawn from Heap.

2. An initial heap H0 ∈ Heap.

3. A heap semantics with the following judgment form:

H
h−⇀ H ′

The last component, the heap semantics, is a small-step operational
semantics for the memory model. Each transition in the semantics
is labeled with a heap effect (either a mutual effect or, if the
transition is not visible to the program, ε).

By design, a memory model is completely oblivious to the pro-
gram semantics. Instead, the program and the heap communicate

via effects. For example, the transition H
(θ,wr(r,v))−−−−−−⇀ H ′ indicates

that, given an initial heap H , a write of v to r by thread θ could
yield new heap H ′. The program may or may not be able to take
such a step; the heap semantics defines all possible heap transitions.

ALLOC
r 6∈ dom(S)

(S;L)
(θ,ref(r,v))−−−−−−−⇀ (S[r 7→ v];L)

READ
S(r) = v

(S;L)
(θ,rd(r,v))−−−−−−⇀ (S;L)

WRITE

(S;L)
(θ,wr(r,v))−−−−−−⇀ (S[r 7→ v];L)

SPAWN

H
(θ,sp(θ′))−−−−−−⇀ H

ACQUIRE

l 6∈ dom(L)

(S;L)
(θ,acq(l))−−−−−−⇀ (S;L[l 7→ θ])

RELEASE
L(l) = θ

(S;L)
(θ,rel(l))−−−−−⇀ (S;L|l)

Figure 2. Sequential consistency as a MemModel memory model.

Example: sequential consistency As an essential example, we
define sequential consistency as a MemModel memory model. We
model the sequentially-consistent heap as having two components:
a store and a lock map. A store is a map from locations to values
and a lock map is a map from locks to thread IDs:

Stores S : r ⇒ v
Lock maps L : l⇒ θ

If lock map L has no mapping for lock l, then l is available. If
L(l) = θ, then thread θ currently holds l. Threads cannot acquire
locks they already hold. Now we can give the syntax for heaps:

H ::= (S;L)
H0 = ([]; [])

Figure 2 gives the heap semantics, which is entirely standard.
Although memory models can be analyzed without any refer-

ence to program semantics (see Section 6), our framework is much
more powerful when we combine the heap semantics with a pro-
gram semantics, as Section 3.3 discusses next.

3.3 Language Models
A language model in MemModel gives the syntax and semantics
for a programming language. Such a model has three components:

1. A set of values Value. We use the symbol v to represent an
element drawn from Value.

2. A set of program states ProgramState. We use the symbol P to
represent an element drawn from ProgramState.

3. A program semantics with the following judgment form:

P
p−⇁ P ′

Typically, a program state P will be a pool of threads indexed by
thread ID. However, the interface is flexible enough to accommo-
date other programming models.

Just as the memory model is not dependent on a particular
language model, the language model is oblivious to the syntax
and semantics of the heap. For example, the program transition

P
(θ,rd(r,v))−−−−−−⇁ P ′ says that P can take a read step in which thread

θ reads v from r, yielding new program state P ′. Whether that
value is actually readable is determined by the heap semantics; the
language model simply describes all possible actions.

The language model as presented thus far does not support type
systems, only syntax and dynamic semantics. Section 5 will add
type systems to language models in a clean and general way.

Example: multithreaded lambda calculus As a canonical exam-
ple, we construct a language model for a lambda calculus with

e
α
↪−→ e′; ê

P
p−⇁ P ′

BETA

(λx.e) v
pure
↪−−→ e[x/v]; ·

REF

ref v
ref(r,v)
↪−−−−→ r; ·

READ

!r
rd(r,v)
↪−−−−→ v; ·

WRITE

r := v
wr(r,v)
↪−−−−→ (); ·

SPAWN

spawn e
sp(θ)
↪−−−→ (); e

ACQUIRE

acq l
acq(l)
↪−−−→ (); ·

RELEASE

rel l
rel(l)
↪−−−→ (); ·

APP1
e1

α
↪−→ e′

1; ê

e1 e1
α
↪−→ e′

1 e2; ê
. . .

PRGMSTEP

P (θ) = e e
α
↪−→ e′; ·

P
(θ,α)−−−⇁ P [θ 7→ e′]

PRGMSPAWN

P (θ) = e e
sp(θ′)
↪−−−→ e′; e′′

θ′ 6∈ dom(P)

P
(θ,sp(θ′))−−−−−−⇁ P [θ 7→ e′][θ′ 7→ e′′]

Figure 3. Multithreaded lambda calculus as a language model in
our framework (selected rules omitted).

H;P
σ−→ H ′;P ′

MUTUAL

H
(θ,a)−−−⇀ H ′ P

(θ,a)−−−⇁ P ′

H;P
(θ,a)−−−→ H ′;P ′

HEAP

H
ε−⇀ H ′

H;P
ε−→ H ′;P

PROGRAM

P
(θ,pure)−−−−⇁ P ′

H;P
(θ,pure)−−−−→ H;P ′

Figure 4. MemModel’s generic system model.

threads, references, and locks. We first define the syntax for the
model, including values Value and program states ProgramState:

Expressions e ::= () | r | l | λx.e | x | e e | ref e | !e
| e := e | spawn e | acq e | rel e

Values v ::= () | r | l | λx.e
Optional spawn ê ::= · | e
Program states P : θ ⇒ e

The program state maps thread IDs to expressions. Next we define
the language semantics in Figure 3. The semantics has a single-
threaded judgment that describes legal transitions for one thread
(including an option to spawn a new thread), and a top-level judg-
ment that nondeterministically chooses the next thread to run. This
semantics is mostly unsurprising, although a few rules are coun-
terintuitive. For example, the read rule picks a value out of thin air:
there is no heap to determine the location’s current value. Similarly,
the acquire and release rules do not enforce any mutual exclusion.
These semantic issues are enforced by the heap semantics.

3.4 System Semantics
Figure 4 merges the language and memory models into a complete
system model. The system model is parameterized: we can com-
bine any memory model with any language model using the same
three rules. This set-up is what lets us “plug” many memory models
into a single program model, or vice versa. The system model al-
lows both the heap and the program to step without the other side’s
cooperation (the HEAP and PROGRAM rules, respectively). How-
ever, the MUTUAL rule requires that the two sides cooperate on
key transitions—allocation, reading and writing memory, acquiring

and releasing locks, or spawning a new thread. A helpful analogy is
synchronous message-passing: the program and the heap are inde-
pendent processes that rendezvous to take mutually-relevant steps.

For example, the transition H;P
(θ,rd(r,v))−−−−−−→ H ′;P ′ requires

the program and heap to cooperate. For typical language models,
this transition means the program has a thread θ trying to read
location r, and the heap allows such a read to return v. However,
the system semantics merely requires that both halves agree that
the effect (θ, rd(r, v)) occurs.

We define −→∗ to be the reflexive transitive closure of −→, and
concatenate the transition effects to build a trace:H;P

t−→∗H ′;P ′.

