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Abstract

The arrival of cheap consumer depth cameras, led by
Microsoft’s Kinect system, presents a huge opportunity for
3D modeling of personal spaces. While 3D indoor map-
ping techniques are becoming increasingly robust, they are
still too brittle to enable non-technical users to build consis-
tent and complete maps of indoor environments. This is due
to technical challenges such as limited lighting, occlusion,
and lack of texture, and to the fact that novice users lack a
deep understanding of the underlying algorithms and their
limitations. In this research, we use a prototype affordable
RGB-D camera, which provides both color and depth, to
build a real-time interactive system that assists and guides
a user through the modeling process. Color and depth are
jointly utilized to achieve robust 3D alignment. The system
offers online feedback and guidance, tolerates user errors
and alignment failures, and enables novice users to capture
complete and dense 3D models. We evaluate our system and
algorithms with extensive experiments.

1. Introduction
Building 3D models of indoor environments has great

potentials and interesting usages. For example, having ac-
cess to an accurate, photorealistic model of one’s home can
enable many scenarios such as virtual remodeling or online
furniture shopping. Such a model can also provide rich con-
text information for smart home applications.

Indoor 3D modeling is also a hard problem for many
reasons such as limited lighting, occlusion, limited field of
view, and lack of texture. There has been a lot of work
and progress on 3D modeling and reconstruction of envi-
ronments. State-of-the-art research systems can build 3D
models at a city scale [22, 18, 1]. On the other hand, build-
ing a complete model of a room, say a small room with
textureless walls, remains a challenge.

Many recent works addressed the robustness and com-
pleteness issues in indoor modeling and searched for a so-
lution to solve or bypass them. Sinha et al [21] built an
interactive system to enable a user to mark planar surfaces.
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Figure 1. Interactive 3D mapping: The depth and color frames col-
lected by the user are aligned and globally registered in real time.
The system alerts the user if the current data cannot be aligned,
and provides guidance on where more data needs to be collected.
The user can track the model quality and “rewind” data or intro-
duce additional constraints to improve the global consistency of
the model.

Furukawa et al [7] used the Manhattan World assumption to
automatically find such planes. In both cases, photos have
to be carefully taken and registered, and geometric details
are sacrificed for the sake of large surface textures and ap-
pealing visualization.

Our objective is to enable a non-technical user to build
dense and complete models for his/her personal environ-
ments. One technology that makes it feasible is the wide
availability of consumer depth cameras, such as those de-
ployed in the Microsoft Kinect system [19]. These cameras
directly provide dense color and depth information. How-
ever, their field of view is limited (about 60◦) and the data is
rather noisy and low resolution (640×480). Henry et al [11]
showed that such cameras are suitable for dense 3D model-
ing, but much was left to be desired, such as robustness for
use by non-experts, or complete coverage of the environ-
ment including featureless or low-light areas.

The key idea behind our work is to take advantage of
online user interaction and guidance in order to solve many
of the issues in 3D environment modeling. We design and
implement an interactive 3D modeling system so that the



user holds a depth camera to freely scan an environment
and enjoys real-time feedback. Our approach has several
advantages:

Robust: We compute 3D alignments of depth frames on-
the-fly, so that the system can detect failures (many reasons
such as fast motions or featureless areas) and prompt the
user to “rewind” and resume scanning. The success of 3D
registration of consecutive frames is thus “guaranteed”.

Complete: A 3D environment model is constructed on-
the-fly. The user can check the model in 3D at any time for
coverage and quality. The system also automatically pro-
vides suggestions where the map may yet be incomplete.

Dense: Largely due to the nature of the depth sensor, the
model constructed by our system is dense without assum-
ing planar surfaces or a “box” model of a room. A dense
model reveals details of the environment and can have many
uses such as recognizing architectural elements, robot mo-
tion planning, telepresence or visualization.

In addition to developing an interactive mapping sys-
tem, we introduce a variant of RANSAC for frame-to-frame
matching that combines the strengths of color and depth
cues provided by our camera. In contrast to the standard in-
lier count to rank matches, our approach learns a classifier
that takes additional features such as visibility consistency
into account. The learned classifier results in more robust
frame-to-frame alignments and provides an improved crite-
rion for detection alignment failures, which is important for
our real time user feedback.

