Technical Report UW-CSE-11-03-01

Parallel Evaluation of Conjunctive Queries”

Paraschos Koutris
University of Washington

Dan Suciu

University of Washington

Abstract

The availability of large data centers with tens of thousands of servers has led to the pop-
ular adoption of massive parallelism for data analysis on large datasets. Several query
languages exist for running queries on massively parallel architectures, some based on the
MapReduce infrastructure, others using proprietary implementations. Motivated by this
trend, this paper analyzes the parallel complexity of conjunctive queries. We propose
a very simple model of parallel computation that captures these architectures, in which
the complexity parameter is the number of parallel steps requiring synchronization of all
servers. We study the complexity of conjunctive queries and give a complete characteriza-
tion of the queries which can be computed in one parallel step. These form a strict subset
of hierarchical queries, and include flat queries like R(zx,y), S(x, 2), T(x,v),U(x,w), tall
queries like R(x), S(x,y), T (z,y,2),U(z,y, 2z, w), and combinations thereof, which we call
tall-flat queries. We describe an algorithm for computing in parallel any tall-flat query,
and prove that any query that is not tall-flat cannot be computed in one step in this
model. Finally, we present extensions of our results to queries that are not tall-flat.

Keywords: Database Theory, Distributed Databases, Parallel Computation

1. Introduction

In this paper we study the parallel complexity of conjunctive queries. Our motivation
comes from the recent increase in the use of massive parallelism for performing data
analysis on very large datasets. In addition to traditional parallel database systems,
such as Teradata or Greenplum, new query languages and implementations have been
introduced recently for the purpose of massively parallel data analytics: the MapReduce
architecture for parallelism [1], SCOPE [J], DryadLINQ [], Pig 4], Hive [}, Dremel |d].

UThis work was partially supported by NSF II1S-0627585 and I1S-0713576.
Email addresses: pkoutris@cs.washington.edu (Paraschos Koutris), suciu@cs.washington.edu
(Dan Suciu)

Most of the effort and the engineering work in these systems has been focused on fault-
tolerance, resource allocation, and scheduling, and restricted to basic operations like
filtering, group-by, aggregation, and join. As these systems evolve towards general-
purpose data analytics languages, they need to optimize and execute in parallel general
conjunctive queries.

The parallel complexity of conjunctive queries on today’s parallel architectures is not
well understood. The data complexity of every relational query is in AC° ﬂ , and it is
generally acknowledged that SQL is “embarrassingly parallel”. Immerman H] analyzed
the parallel complexity of First Order Logic on CRCW PRAM (Concurrent Read, Con-
current Write Parallel Random Access Machine) E] and showed that the parallel time is
equivalent to the number of times one needs to iterate a First Order sentence; an imme-
diate corollary is that every relational query takes O(1) parallel time in this model. But
circuits and PRAMs are not accurate models of parallel systems. Even in the 80’s and
90’s researchers have proposed alternative models to capture parallelism. Valiant intro-
duced the BSP model m] and Culler et al. further refined it into the LogP model ﬂﬂ]
Both view the parallel computation as a sequence of relatively short parallel computa-
tion steps, each followed by a global synchronization barrier. The length of a parallel
step is called periodicity parameter, L, and most of the analysis of parallel algorithms
in these models consists of theoretical guarantees that servers finish their tasks within
the periodicity parameter (or else, the next step needs to be dedicated to the unfinished
step). Therefore, the models focus on the details of the communication protocol, and
trace meticulously the network’s latency, overhead, and gap (in the LogP model). These
models no longer capture today’s parallel architectures well.

Nowadays, massive parallelism is achieved on commodity hardware interconnected
by a high speed network. The communication cost is less dependent on the low level
protocol, but is dominated by the amount of data being exchanged. In addition, the
granularity of a parallel step has increased, since each server needs to process a large
amount of data before synchronization, making each synchronization step even more
expensive.

The main bottleneck in today’s massively parallel computations is the global syn-
chronization steps of a computation ﬂﬂ] Two factors make a global synchronization
step expensive: data skew and stragglers. Data skew refers to the fact that some servers
end up processing much more data than others. Theoretically, one addresses data skew
by requiring that each server is allocated only O(n/P) of the total data, where n is the
number of data items and P the number of servers. This guarantees that no server gets
an excessive loadl. Stragglers are a new phenomenon, not encountered in older parallel
systems. A straggler is a server that takes significantly longer time to execute its share
of the computation than the others. This can be caused by a faulty disk, the server being
overloaded with other tasks, by server failure, or by the algorithm itself. Stragglers occur
in today’s systems because the large number of servers (tens of thousands) and the long
processing times (often several hours) dramatically increase the probability that some
servers will straggle. All systems to date, starting with the original MapReduce EL pay
special attention to stragglers. They monitor slow responders, and, once a straggler is
identified, its work is redistributed to other servers. Despite these measures, stragglers
add a significant cost to each synchronization step, and the way to mitigate that cost in
a theoretical model is to reduce the number of global synchronization steps.

IWe assume that each of the n items takes about the same time to process. This assumption may
fail for jobs with user defined functions.

2

We propose a simple parallel model of computation, called the Massively Parallel,
or MP model, to enable us to analyze the parallel complexity of conjunctive queries.
In MP, computation proceeds in a sequence of parallel steps, each followed by global
synchronization of all servers. We do not impose any restriction on the time of a parallel
step. Instead, we impose the restriction that the load at each server is no more than
O(n/P) data items during the entire computation, where n is the total size of the input
and the output, and P is the number of servers. Each parallel step consists of a broadcast
phase (where a limited amount of data is shared among servers, typically in order to
detect skewed elements), followed by a communication phase, followed by a computation
phase. The cost of an algorithm in the MP model is given by the number of parallel steps:
we ignore the time of the computation phase and also, in this paper, we ignore the total
amount of data transferred during communication. However, notice that the amount of
data transferred is always O(n), because the P processors can receive at most P-O(n/P)
data items during each communication step; this is in contrast to Afrati and Ullman E]
who allow a total amount of O(n Vv P*~1) data exchanged in one step (see Bection 7).
Thus, we only count the number of synchronization steps. For example, if Algorithm A
computes a query in two parallel steps, each taking time 7', and Algorithm B computes
the same query in a single parallel step of time 7' = 2T, then both algorithms take
time 27", and would be considered equivalent in a traditional model. But, under MP,
Algorithm B is better, since it uses one parallel step instead of two.

In this paper we study the evaluation of conjunctive queries in the MP model. We
restrict our discussion to full conjunctive queries (without projections). Our main result
is a complete characterization of queries computable in one MP step; the most significant
aspect of this result is that not all queries are easily parallelizable, as older models of
parallelism suggest. The queries computable in one MP step are the tall-flat queries. A
flat query is one where every two atoms share the same sets of variables, for example
q(z,y,z,u) = R(x,y), S(z, z), T(x,u) is flat because any two atoms share {z}; in other
words, a flat query is a star join where all join conditions are on the same variable(s). A
tall query is one where the set of variables in the atoms forms a linear chain, for example
q(z,y,z,u) = R(x),S(x,y),T(z,y,2),U(z,y, z,u); tall queries occur in data warehouse
schemas, e.g Country(co, ...), City(co,ci,...), Store(co,ci, st,...). A tall-flat query
consists of a tall part followed by a flat part (formal definition in[Seciion), and we prove
that a query can be evaluated in one MP step iff it is tall-flat. For the “if” part of the
proof, we give a concrete algorithm that computes any tall-flat query in one parallel step,
while guaranteeing perfect load balance (which is a requirement in the MP model), even
if the data is skewed. We give the algorithm in two stages: we describe the algorithm
separately for tall, and for flat queries in then combine them into a general
algorithm in The simple case of a 2-way join ¢(x,y, z) = R(z,y),S(y, z) can
be computed by an alogorithm similar in spirit to the skew join in Pig ﬁ]; k-way flat
queries with £ > 3 and tall queries require non-trivial extensions. For the “only if” part
of the proof, we show in Bection @ that for any non tall-flat query, any one-step parallel
algorithm will be skewed, thus violating the MP model.

Our results depend critically on the load balance requirement, which strictly limits
the amount of data per processor to O(n/P), and, hence, limits the communication
cost to O(n). Afrati and Ullman ﬂﬁ] describe a simple algorithm for computing the
query RST(z,y) = R(x),S(z,y),T(y) (which is not tall-flat) in one parallel step, by
allowing each server to store O(n/v/P) amount of data, and, thus, with communication
cost O(n\/?) In general, any conjunctive query with k variables can be computed in
one parallel step if one allows the load per processor to increase to O(n/4/P) (and the

3

communication cost to O(n v/ P*¥~1)). We show this formally in

Organization. We first discuss in about related work in parallel and
distributed database models. Then, we describe the model and the main algorithmic
techniques in Bection 3 and the main algorithms in Bection 4 We prove the main result
in Beciion Hland Becfion 6l Finally, we discuss some extensions in [Secfion A and conclude
in Rection &

2. Related Work

The recent success of the MapReduce framework ﬂ] in efficiently parallelizing com-
putations has inspired theoretical research on new models of parallel computation, which
capture the characteristics and limitations of the new architecture, while also considering
the capabilities of modern hardware and infrastructure.

Afrati and Ullman ﬂﬁ] describe a model of computation where every query is executed
in one parallel step and the primary measure of complexity is communication. Our model
always restricts the communication to O(n), but needs multiple communication steps,
hence this is our main complexity metric. By contrast, in their work they allow a larger
amount of communication, typically O(n V Pk=1) and therefore the main complexity
metric is the total amount of communication.

Another theoretical approach to analyzing MapReduce is presented in ﬂﬂ] In this
paper, the authors allow only a limited amount of storage in each processor, and add
randomization, in the sense of allowing false computations as well. Their main measure
of complexity is similar to ours: the number of MapReduce steps; however, they do not
examine queries, but general algorithms, comparing their model to the PRAM model.

Measuring parallel complexity in terms of the the number of communication steps was
also proposed by Hellerstein ﬂﬁ], who introduced the notion of Coordination Complexity.
The author argues that both communication and computation are cheap using today’s
infrastructure; the bottleneck in parallelizing queries lies in the coordination of global
barriers during computation.