3.5 Discussion
MemModel’s design naturally supports efficient proof develop-
ment. For example, to establish an equivalence between two mem-
ory models, it usually suffices to define the syntax and semantics of
the memory models, and leave the language model abstract. That
way, we can concentrate on the relevant aspects of the proof with-
out getting bogged down in unnecessary details. At the same time,
we avoid making unfounded assumptions about how the language
behaves (e.g., which steps can commute). Later, concrete instantia-
tions of the abstracted components may be arbitrarily complex, and
the proof still applies provided the proof’s explicitly stated assump-
tions about the abstracted components are established.

The notion of abstraction and modularity is not new, but Mem-
Model’s system model is an important instantiation of it. Just as ab-
stract interfaces help software designers avoid dependencies on the
internals of a library, abstract models in MemModel help us avoid
non-generalizable assumptions about the semantics of the program
or the heap, allowing more thorough and general formal results.

4. Proving the Data-Race-Free Guarantee
This section proves the fundamental property—data-race-free pro-
grams have sequentially-consistent semantics—for a specific re-
laxed memory model, which we call the write-buffering model.
Many details of the model and proof were described by Boudol
and Petri [8]. Our goal is not to prove a new result, but rather to
show the power of our framework by generalizing an interesting
prior result. Using MemModel simplified the proof in key places
because we avoided using a specific language semantics. We will
note where our development differs from Boudol and Petri’s work.

4.1 Write Buffering
We intend to prove the equivalence between two memory models,
the first of which is sequential consistency, as described in Section
3. The second (weaker) model is the write-buffering model, which
implements the Partial Store Order (PSO) memory model [20].
PSO relaxes the write/read and write/write program orders; that is,
writes may be delayed such that they actually commit after reads
or writes to other locations by the same thread.

Here is an example of how PSO may affect program semantics,
where we assume x and y are initially 0.

Thread 1 Thread 2
x := 1; y := 1;
r1 := y; r2 := x;

In a sequentially-consistent execution, the outcome r1 = r2 =
0 is impossible. The first action must be a write, so at least one of
the threads will see a 1 for their read. However, in the PSO model,
the outcome r1 = r2 = 0 is possible if both threads do their reads
before either thread does its write.

First, let us define the syntax for the write-buffering model. The
model uses a data structure called a buffer. Buffers are maps from

ALLOC
r 6∈ dom(S)

(S;B;L)
(θ,ref(r,v))−−−−−−−⇀

(S[r 7→ v];B;L)

READ1
S(r) = v B(θ, r) = ·

(S;B;L)
(θ,rd(r,v))−−−−−−⇀ (S;B;L)

READ2
B(θ, r) = q, v

(S;B;L)
(θ,rd(r,v))−−−−−−⇀ (S;B;L)

WRITE
B(θ, r) = q

(S;B;L)
(θ,wr(r,v))−−−−−−⇀

(S;B[(θ, r) 7→ q, v];L)

SPAWN
∀r.B(θ, r) = ·

(S;B;L)
(θ,sp(θ′))−−−−−−⇀ (S;B;L)

ACQUIRE

l 6∈ dom(L)

(S;B;L)
(θ,acq(l))−−−−−−⇀

(S;B;L[l 7→ θ])

RELEASE
L(l) = θ ∀r.B(θ, r) = ·

(S;B;L)
(θ,rel(l))−−−−−⇀ (S;B;L|l)

COMMIT
B(θ, r) = v, q

(S;B;L)
ε−⇀

(S[r 7→ v];B[(θ, r) 7→ q];L)

Figure 5. Write-buffering semantics.

thread ID/location pairs to lists of values:

Queues q ::= · | q, v
Buffers B : (θ, r)⇒ q

Lists of values q are used as FIFO queues: values are enqueued on
the right and dequeued from the left. If the least-recently enqueued
value in a queue q is v, we can write q = v, q′. The empty buffer is
[∗ 7→ ·] (all queues empty). The idea is that writes from each thread
will be initially be buffered (delayed), not visible to other threads
until they leave the buffer and commit to the global store.1 Because
the pending writes for each location are buffered separately for each
thread, writes may bypass other writes. Given the definition of a
buffer, we can now give the full form of the write-buffering heap:

H ::= (S;B;L)
H0 = ([]; [∗ 7→ ·]; [])

We have simply added a buffer to the sequentially-consistent heap.
Figure 5 gives the heap semantics for the write-buffering model.

The ALLOC and ACQUIRE rules are identical to those in Figure 2.
Rule READ has been split in two. Rule READ2 states that if the
thread has values buffered for that location, the value returned by
the read is the most recently buffered value. If the thread’s buffer
for that location is empty, it sees the store’s current value for that
location (READ1). The WRITE rule buffers the value onto the ap-
propriate queue, rather than updating the global store. The COM-
MIT rule, which is the single empty transition, commits the least-
recently-enqueued value for a thread ID/location pair back to the
store. The RELEASE and SPAWN steps act as fences, forcing the
heap to commit any buffered values for the thread before proceed-
ing. Without this synchronization, which is standard for PSO, the
data-race-free guarantee does not hold.

For the rest of this section, we will use WB and SC as abbrevia-
tions for write buffering and sequential consistency, respectively.

4.2 Data Race Freedom
First, we must define the notion of a data-race-free program. A data
race occurs when two threads access the same location, and at least
one of those accesses is a write.

Definition 4.1. Actions α1 and α2 form a data race (datarace(α1,
α2)) if there exist r, v1, v2 such that one of the following holds:

1. α1 = rd(r, v1) and α2 = wr(r, v2);
2. α1 = wr(r, v1) and α2 = rd(r, v2); or
3. α1 = wr(r, v1) and α2 = wr(r, v2).

A program is data-race-free if no SC executions of the program
have concurrent (i.e., simultaneous) actions which form a data race.

1 We differ slightly from Boudol and Petri in that we do not have a hierar-
chical program state; all threads and buffers are at a single top level.

Definition 4.2. A program P0 is data-race-free (DRF(P0)) if,

whenever H0;P0 −→∗ H1;P1
(θ1,α1)−−−−−→ H2;P2

(θ2,α2)−−−−−→ H3;P3

in SC, it is always the case that θ1 = θ2 or ¬datarace(α1, α2).

Our goal is to show that data-race-free programs have sequen-
tially-consistent semantics under WB.

4.3 Proving WB Can Simulate SC
We must prove equivalence in both directions, one of which is
much more difficult than the other. Given any SC execution of any
program (not necessarily data-race-free), it is possible to simulate
that execution in the WB semantics.

Theorem 4.1. If H0;P0
t−→∗H;P in the SC semantics, then there

exist H ′, t′ such that H0;P0
t′−→∗H ′;P in the WB semantics.

Proof. The proof is by induction on the length of t. At each step, we
map the SC heap to the WB heap in which the store and lock map
are the same but the buffer is empty. If the SC semantics takes an
ALLOC, READ, SPAWN, ACQUIRE, or RELEASE step, we take the
corresponding step in the WB semantics (using READ1 for READ
steps). If the SC semantics takes a WRITE step, we take a WRITE
step followed by a COMMIT step (emptying the buffer) in the WB
semantics. Finally, if the program takes a pure step, it can take the
same pure step in the WB semantics.

