
1

CBCD: Cloned Buggy Code Detector

Technical Report

UW-CSE-11-05-02

May 2, 2011

(Revised March 20, 2012)

Jingyue Li

DNV Research&Innovation
Høvik, Norway

Jingyue.Li@dnv.com

Michael D. Ernst

U. of Washington
Seattle, WA, USA
mernst@uw.edu

2

CBCD: Cloned Buggy Code Detector

Jingyue Li

DNV Research & Innovation

Høvik, Norway

Jingyue.Li@dnv.com

Michael D. Ernst

University of Washington

Seattle, WA, USA

mernst@uw.edu

Abstract—Developers often copy, or clone, code in order to

reuse or modify functionality. When they do so, they also clone

any bugs in the original code. Or, different developers may

independently make the same mistake. As one example of a

bug, multiple products in a product line may use a component

in a similar wrong way. This paper makes two contributions.

First, it presents an empirical study of cloned buggy code. In a

large industrial product line, about 4% of the bugs are

duplicated across more than one product or file. In three open

source projects (the Linux kernel, the Git version control

system, and the PostgreSQL database) we found 282, 33, and

33 duplicated bugs, respectively. Second, this paper presents a

tool, CBCD, that searches for code that is semantically

identical to given buggy code. CBCD tests graph isomorphism

over the Program Dependency Graph (PDG) representation

and uses four optimizations. We evaluated CBCD by searching

for known clones of buggy code segments in the three projects

and compared the results with text-based, token-based, and

AST-based code clone detectors, namely Simian, CCFinder,

Deckard, and CloneDR. The evaluation shows that CBCD is

fast when searching for possible clones of the buggy code in a

large system, and it is more precise for this purpose than the

other code clone detectors.

Keywords- Validation, Debugging aids

I. INTRODUCTION

Although copy-paste is generally regarded as a bad
coding practice, it is sometimes necessary, and some
developers do it to save development effort. Baker found that
24% of files examined included exact matches of code lines
[4]. Ducasse et al. reported that two files of gcc have more
than 60% duplication [3]. A study of code clones in Linux [2]
showed that:

• A few copy-pasted segments were copied more than
eight times.

• Device drivers and cryptography have the highest
percentage of clones, because many drivers share similar
functionality and cryptographic algorithms consist of
multiple similar computational steps.
Code copy-paste and software reuse makes buggy code

appear in multiple places in a system or in different systems.
For example, code clones and software reuse have caused
duplicated software security vulnerabilities [18]. Cut-and-
paste is a major cause of operating system bugs [11].

This paper makes two contributions. First, we examined
the data in the SCM (Software Configuration Management
System) of 4 projects: an industrial software product line, the

Linux kernel, Git, and PostgreSQL. We discovered that
identical buggy code does exist in all 4 projects.

Second, to find clones of buggy code, we developed a
clone detection tool, CBCD. Given an example of buggy
code, CBCD uses isomorphism matching in the Program
Dependence Graph (PDG) [15] to search for identical code
— that is, clones. Subgraph isomorphism is NP-complete
[13], so we implemented four optimizations that reduce the
number and complexity of graphs in the PDG isomorphism
matching. Evaluation of CBCD on real cloned buggy code
confirms that CBCD is scalable to large systems. To evaluate
how well CBCD can find cloned bugs, we also compared
CBCD with text-based, token-based, and AST-based code
clone detectors, using the identified buggy codes and their
clones as oracles. CBCD outperformed the other approaches.
(Our evaluation focuses on the important problem of finding
clones of buggy code. For other tasks, the other clone
detectors may be better than CBCD.)

The rest of this paper is organized as follows. Section 2
presents our empirical study of cloned buggy code in one
commercial product line and three large open source systems.
Section 3 describes the design and implementation of CBCD,
which can find cloned buggy code. Section 4 presents our
experimental evaluation. Section 5 discusses related work,
and Section 6 concludes.

II. AN EMPIRICAL STUDY OF CLONED BUGGY CODE

We first manually investigated whether buggy lines of
code are cloned in real systems. We examined the SCM of
the Linux kernel, Git, and PostgreSQL, and the bug reporting
system of a commercial software product line.

A. The Linux Kernel

For the Linux kernel, we searched for the keywords in
Table I in commit messages and in the bug tracking system,
which records discussions between developers during
debugging. For each match, we read the description of the
commit, the discussions between developers, and the “diff”
of the original file and the changed file. This information
indicated to us whether the commit was necessitated by
duplication of a bug. If so, we identified the buggy code and
its clones manually.

The second column of Table I shows the number of
distinct, independent bugs that exist in multiple locations. By
distinct, we mean that we count a bug once, even if it appears
in 3 places. By independent, we mean that if a commit
message said, “The same problem as commit #1234”, we
count only one of the two bugs. Finally, there is no double-

3

counting: if a commit message said “the same problem as
#1234, with the same fix”, then it only appears in one row of
Table I. Some examples of these cloned bugs are shown in
Table II. However, for some of these bugs, we cannot locate
the cloned buggy code, because the developers did not give
enough details. The third column of Table I omits such bugs.
For example, one developer said, “The same bug that existed
in the 64bit memcpy() also exists here so fix it here too” but
did not specify which version of which file of the system
includes the fix of the bug in 64bit memcpy(). As there are
many files and many versions of Linux, it would be difficult
to search all of them to find the fixes to memcpy(). Even if
we found a change to memcpy(), without further information,
we do not know if that change is the fix mentioned by the
developer.