Apart from recent approaches to modeling the MapReduce framework, various paral-
lel models have been extensively studied, for example the widely used bulk-synchronous
parallel model ﬂm] and the LogP model ﬂﬂ] However, both models do not seem to
adequately capture the concerns of today’s massively parallel computations.

The idea that we handle skewed elements in a special way during computation is
not a new one; in ﬂﬁ], the authors develop and implement an algorithm similar to ours
that handles skewed join computation in shared-nothing architectures. Nevertheless,
they assume that they have knowledge of the skewed elements and do not provide any
theoretical guarantees on their algorithm.

Grohe et al. m] introduced the Finite Cursor Machines model of computation, in
which queries are evaluated in a sequence of “streaming” steps: each relation can be
sorted at the beginning of the step, but afterwards can be read a constant number
of times using a constant amount of memory, in a streaming fashion. They do not
restrict to full queries, but they do restrict to conjunctive queries in the semi-join al-
gebra in order to ensure that the output is linear in the size of the input (this rules
out cartesian product queries like ¢(x,y) = R(z),S(y)). For example, a query like
q(x) = R(x,y),S(z,2),T(x,u) can be computed in one step, by first sorting the rela-
tions on z, then merge-joining the three streams. The authors prove that the query
q(z,y) = R(z),S(x,y), T(y) cannot be computed in one streaming step in this model.

4

A conjunctive query is called hierarchical if, denoting at(x) the set of atoms that con-
tain the variable z, the family of sets {at(x) | € Var(Q)} form a hierarchy (formal
definition in Bubsection 30). Although the authors [16] do not state this explicitly, it
follows immediately from their result that a conjunctive query in the semi-join alge-
bra can be evaluated in one step iff it is hierarchical. Dalvi et al.ﬂﬂ] show that, over
tuple-independent probabilistic databases, queries that can be evaluated efficiently are
precisely the hierarchical queries B Thus, both in the streaming and probabilistic data
model, the tractable queries have the property of being hierarchical. In our work we
consider full conjunctive queries, but do not restrict to the semi-join algebra. Thus, we
allow cartesian product queries, and show that the queries computable in one pass are
the tall-flat queries: for example the cartesian product query q(x,y) = R(x), S(y) is flat,
and therefore computable in one MP step. Yet, not every hierarchical query is tall-flat,
for example ¢(z,y) = R(z), S(x),T(y), and these cannot be computed in one MP step
Seciion @). When restricting to queries that are both full and in the semi-join alge-
bra of [16], we prove in that hierarchical queries coincide with tall queries
and tall-flat queries collapse to tall queries. Thus, for the intersection of the language
considered in m] and the one in this paper, the class of “easy” queries coincides.

3. The Model and the Main Result

We define here the Massively Parallel (MP) model of query evaluation. We fix
throughout this paper a domain, U, called universe. A relational database instance
D contains constants from U, and has a relational schema R = R, S, T, ... We consider
in this paper only full conjunctive queries, i.e. where all variables are head variables.
Denote the problem size to be the size of the input database plus the size of the query’s
answer, n = size(D) + size(Q) .

Let P be the number of parallel servers. Each server stores two kinds of data: generic
data (values from U) and numerical data (integers). The data is stored in arrays, on
disks or in main memory. Generic values can be manipulated only in three ways: they
can be copied, they can be tested for equality a = b, and they can be subjected to
a hash function, from a fixed set of hash functions h. Each hash function has type
h : U* — [P], where k is its arity. For example, an algorithm may use three hash
functions, h = (h1,hs, h3), where hi,hy : U — [P] and hz : U®> — [P]. Each hash
function is randomized at the beginning of the algorithm, i.e. chosen randomly from a
finite setfl 7 of a family of hash functions fi.

Initially, all relations are already uniformly distributed over the servers (so no addi-
tional communication is necessary), and their sizes are known by all servers.

An algorithm in the MP model runs as follows. The input is the database instance
D. Each relation R is partitioned into P fragments Ry, Ra,..., Rp of equal size, and
distributed over the P servers; server s holds the fragments R, Ss, T, . .. The initial load
of each server is size(D)/P. The algorithm proceeds in a number of parallel computation
steps, each consisting of three phases:

2This result applies only to conjunctive queries without self-joins.

3Strictly speaking, we need a separate family for each hash function used: h1 € Hi, ha € Ha, etc.
To simplify things, we use a single family and write h € H with some abuse.

4Although in this paper we allow randomization only in the choice of hash functions (with the

exception of Bubsection Z77)), all the hardness results (apart from which we defer to the

full version) easily extend to arbitrary use of randomization.

5

Broadcast Phase: The P servers exchange some data globally. This data is shared
among all servers, and we call it broadcast data, B. At the end of this phase each
server has a copy of B. We require the total amount of communication in this
phase to be O(n®), for some 0 < ¢ < 1; in particular, size(B) = O(n®/P).

Communication Phase: Each server sends data to other servers. There is no restric-
tion imposed on how a server distributes the data to the other servers; it could
send its entire data to a single server, distribute it uniformly among servers, or
broadcast its entire data to all servers (but see the skew-free requirement below).

Computation Phase: FEach server performs some local computation on its data. There
is no restriction imposed on the time taken for the computation. At the end of this
phase the algorithm may stop and leave the result in the local memory of the P
servers, or may continue with the next parallel step.

We allow local computation to be performed during all three phases; in our model
local computation is free. A parallel algorithm is a sequence of parallel computation
steps, and its cost is the number of parallel steps. Let ng denote the total number of
tuples stored at sever s during the entire execution of the algorithm. The algorithm is
called load balanced, or skew free, if, for sufficiently large n, E[maxs ns] = O(n/P), where
the expectation is taken over the random choices of the hash functions h € H. Formally:

Definition 3.1. An algorithm is load balanced if there exists a constant factor ¢ > 0
s.t. for all number of servers P there exists an integer ng such that size(D) =n > ny,
implies By [maxs—1 png] < c-n/P.

We require every algorithm to be load balanced. This requirement is a key element of
the MP model. Without it, any query could be computed in one step, because all servers
could send their data to server number 1, which computes the query locally. It has two
consequences. First, it ensures linear speedup m] (by doubling the number of servers P,
the load per server will be cut in hahﬁ) and constant scaleup (by doubling both the size
of the data n and the number of processors P, the running time remains unchanged).
Second, it implies that the total amount of data exchanged during each communication
step is O(n) in expectation. Indeed, let ng be the number of tuples received by server
s =1, P: since E[ns] = O(n/P), the total amount of data exchanged is E[>_ n] = O(n).

Thus, the amount of communication is guaranteed to be O(n). In most algorithms,
this is also a lower bound, but in some cases one can design algorithms with strictly
less communication. For example, consider the intersection query ¢(z) = R(z), S(z);
partitioned hash join has communication cost n = |R| + |S| (Proposition 3.3)). But if we
know that |R| < |S|, then we can use broadcast join: broadcast R to all servers, then
each server intersects R with its local fragment of S. The communication cost is P - |R)|,
which may be much less than n. In this paper, we do not distinguish between these two
algorithms, since both require one parallel step.

The MP model is related to, but not identical to a Map Reduce (MR) job [l]. MR
corresponds to one MP step: there is no broadcast phase, the communication phase is
the map job followed by data reshuffling, and the computation phase is the reduce job.
However, to implement an MP algorithm over MR one has to implement the broadcast

5And, thus, the time of the computation phase will also be halved, assuming that the computation
time is linear in the size of the data.

S

D@ ——E—E
™~

Figure 1: The tall-flat query L. An arrow u — v denotes that at(u) C at(v).

phase either as a separate, lightweight MR job, or by sampling the data before it is
partitioned into servers at the beginning of the map job. As we show in
the broadcast phase is necessary to ensure load balance even for the simplest of the
join algorithms, and this is why we include it in the model. Using sampling in order to
improve load balance is a popular technique in practice, for example it is used in skew
join in Pig H).

Finally, note that in [Definifion 311 ng is allowed to depend on P. In other words,
once P is fixed, load balance is expected only for n “large enough”. In some of our
algorithms we require P = O(n¢), for some 0 < e < 1.

3.1. Main Result

The main result in this paper is a complete characterization of queries that are com-
putable in one MP step by a load balanced algorithm. To describe this result we first
need some definitions.

Given a conjunctive query @) and a variable x, denote by at(z) the set of atoms that
contain x. A query is called hierarchical if for any two variables x,y, one of the following
holds: at(x) C at(y) or at(x) 2 at(y) or at(x) Nat(y) = 0.

A conjunctive query is called tall-flat if one can order its variables 1, ..., Tk, Y1, - -, Ye
such that: (1) at(xz1) D at(xz) 2 ... D at(xg), (2) at(zk) 2 at(y;) for i = 1,...,¢, and
(3) |at(y;)| = 1. Clearly, every tall-flat query is hierarchical. Furthermore, if [= 0 then
we call it a tall query, and if £ = 1 then we call it a flat query. For example the query

L(x17x27x3ax4aylay27y3) N
Ri(z1), Ro(21,72), R3(z1, w2, 73),
Ry(x1, 22,3, 24), S1(x1, 2, 23, T4, Y1),

Sa(x1, 22, 23, 24, Y2), S3(21, T2, T3, T4, Y3)

is a tall-flat query (Figure IJ). The main result we prove is:

Theorem 3.2. Every tall-flat conjunctive query can be evaluated in one MP step by
a load balanced algorithm. Conversely, if a query is not tall-flat, then every algorithm
consisting of one MP step is not load balanced.

3.2. Datalog Notation for MP Algorithms

Throughout the paper, we express algorithms using a simple extension to non-recursive
datalog, which allows us to specify the location where data is stored. For this purpose we
adopt the syntax from [19]. If R(z, y) is a relation (binary in this case), then the notation
R(@s,x,y) denotes the fragment of the relation R which is stored at server s. Using this
notation, we can define computations and communication in the following way:

7

e Local computation: R(@s,x,y) :-S(@s,x,y),T(@s,x)
e Broadcast: R(@*,x):-S(@s,x),T(@s,x)

e Point-to-point communication: R(@h(x) ,x,y) :-S(@s,x,y)

3.3. Examples

We illustrate our model by giving two simple algorithms, for computing the intersec-
tion of two sets, and a semijoin.