This paper is organized as follows. After discussing re-
lated work, Section 3 gives an overview of our mapping
system. The frame alignment approach is introduced in Sec-
tion 4, followed by a description of the interactive mapping
technique. Section 6 provides experimental results. We
conclude in Section 7.

2. Related Works
Modeling and reconstructing the world in 3D is a prob-

lem of central importance in computer vision. Various
techniques have been developed for the alignment of mul-
tiple views, such as pairwise matching of sparse [12] or
dense point clouds [2, 3], two-view and multi-view geome-
tries [10] and joint optimization of camera poses and 3D
features through bundle adjustment [24].

3D vision techniques, combined with local feature ex-
traction [15], have led to exciting results in 3D modeling.
PhotoTourism [22] is an example where sparse 3D mod-
els are constructed from web photos. There has been a lot
of work on multi-view stereo techniques [20]. The patch-
based framework [9], which has been most successful on
object modeling, has also been applied to environment mod-
eling. The work of Furukawa et al [8] built on these works
to obtain dense indoor models using the Manhattan world
assumption.

There have been many successful efforts to build real-
time systems for 3D structure recovery. Davison et.al. built
real-time SLAM (simultaneous localization and mapping)
systems using monocular cameras [5]. The Parallel Track-
ing and Modeling system (PTAM) [13] is a closely related
system applying SLAM techniques. Another example of
real-time sparse 3D modeling can be found in [16]. One
recent development is the dense 3D modeling work of [17]
which uses PTAM and flow techniques to compute dense
depths. Many real-time systems are limited in the scale they
can handle.

Due to the difficulties of indoor modeling, such as light-
ing and lack of texture, interactive approaches have been
proposed to utilize human input. [6] was an early exam-
ple showing very impressive facade models and visualiza-
tions with manual labeling. [23] used interactions to extract
planes from a single image. [21] is a recent example com-
bining user input with vanishing line analysis and multi-
view stereo to recover polygonal structures. Our work is
different and novel, as we enable online user interaction,
utilizing user input on-the-fly for both capturing data and
extracting geometric primitives.

Recently, there have been many efforts to push the limits
of 3D modeling to a large scale. One example is the city-
scale, or “Rome”-scale, sparse 3D reconstruction [1]. An-
other example is the real-time urban street reconstruction
work of Pollefeys et al [18]. In comparison, indoor model-
ing has not taken off beyond a few small-scale results.

This may soon change with the arrival of mass-produced
depth cameras. We believe there are great opportunities to
make use of these cameras for 3D modeling. The work of
Henry et al [11] is most relevant to this work. They showed
how to use both color and depth for sequential alignment of
depth frames and carried out experimental studies of vari-
ous alignment algorithms and their combinations. Our work
aims at making such a depth-camera-based modeling sys-
tem online, incorporating various aspects of user interac-
tion to make 3D modeling robust, easy to use, and capable
of producing dense, complete models of personal spaces.

3. System Overview
Figure 2 gives an overview of our interactive mapping

system. The system is based on the well established struc-
ture of online mapping approaches, where each data frame
is matched against the most recent frame to provide vi-
sual odometry information, and against a subset of previous
frames to detect “loop closures” [14, 11, 4]. While visual
odometry results in local consistency, loop closures provide
constraints used to globally optimize all camera poses.

The globally aligned map is visualized in real time, as
shown in Figure 3. The user can assess the quality of frame
alignment via a bar shown in the visualizer. In order to avoid
capturing data that can not be aligned consecutively, the sys-
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Figure 2. Detailed system overview: Frame alignment, loop clo-
sure detection, and global alignment are performed in real time.
Green boxes represent user interactions. The user is alerted if
alignment fails, notified of suggested place visits, and can verify
and improve model quality via manual loop closure insertion.

Figure 3. Real time visualization of the mapping process: The
left panel provides a viewer of the globally aligned 3D map. The
health bar in the center right panel indicates the current quality of
frame alignment. In a failure case, as is shown, the user is guided
to re-locate the camera with respect to a specific frame contained
in the map. The upper right panel shows the target frame, and
lower right panel indicates the current camera view.

tem alerts the user whenever local alignment fails. In this
case, the user has to re-locate the camera with respect to the
global model. To do so, the live camera data is matched
against a frame that is globally aligned within the map. Per
default, this frame is the most recently matched frame, but
it can also be any map frame chosen by the user. Once the
camera is re-localized, the mapping process proceeds as be-
fore. All data collected between failure detection and re-
localization is discarded, and the constraint graph used for
global alignment is updated appropriately.

