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Abstract. We consider the problem of finding known asteroids in a
given region of space and time. Each asteroid’s trajectory is known pre-
cisely at any given point in time, but evaluation of the model describ-
ing its location is prohibitively expensive at query time. We propose a
framework for sampling the base model and indexing the resulting “ob-
servations.” Our system includes 11 million simulated asteroids, and our
requirements include 5 milliarcsecond accuracy and 15 second query re-
sponse time. We evaluate the effect of various sampling and indexing al-
ternatives in this approach and propose two exemplar solutions: a faster
but space-intensive interpolation-based method, or a slower method that
relies on bounding regions tailored to the object’s behavior but requires
fewer sampled points. We implement all solutions in a relational database
and evaluate them on a full-scale dataset of known asteroid trajectories.

1 Introduction

The new generation of telescopes under construction return to the same area of
the sky with sufficient frequency to allow moving objects — asteroids, near-earth
objects (NEOs), comets, and others — to be tracked through direct observa-
tion [14, 12]. Studies of asteroids in our Solar System provide a better under-
standing of the processes that lead to planet formation and enable the identifi-
cation of potential Earth-impacting asteroids. To detect these moving sources,
one image may be subtracted from another (separated in time by several days or
weeks) to differentiate variable and moving sources from the dense background
of stars and galaxies. Each detected moving source is then compared with a
database of expected positions of known asteroids for identification. Linking new
observations with known asteroid tracks in this manner is, however, a complex
and computationally intensive task subject to strict performance constraints. At
a high-level, this task maps onto executing the type of query: “Return all known
moving objects that are expected to be located within a given space at a given
time.” In our context, this problem is challenging for the following reasons:

(1) Number of Moving Objects (a.k.a. Sources) Table 1 shows a characteristic
Solar System model with over 11 million asteroids [9], including their average
and maximum daily motion (in deg. per day). This model represents the types
and number of asteroids potentially observable by the Large Synoptic Survey
Telescope (LSST) and PAN-STARRS. It is currently being used to simulate the



positions of asteroids within large simulated image streams in order to test the
sensitivity of linking and tracking algorithms.

(2) Complex Trajectory Models The position of an asteroid can be calculated
directly by integrating their tracks using a set of orbital elements1, accounting
for the gravitational interaction with other massive bodies in the Solar System,
principally Jupiter. This brute force integration step is prohibitively expensive:
For 10,000 sources, the characterization of positions (ephemerides) one years2

from the epoch of their orbital elements takes 200s using a typical code. To
characterize the positions of all ∼11 million sources for all 1000 observations
that the LSST will undertake each night would require ∼60 CPU hours.

(3) Performance Constraints Over a period of ten years, the Sloan Digital Sky
Survey imaged 8,000 sq. deg. (1/5th of the sky), detected ∼108 stars and galaxies
and amassed approximately 80TB of imaging data. The data rates associated
with a new generation of temporal surveys, e.g. the LSST, will be three orders
of magnitude larger. The LSST requires that we identify all moving sources
within the region of the sky encompassed by a single LSST image (i.e. 9.6 sq.
deg. circle on the sky) within the 15s required to complete a single exposure
of the LSST camera. In short, we have ∼12 hours during the day to build an
index (characterize the asteroids’ positions for the night), but only 15s to use the
index to identify all moving objects found in a single exposure. In one exposure
pointed towards the ecliptic, the plane of the Solar System where most asteroids
reside, we expect 20k observable main belt asteroids (MBAs).

(4) Accuracy Constraints Applications of the asteroid trajectory models typ-
ically require high accuracy, precluding the use of coarse statistical approxima-
tion methods. The two applications we consider (source identification and source
simulation in the LSST simulated image stream) require accuracy to within 1
arcsecond and 5 milliarcseconds, respectively. For comparison, 1 arcsecond cor-
responds to the apparent size of a dime about 3.7 kilometers away.

Table 1. The 107 modeled solar system objects to be queried.