The first query computes the intersection of two sets R, S, Q(z) : —R(x), S(z). This
query is both tall and flat, and can be computed by the distributed hash-join [ATgorithm 1]

Algorithm 1: INTERSECTION(R(x), S(z))
/* Communication Phase */
R2(@h(x), x) :- R(@s, x)

S2(Gh(x), x) :- S(@s, x)

/* Computation Phase */
Q(@s, x) :- R2(@s, x), S2(6s, x)

In this algorithm, h is a hash function h : U — [P]. Each server s applies the hash
function h to each tuple R(a) and sends it to the destination server h(a); similarly for
tuples S(b). In the computation phase, the tuples placed in the same server are joined.
Clearly, this algorithm is correct, and runs in one parallel step, having no broadcast
phase. We will prove next that it is load balanced.

No fixed hash function h can guarantee load balance, because there exists a worst
case data instance such that all its data values collude under h. Instead, we follow here
the standard approach, and assume that h is a uniform familg,ﬁ of hash functions ﬂ2__1|]
Thus, in general, any MP algorithm starts by choosing randomly its hash functions from
H: once these choices h € H are made, we call the execution of the algorithm a run. The
load balance requirement can be rephrased as follows: Ejcy[max;s ns] = O(n/P), where
the expectation is taken over all runs.

Proposition 3.3. Assuming n = Q(Plog P), is load balanced, i.e. the
expected mazimum server load is Elmaxs ng] = O(n/P).

Proof. Consider the classical balls in bins problem: n balls are randomly thrown into
P bins. If n = Q(Plog P), the expected maximum load of a bin is ©(n/P) [23]. This
immediately proves the claim: each of the n tuples in R and S is a ball, and h places
each tuple independently in one of the P servers (= bins), because h is chosen from a
uniform family of hash functions, hence E[max; ns] = ©(n/P). O

Our second example illustrates the broadcast phase. Consider the query Q(x,y) :
—R(z),S(x,y): this is a semijoin, and it is a tall query. A naive extension of the previous
algorithm would partition both R(z) and S(x,y) according to a hash function h(x), but

6The family H is called uniform on a set S = {x1,...,2} if b € H maps S to k values that are
uniformly random and independent. Uniformity is strictly stronger than wuniversality } In all our
algorithms, |S| = O(n).
8

this may result in data skew: for example, if all tuples S(x,y) have the same value x = a,
then they will be hashed to the same server h(a), whose load increases to O(n). Here
it is necessary to obtain some information about the distribution of tuples in S, using

the broadcast phase. performs a load balanced computation of the semijoin
query.

Algorithm 2: SEMI-JOIN(R(x), S(x,y))

/* Broadcast Phase */

/* Compute skewed elements; 7 =|S|/(PlogP) */
G(@s, x, count(*)) :- S(@s,x,y)

H(@s, x) :- G(@s,x,f), £ > 7/P

B(@*x, x) :- H(®@s, x) /* Broadcast */

/* Communication Phase */

R2(@h(x), x) :- R(@s, x), not B(@s, x)
S(6h(x), x, y) :- S(@s, x, y), not B(@s, x)
R2(@*, x) :- R(@s, x), B(@s, x)

S(eh2(x,y), x) :- S(@s, x, y), B(@s, x)

/* Computation Phase */

Q(@s, x, y) :- R2(@s, x), S2(@s, x, y)

In general, for any relation S(z,...) and attribute x of S, define the frequency fs..(a)
of a constant a to be the number of elements in S that have a on the = position. Let
7 > 0 be a value called a threshold. A value a is called (S, z, 7)-skewed, or simply skewed,
or frequent, if fs.(a) > 7; we denote Fs . () the set of skewed elements. Notice that
[Fsa,r| < |S]/7.

The semi-join [Algorithm 2|starts by computing all 7-skewed elements, for 7 = |S|/(P log P).
This set cannot be efficiently computed exactly, because S is distributed; instead we com-
pute a superset B. FEach server s computes all elements x whose local frequency is > 7/P;
the count (*) notation is from [2d]. There are < (|S|/P)/(r/P) = |S|/7 locally skewed
elements. These sets are broadcast, and each server computes their union, B. The set B
contains Fs ; -, and |B| < P-|S|/7; thus the communication cost of the broadcast phase
is < P2.|S|/7 = P3log P = O(n®) (we show in how to further improve
this). Next, the semi-join algorithm proceeds as follows. For all non-skewed elements x,
both R(x) and S(x,y) are sent to the server h(z); for the skewed elements, S(z,y) is
distributed using a second hash function h2(x,y), while R(z) is broadcast to all servers.
This is similar to skew join in Pig M], but computes the skewed elements differently.

Proposition 3.4. Assuming n = Q(P3log P), is load balanced.

The proof follows as a corollary of [[heorem 4.6, which we prove in the next section.

We now prove that, without a broadcast phase, no load-balanced algorithm can com-
pute the semi-join in one step. This justifies including a broadcast phase in the MP
model.

Proposition 3.5. If an algorithm for computing the semi-join Q(z,y) : —R(x), S(x,y)
has one single parallel step and no broadcast phase, then it is skewed.

Proof. We start by revisiting how the data is partitioned. In the MP model the input data

is partitioned jointly: each sever holds a fragment from each relation. But in impossibility

proofs we will assume that the database is partitioned separately: each server holds a
9

fragment from only one relation: P - |R|/(|R| + |S]|) severs hold fragments of R, and
P -|S|/(|R| + |S]) servers hold fragments of S. Any impossibility result for the separate
partition implies an impossibility result for the joint partition, because any load balanced
algorithm A over the separate partition can be simulated by a balanced algorithm A’
over the joint partition as follows. Given a separately partitioned instance R, .S, extend
it to a joint partitioned instance R’,S’, by inserting new R-tuples in the servers holding
S, and inserting new S-tuples in the servers holding R, such that |R'| = |S’| = |R| +|S].
The new tuples are chosen s.t. they do not join with any other tuples. Run A’ on R’, S":
the result is S’ x R' = S x R. Thus, w.l.o.g., we will assume a separate partition in all
impossibility proofs.

Assume A is a load balanced algorithm computing the query @. Let ¢ be the constant
in Definition 3.11 let P > 64c?, and let n = ng, where ng is given by [Definition 3.1 (it
may depend on P). We will show that A does not compute correctly ¢ on an instance
of size 2n using P processors. To simplify the notations we assume that A uses a single
hash function h, of arity k: the extension to multiple hash functions is straightforward.
Fix two n-vectors X = (z1,...,2,) and Y = (y1,...,yn) € U™ of distinct elements. For
each m = 1,n, denote D™ = (R, S(™)) the instance R = {z1,...,2,}, and S =
{(@msy1)s- -, (@m,yn)}. For any run h € H, let Ky (R(x;)) and K, (S(z;,y;)) C [P] be
the set of servers that receive R(x;) or S(x;,y;) respectively.

Lemma 3.6. If A is load balanced, then for any X,Y € U™, there exists an instance
D(m) (constructed from X, Y, m as explained above), a run h € H, and an elementy; €Y,
such that Kp(R(2m)) N Kp(S(m, yi)) = 0.

Proof. Let ny(D™ h) be the load at server s for the instance D™ and the run h. Since
size(D™)) = 2n, by Definition 301 Epep(max, ng(D™) <2-c-n/P. Let d =4 -c.
We say that h is balanced for D) if max,(ns(D™) h)) < 2-d-n/P, and we say that h
is balanced if it is balanced for some D™ . Denote by H("™) the set of runs balanced for
D™ and H®) =, H™. By Markov’s inequality, |[H(™|/|H| > 1 — ¢/d = 3/4, and
also |H™)|/|H| > 3/4: thus, most runs are balanced.

Call an element z; good for run h if, on some input D) | K, (R(z;))| < P/(2 - d):
“goodness” does not depend on D" because the input is partitioned separately, and all
instances D("™) have the same R. We claim that there exists m such that z,, is good for
some h € H("™). The claim proves the lemma: indeed, consider the run h on the instance
D). Bach server in K (R(x,,)) stores at most 2-d-n/P tuples (since h is balanced for
D(™): hence, together they hold < P/(2-d) x 2-d-n/P = n tuples. This implies that
at least one of the n tuples S(x,,yi), ¢ = 1,n is not sent to any server in K (R(x,,)).

To prove the claim, denote for each h € H*):

By, ={z; | |Kn(R(z;))| > P/(2-d)} (bad elements)
G, ={z; | |Kn(R(x;))| < P/(2-d)} (good elements)
Clearly, By, UG}, = {21,...,x,}. Since h is balanced for some D™ we have |By| -
P/(2-d) <2-d-n. Therefore:
2

4
|G| 2(1—%)xn23/4-n vh e H® (1)

The last inequality holds because P > 64c?> = 16d?. We now prove that there exists a
set H' € H™ such that:

Nhere Gn # 0 and |H'| >3/4- |HP| >9/16- [H| (2)
10

For that, consider the {0, 1}-matrix E = (e;) of dimensions n x |H(*)|, where e;, = 1
iff z; € Gj. By every column h has at least 3/4 of entries equal to 1; thus,
at least 3/4 of entries in the entire matrix are 1; thus, there exists a row m with at least
3/4 of the entries 1. Then, H' = {h | e;p = 1} satisfies [Equation 9]

To prove the claim, we show that H(™ N H’ # (. This follows from [H(™)| 4 |H'| >
3/4-|H| +9/16 - |[H| = 21/16 - |H|: the two sets combined have more elements than H
and therefore have a non-empty intersection. O

Fix D = D("™) = (R, S™), and the run h given by the lemma. We will show that the
algorithm is incorrect on the run h, by showing that it fails to output the tuple (z,,, y;).
Servers & K, (S(xm,,y:)) cannot output this tuple, since they don’t receive y; and cannot
fabricate a generic value in U. Servers € Kp(S(m,y:)) don’t receive R(zy,). To show
that they cannot output this tuple either, consider the execution of the algorithm on
a second instance D’ = (R’, (™)) where R’ is obtained from R by replacing the single
tuple R(x,,) with R(x},), where z/, # x,,: (z!,,y;) is no longer an answer to @} on
D’. Servers holding input fragments of S will send their data to the same destinations,
since S is unchanged; in particular, S(z,,,y;) is sent to the same set K, (S(zm,yi))-
We claim that, during the two execution of the algorithm, on D and D’ respectively,
the server holding R(x,,) (in D) or R(z],) (in D") will obtain exactly the same hash
values; in particular, it will send its elements to exactly the same destinations, hence
Kn(R(x),)) N Kp(S(xm,y;)) = 0. Thus, the servers in K}, (S(zm, y;)) receive exactly the
same elements during the two executions, and will not be able to distinguish between D
and D', thus cannot determine whether to output the tuple (2, y;).