TABLE I. CLONED BUGS WHICH EXIST IN MORE THAN ONE PLACE IN THE

LINUX KERNEL

Key words used

for searching the

SCM

Number of distinct

bugs existing in more

than one place

Number of bugs

whose clones we

can locate

same bug
same fix
same issue
same error

same problem

53
48
62
7

112

23
24
39
6
65

Sum 282 157

TABLE II. EXAMPLES OF CLONED BUGS IN THE LINUX KERNEL

Phrases in the SCM

explaining the cloned bugs

Code modified (i.e., the lines

of code modified by the bug

fix)

This is quite the same fix as
in 2cb96f86628d6e97fcbda5fe4
d8d74876239834c

static int my_atoi(const char *n
ame){ int val = 0;
 for (;; name++) {
 switch (*name) {
 case '0' ... '9':
 val = 10*val+(*name-'0');
 break;
 default:
 return val;} }}

This patch fixes iwl3945
deadlock during suspend by
moving notify_mac out
of iwl3945 mutex. This is a
portion of the same fix for
iwlwifi by Tomas.

 ieee80211_notify_mac(priv-
>hw,
IEEE80211_NOTIFY_RE_AS
SOC);

It turns out that at least one of
the caller had the same bug.

ret = btrfs_drop_extents(trans,
root,
inode, start,
aligned_end, start, &hint_byte);

Other platforms have this same
bug, in one form or another

atomic_inc(&call_data-
>finished);
func(info);

B. Git and PostgreSQL

For the Git and PostgreSQL projects, we used the same
methodology. Table III shows the number of bugs that exist
in multiple places.

C. A Commercial Software Product Line

We also evaluated a commercial product line in which a
single product is produced for more than 40 different
operating systems and mobile devices. For 17 of the projects,

we have access to bug reports and developer discussions.
These projects have a total of 25420 valid bugs that are
confirmed and resolved as a bug in the code, not a user error.

We searched for the same keywords in the bug reports.
Unlike the Linux kernel, Git, and PostgreSQL, we do not
have full access to the source code in the SCM. Thus, we
did not check the code differences. Our assessment of
whether a bug was duplicated (as shown in Table IV) was
based on reading the discussions between developers during
debugging. It turns out that 3.8% (969/25420) of the bugs in
these 17 projects exist in more than one place.

TABLE III. CLONED BUGS WHICH EXIST IN MORE THAN ONE PLACE IN GIT

AND POSTGRESQL

Key words

used for

searching the

SCM

GIT POSTGRESQL

Number of

distinct bugs

existing in

more than one

place

Number of

bugs whose

clones we

can locate

Number of

distinct bugs

existing in

more than one

place

Number of

bugs whose

clones we

can locate

same bug
same fix
same issue
same error

same problem

7
7
14
0
5

5
4
3
0
0

9
5
2
1
16

9
4
0
8
1

Sum 33 12 33 22

TABLE IV. CLONED BUGS WHICH EXIST IN MORE THAN ONE PLACE IN THE

COMMERCIAL SOFTWARE PRODUCT LINE

Key words used for searching the

bug reports

Number of distinct bugs

existing in more than one place

same bug
same fix
same issue
same error

same problem

170
40
302
56
401

Sum 969

III. CBCD, A TOOL TO SEARCH FOR CLONED BUGGY

CODE

Once a bug is detected, it is necessary to check the whole
system to see if the bug exists somewhere else. Section II
shows that this is not merely a theoretical concern, but is
important in practice. It is especially important for a software
product line, because of high similarity among products.
Customer satisfaction drops when a customer re-encounters a
bug that the vendor claimed to have fixed. Although
regression testing can check whether a bug is fixed, or can
detect an identical manifestation of the bug in other products,
regression testing cannot find all occurrences of the bug,
especially when testers do not know where the buggy code
may appear. Thus, it is important to supplement regression
testing by a search for clones to locate code that may behave
similarly to the buggy code.

A. PDG Based Code Clone Detectors

Some buggy lines may be copy-pasted “as-is”, but often,
developers slightly modify the copy-pasted code to fit a new
context [2]. More than 65% of copy-pasted segments in
Linux require renaming at least one identifier, and code
insertion and deletion happened in more than 23% of the

4

copy-pasted segments [2]. Statement reordering, identifier
renaming, and statement insertion or deletion are also
common in buggy code clones, especially clones introduced
due to code or component reuse. For example, in Table II, a
developer stated that “Other platforms have this same bug, in
one form or another.”

Our approach is to adapt Program Dependence Graph
(PDG)-based code clone detection methods [7, 8, 9, 10],
because we believe that the PDG-based approach is more
resilient to code changes than text-based, token-based, and
AST-based approaches.

B. Tool Architecture

Our tool, CBCD (for “Cloned Buggy Code Detector”)
has a pipe-and-filter architecture, as shown in Fig. 1. CBCD
represents a program or code fragment as a PDG, which is a
directed graph. Each vertex represents an entity of the code,
such as a variable, statement, and so on; CBCD also records
the vertex kind (e.g., “control-point”, “declaration”, or
“expression”), the position (i.e., the file name and the line of
the represented source code), and the source code text itself.
Each edge of a PDG represents control or data dependency
between two vertexes.

CBCD’s algorithm consists of three steps.
Step 1: CodeSurfer [14] generates the PDG of both the

buggy code (the “Bug PDG”) and of the system to be
searched for clones of the buggy code (the “System PDG”).
The Bug PDG may consist of multiple sub-graphs depending
on the structure of the buggy code; CBCD handles this case,
but for simplicity of presentation this paper assumes the Bug
PDG is connected. The System PDG consists of a collection
of interlinked per-procedure PDGs.

Step 2: CBCD prunes and splits the System PDG (see
Section III.C) to reduce its complexity and make subgraph
checking cheaper. Optionally, CBCD also splits the original
Bug PDG into multiple smaller PDGs (see Section III.C.4).