Daily Displacement
Count Type Mean Maximum

9600k Main Belt Asteroids (MBAs) 0.28◦ 0.71◦

340k Trojans Varies Varies
270k Near-Earth Objects (NEOs) 0.5◦ 150.◦

47k Trans-Neptune Objects 0.17◦ 0.05◦

25k Comets 0.16◦ 32.◦

11k Scattered Disk Objects 0.012◦ 0.05◦

Compared to prior work (See Section 4), our problem is thus novel in that we
must provide fast look-up queries over objects whose trajectories are described

1 a set of six variables that completely describe an orbit
2 Running time scales linearly with the time elapsed from orbital elements’ epoch.



by complex models that cannot simply be approximated because of application
precision requirements. Within this context, we develop and evaluate two (non-
mutually exclusive) approaches for predicting positions of known or simulated
asteroids given an arbitrary search area in space and time: (1) modeling each
trajectory with a bounding region, using a spatial index to reduce the search
space, and evaluating the exact positions of the asteroids at the given epoch
using the ephemeris calculation code and (2) modeling each trajectory by a set
of positions sampled frequently enough to interpolate their positions within a
given accuracy threshold at runtime. We apply these methods to simulations of
the data flow from the LSST. In this paper, our goal is to develop a sufficient
method to query simulated catalogs for objects that would appear in the LSST’s
circular aperture at a given pointing and epoch: query time requirement is 30s,
storage available is 10TB and accuracy required is 5 milliarcseconds.

The challenge of predicting the positions of sources extends beyond the ques-
tion of tracking asteroids. In general, our techniques are applicable to a class
of spatio-temporal trajectory search problems, where the true positions of the
objects can be predicted by the evaluations of complex, often non-linear mod-
els that are extremely accurate but computationally expensive. We explore the
space, time, and accuracy tradeoffs afforded by pre-sampling the models to offset
the cost of evaluating them, but at the expense of storing and indexing these
positions coupled with reduced accuracy. Specifically, we contribute

– a description of a challenge problem in trajectory indexing with specific per-
formance, scale, and accuracy constraints, characterized by the availability
of precise models of the trajectories (Section 2)

– two methods for solving the challenge problem (Section 2)
– an implementation of each method using a relational database equipped with

a spatial index (Section 2),
– an experimental evaluation of the design choices for each technique, and a

characterization of the tradeoffs involved (Section 3).

2 Methods

Any realization of the statistical solar system model produces ∼ 107 MBAs.
To find all objects in a given region at a given time, the exact positions must
be calculated by the predictive model. A naive approach entails calculating the
position (ephemeris) of every object in the catalog and comparing that posi-
tion to the boundary of the search region. Calculating an object’s position at
epoch t requires expensive numerical integration from the epoch (start time) of
the orbital elements, however, sampling the trajectories and storing the sam-
pled positions can significantly reduce the search space. Method 1 samples the
trajectories at coarse intervals to reduce the number of possible candidates that
must be processed using the expensive ephemeris calculation. Method 2 samples
the trajectories at a finer resolution in order to avoid the expensive ephemeris
generation step altogether, in favor of a simpler interpolation scheme.



We evaluate these methods to explore the tradeoffs between storage space,
query latency, and accuracy, subject to our constraints described in Section 1.

2.1 Method 1

The general outline for method 1 is as follows: 1) Sample orbit positions on an
intermediate grid (e.g. 1 day), 2) Group positions into segments containing two
endpoints, then 3) for each segment, Extrude a minimal buffer region such that
the object does not leave the buffer in the time span bounded by the segment
end points. 4) Index the bounding regions to support efficient access. 5) Query
for regions overlapping the search region in space and time to produce a candi-
date list. 6) Return exact positions for each object in the candidate list using the
ephemeris generation code. This method is parameterized by the sampling in-
terval, allowing control of the space-time tradeoff: fewer cached positions reduce
the database size, but result in a larger list of candidates.

Implementation By joining a table containing one time and position per
row (the ephermides table) on itself, each row then contains a start and end
position at a start and end time. For each row which represents a 24 hour range
of positions, we then created a bounding envelope using Microsoft Spatial.

The naive approach to create a bounding rectangle does not fully contain
asteroid trajectories. Figure 1 demonstrates that a trajectory of an asteroid can
spend most of its time outside a rectangular box of great arc segments. Increasing
the size of the rectangles would produce more undesirable false positives.
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The nature of the trajectories leads to envelopes described by a line segment
with a variable buffer. For example, a nearly linear trajectory should have a small
buffer, whereas a curving or looping a trajectory should have a larger buffer to
contain the complex motion. The buffer-size is calculated from the velocity the
curvature of a trajectory.

To geometrically calculate the buffer B1,2 for the line segment (x1, x2), we
look at how much the trajectory bends entering and leaving the segment. The



bend amount bi is defined as the distance between point xi and the great-arc
segment (xi−1,xi+1). Figure 2 illustrates these definitions.