Note the simple definition of equivalence: both systems must be
able to reach the same program state. The exact trace or WB heap
is irrelevant, as long as the program observes the same behavior.
Note, too, that we did not have to define a language model for this
proof; leaving the language abstract was sufficient for our purposes.

4.4 Proving SC Can Simulate WB: The DRF Guarantee
Now we will prove the other half of the equivalence. This half holds
only for data-race-free programs—as mentioned in Section 4.1,
racy programs may observe non-sequentially-consistent behavior.
The proof is very technical and involved, so we omit many inter-
mediate results for brevity.

An advantage of our modular framework is that it is possible to
extract large portions of the proof and generalize them to models
other than write-buffering. In particular, a key result (Theorem 4.2)
uses only the SC model, and thus could be reused for other proofs.

4.4.1 Happens-Before Relation
We first establish a result for SC executions. We will use the
following convenient notation: if a trace has the form σ1, σ2, . . . ,
σn, then σ1 has index 1, σ2 has index 2, and so on. We use the
notation σi to indicate that effect σ has index i (e.g., t = t1, σ

i, t2).
The happens-before relation is a strict partial order (i.e., irreflex-

ive, asymmetric and transitive) on indexes in a trace [12]. Happens-

before combines program order with synchronization order and
thread spawn order.2

Definition 4.3. For all t, if t = t1, (θi, αi)
i, t2, (θj , αj)

j , t3, then
we have i hbt j if one of the following holds:

1. θi = θj;
2. there exists l such that αi = rel(l) and αj = acq(l); or
3. αi = sp(θj).

We further define hb+
t to be the transitive closure of hbt, and say

that i happens-before j in t if i hb+
t j.

A trace is well-synchronized if all data races in the trace are
ordered by happens-before.

Definition 4.4. Trace t is well-synchronized if, for all i, j such that
t = t1, (θi, αi)

i, t2, (θj , αj)
j , t3 and datarace(αi, αj), i hb+

t j.

Given Definition 4.4, we prove the following key result. The
judgment R � P0 is language-specific and will be discussed in
more detail in Sections 4.4.3 and 5.3.

Theorem 4.2. If DRF(P0), ∅ � P0 and H0;P0
t−→∗ H;P in the

SC semantics, then t is well-synchronized.

The proof is similar to that of Proposition 3.11 in [8]. To sum-
marize, we assume that the trace is not well-synchronized, and
therefore there exist two effects in t which (1) form a data race and
(2) are not ordered by happens-before. We proceed by induction on
the distance between these two effects. If the two actions are adja-
cent, this clearly violates the DRF assumption. Else, we construct
an equivalent trace t′ (a permutation of t which satisfies H0;P0

t′−→∗ H;P) in which the distance between the two racy effects is
strictly smaller, and use the inductive hypothesis to conclude.

4.4.2 DRF Safety Theorem
Given Theorem 4.2, we can proceed with the proof of the main
equivalence theorem.

Theorem 4.3. If DRF(P0), ∅ � P0 and H0;P0
t−→∗ H;P in the

WB semantics, then there exist t′, H ′ such that H0;P0
t′−→∗H ′;P

in the SC semantics.

The proof of the safety theorem mostly follows the outline
given in [8]. At each step of the WB semantics, Theorem 4.2
implies that at most one thread has values buffered for each location
(because any writes to the same location by different threads must
be separated by a lock release or a thread spawn). Therefore, the
WB heap “reduces” to a unique SC heap when the values in the
buffer are committed. Moreover, if one thread has values buffered
for a location, no other thread may read that location until the
thread’s buffer has been cleared by a lock release or a thread spawn,
so reads always return the correct value for that location.

Our proof most noticeably departs from Boudol/Petri in its
assumptions about the language model.

4.4.3 Language Model Assumptions
The proof assumes that the language model satisfies four proper-
ties. We have verified that these requirements are correct for a sim-
ple language (the lambda calculus given in Figure 3), and we expect
them to apply to most “realistic” languages. The set of requirements
is revealing in itself as a snapshot of what memory model designers
can reasonably expect from a programming language.

2 Our definition of well-synchronized is more general and closer to the
conventional definitions than Boudol and Petri’s.

Value-independent reads First, we require that the language not
place any restrictions on which values may be returned by a read
operation. This requirement is used in the proof of Theorem 4.3.

LR 4.1. If P1
(θ,rd(r,v))−−−−−−⇁ P2, then for all v′, there exists P ′

2 such

that P1
(θ,rd(r,v′))−−−−−−−⇁ P ′

2.

This property eliminates some pathological cases, such as a
program semantics that checks all reads against a private copy of a
sequentially-consistent heap. Note that this rule specifically allows
reads to return ill-typed values or values that were never written
to the location. The type safety results in Section 5 assuage this
concern by proving that a type-preserving memory model (such as
WB) never introduces type errors into well-typed programs.

Also note this requirement does not prevent the program seman-
tics from reading the value and then rejecting it, e.g., by transition-
ing to a dynamic error state. What it prevents is using the identity
of the value to decide not to read the value in the first place, like a
guarded receive in synchronous message passing.

Program reordering We next require that non-conflicting opera-
tions in the program trace must commute. This requirement is cru-
cial in the proof of Theorem 4.2. First, we must define the notion
of conflicting program effects:

Definition 4.5. Two effects p1 and p2 conflict (conflict(p1, p2)) if
one of the following holds:

1. p1 = (θ, α1) and p2 = (θ, α2);
2. p1 = (θ1, sp(θ2)) and p2 = (θ2, α2); or
3. p1 = (θ1, α1) and p2 = (θ2, sp(θ1)).

LR 4.2. If P1
p1−⇁ P2

p2−⇁ P3, and ¬conflict(p1, p2), then there
exists P ′

2 such that P1
p2−⇁ P ′

2
p1−⇁ P3.

The definition of conflict does not include reads and writes to
the same location by different threads (nor acquires/releases of the
same lock). Unintuitively, language models can let such operations

commute. For instance, suppose P1
(θ1,rd(r,v1))−−−−−−−−⇁ P2

(θ2,wr(r,v2))−−−−−−−−⇁
P3, where θ1 6= θ2. It is legal to commute these two operations,
even though they access the same location, because the value re-
turned by the read is embedded in the action rd(r, v1). Of course,
the two operations do not commute in the heap semantics, but this
observation reduces the proof burden for the language model.

Fresh thread IDs Next, we require that spawned threads get fresh
thread IDs. This property is also needed to prove Theorem 4.2.

LR 4.3. If P0
t−⇁∗ P1

(θ1,sp(θ2))−−−−−−−⇁ P2, then θ2 does not occur in t.

Well-formed program states The final requirement states that the
program cannot read or write unallocated locations. HereR is a set
of locations, and the judgmentR � P guarantees that the program
state P does not reference any locations that are not inR.

LR 4.4. If R � P1 and P1
(θ,rd(r,v))−−−−−−⇁ P2 (or P1

(θ,wr(r,v))−−−−−−⇁ P2),
then r ∈ R.