It remains to prove the claim. For X € U™ denote H(X) the array consisting of all
hash functions h € ‘H applied to all values in X. One can view H as assigning a color
to each point in U™. The number of colors is finite, ¢: for example, if all hash functions
in H have type h : U* — [P], then ¢ = [P]"I™". Callaset V=V x --- x V,, C U"
a p-space if |V;| > p, for i = 1,n. A p-space is unicolored if all its points have the same
color. We prove that there exists a unicolored 2-space {x1, 2]} X -+ x {zp, 2}, }. This

implies which proves the claim.

Lemma 3.7. Suppose all points in U™ are colored with ¢ colors. Then, for every p > 0
there exists M > 0 such that every M -space has a unicolored p-subspace. In particular,
if U is infinite, then U™ has a unicolored 2-subspace.

Proof. We set M = f,(p), where fi(p) = (p— 1) e+ 1, fura(p) = £3"®(p) (where
(k) (p) = ful- -+ fu(p)--+), k times). The proof is by induction on n. For n = 1, consider
a set V1 with fi(p) points: at least p have the same color. Assuming the lemma is true
for n, we prove it for n + 1. Let M = f,41(p) and consider an (n + 1)-dimensional
M-space VO x V,,11, where VO =V} x --- x V,,. Let k= (p—1)-c+ 1. Fix k distinct
elements x1,...,x € V,41 (this is possible since |V, 41| > M = fr+1(p) > fi(p) = k).
Denote py = p, pi—1 = fu(pi) for i = k,...,1; thus, M = py. For every i = 1,k there
exists an n-dimensional p;-space V* such that V¢ x {z;} is unicolored, and V C V=1
indeed, VO x {1} is an n-dimensional space, hence by induction on n has a unicolored
subspace V! x {z1}; suppose Vi~ x {x; 1} is unicolored: since Vi=! x {z;} is an n-
dimensional p;_i-space, it has a unicolored p;-subspace V¢ x {z;}. Thus, we obtain k

unicolored spaces, V! x{z1}, ..., V¥ x {z}}, and at least p of them have the same color:
Vit x {ax, }, ..., Vie x {x;, }. Then Vi x {;,,...,2;,} is a unicolored p-space. O
O

11

Corollary 3.8. There exist vectors X = (x1,...,2,) andY = (24, ...,) such that for
any m, the vectors X and X' = (x1,...,2,,,...,Tyn) collude.

Y m?

4. Three Building Blocks

In this section, we describe the building blocks for the algorithm computing any tall-
flat query in one MP step: we give an algorithm for computing the frequent elements of
a relation, an algorithm for computing any flat query, and an algorithm for computing
any tall query. In we combine them to give a general algorithm for any tall-flat

query.

4.1. Computing High Frequency Elements

The distributed frequent elements problem is the following: given a distributed relation
R(x,...) of size r = |R|, and a threshold 7, compute a set F' containing all skewed
elements Fr , -, and distribute F' to all servers. We consider algorithms that proceed in
two steps: (a) compute and broadcast a set B to all servers, and (b) compute a subset
F of B at each server s.t. F'is a superset of Fr ;. We define two costs: the amortized
communication cost, |B|, and the excess cost, |F'|. Our goal is to keep the amortized cost
O(n®/P), becuase the total communication cost is P - |B|. The excess is at least r/,
because, in the worst case, there are r/7 frequent elements Fr , -: our goal is to prevent
it from being much larger. We present here three algorithms for the distributed frequent
element problem.

The naive algorithm consists of the top three rules in Here F' = B,
hence both amortized cost and excess are < P - r/T.

Algorithm 3: DETERMINISTIC FREQUENCY (R, T)
HS(@s,x,count(*)):- R(@s,x,...)
G(@s,x,f) :- HS(@s,x,f), f>7/(2P)
B(@*,x,f,s) :- G(@s,x,f) /* Broadcast */
H(@s,x,sum(*)) :- B(@s,x,f,-)
F(@s,x) :- H(@s, x,), £ >7/2

The Deterministic Frequency, has essentially the same amortized cost,
but a smaller excess. It starts by computing all elements whose local frequency is >
7/(2P), and retains their local frequencies, then broadcasts these elements: thus, the
amortized communication cost is | B| < 2-P-r/7, twice that of the naive algorithm. Then,
it retains in F only those elements x whose total frequency exceeds 7/2; therefore, the
excess is |F| < 2-r/7, a factor of P/2 smaller than the naive algorithm. The correctness
and efficiency of this algorithm can be formally shown by the following proposition.

Proposition 4.1. The set F includes all elements a with f(a) > 7 and no element o
with f(a') < 7/2.

Proof. Consider an element a € U such that f(a) > 7. Then, there exists a server s
such that fs(a) > 5 > 3p; otherwise, it would hold that f(a) < P-4 = 7. Thus,
a € Fy, which implies that a € F'. Assume that a is not included in F'. This means that
> saer, fs(@) < 7/2. Moreover, we have that > op fs(a) < P55 =7/2. Combining
the two equations, we get that f(a) = >, fs(a) < 7/24+7/2 = 7, which is a contradiction.
Hence, it must hold that a € F.

12

The second part of the lemma is straightforward, since for any a’ € F', we have that

@) 23 ser, fs(d) 2 7/2. O
The idea of is similar to the SON algorithm [24], which requires two

computation steps. For the purposes of our setting, however, it suffices to compute
an approximate set of frequent elements and not an exact one. Due to this relaxed
requirement, our algorithm works in only one step.

Algorithm 4: FREQUENCY SAMPLING(R, T)

T=c-r-logr/T /* cis a constant */
ts ~ B(r,T/(P-r)) /* binomial sample */

H(@s, x, ...) :- sampling(@s, R, tg)
G(@s, x, count(*)) :- H(@s, x, ...)
B(@*, x, s) :- H(@s, x, ...) /* Broadcast */

K(@s, x, count(¥)) :- B(@s, x, -)
F(es, x) :- K(@s, x, £), f >c-7-T/r

The Frequency Sampling, has both a smaller amortized communication,
and a smaller excess cost over the naive algorithm. Denote T' = ¢ - r - logr/7, where
¢ > 0 is some constant. The algorithm starts by computing a “coin-flip” sample B of
R, where each element of R is sampled independently, without replacement, with prob-
ability T'/r. Thus, E[|B|] = T, and the amortized communication cost is ¢ - r - logr/T
in expectation, which is significantly lower than P - r/7 when logr <« P. To compute
B distributively, each server s generates a random number t; drawn from a binomial
distribution B(r,T/(P - r)) (thus, E[t;] = T/P), then samples ts elements without re-
placement from its local fragment R, using the primitive function sampling(@s, R,).
Once B has been computed and broadcast, we retain in F' only those elements whose
total frequency is > ¢ 7- % We next prove that, with high probability, the frequency of
all elements in F' is ©(7), hence the excess is, in expectation, O(r/7).

Proposition 4.2. FREQUENCY SAMPLING ([Algorithm) includes in F every value x
with fr(x) > T with kigh probability. Moreover, for some constantb, F' contains no value
' with fr(a’) <b-7 w.h.p.

Proof. The proof is based on a standard application of Chernoff bounds. For the first
part, we compute the probability that a frequent value a is not included in F. The
probability that we sample a tuple with this value is fr(a)/r > 7/r and the probability
that a ¢ F equals the probability that tuples with a are sampled less than ¢ -7 -T/r
times. If K(a,v), we denote v by f'(a), i.e. f'(a) gives the estimation for the frequency
of a. Then, Prla ¢ F] = Pr[f'(a) <c-7-T/r].

Notice that each sample is an independent random choice and a is chosen with prob-
ability > 7/r. Moreover, E[f'(a)] = >>,_, 7 fr(a)/r > 7-T/r. We can thus apply the
Chernoff bound with 6 = (¢ — 1) /¢, which gives us that

c-7-T

" | < Prf'(a) < (1—06)-E[f'(a)]] < e B (@15%/2

Pr(f'(a) <

Since there are < r/7 frequent values, we can apply a union bound:

Pr[3a ¢ F| < Z Prla ¢ F] < (7“/7)6_]E[f,(””)]‘52/2 = (r/7)e /T

a:fr(a)>T

13

where C' = (¢ — 1)?/2¢%. For T = d; - Tlo#, where d; is a constant, the probability of
failure becomes arbitrarily small.
For the second part, consider a value a such that fr(a) < b- 7 for some constant
b < 1. Using similar arguments as above, we can show that E[f'(a)] < b-7-T/r. We
apply again the Chernoff bound (for a suitable choice of 0):
7T
Prla € F| = Pr(f'(a) > °7]
r
= Pr(f'(a) > (1 +9) - E[f'(a)]]
< 9~ () Ef (@)] _ 9—C-7-T/r

where C' is some constant depending on b, c. We use again a union bound to get that

T

Pr[3a € F| < Z Pr[aEF]SrQ*CT
a:fr(a)<b-T

For T = ds- %, where ds is an appropriate constant, the probability of failure becomes
arbitrarily small (O(1/r)).
By choosing d = max{dy,ds}, for T = d - % hoth parts of the proposition are

T

satisfied w.h.p. O

4.2. Flat Queries

We start with [AIgorithm 5] which computes the full join Q(z,y, z) : —R(z,y), S(z, 2).
Similarly to the semijoin algorithm, during the broadcast phase we compute the high
frequency elements in R and in S. We set frequency threshold for R to 7g = /r/(P log P)
and for S to 7¢ = \/s/(Plog P). Using one of the distributed high frequency algorithms
in Bubsecfion 401 we compute a set RF containing all frequent elements Fr , -, and a set
SF containing all frequent elements Fs , r,. Then we proceed similarly to the semijoin
algorithm: if x is frequent in R then we duplicate the S(z, z) elements; otherwise, if it is
frequent in S then we duplicate the R(x,y) elements; otherwise we don’t duplicate, but
hash on =z.