Step 3: CBCD determines whether the Bug PDG is a
subgraph of the System PDG. It uses igraph’s [16]
implementation of subgraph isomorphism matching. igraph
is faster than other tools, such as Nauty [17], when
comparing randomly-connected graphs with less than 200
nodes [12].

CBCD filters the matches reported by igraph. CBCD
only outputs matches where, for each corresponding vertex,
the vertex kinds match and the source code text matches.
When comparing vertex kinds, CBCD tolerates control
replacement, e.g., when developers change a “for” loop to a
“while” loop to provide the same functionality. When
comparing source code text, vertexes that represent
parameters of a function call are exempted. Note that even if
all vertex kinds and text match identically (which CBCD
does not require), the source code could still be different so
long as it led to the same PDG. For example, reordering of
(non-dependent) statements does not affect the PDG, nor
does insertion of extra statements, such as debugging printf
statements.

CBCD aims to find all semantically identical code clones.
Two code snippets are semantically identical if there is no
program context that can distinguish them—that is, if one

snippet is substituted for the other in a program, the program
behaves identically to before, for all inputs. Determining
semantic equivalence is undecidable, so CBCD reports code
with matching PDGs. As a result, every match that CBCD
finds is semantically identical to the buggy code, but CBCD
is not guaranteed to find all semantically-identical clones.

C. Pruning the Search Space for Isomorphism Graph

Matching

All code clone detection tools that rely on graph
matching face scalability problems. CBCD’s isomorphism
matching step is the most time-consuming step, especially
for matching two big graphs. The reason for this is that
subgraph isomorphism identification is NP-complete [13]. In
the worst case, the fast subgraph isomorphism algorithm [12]
implemented by igraph [16] requires O(N!N) time, where N
is the sum of the number of nodes and edges of both graphs
to be compared. Liu et al. [9] claim that “PDGs cannot be
arbitrarily large as procedures are designed to be of
reasonable size for developers to manage.” In practice, a
procedure can be very big. For example, we used Git as a
subject program, and its “handle_revision_opt” procedure
has 817 vertexes and 2479 edges. But, even smaller
comparisons can be intractable in practice. Consider a
modest example: the buggy code has 5 lines of code (with
around 10 vertexes and 15 edges in the PDG) and the
procedure has 100 lines of code (around 200 vertexes and
300 edges). In this example, N = 525 and N!N is 3.6 × 101204.

Output:

bug

clones

Step 3:

subgraph

testing

Split Bug

PDG

Pruned

System

PDG

Step 2:

Split the

Bug PDG

and prune

the System

PDG

Bug vertex

Info.

Bug

PDG

System

PDG

System

vertex Info.

Temporary file CBCD steps

Step 1:

Create

Bug

PDG

Step 1:

Create

System

PDG

Buggy

lines

System to

be

checked

Figure 1. Architecture of CBCD

To deal with the scalability problem, Step 2 of CBCD
prunes the number and complexity of the graphs to be
compared.

We have implemented four optimizations. The first three
optimizations are sound: each never excludes a true match,
but makes the algorithm faster overall. These optimizations
are run by default. The fourth optimization runs only if the
buggy code segment contains too many lines of code.

The first three optimizations are based on the fact,
explained in Section III.B, that CBCD reports system code as
a clone of buggy code only if both the shape of the respective
PDGs, and also the vertex kind and source text of
corresponding vertices, are identical. The first three
optimizations can be viewed as enhancements to the

5

subgraph isomorphism checker, working around its
limitation that it does not account for vertex kinds and source
text.

All four optimizations are also based on the following
observation: In most cases, the Bug PDG is small. Fig. 2
validates this observation: it is the maximum number of
contiguous lines of code in each of the 163 Git, Linux kernel,
and PostgreSQL bugs for which we can locate their cloned
bugs. (This excludes 28 bug fixes that added code rather than
changing code.) More than 88% of the bugs cover 4 or fewer
contiguous lines of code.

1) Optimization 1 (Opt1): Exclude Irrelevant Edges and

Nodes from the System PDG
CBCD removes every edge that cannot match an edge in

the Bug PDG, because such an edge is irrelevant for CBCD’s
purposes. In particular, CBCD removes every edge whose
start and end vertex kinds and vertex text are not included in
the start and end vertex kinds and characters of an edge in
the Bug PDG. In the best case, this disconnects entire sets of
nodes, but it is useful even if it merely removes edges,
because a single System PDG can be very big.

For example, suppose the Bug PDG has two edges: one
from vertex kind “control-point” to vertex kind “expression”,
and the other from “expression” to “actual-in”. Then, CBCD
excludes from the System PDG all edges that do not start
with “control-point” and end with “expression”, or start with
“expression” and end with “actual-in”.

At this point, CBCD also compares the vertex characters
(source code text), for vertex kinds whose code must match
(e.g., not procedure parameters nor arguments). CBCD
discards those with text that cannot match the Bug PDG. The
purpose of comparing vertex kinds and characters is different
than Step 3 of Section III.B. The comparison here excludes
System PDG vertexes and edges that are irrelevant to the
Bug PDG. The comparison in Step 3 ensures that the
vertexes in the isomorphism matching graphs are also
identical.

2) Optimization 2 (Opt2): Break the System PDG into

Small Graphs
This optimization transforms the System PDG from one

large graph into multiple small ones. CBCD must run more
subgraph isomorphism matchings, but each matching will
focus on a smaller graph. The idea is to utilize the vertex
kind information of the Bug PDG to choose only small
sections of the procedure PDG for each subgraph
isomorphism matching. The steps of Opt2 are:

• Opt2-step1: Count the number of nodes of each
vertex kind in the Bug PDG and the System PDG.