Because P is an abstract type, we cannot defineR � P directly.
We must instead define this relation for a specific language model
and show that it is preserved at each step. We will return to this
requirement in Section 5.3.

4.5 Read Speculation Analogy
We conclude this section with an intriguing observation about the
relationship between write buffering and another optimization, read
speculation. Read speculation is an optimization that allows a sys-
tem to “guess” a value for a location, verifying it after the program

ALLOC
r 6∈ dom(S)

(S;B;L)
(θ,ref(r,v))−−−−−−−⇀ (S[r 7→ v];B;L)

READ
B(θ, r) = q

(S;B;L)
(θ,rd(r,v))−−−−−−⇀ (S;B[(θ, r) 7→ q, v];L)

WRITE
B(θ, r) = ·

(S;B;L)
(θ,wr(r,v))−−−−−−⇀ (S[r 7→ v];B;L)

SPAWN
∀r.B(θ, r) = ·

(S;B;L)
(θ,sp(θ′))−−−−−−⇀ (S;B;L)

ACQUIRE

l 6∈ dom(L)

(S;B;L)
(θ,acq(l))−−−−−−⇀

(S;B;L[l 7→ θ])

RELEASE
L(l) = θ ∀r.B(θ, r) = ·

(S;B;L)
(θ,rel(l))−−−−−⇀ (S;B;L|l)

VALIDATE
S(r) = v B(θ, r) = v, q

(S;B;L)
ε−⇀

(S;B[(θ, r) 7→ q];L)

Figure 6. Read speculation semantics.

has already continued execution with that value. Although practical
implementations of write buffering and read speculation are very
different, we noticed interesting parallels between the two memory
models when we defined their semantics in MemModel.

Figure 6 gives the semantics for read speculation (RS). Its syn-
tax is identical to WB, but the buffer queues pending reads, in-
stead of pending writes. The READ rule pulls a value out of thin
air and enqueues it for later validation (cf. rule WRITE in WB).
As in WB, an empty step (COMMIT/VALIDATE) dequeues buffer
items nondeterministically. Like READ1 in WB, the WRITE rule
in RS requires the buffer for the thread and location to be empty.
In fact, if we remove from WB rule READ2, which lets threads
see their own writes early, the parallels become even more striking.
(Deleting READ2 effectively disallows non-atomic writes in PSO,
but preserves PSO’s instruction reordering.)

Despite the deep similarity between these two models, it is
well known that RS does not satisfy the data-race-free guarantee
because race-free programs can observe out-of-thin-air values due
to self-validating speculation [14].

5. Type Safety with Relaxed Memory Models
In the previous section, we gave an example of how our framework
could be used to prove a theorem about a specific memory model
that can be generalized to many different language models. This
section does the opposite: we prove a theorem—type safety—for a
specific language model and generalize it to many different mem-
ory models. Furthermore, we provide a blueprint for future type
safety proofs by proving a general theorem of type preservation for
type systems that satisfy certain properties.

The standard way to prove type safety for a language in the
presence of a shared heap is to define a heap typing Σ that maps
locations to types, then typecheck the program state with respect
to this Σ. When a new location is allocated, its type is added to Σ;
allocated locations keep the same type for the entire program exe-
cution. An important part of the proof is showing that the heap is
well-typed, and therefore any values read from the heap have the
type given by Σ for that location. Typically, this is done by assum-
ing that the heap is fairly simple (i.e., a basic map from locations to
values), and proving that each value stored in the heap is well-typed
with respect to the current heap typing Σ. (It is necessary to use Σ
when typechecking the heap because values stored in the heap may
have locations embedded in them.) However, this approach ignores
the effect of relaxed memory models. If the heap is more complex
than a simple map from locations to values, then the proof of well-
typedness for the heap is correspondingly more difficult.

5.1 Type Models
A type model specifies the type syntax and typechecking judgments
for a type system. Each type model must be defined with respect to
a specific language model. A type model has three components:

Σ . a
r 6∈ dom(Σ)

Σ . ref(r, v)

Σ(r) = τ Σ ` v : τ

Σ . rd(r, v)

Σ . wr(r, v) Σ . acq(l) Σ . rel(l) Σ . sp(θ)

Figure 7. Heap-to-program action typing judgment.

Σ / a : Σ′ Σ ` v : τ

Σ / ref(r, v) : Σ[r 7→ τ]

Σ(r) = τ Σ ` v : τ

Σ / wr(r, v) : Σ

Σ / rd(r, v) : Σ Σ / acq(l) : Σ Σ / rel(l) : Σ Σ / sp(θ) : Σ

Figure 8. Program-to-heap action typing judgment.

1. A set of types Type. Elements drawn from Type are denoted by
τ . Given the set Type, we define a heap typing Σ : r ⇒ τ
to be a map from locations to types. Σ gives the types for any
locations embedded in a value (e.g., if the value is a lambda
abstraction) or in a program state.

2. A value typing judgment of the form:

Σ ` v : τ

This typechecks a value to a type under a given heap typing.

3. A program state typing judgment of the form:

Σ � P

This judgment checks that the program state is well-typed under
a given heap typing.

Given a typed language model, we define two judgments for ac-
tions. The heap-to-program action judgment (Figure 7) states that
any values read from the heap are well-typed under a given heap
typing, and that any locations allocated are fresh. The program-to-
heap action judgment (Figure 8) states that any values written or
allocated by the program are well-typed under a given heap typing.
This judgment also yields a new heap typing, which includes the
type of the newly allocated location for allocation actions. These
two judgments precisely capture the separate responsibilities of the
heap and the program with respect to type preservation.

Whenever the program allocates a new location, the heap typing
grows. However, the types of existing locations never change, so we
say that the new heap typing extends the old heap typing.

Definition 5.1. A heap typing Σ′ extends another heap typing Σ
(Σ ⊆ Σ′) if, for all r, τ such that Σ(r) = τ , Σ′(r) = τ .

The following lemma is easy to prove:

Lemma 5.1. If Σ . a and Σ / a : Σ′, then Σ ⊆ Σ′.

Example: simply-typed lambda calculus Consider the language
model for the lambda calculus previously discussed in Section
3. We can construct a type model for the simply-typed lambda
calculus. First, we define Type, including types for unit, locks and
references in addition to the standard function types:

τ ::= () | lock | ref τ | τ → τ

Next, we define an expression typing judgment of the form Σ; Γ `
e : τ , where Γ is a map from variables x to types τ . The rules for
this judgment are completely standard; here are two examples:

TABS
Σ; Γ[x 7→ τ1] ` e : τ2

Σ; Γ ` λx.e : τ1 → τ2

TLOC
Σ(r) = τ

Σ; Γ ` r : ref τ

The value typing judgment is the expression typing judgment with
Γ set to the empty map, and the program state typing judgment
checks that each expression in the thread pool is well-typed:

Σ; [] ` v : τ

Σ ` v : τ

∀θ ∈ dom(P).Σ; [] ` P (θ) : τ

Σ � P

5.2 Type Preservation
We will now define several requirements for a type model and a
memory model that together imply type preservation for the system
model as a whole. We do not have a progress result, because the
use of locks means that the system could deadlock. First, we define
the separate notions of type-preserving type and memory models;
we then show that the combination of any two such supports type
preservation. This result means that proving preservation for a type
system is as simple as proving three straightforward lemmas.