To enable building complete maps, the system contin-
uously checks the current model for completeness. This
analysis provides visual feedback about incomplete areas
and guides the user to locations that provide the necessary
view points. In addition to automatic loop closure detec-
tion, which cannot be expected to work in every case, the
user can check the model for inconsistencies and add loop
closure constraints between pairs of frames chosen from the
map.

4. Color and Depth RANSAC
In this section we describe our real-time matching algo-

rithm for visual odometry. The added depth information as-
sociated with image pixels enables us to use 3-Point match-
ing, yielding more robust estimation of the relative camera
pose between frame pairs. The proposed Visibility Criteria
evaluates the quality of a relative camera pose transform.
Using a combination of Visibility Criteria and RANSAC
significantly improves matching accuracy.

4.1. RANSAC and 3-Point Matching Algorithm

Initial feature matches are established with feature de-
scriptors, such as SIFT or Calondar, applied to interest
points in 2D images. These matched image feature points
are associated with their 3D locations. Instead of tradi-
tional methods that use the 7-Point or 8-Point algorithm to
estimate fundamental matrices (or essential matrices when
camera intrinsics are known) [10]), we directly estimate the
full camera pose transform using 3-Point algorithm using
3D locations. The full camera pose transform, as compared
with the essential matrix, provides the added information
of translational scale. As there are outliers in the initial
feature matches, RANSAC is applied to determine the fea-
ture match inliers, and thereby the underlying camera pose
transform.

Consider N pairs of initial feature matches between
Frame F1 and F2, represented by 3D coordinates (Xi

1, X
i
2),

(i = 1, 2, ..., N) in their respective reference systems. The
problem is to find a relative transform (R, T ) (rotation and
translation) that best complies with the initial matches while
being robust to outliers. A typical RANSAC approach sam-
ples the solution space to get a candidate (R, T ), estimating
its fitness by counting the number of inliers, f0,

f0(F1, F2, R, T ) =

N∑
i

L(Xi
1, X

i
2, R, T ), (1)

where,

L(Xi
1, X

i
2, R, T ) =

{
1, e = ‖RXi

1 + T −Xi
2‖ < ε

0, otherwise

(2)
and ε is the threshold beneath which a feature match
(Xi

1, X
i
2) is determined to be inlier with respect to the par-

ticular (R, T ). RANSAC chooses the transform consistent
with the largest number of inlier matches.

4.2. Visibility Criteria

Owing to the depth maps captured by the RGB-D cam-
era, the quality of a camera pose transform can be indicated
by laying out the point clouds in 3D space and performing
a visibility check, termed Visibility Criteria. The Visibility



Criteria can help obtain more accurate relative camera poses
(Sec. 4.3). It also provides cues for the suggestion of loop
closure candidates (Sec. 5.3).

Consider the 2D example shown in Figure 4 (left), the
scene is a horizontal line shown in black, and is captured by
a pair of cameras. The circles and stars are the depth maps
sampled at the camera pixels. When (R, T ) is the genuine
relative transformation, there is no visibility conflict. When
(R∗, T ∗) is a wrong relative transformation, shown in Fig-
ure 4 (right), overlaying the point clouds from both cameras,
it is possible to see visibility conflicts – when a camera cap-
tures a point in 3D, the space along its viewing line should
be completely empty; if there exists points from the other
camera in between, there is a conflict.

Figure 4. Visibility conflicts.

Practically, we count the visibility conflicts by project-
ing the point cloud C1 from frame F1 onto the image plane
of F2, and check its depth in F2’s camera coordinate sys-
tem. If any such depth appears smaller than the depth of
the F2’s pixel at the corresponding location (ignoring the
errors by setting a tolerance error equal to the depth accu-
racy), it is counted as a visibility conflict. The same ap-
proach is reversely applied by projecting C2 onto the im-
age plane of F1. Several criteria can be derived from the
visibility check. We utilize the following ones: number of
visibility conflicts (f1); average squared distance of points
with visibility conflicts (f2); number of visibility inliers (f3)
by counting those pixels where no visibility conflicts both
ways of projections.