• Opt2-step2: Choose the vertex kind vkmin in the Bug
PDG that has the minimum number of occurrences
in the System PDG. If it occurs 0 times in the
System PDG, there is no graph match.

• Opt2-step3: Calculate the pseudo-radius db of the
Bug PDG: the greatest distance between a node of
vertex kind vkmin and any other node.

• Opt2-step4: For each node of vertex kind vkmin in
the System PDG, find the neighbor graph of the
vertex, with radius db from the node of kind vkmin.

The distance computations ignore edge directions.

Figure 2. Size (contiguous lines) of the largest component of each bug
fix

Fig. 3 shows an example. Since the nodes of vertex kind
vkmin must match, and there are few of them, it makes sense
to check subgraph isomorphism only near them. It is possible
for the neighbor graphs to overlap, in which case some PDG
nodes appear in multiple distinct neighbor graphs and will be
tested for isomorphism with the Bug PDG multiple times.

Bug PDG

radius db = 2

Vertexes of PDG

Node of kind VKmin

VS.

Neighbor graph of

node of kind

VKmin with radius db

System PDG

Figure 3. Breaking the System PDG into smaller pieces (Opt2)

Opt2 adds some extra overhead to CBCD. Here is the
theoretical analysis of the time complexity without Opt2 and
with Opt2. We assume that the Bug PDG has i1 nodes and j1
edges and the System PDG has i2 nodes and j2 edges. Then
the time complexity of each step of Opt2 is:

• Opt2-step1. O(i1+i2)

• Opt2-step2. O(1)

• Opt2-step3. O(i1 j1), because of the igraph_diameter()
function of igraph [16].

• Opt2-step4: O(w(i2+j2)), where there are w vertexes in
the System PDG having the chosen vertex kind from
Opt2-step2, because of igraph_neighborhood_graph()
function of igraph [16] .

6

Although Opt2 adds the above overhead, it can
significantly reduce the time complexity of Step 3 of Section
III.B, i.e. subgraph isomorphism matching.

Without Opt2, the time complexity of comparing the Bug
PDG and the System PDG is between O((i1+ j1+ i2+ j2)

2) and
O((i1+ j1+ i2+ j2)! (i1+ j1+ i2+ j2)), for the algorithm [12]
implemented by igraph.

Since each subgraph of the System PDG has identical
pseudo-radius as the Bug PDG after Opt2, we can assume
the size of subgraph of the System PDG is v(i1+j1), where v
is expected to be close to 1. With Opt2, we compare the Bug
PDG with w neighbor graphs in the System PDG in Step 3 of
CBCD. The time complexity of each comparison will be
between O(w(i1+j1+v(i1+j1))

2) and
O(w(i1+j1+v(i1+j1))! (i1+j1+v(i1+j1))).

Let us compare the time complexity of isomorphism
testing without Opt2 with Opt2:

• The best case:
O(w(i1+j1+v(i1+j1))

2) vs. O((i1+ j1+ i2+ j2)
2)

• The worst case:
O(w(i1+j1+v(i1+j1))! (i1+j1+v(i1+j1))) vs.
O((i1+ j1+ i2+ j2)! (i1+ j1+ i2+ j2))

Opt2-step2 chooses the vertex kind with the fewest
occurrences. So, it reasonable to assume that w is small,
namely much less than i2. In addition, we have observed that
the buggy code often includes only a few lines, so we can
assume i1+j1 is much smaller than i2+j2. If the two
assumptions stand, the time complexity of comparing the
Bug PDG and System PDG with Opt2 will be at least as
good as the time complexity of this step without Opt2 in the
best case. Even in the worst case, the time complexity with
Opt2 will still be better than the one without it, because i1+j1
is related to the size of the buggy code, which is often small,
while i2+j2 is related to the size of the procedure to be
compared, which can have hundreds of lines of code.

3) Optimization 3 (Opt3): Exclude Irrelevant PDGs
This optimization discards some parts of the System

PDG. The Bug PDG must match within one of the (relatively
small) components of the System PDG. More specifically,
each node of the Bug PDG must correspond to some node of
a System PDG component, so each System PDG component
must have as many, or more, nodes of each vertex kind than
the Bug PDG does. CBCD discards any System PDG
component that does not satisfy this criterion.

For example, suppose the Bug PDG has four nodes of the
“expression” vertex kind, two nodes of the “control-point”
vertex kind, and two nodes of the “actual-in” vertex kind. If
a System PDG component includes four nodes of the
“expression” vertex kind, one node of the “control-point”
vertex kind, and three nodes of the “actual-in” vertex kind,
this System PDG component will be excluded from
isomorphism matching, because it has too few nodes of
vertex kind “control-point”. It therefore cannot be a
supergraph of the Bug PDG.

4) Optimization 4 (Opt4): Break Up Large Bug Code

Segments
Although most bug segments cover 4 or fewer lines of

contiguous code, as shown in Fig. 2, some bug segments are

larger. When the buggy code segment is large, Opt1, Opt2,
and Opt3 may not be able to improve the performance of the
system enough, because:

• When the buggy code segment is large, the Bug PDG
will include many vertex kinds. Thus, Opt1 may not
be able to prune many edges of the System PDG.

• When the buggy code segment is large, the radius of
the Bug PDG will be large. Thus, the sub-graphs of
the System PDG after Opt2 will still be large and
isomorphism matching will be slow.

• Even if few large Bug PDGs and large System PDGs
need to be compared for isomorphism matching, the
system will perform very slowly. Thus, Opt3, which
reduces the number of comparisons, does not help
enough.