Type-preserving language models A typed language model is
type-preserving if it satisfies the following requirements:

LR 5.1 (Type stability). If Σ ` v : τ and Σ ⊆ Σ′, then Σ′ ` v : τ .

LR 5.2 (Type preservation for mutual steps). If Σ � P , P
(θ,a)−−−⇁

P ′ and Σ.a, then there exists Σ′ such that Σ/a : Σ′ and Σ′ � P ′.

LR 5.3 (Type preservation for pure steps). If Σ � P and

P
(θ,pure)−−−−⇁ P ′, then Σ � P ′.

We omit proofs of these requirements for STLC, but we were
able to convert an existing Coq proof of type safety for STLC [6]
to this format without much difficulty.

Type-preserving memory models A memory model is type-en-
abled if it provides a heap typing judgment of the form:

Σ H

For example, we can make sequential consistency type-enabled by
defining the heap typing judgment as follows:

dom(Σ) = dom(S) ∀r ∈ dom(Σ).Σ ` S(r) : Σ(r)

Σ (S;L)

A type-enabled memory model is type-preserving if it satisfies the
following requirements:

MR 5.1 (Well-typed initial heap). The initial heap is well-typed
under the empty heap typing: [] H0.

MR 5.2 (Well-typed heap-to-program actions). If Σ H and

H
(θ,a)−−−⇀ H ′, then Σ . a.

MR 5.3 (Type preservation for mutual steps). If Σ H , H
(θ,a)−−−⇀

H ′ and Σ / a : Σ′, then Σ′ H ′.

ALLOC
r 6∈ dom(S)

S
(θ,ref(r,v))−−−−−−−⇀ S[r 7→ v]

READ
S(r) = v

S
(θ,rd(r,v))−−−−−−⇀ S

WRITE
r ∈ dom(S)

S
(θ,wr(r,v))−−−−−−⇀ S[r 7→ v]

SPAWN

S
(θ,sp(θ′))−−−−−−⇀ S

Figure 9. Sequential consistency (locks omitted).

MR 5.4 (Type preservation for empty steps). If Σ H and
H

ε−⇀ H ′, then Σ H ′.

Proving these requirements for SC is straightforward. We have
also proved that the WB model from Section 4 is type-preserving,
which was only slightly more difficult.

Preservation theorem We can now prove type preservation for
any combination of type-preserving language and memory models.

Theorem 5.2. If Σ H , Σ � P and H;P
σ−→ H ′;P ′, then there

exists Σ′ such that Σ ⊆ Σ′, Σ′ H ′ and Σ′ � P ′.

Proof. We proceed by case analysis on σ.

• σ = (θ, a). Then H
(θ,a)−−−⇀ H ′ and P

(θ,a)−−−⇁ P ′. By MR 5.2,
we have Σ . a. By LR 5.2, there exists some Σ′ (our witness)
such that Σ / a : Σ′ and Σ′ � P ′. By Lemma 5.1, we have that
Σ ⊆ Σ′. Finally, by MR 5.3, we have that Σ′ H ′.

• σ = (θ, pure). Then H = H ′ and P
(θ,pure)−−−−⇁ P ′. Let Σ′ = Σ

(note that Σ ⊆ Σ′ and Σ′ H ′ trivially). By LR 5.3, Σ′ � P ′.
• σ = ε. Then P = P ′ and H ε−⇀ H ′. Let Σ′ = Σ (note that

Σ ⊆ Σ′ and Σ′ � P ′ trivially). By MR 5.4, Σ′ H ′.

Finally, we show that type preservation holds over many steps.

Corollary 5.3. If [] � P0 and H0;P0 −→∗ H;P , then there exists
Σ such that Σ H and Σ � P .

Proof. Follows from MR 5.1 and Theorem 5.2.

This result demonstrates the true power of having a parameter-
izable system model. We have given a set of simple requirements
which together imply type preservation for a system—and the proof
of the type preservation is oblivious to the syntax and semantics of
the language, type, and memory models of the system.

5.3 Well-Formed Program States
Recall that the DRF proof in Section 4 assumed that the language
satisfied a well-formedness requirement (LR 4.4). Specifically, the
language model defines a judgmentR � P , whereR ⊆ Location.
When introducing this requirement, we alluded to the idea that
well-formedness needed to be preserved at each step of the pro-
gram. Now that we have defined type-preserving language and
memory models, it is clear that well-formedness is a type system
with exactly one type, and R is simply the domain of the heap
typing Σ. Therefore, in order for the DRF proof to be valid for a
language model, there must be some type model for that language
such that the model is type-preserving (as defined in Section 5.2).
For convenience, we allow the type model to be arbitrarily com-
plex, although a simple type system that checks program states for
unknown locations is sufficient for the purposes of the DRF proof.
Moreover, we require that the initial program P0 be well-typed with
respect to the empty heap typing: [] � P0.

ALLOC
r 6∈ dom(S)

(S;C)
(θ,ref(r,v))−−−−−−−⇀ (S[r 7→ v];C)

READ
C(θ, r) = (c, v)

(S;C)
(θ,rd(r,v))−−−−−−⇀ (S;C)

WRITE
C(θ, r) = (M, v)

(S;C)
(θ,wr(r,v′))−−−−−−−⇀ (S;C[(θ, r) 7→ (M, v′)])

SPAWN

(S;C)
(θ,sp(θ′))−−−−−−⇀ (S;C)

INVALIDTOSHARED
S(r) = v (θ, r) 6∈ dom(C)
∀θ′, v′.C(θ′, r) 6= (M, v′)

(S;C)
ε−⇀ (S;C[(θ, r) 7→ (Sh, v)])

INVALIDTOMODIFIED
S(r) = v ∀θ′.(θ′, r) 6∈ dom(C)

(S;C)
ε−⇀ (S;C[(θ, r) 7→ (M, v)])

SHAREDTOMODIFIED
C(θ, r) = (Sh, v)

∀θ′.θ 6= θ′ → (θ′, r) 6∈ dom(C)

(S;C)
ε−⇀ (S;C[(θ, r) 7→ (M, v)])

SHAREDTOINVALID
C(θ, r) = (Sh, v)

(S;C)
ε−⇀ (S;C|(θ,r))

MODIFIEDTOINVALID
C(θ, r) = (M, v)

(S;C)
ε−⇀ (S[r 7→ v];C|(θ,r))

MODIFIEDTOSHARED
C(θ, r) = (M, v)

(S;C)
ε−⇀ (S[r 7→ v];C[(θ, r) 7→ (Sh, v)])

Figure 10. Modified-Shared-Invalid (MSI) cache coherence protocol.