Theorem 4.3. Assuming |R|/log? |R| = Q(P3log P), and similarly for S, the JOIN
algorithm is load balanced and has one MP step.

Proof. We will analyze each of the three cases of the separately. For any
value a, lell N(a) = fr(a) + fs(a) + fo(a) be the number of tuples from R, S and @
that contain the element a. Moreover, let N(a) the number of these tuples sent to server
5. We extend these notations for a set of elements V', that is, N(V) =" .\ Ns(a).

First, consider a frequent value a € RF. Then, N(a) = fr(a)- fs(a)+ fr(a)+ fs(a).
Since the hashing we use is uniform, using the balls in bins argument, the expected
maximum number of tuples from R containing a in any server is bounded by 2fg(a)/P
(as long as fr(a) > Plog P, which holds when r = Q(P?log® P)). In the case that
fs(a) = 0, we have N(a) = fr(a) and thus E[maxs Ns(a)] < 2fgr(a)/P. Otherwise,
fs(a) > 1 and

fr(a)
P

fr(a)fs(a)
P

E[max Ny(a)] < fs(a) +2- (fs(a) +1) <8-

"We abbreviate fr,» With fg, etc.

14

Algorithm 5: JOIN(R(x,y), S(y, 2))
/* Broadcast Phase: compute RF, SF x/
/* Communication Phasex/
/* CASE 1: R hashed, S duplicated */
HR(Gh1(x,y),x,y) :- R(@s,x,y), RF(x)
DS(@*,x,z) :- S(@s,x,z), RF(x)

/* CASE 2: S hashed, R duplicated */
HS(@h2(x,z) ,x,z):- S(@s,x,z), SF(x), not RF(x)
DR(@*,x,y) :- R(@s,x,y), SF(x), not RF(x)

/* CASE 3: both R, S hashed */
TR(@h3(x),x,y):- R(@s,x,y), not SF(x), not RF(x)
TS(@h3(x),x,z):- S(@s,x,z), not SF(x), not RF(x)

/* Computation Phase */

Q(@s,x,y,z) :- HR(@s,x,y), DS(@s,x,z)
Q(@s,x,y,z) :- DR(@s,x,y), HS(@s,x,z)
Q(es,x,y,z) :- TR(@s,x,y), TS(@s,x,z)

The last inequality holds since 1 < fs(a) and fr(a)/P > 1. By combining the two cases
for fs(a), we have that for some constant c:

E[max Ny (a)] < % “[fr(a)fs(a) + fr(a)]

Similarly for a frequent value a € SF \ RF, it holds that

E[max N, (a)] < = - [fr(a) fs(a) + fs(a)]

Last, we consider the case of the non-frequent values Yy = {a : “RF(a),~SF(a)}.
We can bound the load N(a) of a value a € Y; by observing that

N(G)STR‘FTS—FTR'TSSZLTR-TS

N - r—+s
PlogP = PlogP

In this case, all tuples which contain a are sent to the same server. Thus, we can associate
each value a with a ball of size N(a) which is thrown u.a.r. to a server. We showed that
the maximum size of such a ball is Wyee = 2+ (r+ s)/(Plog P). Let W be the total size
of the balls, i.e. W = N(Yy) < Q).

Now, we apply the lemma from ﬂﬁ] the expected maximum load when we throw balls
with maximum size wy,., and total size W into P bins is maximized when we consider
B = W/wpaz balls of size Wy If B < Plog P, then the expected maximum number of
balls on a server will be ©(log P); then, E[max, Ny(Y})] = ©(log P) Wmaz = O((r+s)/P).
In the case that B > Plog P, it follows from the balls in bins that

2 W 2w
wm.ar P

E Ny(Yp)] < (=
b N ()] < (3o o
15

Finally, we sum for all the cases and all values a.

E[maxn,] < > E[max Ny(a)] + > E[max Ny(a)] + E[max Ny(Yy)]
a€RF a€SF\RF

By substituting the bounds we have computed and summing, we conclude that the
load is indeed balanced among the servers, that is,

Elupen, -0 (1ALE151+12)

O

Generalizing to k-way joins for k > 2 is non-trivial. We illustrate the algorithm for
k = 3, on the query Q(z,y,z,w) = R(x,y),S(z, z), T(z,w). To see the difficulty, recall
that, for a single join, R(x,y),S(z, z), if « € RF then all tuples S(z, z) are replicated
to all servers: the cost of replication is justified by the size of the answer. But in the
three-way join, they may not be in the answer, namely when x does not occur in T'(x, w).
Thus, we need a second round of broadcast to compute the intersection of RF,SF,TF
with the z-values occurring in R, S,T. We sketch the main parts of the algorithm.

Set the frequency threshold for R to 7g = {/r/Plog P; similarly for S,T. The
broadcast phase has two rounds:

Broadcast 1: Compute and broadcast the sets RF, SF,TF, which contain all frequent
elements in R, S, T respectively (using any of the algorithms in Bubsection 4.1)).

Broadcast 2: Compute and broadcast the intersections. We show this only for R (it
works similarly for S, T):

RHY(@s, x) :- RF(@s, x), S(@s,x,y)

RHT (@s, x) :- RF(Gs, x), T(@s,x,2z)
RGY(@*, x) :- RF9(@s,x) /* Broadcast */
RGT(ex, x) :- RFT(es,x) /* Broadcast */
RF’ (@s,x) :- RG%(@s, x), RGL(es, x)

Informally, each server s computes RHY = RF NSy and RFI = RFNTy; it
then broadcasts these values. Last, each server computes the final set REF' =

(U, BET) N (U, RES).

The communication phase is a straightforward generalization of There
are four cases: (1) x € RF', (2) x € SF'\ RF', (3) x € TF'\ (RF'USF') and (4)
x ¢ (RF'USF' UTF'). We give the formal description of only the first case.

Algorithm 6: 3-JOIN (CASE 1: R HASHED, S,T REPLICATED)

HR(@h(x,y),x,y) :- R(@s,x,y), RF’(x)

HS(@*,x,z) :- 8(@s,x,z), RF’ (x)
HT (@*,x,w) ;- T(@s,x,w), RF’ (%)
Q(@s,x,y,z,w) :- HR(@s,x,y), HS(x,z), HT(x,w)

16

Proposition 4.4. The algorithm computing the 3-JOIN is load balanced and runs in one
MP step.

Proof. Notice that each value of z falls into exactly one of the four cases. Let us first
consider the first case and a value a € RF’. We have that

N(a) = fr(a)fs(a)fr(a) + fr(a) + fs(a) + fr(a)
The second step of the broadcast phase guarantees that fs(a), fr(a) > 1. Hence

2fR(CL)

E[max Ny(a)] < fs(a) + fr(a) + (fs(a)fr(a) +1)

for some constant ¢. We can obtain a similar bound for values of = which fall into the
cases 2,3. It remains to consider the last case, where a is not frequent in any of the
relations. Let Xy be the set of these values. For any value a € Xy, we have that

N(a) < Tr7sTr + TR + 75 + 71 < dTRTSTT

Applying the Arithmetic-Geometric means inequality, we get that

Vrst - r+s+t
PlogP — 3PlogP

TRTSTT =

/. rts+t /
Hence, N(a) < ¢ - 57225 for some constant ¢,

Using the balls in bins framework, we are throwing balls u.a.r. into servers and
Wpas = ¢ - 5L Following again the argument of the proof for Theorem 4.3, we

Plog P
derive that E[m:fxs Ny (Xy)] = ©(W/P), where W denotes the total load attributed to
the set X;.
Summing over the values of = for all cases, we obtain that the computation is indeed
load-balanced. O

The above proof using essentially the same techniques as in the case of the single
join. This algorithm generalizes straightforwardly to arbitrary flat queries: note that the
algorithm continues to use only two rounds in the broadcast phase.

We end this subsection by proving that two rounds are necessary in the broadcast
phase.

Proposition 4.5. Any algorithm that computes the query Q' (x,y, z) : —R(x,y), S(z, 2), T(x)
using at most one broadcast round is skewed.

Proof. Recall that we assume separate partitioning of the input relations. Let A be a
load balanced algorithm computing) with one broadcast round.

Moreover, let us denote by H the set of hash families from where A randomly picks
a hash family. Applying we can find a vector X = (z1,...,x,) such that
for each x; € X, there exists a vector X| where x; is substituted by a value x} # x; and
X, X/ collude.

Now, consider any instance where T' = X. During the broadcast step, the servers
containing T' decide, independently of the relations R, S, to communicate O(n®) tuples
of X. Denote by X’ the set containing the rest of the tuples, | X’| = n — O(n®). Next,

17

pick a value z; € X’ and consider the instance where R = {(z;,y1),..., (i, yn)}, S =
{(xiy21)s -y (wiyzn)t and T ={@1, ..., 2k, ..., xn)

Since the computation is load balanced, and the output empty, there exists a run
h € H such that the maximum load of any server is O(n/P). We say that a pair (y;, zx)
meets when both tuples R(xi,y;),S(zi,2,) are placed in the same server. There are
O(n?) possible pairs; however, each server cannot hold more than O(n?/P?) pairs that
meet. Thus, in total the servers hold O(n?/P) pairs, which implies that there exists at
least one pair (y;, z;) such that R(x;,y;), S(xi, 2) are never placed in the same server.

Finally, let us examine the case where we substitute the tuple T'(x}) with T'(z;). Since
the two vectors collude, T, R, S will send exactly the same information during the broad-
cast phase. Moreover, since the replaced tuple will not be communicated, servers con-
taining R, S will distribute their tuples in exactly the same way, hence R(x;, y;), S(zi, z)
will never meet. Following from the genericity of the computation, the tuple (z;,y;, 2)
can not belong in the output; however, since x; € T, this is a contradiction. (|

4.3. Tall Queries

We describe here the algorithm for the tall query Q(z, vy, 2) : —R(x), S(z,y),T(x,y, 2).
The generalization to arbitrary tall queries is straightforward and omitted.