The envelope buffersize B1,2 = MAX(b1,b2,bmin), where bmin = 400m=13arcsec3

is a minimum buffer length set by the topographical reflex of the observatory.
As the Earth rotates, the asteroids’ positions will oscillate. Because period is
exactly 1 day, the same as our sampling rate, this motion is imperceptible in the
sampled positions and sets an absolute minimum buffer.4

2.2 Method 2

The general outline for method 2 is as follows: 1) Sample orbit positions on a fine
grid (e.g., 1 hour), then 2) Group enough positions together to parameterize an
interpolation method (e.g., four points for a cubic interpolation), then 3) Index
these positions, 4) Query the index to find candidate points within the search
region, and finally 5) Interpolate to find an approximate position.

This method is faster, but at the expense of data volume and astrometric
accuracy: the interpolated positions will always deviate from the positions gen-
erated with the ephemeris code by some δ. This method is tunable in that the
sampling rate for your fine grid can be chosen such that interpolations deviate
by a δ less than your required accuracy.

Implementation To evaluate this method, we sampled the ephemerides
every minute for two sets of 1000 randomly selected MBAs. We structured a po-
sition table to contain 4 positions and 4 epochs per row, each row corresponding
to a one minute range in time and space. Two of the positions anchor the one
minute range, and the other two extend one minute beyond on each side to en-
able cubic interpolation. We store the end points redundantly to increase query
speed and accuracy, but note that each row will be shorter than in Method 1
because there is no 144 byte envelope to manage.

In Section 3, we investigate what sampling rate will provide at least a 5 mil-
liarcsecond astrometric accuracy when compared with the model. There are a
number of interpolation algorithms to choose from. Cubic spline interpolation
is popular and Chebychev polynomials have been used in the astronomy com-
munity [15]. To demonstrate our proof of concept we started with a basic third
degree polynomial interpolation[17], implemented as a UDF in C#.

3 Evaluation

We implemented both methods for a system that populates simulated LSST
images with model MBAs, investigating the challenges and trade-offs of each.

3 chosen empirically, by observing the maximum reflex.
4 Another challenge is that MSSQL stores rounded edges as a series of line segments.

To reduce data volume, we increased the buffer tolerance, effectively defining an
envelope using fewer line segments. The benefit is that the envelopes take 144 bytes
on average (instead of default 1232kb), at the cost of storing larger envelopes.



Experimental Setup We start with one instance of the simulated solar system
[9] containing 9,655,441 MBAs and their orbital elements as of MJD of 49353.16.
We created daily ephemerides for the month starting 49353.16. The production
system will ultimately hold 10 years of ephemerides. We loaded the ephemerides
into SQL Server 2008, running on a 64 bit system with Windows Server 2008
R2 Standad, 2 Quad-Core Xeons @ 2.26 Ghz, 24GB RAM. The RAID controller
was a Dell PERC 6/E with 512MB buffer supporting for SAS.
Method 1 Each row contains a start and end time, a start and end position,
and a bounding envelope calculated as described Section 2. We indexed these
envelopes using the default MS Spatial Index and ran performance tests for
queries pointing at regions of different densities: the ecliptic (most dense), 10◦,
and 20◦ away from the ecliptic. These density bins were chosen in effort to
separate the query time’s dependance on the size of the search area and the
number of envelopes returned. At each pointing, we increased the circular search
area’s radius 2X and recorded the query time. Figure 3 shows the query time
curves for the three densities, plotted both by search area and envelopes returned
to demonstrate the dependence on each. For search areas greater than 10 sq. deg.
the query time scales linearly with the bounding boxes returned independent of
search area, possibly because the MS Spatial intersection algorithm behaves
differently when the search area increases beyond the size of the envelopes. We
can return envelopes which intersect a 9.6sq. deg. search area in ∼20s, when
pointed towards the densest area of the sky.
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Fig. 3. Performance using MS Spatial Index for three search regions and densi-
ties. The density decreases as the search area deviates from the ecliptic. Vertical
lines represent search area of 9.6 sq. deg. The query times are plotted against
envelopes returned (left) and against search area (right).

From here, the system returns the orbital elements of these asteroids for
calculation of their exact positions using the ephemeris code, OpenOrb [3].
We found that ephemeris calculation time increases linearly with time since



the orbit element’s epoch. For 10,000 objects on a 2.66 GHz machine: t ≈
(days from orbital epoch)× 0.55(s/day) + 3.5s

The ephemeris calculation time can be mitigated by storing the orbital ele-
ments for every year, month or week to balance storage and query time require-
ments. An orbital element table for 107 asteroids fills 2GB. Because ephemeris
calculation can run forwards or backwards, if orbital elements were stored every
2 weeks, the longest an orbit would need to be propagated is 7 days. This cor-
responds to a runtime of 15s for the “worst case” ecliptic search. The final step
compares each position with the search area boundary, which takes < 1s.