To deal with large contiguous buggy code, we
implemented a fourth optimization. It is only triggered when
the bug has more than 8 lines of contiguous code. The
optimization is performed in Step 2 of CBCD and breaks up
bug code segments into sub-segments with fewer lines of
code. We set two thresholds, which are configurable and
default to 4 and 6. The purpose of setting these two
thresholds is to split large buggy code segment into smaller
sub-segments, and at the same time avoid having too small
sub-segments. For a buggy code segment having more than 8
lines of code, CBCD puts the first 4 lines of code in a sub-
segment first. If the remaining lines have 6 or fewer lines of
code, CBCD does not split it further. Otherwise, CBCD
again puts the first 4 lines of the remaining lines in the
second sub-segment and reconsiders the remaining lines.
CBCD searches for clones of each sub-segment
independently, and then merges their corresponding matched
clones together. Merging can increase the false positive rate
of CBCD, if CBCD merges two unrelated partial matches
into a “complete” match that it would never have discovered
if using the larger bug PDG. To deal with this issue, CBCD
checks the last line of one suspected buggy sub-segment with
the first line of another suspected buggy sub-segment to be
merged. If the difference is more than 8 lines of code or the
two sub-segments are in different files, CBCD assumes that
these two code lines are too far apart to be part of clone of a
single bug and does not merge them.

IV. EVALUATION AND DISCUSSION

We wished to answer the following research questions:

• How well can CBCD find cloned buggy code?

• How well does CBCD scale?

A. The Subject Programs

We evaluated CBCD on Git, the Linux kernel, and
PostgreSQL. We chose those three systems because:

• They are programmed mainly using C/C++, which
means that they can be compiled by CodeSurfer.

• Their revision histories enable us to find buggy code
and cloned buggy code for our evaluation.

• Git has more than 100K lines of code, PostgreSQL has
more than 300K lines of code, and the Linux kernel has

7

millions of lines of code, making them a good test of
the scalability of CBCD.

B. Evaluation Procedure

1) Oracles for the Evaluation
As discussed in Section III.B, determining true clones of

buggy code is undecidable. Our experiments use as an
oracle the clones of buggy code that developers identified. It
is possible that the developers found only some clones of a
given bug, in which case any tool that reported the others
would be (incorrectly) considered to suffer false positives.

As described in Section II, we identified buggy code and
its clones by searching commit logs and reading code. From
these bugs, we chose only those related to C/C++ code,
because that is the only type of code that CodeSurfer can
compile. We examined all 12 Git bugs and all 22
PostgreSQL bugs from Table III, and we arbitrarily chose 52
(one third of 157) Linux bugs from Table I. We were not
able to use all of these bugs: our technique is not applicable
when the bug fix adds new code; CBCD only handles C and
C++; our processor is 32-bit x86; and in two cases the
developers were mistaken in calling two bugs clones,
because they refer to completely different functions or data
structures (see Table V). After excluding such cases, the
evaluation used 5 Git bugs, 14 PostgreSQL bugs, and 34
Linux bugs. A complete list of the bug clones examined in
the evaluation is in Appendix A. Appendix D shows the
commitment information of the bugs in SCM.

TABLE V. BUGGY CODE THAT PROGRAMMERS CALLED “CLONES” BUT
ARE NOT TRUE CLONES

Buggy lines of code Not identical code under

CBCD definition

struct lock_file packlock; struct cache_file cache_file;

if (ahd_match_scb(ahd,
pending_scb, scmd_id(cmd))

if (ahc_match_scb(ahc,
pending_scb, scmd_id(cmd))

2) Other Code Clone Detectors for Comparison
To compare CBCD with other types of code clone

detectors, we also ran Simian v2.3.32 [25] (text-based),
CCFinder v10.2.7.3 [1] (token-based), Deckard v1.2.1 [6]
(AST-based), and CloneDR v2.2.5 [26] (AST-based) on
these 53 bugs.

These code clone detectors favor large cloned code
segments rather than small ones. As shown in Fig. 2, cloned
bugs are mostly less than 4 lines of code, so we adjusted
some parameters to make the code clone detectors work
better. For Simian, we set the number of lines of code to be
compared for clones to its minimum value, i.e. 2, and used
default values for the other parameters. For CCFinder, we set
the minimum clone length to be 10 and the minimum TKS to
be 1. For Deckard, we set min_tokens to 3, stride to 2, and
similiartiy threshold to 0.95. For CloneDR, we set the
minimum clone mass to 1, the number of characters per node
to 10, number of clone parameters to 5, and similarity
threshold to 0.9.

For Simian, CCFinder, and Deckard, the system to be
checked for buggy clones is the same file set as CBCD.
However, CloneDR failed with parse errors when we input

the same file set as for CBCD. To enable a comparison with
CBCD, we used a “slim evaluation”: the “system” input to
CloneDR is only the files that include the bug and the buggy
clones found by CBCD. We additionally commented out
lines that CloneDR could not parse. The slim evaluation
determines whether CloneDR can find the clones that are
identified by CBCD. However, the slim version includes
only 2% of the input files and 1% of the lines of code. If
CloneDR could run on all files, its false positive rate would
be much higher than reported in the slim evaluation.

3) Executing the Tools
The input to each tool is: the file that contains the buggy

code (along with the starting and ending lines of the buggy
code segment, if the tool accepts it; only CBCD did), plus
the system to be checked for buggy clones.

We recorded the execution time of CBCD using the
Linux command “time”. The evaluation was run on a PC
with 4G memory, 3Ghz CPU, and running Ubuntu 10.04.

4) Metrics
A false negative is a clone identified by the developer but

not identified by the tool. A false positive is a clone reported
by a tool that the developers did not report as buggy.