A good candidate transform R, T ideally gives f1 = 0
and f2 = 0. f3 indicates the size of the overlapped area
measured by pixels between a pair of frames.

4.3. Decision Function for RANSAC

We now not only have the number of RANSAC inliers,
f0, but multiple features fi, (i = 1, 2, 3, ...,m) for the
RANSAC algorithm to pick up the final transform. Given
frame pair F1, F2 and candidate transform R, T , a decision
function is needed to figure out how likely the candidate
R, T would be a good solution. The general form of the de-
cision function is, g(f1, f2, ..., fm). We define g to be the

linear function of fi, i.e.

g(F1, F2, R, T ) =

m∑
i=0

αi, (3)

and estimation the weights αi through linear regression.
We demonstrate the effectiveness of incorporating the

added visibility criteria in Section 6.1.

5. User Interaction
Our system incorporates user interaction in three ways:

failure detection and rewind/resume in matching, complete-
ness guidance, and user-assisted loop closure.

5.1. Rewind and Resume

In the case of interior scene reconstruction, each cap-
tured frame usually covers a small area of the entire scene.
Thus, the connections (relative camera poses) between
neighboring frames are critical for a successful reconstruc-
tion. Our system, through online feedback to the user, guar-
antees that only frames that can be successfully aligned to
at least one of the previous frames are added to the map.
If a newly captured frame cannot be aligned (for example,
because the user moved the camera too quickly or moved to
an area with insufficient features) the system stops record-
ing frames until it receives a frame that can be successfully
aligned.

Using what we call Rewind and Resume, users can cap-
ture new frames by selecting any existing frame as the tar-
get frame to align against. The related Undo operation is
straightforward but extremely useful. If the system accepts
frames that the user does not want (e.g., they may be blurry
or not very well aligned), the user can manually ‘undo’ to
the nearest desired frame, and continue from there, recap-
turing the scene from a different viewing angle. This also
gives the user the ability to remove frames that inadvertently
contain moving objects, such as people walking in front of
the camera.

5.2. Completeness

Capturing a complete 3D model of the scene is desired,
because large missing areas in an incomplete 3D model sig-
nificantly lower the visual quality. A missing area exists in
the scene either because the area has never been captured or
the frames that did contain the area did not get depth values,
for reasons such as range or relative angle.

We consider the completeness in a user-defined manner.
Using a passive capturing system, it can be very difficult
for the user to be aware of which parts of the scene have
been captured. With an online system, the user can view
the current reconstruction in real time, view the up-to-date
3D model, and directly see which areas are missing.



Figure 5. Completeness Guide. Our system displays the classifica-
tion of voxels from a user specified 2D slice in the 3D point cloud.
Green: the voxel is guaranteed to be empty; Red: it is “occupied”;
Blue: unknown area.

In order to further assist users in finding uncaptured ar-
eas, our system is able to estimate completeness. Consider
a bounding box that contains the currently reconstructed
point cloud. The inside of the bounding box can be repre-
sented by 3D grid voxels. Each grid voxel is classified into
one of the three categories: (1) there is at least a scene point
in that voxel; (2) there must be no scene point in the voxel;
(3) none of the above. All voxels are initialized in Category
(3). A voxel is determined as Category (1) when there exists
a scene point. A voxel is determined as Category (2) when
it is not (1) and the voxel has been seen through by any of
the existing camera viewing line.

Figure 5 shows the classification of voxels from a user
specified 2D slice in the 3D point cloud. Green: the voxel
is guaranteed to be empty; Red: it is “occupied”; Blue: un-
known area. The user’s goal is then to paint all areas in
either green or red by exploring the 3D space.

5.3. Interactive Loop Closure

When frames are aligned with reliable relative poses (as
is the case with our system), a small number of loop clo-
sure constraints can achieve global consistency. Our system
can obtain loop closure constraints through both RANSAC
matching and using ICP. While RANSAC matching can be
done automatically, this is computationally expensive and
only works if the inconsistent areas of the map have match-
ing views. Also, performing RANSAC matching against all
previously recorded frames is computationally prohibitive.
The Visibility Criteria are used to suggest frames that are
likely inconsistent. The user can select any pair of frames
to perform a RANSAC or ICP based alignment. The user
then inspects the resulting map and decides to accept or re-
ject the change.