READSHARED
S(r) = ((Sh,Θ), v) θ ∈ Θ

S (θ,rd(r,v))−−−−−−⇀ S

READMODIFIED
S(r) = ((M, θ), v)

S (θ,rd(r,v))−−−−−−⇀ S

WRITEMODIFIED
S(r) = ((M, θ), v)

S (θ,rd(r,v′))−−−−−−−⇀ S[r 7→ ((M, θ), v′)]

INVALIDTOMODIFIED
S(r) = ((Sh, ∅), v)

S ε−⇀ S[r 7→ ((M, θ), v)]
. . .

Figure 11. A representative subset of the inverted MSI (I-MSI) semantics.

6. Cache Coherence Protocol Verification
We now explore an alternate use of MemModel: verifying cache
coherence protocols. Although we designed our framework with
relaxed memory models in mind, it is equally suitable for verifying
the correctness of optimizing implementations of sequential con-
sistency. To that end, we define a semantics for MSI [10], a well-
known cache coherence protocol, and prove its equivalence to SC.

For the purposes of this section, we have omitted locks from our
semantics. Figure 9 gives the semantics for sequential consistency
without locks. We do include thread spawn, so that threads have a
means of communicating when starting with an empty heap. For
simplicity, we add the hypothesis r ∈ dom(S) to the WRITE rule;
this is a small cheat that allows us to avoid having to define a well-
formedness type system as in Section 4.

6.1 MSI Protocol
The Modified-Shared-Invalid (MSI) protocol is a cache coherence
protocol with three possible states for each entry in a cache:

• Modified: This cache’s copy of this location is the only copy.
Updates are allowed (they will be written back to the global
store before any other thread is allowed to access the location).

• Shared: This cache has one of possibly many read-only copies
of this location.

• Invalid: This cache does not have a copy of this location.

In our model, each thread has its own cache, and each cache
can hold an arbitrary number of values. We model the cache as a
single global structure that maps TID/location pairs to values. Each
value in the cache is tagged with a cache state M (modified) or Sh
(shared). If a location is not cached for a given thread, then it is
implicitly invalid. The heap consists of a store and a cache.

c ::= M | Sh
C : (θ, r)⇒ (c, v)
H ::= (S;C)
H0 = ([]; [])

Figure 10 gives the heap semantics for the MSI protocol. All cache
state changes happen nondeterministically. For example, the IN-

VALIDTOSHARED rule states that a read-only copy of a value may
be stored in the cache at any time, given that no other threads have
modified copies of that value.

6.2 Proving MSI Can Simulate SC
First, we prove that MSI can simulate SC. The key is showing that
any SC step can be simulated in the MSI semantics such that the
cache starts and ends empty.

Lemma 6.1. If S
(θ,a)−−−⇀ S′ in the SC semantics, then there exists t

such that (S; [])
t−⇀∗ (S′; []) and erase(t) = (θ, a).

Proof. If the step was a READ or WRITE, we load the location into
the cache, do the operation, then flush the value from the cache. For
ALLOC or SPAWN, we take the corresponding MSI step.

6.3 Proving SC Can Simulate MSI
Although it is possible to show directly that SC can simulate MSI,
we found it much cleaner to go through an intermediate seman-
tics. This third semantics, which we call inverted MSI or I-MSI,
inverts the structure of the MSI heap by replacing caches with cen-
tralized information for each location, including which threads own
“copies.” Global ownership information considerably simplifies the
heap invariant needed to push the proof through (Definition 6.1).

An ownership store S is a store in which the value for each
location is tagged with an ownership state o. For the MSI protocol,
this ownership state is either (Sh,Θ) (shared by a set of threads Θ)
or (M, θ) (modified by a thread θ).

TID sets Θ ⊆ ThreadID
Ownership states o ::= (M, θ) | (Sh,Θ)
Ownership stores S : r ⇒ (o, v)

A location that is invalid for all threads has ownership state (Sh, ∅).
The heap for I-MSI consists of an ownership store S. Figure 11
gives a representative subset of the I-MSI semantics. This seman-
tics is very similar to the MSI semantics, except that updates are
made directly to the global store, and the empty transitions simply
update the ownership state of the location appropriately, rather than
loading values into and flushing values out of the cache.

I-MSI can simulate MSI The key to the proof is showing that,
at each step, the MSI heap is coherent—at most one thread holds a
modified copy of each location, read-only copies have the correct
value, etc. The following definition formalizes heap coherency.

Definition 6.1. A MSI heap (S;C) is coherent with respect to
an I-MSI heap S (coherent((S;C), S)) if, for all r, the following
properties hold:

1. If r 6∈ dom(S), then r 6∈ dom(S) and ∀θ.(θ, r) 6∈ dom(C).
2. If S(r) = ((Sh,Θ), v) then S(r) = v and for all θ, either
θ ∈ Θ and C(θ, r) = (Sh, v) or θ /∈ Θ and (θ, r) 6∈ dom(C).

3. If S(r) = ((M, θ), v), then r ∈ dom(S), C(θ, r) = (M, v),
and ∀θ′ 6= θ.(θ′, r) 6∈ dom(C).

The next lemma establishes that any MSI step that starts with a
coherent heap may be simulated in the I-MSI semantics.

Lemma 6.2. If coherent((S;C), S) and (S;C)
h−⇀ (S′;C′), then

there exists S′ such that S h−⇀ S′ and coherent((S′;C′), S′).

The proof (omitted) is by cases on the rule used for (S;C)
h−⇀

(S′;C′). We always take the corresponding step in the I-MSI
semantics (choosing READSHARED or READMODIFIED for reads,
as appropriate). The difficulties are (1) satisfying the hypotheses
for each step and (2) showing that heap coherency is preserved.

SC can simulate I-MSI The final step is showing that I-MSI
executions can be simulated in SC. We translate an I-MSI heap to
a SC heap by erasing the ownership state for each location.

Definition 6.2. For all S, we define ToStore(S) to be the store S
such that dom(S) = dom(S) and if S(r) = (o, v), then S(r) = v.

The next lemma shows that I-MSI steps can be simulated in SC.

Lemma 6.3. Any I-MSI step may be simulated in SC:

1. If S (θ,a)−−−⇀ S′, then ToStore(S)
(θ,a)−−−⇀ ToStore(S′).

2. If S ε−⇀ S′, then ToStore(S) = ToStore(S′).

Proof. For mutual steps, we always take the corresponding SC step
(using READ for both shared and modified read steps). Empty steps
in I-MSI modify only ownership states, not values, so the second
half of the lemma is trivial.

6.4 Equivalence Theorem
The equivalence theorem follows from Lemmas 6.1–6.3.

Theorem 6.4. The MSI, I-MSI and SC semantics are equivalent:

1. If H0;P0 −→∗ H;P in the SC semantics, then there exists H ′

such that H0;P0 −→∗H ′;P in the MSI semantics.
2. If H0;P0 −→∗ H;P in the MSI semantics, then there exists H ′

such that H0;P0 −→∗H ′;P in the I-MSI semantics.
3. If H0;P0 −→∗ H;P in the I-MSI semantics, then there exists
H ′ such that H0;P0 −→∗H ′;P in the SC semantics.