In this method the resulting accuracy is exact with respect to our model.
Storage volume and query time can be balanced depending on the available
space and query time requirements. For our available storage space a “worst
case” query would take 20s to return the bounding boxes and 15s to to calculate
the ephemerides. For one month of data, the daily ephemerides (460M rows)
fill approximately 50GB and two sets of orbit elements 4GB. For context, our
system requires functionality over 120 months.
Method 2 To determine the minimum time, dt, between sampled positions to
provide 5 milliarcsecond accuracy, we created sets of interpolated positions from
dt = {(2, 4, 8, 32, 64, 128, 256, 512} minutes and compared the interpolated po-
sitions with the model-produced positions to create error sets. Figure 4 shows
the distribution of errors for 3 different sampling rates. A factor of 2 increase in
dt causes an order of magnitude increase in the interpolation error. Fast-moving
asteroids and complicated-moving asteroid require most frequent sampling. How-
ever, we found that fast movers have linear tracks and those with complicated
tracks move slowly, which narrows the necessary sampling rate.
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Fig. 4. Distribution of interpolation errors for three constant sampling rates:
dt = {64, 128, 256}. Dashed vertical lines mark the 5mas accuracy requirement.

We find that we need dt = 64 to achieve 5 mas accuracy. Using an adaptive
refinement algorithm which stores only necessary samples, we can achieve this
accuracy with a combination of dt = 64 and dt = 128. This would require
approximately 16 positions to be stored for 1 day or 7.4B rows per month.



Next, we investigate the query times. Because the interpolation is fast (<1s
for 40k MBAs), we do not need such strict performance from the coarse spa-
tial filter. Therefore, we query by extending the search area by the maximum
displacement by an MBA in dt (this only works with a constant dt), treating
positions as points rather than polygons. We use a simple hierarchical triangular
mesh (HTM) index [7] to return the points in the set of triangular pixels covering
the search area. Next, we find the interpolated positions, and finally compare
the interpolated positions with the circular search area. Querying against the
HTM index and comparing the interpolated positions combined takes ∼300ms
for 40k objects, achieving our required total query time on the order of seconds.

4 Related Work

Moving objects databases are a well established research area [10], although
commercial DBMSs provide only support for spatial data types [1, 2, 4].

Most closely related work studies techniques for indexing moving object tra-
jectories. Traditional techniques commonly assume that objects have linear tra-
jectories in one or two dimensions [5, 8, 13]. In our applications, moving objects
follow complex paths. Recent work [6] studied the problem of indexing objects
with non-linear trajectories in arbitrary dimensions by indexing the parameter-
ized representation of these trajectories. This is an approach orthogonal to the
ones that we study in this paper.

In general, our problem is unique in that it combines the requirement for
(1) handling an extremely large number of objects whose (2) trajectories are
described with complex models, and (3) answering range-selection queries on
these objects wthin strict time and precision constraints. Within this context,
we studied how to uniquely combine various existing techniques to derive an ef-
ficient solution. The related techniques include trajectory sampling and position
interpolation [10], creating buffers around trajectories to capture uncertainty
in object location [10], splitting a trajectory into minimum bounding regions
shaped like hyperrectangles [11, 18] or more complex shapes [19], and polyno-
mial trajectory approximation [16].

5 Conclusion and Future Work

We tested two methods for storing and querying asteroid positions based on
their position at a given time. The bounding envelope method has the benefits
of exact accuracy and tunable storage requirements, but at the cost of lengthy
query times. By testing the interpolation method we found that we can reduce
the query time drastically, but at the expense of either accuracy or storage
space. In the evaluation, we held the accuracy requirement fixed to investigate
the required storage. Using a third degree polynomial interpolation, we would
exceed our available storage (10 years of data would fill ∼900B rows).



We are currently investigating how the interpolation (cubic spline, Cheby-
chev polynomials) changes the accuracy, and indirectly the data volume. Fur-
thermore, in effort to reduce the query time in method 1, we are tweaking the
balance between the sampling interval of bounding envelopes and how frequently
to store the orbital elements, the input for ephemeris generation. Ultimately, the
storage/query time/accuracy parameter space would be fully explored providing
an optimal solution for an arbitrary set of project requirements.
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