6. Experiment Results
In this section, we present our evaluation and experiment

results using our system. We show that 3-Point RANSAC
based on feature points with 3D locations performs sig-
nificantly better than 7-Point RANSAC based on feature

points with 2D locations only (that is, ignoring depth data).
We also demonstrate the benefits of additionally incorporat-
ing visibility criteria information via our learned RANSAC
classifier. The advantage of the interactive system for vi-
sual odometry is evaluated through an experiment request-
ing five persons to model a meeting room.

In addition to these experiments, we also tried to run
bundler [22] and PTAM [13] on parts of our data. PTAM
is designed for small environments only and did not scale
to the large scale maps we build with our system. Bundler
was not able to generate consistent maps of any of our test
environments. To ensure that these failures were not only
due to the low quality of the images collected by our depth
camera, we additionally collected data in one of our test en-
vironments with a high resolution video camera. Bundler
failed even on this high quality data set, generating incon-
sistent matches for the majority of data.

6.1. RANSAC for Visual Odometry

We compare the performance of 3-Point RANSAC for
full transform estimation on the captured RGB-D data and
7-Point RANSAC for essential matrix estimation on the
RGB portion of the same data. The image resolution pro-
vided by our camera is 640×480. The effective depth-range
we take is from 0.5m to 5m. The depth-accuracy is calcu-
lated from the camera specifications ( 7.5cm baseline, 570
pixel focal length and 640×480 resolution), approximately
0.03cm at 0.3m range and 7cm at 5m range. For the ini-
tial feature match, we use Calondar features. We generate
feature pairs via bidirectional matching, where (Xi

1, X
i
2) is

considered a matched feature pair if and only if Xi
1 is the

best match in Frame 1 for Feature Xi
2 and vice versa. To

enable good performance of the 7-Point RANSAC based
on the features’ 2D pixel locations, we include the best fea-
ture match if and only if the second best match has a sig-
nificantly higher distance in feature descriptor space (1.25
times further away than the best distance).

2D versus 3D RANSAC

To generate ground truth data in a realistic scenario, we col-
lected a data sequence in a lab and used our system to gen-
erate the globally optimized map shown in the bottom right
panel of Fig. 11. The consistency of that map indicates that
the camera poses for the individual frames are sufficiently
accurate to serve as ground truth for our experiment.

We randomly sampled frame pairs from this data set and
determined their transformation using 7 point RANSAC
on 2D pixel features and 3 point RANSAC on 3D feature
points. Out of all pairs, 7 point RANSAC found a transfor-
mation for 15,149 pairs (≥ 7 inliers), with an average re-
projection error of 0.69m. 3D RANSAC determined trans-
formations for 15,693 pairs (≥ 3 inliers) with an error of



0.31m. Figure 6 provides a more detailed view of this result.
It shows the reprojection error versus the number of inliers
found between two consecutive frames. As can be seen,
using depth information within RANSAC (3D RANSAC)
significantly reduces reprojection errors, generating good
results even for small numbers of inliers.
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Figure 6. Alignment error of 7 point 2D RANSAC and 3 point 3D
RANSAC versus number of inliers.

RANSAC with Visibility Features

We also compare the performance of 3-Point RANSAC
with and without incorporating the visibility criteria fea-
tures for the RANSAC objective. To collect the data needed
to train the linear regression model we placed the depth
camera at 12 different locations, measured their ground
truth distances, and collected 100 depth frames at each loca-
tion. We then randomly picked pairs of camera frames, ran
the RANSAC algorithm, and recorded all estimated trans-
forms along with the number of inliers and the visibility fea-
tures associated with these transforms (we only used pairs
of frames that had at least one transform within 1m of the
ground truth distance for the entire RANSAC run). We
randomly split the data into a training and evaluation set.
The training set was used to estimate the linear regression
model, which was then used to re-rank the RANSAC trans-
forms in the evaluation set.