We count a clone as found if a tool reports a clone pair
whose parts are as large as, or larger than, the original buggy
code and the developer-identified buggy clone. This metric
is very generous to the other code clone tools. CBCD
reports clones that have similar size to the buggy code. The
other code clone tools report much larger clones, because
they are designed for a different purpose: to find large cloned
code segments. Often a single result subsumed several of
CBCD’s results. Such large results would be less useful to a
programmer. These issues make a direct comparison of
precision and recall, or of the exact number of true and false
positives and negatives, misleading. Instead, for each tool,
we categorized each of the 53 bugs as follows.

• N1: no false positives, no false negatives.

• N2: no false positives, some false negatives.

• N3: some false positives, no false negatives.

• N4: some false positives, some false negatives.

C. How Well Can CBCD Find Cloned Buggy Code?

Table VI counts the bugs in each category. Detailed data
are shown in Appendix B. CBCD outperforms the other tools
in finding buggy clones correctly, i.e., CBCD has the highest
number in N1. Deckard performs the worst, partially because
it failed with parse errors in 15 out of the 29 N2 cases.
Unlike CloneDR, Deckard does not report precisely the
location of the parse error. Thus, we could not perform a
slim evaluation as with CloneDR.

TABLE VI. COMPARISON WITH OTHER CODE CLONE DETECTORS

 CBCD Simian

CCFinder

Deckard

CloneDR-

slim

N1 36 (68%) 16 (30%) 24 (45%) 14 (26%) 31 (58%)

N2 6 (11%) 36 (68%) 11 (21%) 29 (55%) 14 (26%)

N3 11 (21%) 1 (2%) 12 (23%) 6 (11%) 7 (13%)

N4 0 (0%) 0 (0%) 6 (11%) 4 (8%) 1 (2%)

8

Researchers categorize code clones into four main types,
and so-called “scenarios” subcategorize each type [27]. The
distributions of our examined bugs are shown in details in
Appendix A and are summarized as follows:

• 51% of duplicated bugs are Type-1: identical code
fragments except for variations in whitespace, layout,
and comments.

• 24% are in scenarios a, b, and c of Type-2: renaming
identifiers or renaming data types and literal values.
Most of the variable renaming is renaming of function
actual arguments.

• 23% are in scenarios a and b of Type-3: small deletions
or insertions.

• 2% are in scenario a of Type-4: reordering of
statements.

The 5 tools perform about equally well on Type-1 and
Type-2 clones. In theory, AST-based tools could be best on
Type-2 clones, but CBCD’s text comparisons reduce its false
positive rate in practice. CBCD outperforms all the other
tools on Type-3 clones; for example, CBCD identifies the
code segments shown in Table VII as clones while Simian,
CCFinder, Deckard, and CloneDR suffer false negatives.

Unlike text-based, token-based, and AST-based clone
detectors, a semantics-based clone detector like CBCD
tolerates control-statement replacement. Our 53 examples
did not include control-statement replacement (programmers
might be less likely to call such code snippets “clones” in the
bug tracking system), so we evaluated this claim by
artificially modifying the code of a Git clone from a “for”
statement to a “while” statement. The modified code is
shown in Table VIII. CBCD identified the clone, but Simian,
CCFinder, Deckard, and CloneDR did not.

TABLE VII. EXAMPLES OF BUGGY CLONES IDENTIFIED CORRECTLY BY

CBCD BUT NOT BY OTHER CODE CLONE DETECTORS

Buggy lines of code Bug clones

doorbell[0] = cpu_to_be32((qp
->rq.next_ind << qp-

>rq.wqe_shift) | size0);

doorbell[0] = cpu_to_be32(first_i
nd << srq->wqe_shift);

 ret = btrfs_drop_extents(trans,
root, inode, start, aligned_end,
 start, &hint_byte);

ret = btrfs_drop_extents(trans, ro
ot, inode, file_pos, file_pos + nu
m_bytes, file_pos, &hint);

TABLE VIII. ORIGINAL CODE VS. CODE AFTER CONTROL REPLACEMENT

Original code Code after control replacement

for (j = first; j <= last; j++){

 struct object_entry *child =
 objects + deltas[j].obj_no;
 if (child->real_type ==
 OBJ_REF_DELTA)
 resolve_delta(child,
&base_obj, obj->type);
}

j = first;

while (j <= last){

 struct object_entry *child =
objects + deltas[j].obj_no
 if (child->real_type ==
OBJ_REF_DELTA)
 resolve_delta(child, &base_obj,
obj->type);
 j++; }

The 6 clones out of 53 that are not identified by CBCD,
i.e. the false negative cases, are in Table IX. CBCD misses
the first three clones because CodeSurfer’s PDG does not
represent data structures and macros; this is not a reflection
on our technique, but on our toolset. CBCD misses the last
three clones because they include variable renaming in an

expression. When a vertex in the PDG is recognized as
“expression”, as explained in Section III.C.1, CBCD
compares the characters of the expression to avoid false
positives.

All 11 bugs for which CBCD reports a false positive are
similar: the buggy code is one line of code calling a function,
or a few one-line function calls without data/control
dependencies among them. For all 11 bugs, Simian,
CCFinder, or Deckard either also report a false positive, or
else suffer a false negative due to a built-in threshold that
prevents them from ever finding any small clone. CloneDR-
slim does slightly better, with 2 false negative and 7 false
positives. Recall that we used a slim evaluation for
CloneDR; if it ran on all files, its false positive rate would be
higher.

One example of CBCD’s 11 false positives is shown in
Table X. Other calls of the same function, such as
memset(ib_ah_attr, 0, sizeof param), are returned by CBCD,
because it tolerates renaming of actual input and output
parameters. However, as mentioned in Section IV.C.3, we
count as a false positive any CBCD output that is not yet
reported by the developers as buggy. Some of the CBCD-
identified clones of the bug code segments might be bugs
that have been overlooked by developers. Thus, CBCD’s real
false positive rate may be lower than Table VI reports.