For the broadcast phase, we first set the thresholds 7¢ = s/PlogP and 74 =
t/Plog P. Using any algorithm in we compute the following sets:

o SF' D {x| fs(x) > 75}
o TF' D {x| fr(x) > 77}
o TF2D {x,y| fr(z,y) > 7r}

Next, each server constructs the decision tree of Consider a server s and any
tuple ¢ belonging to one of its fragments R, Ss,Ts. Depending on which of the relations
t belongs to, a subset of the variables x,y, z is bound. That is, if ¢ € R then it binds x;
if t € S then it binds z,y; and if ¢ € T then it binds z,y, z. Starting from the root, we
follow the decision tree until one of two things happens:

e We reach a node asking for a variable not bound by ¢, e.g. if t € R and we reach a
node asking for =, y. In this case, we broadcast ¢ to all the servers.

e We reach a leaf of the tree. Then, we hash ¢ according to the hash function with
parameters the variables of the leaf node, that is, we send ¢ either to hl(zx) or to
h2(z,y) or to h3(x,y, z).

For example, consider a tuple S(a,b), such that a is frequent in 7" and a,b is not
frequent in 7'. Then, this tuple will be sent to server h2(a,b). After distributing the
tuples, each server locally computes the join.

Theorem 4.6. For |S|,|T| large enough: |S|/log|S| = Q(P?log P) (similarly for T),
the algorithm for computing the tall query Q is load balanced and has one MP step.

Proof. First, consider all the tuples that are broadcast by the algorithm. R may broad-
cast at most P log P tuples for frequent values in S and T'. Moreover, S may broadcast
a tuple for a frequent value in 7', which are at most Plog P. Hence, each server receives
at most 3 - Plog P = O(n/P) such tuples, since n = Q(P?log P).

18

Figure 2: The decision tree for the tall query Q.

Thus, it suffices to measure the load caused by the tuples which are hashed. We
partition the tuples into equivalence classes (balls), according to the values they are
hashed on (notice that it suffices to consider only input tuples, since the output size is at
most the input size). For example, ball B(a) contains all tuples from R, S,T which are
hashed only to hl(a). Notice also that if a € TF!, then B(a) is empty. The following
properties hold for any ball:

1. Every tuple of a ball is sent to the same server.

2. Every ball is sent to a u.a.r. chosen server.

3. The maximum size Wy,q, of a ball is (s + t)/(P log P).
4. The total size of the balls is W < |R| + |S| + |T.

We only prove property (3), since the others are straightforward. Consider the case
for a ball B(a). Any tuple from S belonging to B(a) is hashed only on the z variable;
hence, by the structure of the decision tree, a € SF!, which implies that fs(a) < 7s;
hence, there exist at most 75 such tuples. Similarly, we have at most 7 tuples from T
in B(a). Thus, |B(a)| < 1+ 75 + 7. For a B(a,b) ball, we have that |B(a,b)| < 2+ 7
(and for B(a,b,c) the size is constant).

Following from these properties, the expected maximum load is maximized in the case
of W/wiaz balls with size wiq.. Using the same argument as in the proof of

we obtain that E[max, ng| = @(M}ZIHT‘). O

5. The main Algorithm

In this section, we show how the techniques presented in the previous sections can be
combined to build a load balanced algorithm for any tall-flat query.

For ease of exposition, let us denote by x1., the sequence of variables or values
T1,%2,...,Tk. We will also assume w.l.o.g. the following form for tall-flat queries:

Q(z1:k,y1:¢) = Ri(x1), ..., Re(z1:8), S1(z1:8, y1)s - - -, Se(T1:k, Ye)

For simplicity, we will also refer to S1,...,5¢ as Rky1,..., Rite.

For the algorithm, we will assume that R;,S; are large enough: in particular, we will
need that |R;|/log|R;| = Q(P2log P) and that |S;|/log’|S:| = Q(P"*!log P). We also
define the frequency thresholds 7z, = |R;|/Plog P and 75, = +/|S;|/P log P.

In order to distribute the tuples in a load balanced way, the algorithm considers two
cases: (1) values which cause a large load to the query result @ and (2) the rest of the
values. Intuitively, we use flat-query techniques to deal with the first case and tall-query

19

techniques for the second case.

BROADCAST PHASE

Broadcast 1: Using any of the algorithms in [Subsection 4.1 compute the sets
RF} D {zy | fri(215) > T} (i=1k; j =1,9)
SEJ 2 {xlzj | fSi(xl:j) Z TSi} (Z = 1767 j = lvk)

In particular, using Frequency Sampling, we can compute these sets by sampling
only once. One can easily check that the communication is O(n*).

Broadcast 2: For every relation V # S;, server s computes SF;(V,s) = SEF NV, i.e.
intersects SFF with its local copy of V. These sets are then broadcast. Finally,
each server computes the sets SF; =y g, (U, SEi(V, 5)).

COMMUNICATION PHASE

1. Fori=1,...,¢: for every x1., € SF; \ Uj<i SFj, send every tuple of S; containing
x1.; to the server h(xi.x,y;). Broadcast every tuple ¢t € S, j # i containing ..

2. Consider a tuple x1.4, ¢ < k, which does not belong to case (1). For any S;, all tuples
with the same value z1.; are hashed to the same server. In order to decide where
to hash (or broadcast) the tuple, we construct a decision tree, which generalizes
the one in [Figure 9 Initially, let i = k+/ and j = 1 (root). At each step, we check
whether z1.; € RFY: if this holds, we increment j (right child), else we decrement
i (left child). The algorithm stops when either j > ¢, in which case we broadcast
Z1.q, or when ¢ =0 (a leaf is reached) and the tuple is hashed to h(z1;).

COMPUTATION PHASE
The query is locally computed at each server.

Theorem 5.1. The algorithm computes any tall-flat query in a load balanced way and
has one MP step.

Proof. We first analyze the load for the tuples that fall into the first case of the communi-
cation phase. Let us consider the case of the FOR loop where i = 1 (the same argument
can be applied for every i). Consider a value x1., € SF;. The total load attributed to
this value is

¢
N(ziw) =[] fo. (o) + D fs.(wrn)
i=1 i=1,0

Since any tuple from S; containing x1.; is hashed on (x1.x,y1), using the balls in bins
argument, we have

¢
E[max Ny(z1.1)] < > fsi(wr) + (2fs, (w1:1)/P) - (1 + H fsi(@1:1))

i>1

Moreover, notice that fg,(x1.x) > 1 is guaranteed from the second step of the broadcast
phase and also fg, (x1.5) > P. Thus,

E[max Ng(z1.5)] < 2

N

‘
T fs: @)
i=1

20

We next consider the values of the second case. In order to compute the load from
the tuples that are broadcast to all servers, notice that we have O(PlogP) frequent
values for each xy.; in relation R;, hence a total load of O(k?Plog P) for each server.
As for relations S;, we have |S;|/7s, frequent values for each x;.; in S;. Thus, each
relation causes a load of O(k - |S;|/7s,) to each server from broadcasting tuples. As long
as |S;] > P log P, this load is bounded by O(|S;|/P).

Finally, let us also measure the load caused by the tuples which are hashed. We
partition the tuples into equivalence classes (balls), according to the values they are
hashed with. Notice that every ball has the following properties: (1) every tuple of a
ball is sent to exactly one server, and (2) every ball is sent to a u.a.r. chosen server.

Now, consider a ball B(z1.4),q < k. We define the size of the ball to include the size
of the output. Consider any tuple ¢ from a relation R; belonging to B(z1.4). Clearly, for
1 < ¢q, each relation R; sends at most one tuple to this ball. For R;,7 > ¢, by the structure
of the decision tree, fgr,(x1.q) < Tr, and thus there exist at most 7, such tuples. The
same holds for any S;. Thus,

k 4
1B(x1:)| < g+ D Tri+ Y75 + QB

i=q+1 i=1

where Qp(,,) denotes the tuples of @ produced by the tuples in B(z1.4). Next, notice
that

4
|QB(901:<1)| = Z Hsz (mlzqaxq+1:k)

Tat1:8EB(x1:9) 1=1

Since every tuple is hashed only on 1.4, it must hold that

Z fs:i(®1:9, Tg1:6) < T,

Tat1::EB(x1:q)

This implies that |Qp(s,,,)| is maximized when there exists a value a7 ,,, such that for
every Si, fs;(T1:4,%,,) = 7s, (and zero for all the other values). Then, using the
Arithmetic-Geometric means inequality, we obtain that

¢ ¢ 1/e ‘
H’—l S]. E =1 Si
< e 1=) < L == 7
@B < il;[lTSw PlogP ~ (PlogP

This implies that |B(z1.4)| < ¢- s};‘%(;])))’ (c is some constant); hence wyar = - S]izlz(g[;}.
Let W be the total load of the balls. The expected maximum load is maximized when
we have just W/wypq, balls with size wpq.. Using the same argument as in the proof
of [[Theorem 4.3 we obtain that the expected maximum weight attributed to the hashed
values is ©(W/P). Summing over all cases, we conclude that the algorithm is indeed

load balanced. O

6. Impossibility Results

In this section we prove that any query that is not tall-flat cannot be computed in one
MP step. First, we show this result for two specific queries, RST (z,y) : —R(x), S(z,v),T(y)
and J(x,y) : —R(z),S(x),T(y). Using these results, we prove the claim for any query
that is not tall-flat.

21

Theorem 6.1. Any algorithm that computes the query RST (x,y) : —R(x), S(xz,y), T (y)
in one MP step is skewed.

Proof. Let A be a one step, load balanced algorithm for RST. Recall from the proof of

[Proposition 3.9 that we assume that R, S, T are partitioned separately. Using[Corollary 3.8
we construct vectors X = (z1,...,2,) and Y = (y1,...,Yn), such that we can substitute

each value z; (y;) with a value z (y;) and obtain a colluding set. Now, let us consider
an instance D of the database where R = X, T =Y and S = {(z;,%) | i=1,...,n}.
Fix also a run h € H such that the computation for this instance is load balanced.