From Theorem 6.4 we can conclude that SC and MSI are
equivalent—i.e., the MSI protocol is correct. As in Section 4, this
result is very general: any language, if implemented using a MSI-
style cache coherence scheme, supports sequential consistency.

7. Coq Mechanization
All the results in this paper have been fully mechanized using the
Coq proof assistant [16], for which the specification language is the
dependently-typed functional language Gallina. Gallina’s module
system was ideal for implementing parameterizable language and

memory models. We found that the mechanization process was in-
valuable in ironing out details of the models and eliminating subtle
problems. Figure 12 shows the basic Coq interface for MemModel,
which is very similar to the interface described in Section 3.

Var types We use a single datatype, var, to represent thread IDs,
locations, and locks. This datatype is defined in the Metatheory
library [6]. In addition to the var type, we used many other features
of this library for our proofs, including the implementation of the
simply-typed lambda calculus and various convenient proof tactics.

Action types The type action in Figure 12 corresponds to the α
type in our formalism. action is parameterized over some value
type val (this type will be defined later by the language model).

Models as module types Coq was especially well-matched to this
problem because “language models” and “memory models” are
naturally implemented as Coq modules. The Coq module types
LANGUAGE_MODEL and MEMORY_MODEL represent the interfaces for
language and memory models, respectively. Notice MEMORY_MODEL
takes a LANGUAGE_MODEL as a parameter; this is because the lan-
guage model defines a value type (Value in the formalism) which
is used in MEMORY_MODEL. Because the language model is passed as
a parameter, it is an abstract type; that is, a memory model cannot
access the internal implementation of a language. One subtle point
is that we must forbid a language model from taking a heap-only
step and vice-versa. The type definitions for language and memory
models accomplish this via axioms. The module SystemModel im-
plements the system semantics given in Figure 4.

Defining a model To implement a specific language or memory
model, we simply declare it as a subtype of the appropriate module
type and define all the required interface components. For example,

Module SC (L : LANGUAGE_MODEL) <: MEMORY_MODEL L.
Definition heap := VarMap.t L.val * VarMap.t tid.
...

Notice that SC is parameterized by a language model. Coq automat-
ically checks that SC matches the MEMORY_MODEL interface. Here
we use the VarMap type for maps, which instantiates the finite-
map type in Coq’s standard library. We use these maps to represent
stores, lock maps, buffers, caches, etc.

Instantiating the models To use a memory model, we need to
instantiate it with a language model. To develop a proof that does
not assume a particular language, we simply declare that a language
model exists. For example, for the proof in Section 4, we declare:

Declare Module L : LANGUAGE_MODEL.
Declare Module LangReqs :
LANGUAGE_REQUIREMENTS with Module L := L.

Module SC := SC L.
Module WB := WB L.

The two memory models of interest use the same language model,
but we are not required to actually define a language model (al-
though it was useful to define one for testing purposes). The
LANGUAGE_REQUIREMENTS module type defines the four language
requirements described in Section 4.4.3.

Type models Figure 13 gives another example of our Coq code:
the interface for the type models from Section 5. Again, we
use module types for key interfaces, in this case type models
(TYPE_MODEL) and type-enabled memory models (TYPED_MEMORY
_MODEL). Notice TYPE_MODEL declares a language model L as
part of its interface; unlike the language parameter for module
types like MEMORY_MODEL, L is concrete and not abstract (i.e.,
TYPE_MODEL has access to the internal implementation of L).

Definition loc := var.
Definition lock := var.
Definition tid := var.

Section Effects.
Variable val : Set.

Inductive action : Set :=
| pure : action
| ref : loc -> val -> action
| rd : loc -> val -> action
| wr : loc -> val -> action
| acq : lock -> action
| rel : lock -> action
| sp : tid -> action.

Definition effect := option (tid * action).
End Effects.

Module Type LANGUAGE_MODEL.
Parameter val : Set.
Parameter program_state : Set.
Parameter program_step : program_state
-> effect val -> program_state -> Prop.

Axiom no_empty_steps : forall P P’,
~ program_step P None P’.

...

Module Type MEMORY_MODEL (L : LANGUAGE_MODEL).
Parameter heap : Set.
Parameter empty_heap : heap.
Parameter heap_step : heap -> effect L.val

-> heap -> Prop.
Axiom no_pure_steps : forall H th H’,

~ heap_step H (Some (th, pure)) H’.
...

Module SystemModel (L : LANGUAGE_MODEL)
(M : MEMORY_MODEL L).

Inductive system_step : M.heap
-> L.program_state -> effect L.val
-> M.heap -> L.program_state -> Prop :=

| system_step_mutual : forall H P th a H’ P’,
M.heap_step H (Some (th, a)) H’ ->
L.program_step P (Some (th, a)) P’ ->
system_step H P (Some (th, a)) H’ P’

| system_step_heap : forall H H’ P,
M.heap_step H None H’ ->
system_step H P None H’ P

| system_step_program : forall H P P’ th,
L.program_step P (Some (th, pure)) P’ ->
system_step H P (Some (th, pure)) H P’.

...

Figure 12. Coq implementation of the semantic framework discussed in Section 3 (truncated for space).

Module Type TYPE_MODEL.
Declare Module L : LANGUAGE_MODEL.
Parameter typ : Set.
Definition heap_typing := Map.t typ.
Parameter typing_val : heap_typing -> val
-> typ -> Prop.

Parameter typing : heap_typing -> program_state
-> Prop.

...

Module Type TYPED_MEMORY_MODEL
(L : LANGUAGE_MODEL)
(T : TYPE_MODEL with Module L := L).
Declare Module M : MEMORY_MODEL L.
Parameter well_typed : T.heap_typing -> M.heap
-> Prop.

...

Figure 13. Typed language and memory models (Section 5).

TYPED_MEMORY_MODEL takes a type model T as a parameter (mean-
ing that the type model is abstract) and declares a concrete memory
model M. Therefore, typed memory models are specific to a single
memory model, but parameterizable by any type model.

8. Related Work
There have been several complementary efforts to develop formal
semantics for relaxed memory models.

A prominent example is the Java Memory Model, the original
presentation of which included a detailed formalism and a paper
proof of the data-race-free guarantee [14]. Subsequent efforts have
used proof mechanization to identify semantic problems [4, 5]. We
also advocate using a proof assistant, as memory models can be
difficult to reason about formally, but we have focused on putting
the pieces in place for a reusable and modular library.

Boudol and Petri [8] approached relaxed memory models from
the perspective of operational semantics. They modeled the relax-

ation of write/write and write/read ordering by adding write buffers
to an operational semantics for multithreaded lambda calculus. The
operational approach has the advantage of having a full program se-
mantics, which makes it easier to reason about whether a program
is data-race-free. We use several ideas from this paper; in particu-
lar, the case study in Section 4 follows the paper’s proof closely.
Our work is mechanically verified, which we found invaluable, and
separates the language and memory models.