TABLE IX. FALSE NEGATIVES: BUGGY CODE CLONES THAT ARE NOT
IDENTIFIED BY CBCD

The bug fix shown by “diff”

 static const struct amd_flash_info jedec_table[] = {
-
 .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
- .uaddr = MTD_UADDR_0x0555_0x02AA,

static struct ethtool_ops bnx2x_ethtool_ops = {
- .get_link = ethtool_op_get_link,

 #define desc_empty(desc) \
- (!((desc)->a + (desc)->b))

- obj = ((struct tag *)obj)->tagged;
VS.
- object = tag->tagged;

- blue_gain = core->global_gain +
 core->global_gain * core->blue_bal / (1 << 9);
VS.
- red_gain = core->global_gain +
 core->global_gain * core->blue_bal / (1 << 9);

- if (!hpet && !ref1 && !ref2)
VS.
- if (!hpet && !ref_start && !ref_stop)

TABLE X. EXAMPLES OF FALSE POSITIVES

Buggy code All identified clones

memset(ib_ah
_attr, 0, sizeof
 *path);

True positive:

memset(ib_ah_attr, 0, sizeof *path);
False positive:

memset(best_table, 0, sizeof(best_table));
memset(best_table_len, 0,
sizeof(best_table_len));
memset(p, 0, padding);
etc.

Table XI shows another kind of code that might lead to
potential false positive reports from CBCD. Fig. 4 shows the
PDGs. The two vertexes representing “close()” in Bug PDG

9

and the four vertexes representing “close()” in System PDG
lead to several sub-graph isomorphism relationships between
these two PDGs. Thus, CBCD returned several semantically
identical correspondences between the buggy code and
suspected code. However, all CBCD results point to the
same suspected code. CBCD coalesces duplicate results that
point to the same code location.

D. How Well Does CBCD Scale to Larger Bugs?

In our experiments, CBCD finished in seconds after
CodeSurfer completed. However, this is not a good test of
scalability, because the cloned bugs are often platform- or
architecture-dependent, in which case the command line (in
the developer-supplied Makefile) that compiles them does
not compile the whole system.

TABLE XI. BUGGY CODE AND SUSPECTED CODE OF A POTENTIAL FALSE
POSITIVE IN GIT

Buggy code System code

 if(pid! = 0){
close(fd[1]);
dup2(fd[0], 0);
close(fd[0]);}

if(pid! = 0){
close(fd[1]);
dup2(fd[0], 0);
close(fd[0]); }
close(fd[0]);
close(fd[1]);

pid

close() dup2() close()

fd[1] 0 fd[0] fd[0]

pid

close() dup2() close() close() close()

fd[1] fd[0]0 fd[0] fd[0] fd[1]

PDG of the buggy code PDG of the system code

Figure 4. Snippet of the PDG of the buggy and system code in Table XI

To determine how well CBCD works with larger bug
segments, we searched the Linux and Git SCM using the key
word “duplicate”. We chose four of these (non-buggy) code
segments from Git and four from Linux. The four Linux
code segments are located in subcomponents “net”, “fs”,
“drivers”, and “drivers” of Linux of different versions
respectively, and we compiled the relevant subcomponent.
For Git, we compiled the whole relevant version (Git
changed size over time). Table XII gives the results.

Step 1 of CBCD (performed by CodeSurfer, version 2.1)
takes a long time if the system is big, but this is done only
once and can be reused. We expect CodeSurfer’s
performance to improve in later versions. Checking for
clones of new bugs requires only running Step 2 and 3,
which takes only seconds.

The running time of Simian, CCFinder, and Deckard
using the same parameter setting as explained in Section
IV.B are shown in Table XIII. We could not run CloneDR
because of its parse errors.

CBCD is slower than Simian and Deckard if CBCD’s
preprocessing (Step 1) is included. Considering only the
incremental cost of Steps 2 and 3, CBCD is competitive.
Setting parameters to let CCFinder detect small clones

makes it slower than CBCD, because generating all small
clone pairs first, and then searching for clones of a certain
code segment, is inherently inefficient. This could be
changed, but CBCD is more accurate than the other
approaches, regardless of their settings. We believe the cost
of undetected bugs makes CBCD worth running even if all
steps are required.

E. Performance Improvement Due to the Four

Optimizations

We used four optimizations to speed up CBCD. We have
examined the unique benefits of a given optimization that are
not obtained by other optimizations. For example, to evaluate
Opt2, we compared CBCD with Opts 1+3+4 against CBCD
with Opts 1+2+3+4.

TABLE XII. RUNNING TIME OF EACH STEP OF CBCD

Id NLOC / Number of PDG

edge

CBCD steps

1 2 3

Sys. Bug

Git-1 67K/358K 10/38 6m 13s 5s

Git-2 75K/441K 4/4 15m 4s 2s

Git-3 81K/414K 9/39 18m 9s 3s

Git-4 81K/414K 16/33 18m 6s 2s

Linux1 170K/1022K 6/70 32m 15s 6s

Linux2 140K/830K 3/3 25m 16s 4s

Linux3 363K/1970K 4/4 159m 39s 8s

Linux4 313K/1645K 3/13 95m 17s 7s

TABLE XIII. RUNNING TIME OF OTHER CLONE DETECTORS

Id Simian CCFinder Deckard

Git-1 2s 5m 4m

Git-2 2s 6m 5m

Git-3 2s 8m 6m

Git-4 2s 8m 6m

Linux1 6s 63m 8m

Linux2 5s 34m 7m

Linux3 16s 899m 32m

Linux4 13s 623m 24m

The results show that our optimizations can greatly

improve the performance of the isomorphism matching by
reducing the complexity and number of graphs to be
compared. Detailed data are shown in Appendix C .