Let us first consider the broadcast phase. Since R,T contain disjoint elements and
the information exchanged may be only generic (i.e. obtained by generic computations
on the instance), the only way for the servers to gain any information about the other
relations is to exchange tuples R(x;), or T'(y;), or S(x;,y;): we say that the values x; € X
or y; € Y or both have been broadcast. The total amount of communication is bounded
by O(n®), hence at most O(n®) values from X and from Y are broadcast. Let X’ and
Y’ be the other values, that are not broadcast: hence | X'| = n — O(n) and similarly for
[Y']. Let 8" = {(zi, ;) | ®; € X', y; € Y'}; it follows that |S'| =n — O(n®).

Claim: Suppose that we replace S by Sp such that Sy = {(zi,v:) | (i, y:) € S’} U
{(@i,y=@i)) | (ws,y:) € S'}, where 7 is any permutation on the indices of S’. Let us call
this instance D,. Using the argument in we can prove that every server
containing R, T tuples will receive exactly the same information under D or D,.

Thus, the tuples of R, T will be distributed as before, that is, in a load balanced way.
Denote R = X' and T =Y.

We say that a pair (R'(z;),T'(y,;)) meets when both tuples are placed in the same
server. We next compute the total number of pairs which meet for an instance D,. Since
each server holds O(n/P) tuples from R',T’, it contains at most O(n?/P?) pairs that
meet, which gives us a total of O(n?/P) pairs. However, drawing values from R’ T,
there are O(n?) possible pairs. By the pigeonhole principle, there exists a pair such that
R(x;),T(y;) are not placed in the same server. Then, we fix a permutation 7 such that
the tuple S(x;,y;) appears in S.

Finally, let us examine the instance D, : R, T, S,. For this instance, the tuple (z;,y;)
is included in the final result. However, the server s where S(x;,y;) is sent can not
contain both R(z;),T(y;). Let us assume w.l.o.g. that it does not contain R(z;). Then,
consider the instance D/ where we substitute the tuple R(x;) with R(z}).

Following from the collusion property, and since & or x; are not communicated during
the broadcast phase, the computation will be identical. This time, however, the tuple
(xi,y;) does not belong in the output. Nevertheless, the server s that decides upon
whether to output the tuple or not does not contain z}; due to the genericity of the
computation, s must again output the tuple (;,y;), which leads to a contradiction. O

Theorem 6.2. Any algorithm that computes the query J(x,y) : —R(x),S(x),T(y) in
one MP step is skewed.

Proof. Let A be an algorithm computing J. First, we fix the instance of T' = {y1, ..., yn }.
Applying we can then find a vector X = (z1,...,x,) with distinct ele-

ments, such that for each element z; € X, there exists a vector X/ where z; is replaced
by z} # x; and X, X/ collude.

Now, let us consider an instance D of the database where R = X and S = {2} |
x; € X}. Following our construction, R and S are disjoint. This means that J is empty

22

and thus the total load is) ns = O(n). Since A is load balanced, there exists a run
h € H such that the computation is load balanced.

Notice that, since the elements are disjoint within each relation and we allow only
generic computation during the broadcast phase, the only way to gain information is by
sending tuples. However, the amount of tuples we can send is limited to O(n®). This
means that from each relation, at most O(n®) tuples can be sent to other servers. From
this point, we consider only the tuples ¢t € R, such that ¢, are not communicated (call
these set R'). Clearly, |R'| =n — O(n®). We similarly define 5.

We say that a pair of elements (x;,y;) meets when T'(y;) is placed in the same server
with either R'(z;) or S’(z}). Since each server receives at most O(n/P) values from each
relation, each server holds O(n?/P?) pairs that meet; in total, O(n?/P) pairs. However,
the total number of possible pairs is O(n?). This implies that, by the pigeonhole principle,
we can find a pair (2;,y;) such that the tuple T'(y;) does not occur in the same server
with either R(z;) or S(z}).

For the last step of the proof, consider an instance D’ where we replace in R the
value z; with ;. The servers will receive exactly the same information, since x; or z
are not communicated during the broadcast phase. Thus, due to the collusion property,
the behavior of the algorithm will be identical and, for the new instance, T'(y;) will not
be placed in the same server as R(z}), S(z}). Consequently, A will not include the tuple
(«},y;) in the query output, which is a contradiction, sine (z},y;) now belongs in the
final result. O

Based on [[heorem 6.1l and [Theorem 6.2 we can now prove the following characteri-
zation.

Theorem 6.3. Let Q be any query that is not tall-flat. Any algorithm that computes Q
in one M P step is skewed.

Proof. We first show that the queries computable in one MP step are a subset of hi-
erarchical queries. Indeed, consider a query @ which is not hierarchical. Then, there
exists a pair of variables x,y such that at(x) N at(y) # @ and none of at(z),at(y) is
a subset of the other. This means that w.l.o.g. we can find atoms R,S,T such that
at(z)\ at(y) = {R}, at(y)\ at(x) = {T} and at(z)Nat(y) = {S}. Fix any variable # z,y
to obtain the same constant value in any relation. Then, @) reduces to computing the
query RST(z,y) : —R(x),S(z,y),T(y), which by [[heorem 6.1l cannot be computed in
one MP step.

We also have the following property: if |at(z)| > 1 for a variable x, then for every
variable y we have that at(xz) Nat(y) # 0. Indeed, if that was not true, then by fixing
all other variables # x,y to obtain the same constant value, we reduce @ to J(z,y) :
—R(x), S(z),T(y), which cannot be computed in one MP step by [[heorem 6.4 Thus, if
2 appears in more than one relation, then for every variable y # x it holds that either
at(xz) C at(y) or at(y) C at(x).

Let us now order the m variables in decreasing order of |at(z)|: x1, 22, ..., 2. Con-
sider the smallest index k such that for every ¢ > k, |at(z;)] = 1. Using the above
property, for the first k variables we have that at(x1) 2 at(xz2)... 2 at(zg). Finally,
consider a variable x;, j > k; by construction |at(z;)| = 1. We use again the property to
see that for any ¢ < k, at(x;) C at(z;), since at(x;) is a singleton set. Thus, @ satisfies
all three properties of a tall-flat query. O

23

7. Discussion

Star queries. Consider the following question: given a query @, what is the smallest
number of MP steps necessary to compute Q 7 We answer this question for star queries,
and leave it open for arbitrary conjunctive queries. W.l.o.g. we assume that the star
query is of the form Q(x1,...,xx) : —R(x1,...,2%), S1(z1), ..., Sk(zx). Since @ is not
tall-flat, we need at least two MP steps to compute it. We show here that two steps are
indeed optimal.

Proposition 7.1. A star query can be computed in two M P steps.

Proof. The load balanced algorithm for any star query works as follows. In the first
step, compute all subqueies Q;(x1,...,x) : —R(z1,...,2k), Si(z;) in parallel, in one
MP step (each is a semijoin query). In the second step, compute the intersection Q(Z) :
—Q1(Z),Q2(T),...,Qr(ZT) (this MP step does not need a broadcast phase). O

General queries. If () is a general conjunctive query, it seems difficult to determine
the minimum number of parallel steps required to compute (), because the intermediate
results may be much larger than the output. For example, the output may be empty,
but in any query plan, some subplan may return an intermediate result whose size is
quadratic in the size of the input. One possibility is to adjust the definition of load
balance to include in n the size of any intermediate computations.

An algorithm for this case would work as follows. Let us assume a query @ and a query
plan P for Q. First, reduce the nodes of P by combining consecutive query computations
which correspond to a tall-flat query in one MP step. For example, if the plan operator
computes Pj(z) : —R(x),S(x) and its parent computes Py(z) : —Pi(x),T(z), then we
compress the computation in one step: Py(z) : —R(z), S(z), T(x), since it is a flat query.
Each plan P can be thus converted into a minimal plan P’; let d be its depth. It is easy
to observe that one can compute P’ in d MP steps.

Example 7.2. Let us consider the following chain query:
C({E, Yy, z,w, U) : _R(xv y)a S(y7 2)7 T(Za ’U}), U(wa ’U)

A naive query plan would sequentially compute the 3 joins to get the final result: this
requires 3 M P steps. However, we can do better if we consider the following query plan:

(B(z,y) x S(y, 2)) @ (T(z,w) x U(w,v))

This plan corresponds to a query tree of depth 2; notice that R x S and T x U can be
computed in parallel in the same M P step. Hence, we can compute the query in just two
MP steps, which is also optimal (since it is not tall-flat).

This example generalizes to any chain query: a chain query with k atoms can be
computed in log k MP steps.

Using Data Statistics. So far, our discussion has focused on the worst case scenario,
and both our algorithms and our impossibility results assumed that the sizes of the input
relations are independent. In practice, one often knows the sizes of the relations, and
can determine that one is much larger than the other. Afrati and Ullman ﬂﬁ] have
shown how to compute any conjunctive query in one parallel step. We illustrate their
algorithm on the k-way star query @ at the beginning of this section. Assume that the
P processors are organized in a k-dimensional grid. Thus, each server is indexed by

24

a k-tuple of integers (sy,...,sx), where s; € [V/P], for i = 1,k. For each i = 1,k, let
h;i : U — [V/P] be a hash function. Then, during the communication phase the algorithm
sends R(x1,...,xx) to the server (hi(x1),...,hi(x)) and replicates S;(z;) to all servers
of the form (,*,...,hi(x;),...,*); in other words, S;(z;) is replicated v/ P*~1 times.
In the computation phase, each server computes the join locally. Thus, the algorithm
takes a single communication step. In our framework, the algorithm is skewed, because it
replicates the relations S;. However, suppose that it holds |R| = n, |S1]| = ... = |Sk| = m,
and m VvV P*=1 = O(n); then the algorithm is load balanced, and computes the star query
in one step. This discussion shows that better MP algorithms can be designed by taking
into account statistics on the input relations.

8. Conclusions

In this work, we propose a new theoretical model which captures massive parallelism
in today’s systems. In this model, the measure of complexity consists of the number of
parallel steps necessary to compute a query. Under this context, we study the complexity
of conjunctive queries and we give a complete characterization of the queries computable
in one parallel step. Future work may include several directions: for any given conjunctive
query, can we find the most efficient query plan in terms of steps of the MP model; what
is the parallel complexity for more general sets of queries (e.g. queries with unions); and,
finally, how can we implement and make the algorithms presented here practical.