Figure 7 shows that “RANSAC + Visibility” produces
more accurate camera pose translations, indicating more ac-
curate camera pose transforms. An example result is given
in Figure 8. The top row shows a pair of frames to be
matched; bottom is the projection of the point cloud from
the top left frame onto the camera pose of the top right
frame using the estimated camera transform without (left)
and with (right) using the visibility criteria. The pixels with
pink color indicate visibility conflicts. As can be seen, our
RANSAC version chooses a transformation with less inliers
but an overall improved alignment. This experiment shows
that the visibility criteria helps RANSAC find a solution that
is closer to the groundtruth camera pose transform.
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Figure 7. Accuracy of 3D RANSAC with and without visibility
features. Left: alignment error vs. number of inliers. Right: per-
centage of misaligned frames (misalignment threshold 0.1).

Figure 8. Visibility RANSAC: Top row, image pair. Bottom row,
the aligned point cloud. Red: visibility conflicts. Bottom(left), us-
ing transform obtained from regular RANSAC. (right) using trans-
form obtained from visibility RANSAC. Original RANSAC #in-
lier=26, avgdis=1.64. Visibility RANSAC #inlier=23, avgdis =
0.48

6.2. Interactive Mapping

To evaluate the capability of our interactive system to
generate improved visual odometry data, we performed a
small study in which five persons were tasked to collect data
for a map of a small meeting room. A 3D map generated
with our system is shown in Fig. 9. For each of the five
people, we determined if (s)he was able to collect data that
can be consecutively aligned for visual odometry. Three
of the people were “expert users” who had substantial ex-
perience in using the depth camera for mapping purposes.
Two persons were “novice users” who had not previously
collected mapping data. The different mapping runs con-
tained between 357 and 781 frames, with roughly 3 frames
processed per second.

When using the interactive system, every person was
able to collect a data set that covered the entire room and
for which all consecutive frames could be aligned. Two of
the expert users were able to do so without any intervention
by our system. The other three users required on average 16
interventions, that is, the failure detection module in Fig. 2
triggered 16 camera re-localizations, which typically took
only 1-2 seconds to achieve. Without the interactive sys-



Figure 9. Top down view of 3D map of meeting room used to
evaluate the benefits of interactive mapping.

tem, none of these three users was able to successfully cap-
ture a sequence without visual odometry failures. The mean
time between tracking failures was 20.5 frames. This exper-
iment shows that it is difficult to collect good mapping data
without interaction, and that our interactive system makes it
easier by overcoming frame-to-frame failures.

6.3. Comparison to PMVS

To demonstrate the advantage of cheap depth cameras
over standard cameras for dense 3D modeling, we collected
a depth camera sequence and a collection of high-res cam-
era images of a wall and a textured white board standing in
front of it. Fig. 10 shows a zoom into the white board part
of the reconstruction achieved by our system (left) and by
PMVS [8] using the high-res images. As can be seen, while
PMVS is not able to generate a dense 3D reconstruction, our
system generates a full reconstruction of the whiteboard.

Figure 10. 3D reconstruction achieved by our system (left) and by
PMVS using high-res camera images (right). The blue parts in the
right image indicate areas without any depth reconstruction.

6.4. Large Scale Mapping

Fig. 11 shows examples of maps we built with our in-
teractive system. These results were achieved by collect-
ing good visual odometry data using the failure detection
and re-localization process along with the interactive sys-
tem for adding pairwise loop closure constraints. For in-
stance, the globally consistent map shown at the top was
generated with 25 loop closure constraints originated from
the interactive loop closure suggestion strategy.

7. Discussions

We presented an interactive system for building dense
3D reconstructions of indoor environments using cheap
depth cameras. Such cameras are extremely promising for
enabling people to build maps of their personal spaces.
Meanwhile, the solution is far from trivial partly due to high
noise and limited field of view.

To generate robust visual odometry estimates, we intro-
duce a RANSAC variant that takes full advantage of both
depth and color information. The RANSAC criterion is
based on a linear regression function that incorporates ad-
ditional visibility constraints extracted from the depth data.
We demonstrate that our RANSAC approach significantly
outperforms existing counterparts.

To ensure that the collected data can be aligned into a
globally consistent map, our system continuously checks
the quality of frame alignment and alerts the user in case
of alignment errors. Such errors can occur, for instance, if
the user swipes the camera very quickly or gets too close to
a featureless wall. Our experiments indicate that alignment
errors are extremely difficult to overcome otherwise, even
for expert users. Furthermore, we demonstrate that our sys-
tem is able to generate consistent 3D maps of large scale
indoor environments. In future work, we intend to extract
structural information about walls, furniture, and other ob-
jects from these 3D maps.
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