Sarkar et al. [19] give an exhaustive formalization of the x86
memory model, which had previously been described only in-
formally. The model and several key proofs were formalized in
HOL. The main formalization is in terms of axiomatic constraints
over an event structure. A second paper [17] proposes an alternate
model, x86-TSO. In addition to the axiomatic model for x86-TSO,
they provide an equivalent “abstract machine” (i.e., operational)
semantics, which, like memory models in our framework, speci-
fies labeled transitions between machine states (registers, buffers,
and memory). They too observed that this operational formulation
could be applied to many different memory models, and that the la-
bels (like our actions) could be used to communicate with the other
“half” of the system. We consider it a good sign this project, which
is state of the art for formal hardware memory models, also con-
cluded that it was useful to define the semantics of the memory in a
modular, operational way. Our work, while similarly structured on
the memory-model side, differs in key ways. First, we also general-
ize the notion of the program semantics, while the x86-TSO model
is defined only for a concrete event structure. Moreover, this event
structure does not have pure steps, so even processor-local data
like registers must be stored in the machine state in order to track
data dependencies. Second, our focus was on building a generaliz-
able framework to study problems like type safety from a memory
model perspective, while theirs was on defining a specific model
in a precise and tractable form. The statement of our theorem in
Section 4 also differs: we proved the data-race-free guarantee for
an operational model not unlike x86-TSO, while their proof is only
for the axiomatic version of the similar x86-CC model, and only
with respect to the event structure (i.e., trace) of a program.

Saraswat et al [18] tackle the problem of how to show compiler
optimizations are sound in the context of shared-memory multi-
threading. Their RAO framework models programs as DAGs of
atomic steps. Given this DAG formulation, it is possible to define
the notion of a safe program transformation in a very general way.
Their framework is parameterizable in the sense that a language can
specify its own set of primitive atomic steps, and the memory model
can specify custom code transformations for a given language.

The Concurrent C Minor project [11] advocates the use of Coq
for verifying concurrent operational semantics. In our terms, their
work is entirely within the language model, using separation logic
techniques to modularize the sequential and concurrent features of
a language. They require programs to be data-race-free, leaving the
semantics of racy programs undefined. This approach assumes that
the system’s memory model has the data-race-free guarantee.

Frigo and Luchangco [9] formalized memory models as map-
pings from write nodes to read nodes in a graph of the program
trace. The program model supports fork-join parallelism, so it has
no explicit thread IDs, instead modeling computations as graphs
where edges represent happens-before dependencies. They mod-
eled a memory model as an online process that assigns sources to
read nodes as an adversary reveals the program one node at a time.
This concept is similar to our model in that the program semantics
are abstract and the memory model must fulfill memory requests as
the program executes, rather than seeing a full trace.

9. Future Work
There are several interesting directions in which to expand this
work. We hope to create more MemModel models for various
relaxed memory models and languages, including more complex
memory models (e.g., release consistency or the Java Memory
Model). As demonstrated in Section 6, the framework is also use-
ful for non-memory model problems such as cache coherence. We
have already begun work on an extension of MemModel that sup-
ports primitives for software transactional memory.

As presented, MemModel is somewhat rigid in the set of actions
it supports, particularly that the only synchronization is via mutual-
exclusion locks. We believe this rigidity can be avoided by creating
an action model shared by the memory and language models of
a system. This change would let model-builders specify their own
sets of actions, divided into three categories: mutual actions, heap
actions, and program actions.

10. Conclusion
The purpose of MemModel is to provide a framework that makes it
easier to formally model and reason about programming languages
with relaxed memory models. We have shown how to prove re-
sults about memory models while making minimal assumptions
about program semantics and prove results about program seman-
tics while making minimal assumptions about memory models.

A practical advantage of our approach is that it quite literally
takes up less space, whether in a research paper or a Coq devel-
opment, because the parameterized system model lets us define a
program or heap semantics once, then plug it into our proofs where
needed. This is very much an example of “code reuse,” with all
its inherent benefits—faster development, fewer errors, and more
easily-understandable code. Our experience indicates that Mem-
Model facilitates rapid prototyping. The clear interface between the
program and heap makes it easy to develop the more important half
of the semantics before making less critical decisions about, say,
the syntax of the other half. The modular framework lets experts
focus on the side of importance to them.

The parameterization in our framework makes it easier to gen-
eralize results. The equivalence results in Sections 4 and 6 do not
assume a particular language model. In fact, abstracting the lan-

guage model in Section 4 let us highlight the exact parts of the proof
that rely on some aspect of the program semantics. Instead of bury-
ing these properties in a lemma, we were able to enumerate them
in Section 4.4.3, thus characterizing minimal standards a language
must meet to support write-buffering. Similarly, the type-safety re-
sults in Section 5 demonstrate how we can enumerate exactly the
assumptions that a type-safety proof makes about a mutable heap.

In conclusion, MemModel uses modularity to improve the sta-
tus quo of formal semantics for memory models. Models in the
framework are concise yet general. We believe MemModel is a
novel platform for developing realistic operational semantics.

References
[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models:

a tutorial. IEEE Computer, 29(12):66–76, December 1996.
[2] S. V. Adve and M. Hill. Weak ordering—a new definition. In ACM

IEEE International Symposium on Computer Architecture, 1990.
[3] Arvind and J.-W. Maessen. Memory model = instruction reordering +

store atomicity. In ACM IEEE International Symposium on Computer
Architecture, 2006.

[4] D. Aspinall and J. Sěvčı́k. Formalising Java’s data race free guarantee.
In International Conference on Theorem Proving in Higher Order
Logics, 2007.

[5] D. Aspinall and J. Sěvčı́k. Java memory model examples: Good, bad
and ugly. In International Workshop on Verification and Analysis of
Multi-threaded Java-like Programs, 2007.

[6] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich.
Engineering formal metatheory. In ACM Symposium on Principles of
Programming Languages, 2008.

[7] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2008.

[8] G. Boudol and G. Petri. Relaxed memory models: an operational
approach. In ACM Symposium on Principles of Programming Lan-
guages, 2009.

[9] M. Frigo and V. Luchangco. Computation-centric memory models.
In ACM Symposium on Parallellism in Algorithms and Architectures,
1998.

[10] J. Handy. The Cache Memory Book. Academic Press Inc., 1998.
[11] A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semantics for

concurrent separation logic. 2008.
[12] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 1978.
[13] L. Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Transactions on Computers,
28(9):690–691, September 1979.

[14] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
ACM Symposium on Principles of Programming Languages, 2005.

[15] S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for
multicore Haskell. In ACM SIGPLAN International Conference on
Functional Programming, 2009.

[16] The Coq development team. The Coq proof assistant reference man-
ual. LogiCal Project, 2009. http://coq.inria.fr, Version 8.2.

[17] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model:
x86-TSO. In International Conference on Theorem Proving in Higher
Order Logics, 2009.

[18] V. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory
of memory models. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2007.

[19] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Brai-
bant, M. O. Myreeen, and J. Algave. The semantics of x86-CC
multiprocessor machine code. In ACM Symposium on Principles of
Programming Languages, 2009.

[20] SPARC International, Inc. The SPARC architecture manual, v. 8,
1992. Revision SAV080SI9308.