Acknowledgments. We would like to thank Foto Afrati, Magda Balazinska, Bill
Howe, YongChul Kwon and Jeffrey Ullman for the useful discussions and suggestions.

References

[1] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large clusters, in: OSDI, 2004,
pp. 137-150.

[2] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, J. Zhou,
Scope: easy and efficient parallel processing of massive data sets, Proc. VLDB Endow. 1 (2008)
1265-1276. doi:http://dx.doi.org/10.1145/1454159.1454166.

URL http://dx.doi.org/10.1145/1454159.1454166

[3] Y.Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, J. Currey, Dryadling: A system
for general-purpose distributed data-parallel computing using a high-level language, in: OSDI, 2008,
pp. 1-14.

[4] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston, B. Reed, S. Srinivasan,
U. Srivastava, Building a highlevel dataflow system on top of mapreduce: The pig experience,
PVLDB 2 (2) (2009) 1414-1425.

[5] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, R. Murthy,
Hive - a warehousing solution over a map-reduce framework, PVLDB 2 (2) (2009) 1626-1629.

[6] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, T. Vassilakis, Dremel:
Interactive analysis of web-scale datasets, PVLDB 3 (1) (2010) 330-339.

[7] L. Libkin, Elements of Finite Model Theory, Springer, 2004.

[8] N. Immerman, Expressibility and parallel complexity, SIAM J. Comput. 18 (3) (1989) 625-638.

[9] L. J. Stockmeyer, U. Vishkin, Simulation of parallel random access machines by circuits, SIAM J.
Comput. 13 (2) (1984) 409-422.

[10] L. G. Valiant, A bridging model for parallel computation, Commun. ACM 33 (8) (1990) 103-111.
[11] D.E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. E. Santos, R. Subramonian,
T. von Eicken, Logp: Towards a realistic model of parallel computation, in: PPOPP, 1993, pp. 1-12.
[12] J. M. Hellerstein, [The declarative imperative: experiences and conjectures in distributed logic,
SIGMOD Rec. 39 (2010) 5-19. |doi:http://doi.acm.org/10.1145/1860702.1860704|
URL http://doi.acm.org/10.1145/1860702.1860704
[13] F. N. Afrati, J. D. Ullman, Optimizing joins in a map-reduce environment, in: EDBT, 2010, pp.
99-110.

25

http://dx.doi.org/10.1145/1454159.1454166
http://dx.doi.org/http://dx.doi.org/10.1145/1454159.1454166
http://dx.doi.org/10.1145/1454159.1454166
http://doi.acm.org/10.1145/1860702.1860704
http://dx.doi.org/http://doi.acm.org/10.1145/1860702.1860704
http://doi.acm.org/10.1145/1860702.1860704

[14] H. J. Karloff, S. Suri, S. Vassilvitskii, A model of computation for mapreduce, in: SODA, 2010, pp.
938-948.

[15] Y. Xu, P. Kostamaa, X. Zhou, L. Chen, Handling data skew in parallel joins in shared-
nothing systems, in: SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, ACM, New York, NY, USA, 2008, pp. 1043-1052.
doi:http://doi.acm.org/10.1145/1376616.1376720.

[16] M. Grohe, Y. Gurevich, D. Leinders, N. Schweikardt, J. Tyszkiewicz, J. V. den Bussche, Database
query processing using finite cursor machines, Theory Comput. Syst. 44 (4) (2009) 533-560.

[17] N. N. Dalvi, D. Suciu, Efficient query evaluation on probabilistic databases, VLDB J. 16 (4) (2007)
523-544.

[18] D.J. DeWitt, J. Gray, Parallel database systems: The future of high performance database systems,
Commun. ACM 35 (6) (1992) 85-98.

[19] P. Alvaro, W. Marczak, N. Conway, J. M. Hellerstein, D. Maier, R. C. Sears,
Dedalus: Datalog in time and space, Tech. Rep. UCB/EECS-2009-173, EECS Department, Uni-
versity of California, Berkeley (Dec 2009).

URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-173.html

[20] L. Carter, M. N. Wegman, Universal classes of hash functions, J. Comput. Syst. Sci. 18 (2) (1979)
143-154.

[21] A. Pagh, R. Pagh, Uniform hashing in constant time and optimal space, STAM J. Comput. 38 (1)
(2008) 85-96.

[22] M. Raab, A. Steger, ”balls into bins” - a simple and tight analysis, in: RANDOM, 1998, pp.
159-170.

[23] S. Cohen, Containment of aggregate queries, SIGMOD Record 34 (1) (2005) 77-85.

[24] A. Savasere, E. Omiecinski, S. B. Navathe, An efficient algorithm for mining association rules in
large databases, in: U. Dayal, P. M. D. Gray, S. Nishio (Eds.), VLDB, Morgan Kaufmann, 1995,
pp. 432-444.

[25] P. Sanders, On the competitive analysis of randomized static load balancing, in: Proceedings of the
first Workshop on Randomized Parallel Algorithms, RANDOM, 1996.

Appendix A. Connections to FCM model

We formally explore here the connection between the MP model and the FCM model
(Finite Cursor Machine) for streaming data. In order to be able to compare the class of
queries computable in these models, we restrict our attention to full conjunctive queries
in the semi-join algebra [1d)].

In the FCM model, we view a step as an operation which does not demand any
intermediate sorting of the relations, when using a sublinear amount of memory. The
authors prove that the query R(z),S(x,y),T(y) cannot be computed in their model in
one step. This implies that non-hierarchical queries in the semi-join algebra are not
computable in one step in the FCM model. We can also prove the following proposition.

Proposition Al. The class of hierarchical queries in the semi-join algebra collapses to
the class of tall queries.

Proof. Consider a full hierarchical query @ in the semi-join algebra. Without loss of
generality, we will assume that) includes no constants. Consider two variables x,y.
We will show that at(x) Nat(y) # 0. Indeed, in the case that this does not hold, there
exist two sets of atoms R, S such that y only occurs in R and x only in S. Moreover,
R NS = (. Now, consider the first semi-join in the query plan between a branch that
contains only atoms from R and a branch that contains only atoms from S. Then, one
relation will contain only y and not x, whereas the other only x and not y. Since @ is
full though, semi-joining the relations is not possible.

Because @ is hierarchical, at(z)Nat(y) # 0 implies that at(z) C at(y) or at(y) C at(x)
for every pair of variables. Hence, the variables form a linear chain, which means that @
is a tall query. O

26

http://dx.doi.org/http://doi.acm.org/10.1145/1376616.1376720
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-173.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-173.html

However, one can easily see that every tall query can be computed in one step in the
FCM model. Notice also that restricting tall-flat queries to semi-join algebra, we obtain
exactly the class of tall queries.

Proposition A2. The class of tall-flat queries in the semi-join algebra collapses to the
class of tall queries.

Hence, the FCM and MP model compute exactly the same class of queries when we
restrict to full queries in the semi-join algebra.

Appendix B. Weak Load Balancing

In this section, we modify the notion of load balancing and instead of requiring that
the maximum load is O(n/P), we ask for a weaker bound O(n/f(P)), for some function
f such that f(P) < P. We then ask for an algorithm which achieves such weaker load
balancing.

In this context, we present Algorithm [which generalizes the approach in ﬂﬁ], and
achieves E[max, ns] = O(n/{/P) in one MP step, without any broadcast phase.

Algorithm 7: SERVER-MAP (Q(x1,...,2k))

Let d = /P and S* be a k-dimensional space where each point has coordinates
from [d] = {0,...,d — 1}. We map server s, where s =0,..., P — 1, to a unique
point ps = (a1, ...,ar) € S* such that

s=a;-d" '+ .. +ap_i-d +ag

Now, let us consider a tuple t € R(x;,,...,;,), where £ < k. For each variable z;,
we use a perfect hash function h; : U — [d]. During the communication phase, the
algorithm sends t to a server s iff for any index j =1,...,/, it holds

pslij] = hi, (x;), where p[i] denotes the i-th coordinate of the point ps. The
computation phase is performed locally.

Proposition B1. Algorithm SERVER-MAP achieves load balance E[maxsns] = O(+%)
for any query Q.

Proof. Correctness. Consider a tuple t = (b1,...,b;) € Q. Then, for every atom
R(x4y,...,2,) of Q, it holds that the tuple tr = (b;,,...,b;,) € R. By the construction
of the algorithm, there exists only one server which contains every tg; this is the unique
server s for which it holds that ps = (h1(b1),...,hk(bg)). Thus, s (and only s) will
output the tuple ¢.

Performance. We will first show that the expected maximum number of tuples a
server receives from a relation R is O(I—};I). Summing over all relations in @, we show
that the maximum load attributed to the input will be O(size(D)/P).

Indeed, assume that R has ¢ > 0 variables. Group the servers in d*~* groups, where
a group corresponds to a possible fixing of the k — ¢ variables not in R. Clearly, these
groups are of size d* > d and partition the set of servers. Moreover, notice that the
tuples of R will be broadcast to one server of each group. However, this will induce the
same load distribution for each group; hence, it suffices to study the expected maximum

27

load in one such group. The worst case for load balancing occurs when the tuples in R
differ only in one variable, let it be z;. However, in this case the algorithm first maps all
tuples to a group of servers of size d (which corresponds to a fixing of the [— 1 variables)
and then sends each tuple of R to a u.a.r. chosen server from this group. The situation
is similar to throwing w.a.r. |R| balls to d servers. Hence, as long as |R| = Q(dlogd),
the maximum expected number of R-tuples in a server of the group is O(|R|/d).
Finally, we show that the output tuples in @ will be load balanced as well. Clearly,
we can view () as a relation with ¢ = k variables. Applying the above argument to
(@), we obtain that the maximum expected number of output tuples in any server is
O(size(Q)/d). Summing the input and output, we obtain the final result. O

28

	Introduction
	Related Work
	The Model and the Main Result
	Main Result
	Datalog Notation for MP Algorithms
	Examples

	Three Building Blocks
	Computing High Frequency Elements
	Flat Queries
	Tall Queries

	The main Algorithm
	Impossibility Results
	Discussion
	Conclusions
	Connections to FCM model
	Weak Load Balancing