Opt1, i.e. filtering out the irrelevant edges and vertexes
in the System PDG, contributes most to the CBCD
performance improvement. Opt1 pruned on average 90% of
the edges before the subgraph isomorphism comparison. For
the 53 bugs, Opt1 on average improved performance 622
times. However, the variation is high. One case achieved
20237 times performance improvement and another achieved
11890 times performance gain. In one of the four “duplicate
code” Linux cases, without Opt1, the execution of the Step 3
of CBCD was aborted (igraph’s [16] subgraph isomorphism
function reported an out-of-memory error, because the
System PDG is too big and too many isomorphic subgraphs
are returned).

Opt2, i.e. breaking the System PDG into smaller graphs,
improves Step 3 of CBCD by 2 to 3 times. In one case, Opt2
improved performance by 72 times. The performance gain of
Opt2 is not significant in other cases, because Opt1 prunes

10

out most edges of the System PDG. In 90% of our examined
cases, the average ratio of size (number of edges and
vertexes) of subgraph of the System PDG to size of the Bug
PDG, i.e. the “v” in the formulas of Section III.C.2, is less
than 1.

Opt3, i.e. excluding irrelevant System PDGs, also
improves Step 3 of CBCD by 2 to 3 times. As with Opt2,
after Opt1 filters out most of the edges of the System PDG,
few subgraphs of the System PDGs are left for comparison.

Opt4, i.e. breaking the large bug code segment, is
applicable only to three clones that have more than 8 lines of
code. In one case, Step 3 of CBCD sped up by 120 times, but
the other two showed no significant performance
improvement. Examination of these code segments shows
that Opt4 can bring significant performance gains when the
bug code segment has many vertex kinds, especially vertex
kinds such as “actual_in”, “actual_out”, or “declaration”, that
are related to procedure parameters or arguments. In such
cases, Opt1 cannot filter out many vertexes and edges of the
System PDG. On the contrary, if the number of different
vertex kinds of the Bug PDG is small, many vertexes and
edges of other vertex kinds in System PDGs will be pruned
out using Opt1, and Opt2 and Opt3 are also more effective,
subsuming the benefits of Opt4.

F. Threats to Validity

1) Threats to Internal Validity
The buggy code used for evaluation consists of real

cloned bugs in Git, the Linux kernel, and PostgreSQL, but
were not chosen to be representative or comprehensive. We
do not know how many cloned bugs these projects really
have, but we do know that around 4% of the bugs in a
commercial product were duplicates.

2) Threats to External Validity
We tested CBCD only on Git, the Linux kernel, and

PostgreSQL. It is possible that other subject programs would
have different characteristics. Furthermore, the evaluation
considers only 53 cloned bugs in detail, and these were not
chosen to be representative.

3) Threats to Construct Validity
To measure the false positive rate of CBCD, we used the

clones identified by the developers as an oracle. As
mentioned in Section IV.C, the developers might have
overlooked some clones, so CBCD’s real false positive rate
may be lower than reported in this paper.

G. Application Constraints

Although bugs consisting of a one-line function cause
false positives in our experiment, and Fig. 2 shows that most
code fixes are on one line, this does not limit the
applicability of CBCD. In real life, developers can often
merge the buggy code line with few lines before or after it,
which can be regarded as the context of the buggy code, to
make a bigger code segment as the input for CBCD. This
may help avoid false positives. We did not perform this in
our experiments to avoid evaluation bias.

V. RELATED WORK

Previous code detection methods can be classified into:

• Token-based code clone detecting methods [1, 2]
examine token sequence similarities.

• Text [3] or string-based [4] code clone detection
methods compare the text or strings in the code.

• Abstract syntax tree (AST) based code clone detection
methods [5, 6] match two ASTs to find code clones.

• PDG-based code clone detection tools [7, 8, 9, 10] try
to overcome the limitations of the above code clone
detectors by comparing the data and control
dependence graphs of the code segments.

• Behavior-based code clone detection [32] tries to find
code clone based on the execution results of test cases.

• Memory-state-based code clone detection [33]
compares the abstract memory states of code.

Most previous code clone detection tools search for large
clones for code refactoring or to find plagiarism. Thus, most
such tools do not compare small code segments that span
only a few lines. For example, PDGs smaller than a certain
size are excluded from comparison in [9]. In general, such
tools have no knowledge of which segment of code should
be the input for clone searching. Thus, some of these tools
start with the first line of the system, and extract 10 or 20
lines as input for searching for code clones.

We have identified a new, important use case. CBCD
solves a different problem than scanning an entire codebase
for plagiarism detection or identifying refactoring
opportunities. CBCD is more like an advanced “find”
command. The input is a small code segment that includes a
few contiguous lines of code (most buggy segments cover
only a few contiguous lines of code, unless the bug is caused
by missing functionality or a design change). The outputs are
all locations of the clones of such a code segment. A user
might assume that general code clone detectors would also
perform well at detecting clones of buggy code. However, as
our evaluation showed, this assumption would be wrong.
CBCD outperforms text-based, token-based, and AST-based
clone detectors to find cloned buggy code, especially Type-3
and Type-4 clones. We did not compare CBCD with
behavior-based clone detectors, because we lack detailed
knowledge of the expected dynamic behavior of the buggy
code. Memory-state-based clone detectors do not fit the
purpose of detecting cloned buggy code.

Unlike generic code clone detectors; CBCD does not
generate all code clone pairs in advance. It only searches for
clones of a small code segment on demand. The rationale is
that people are usually not interested in finding code clones
of small code segments to refactor them. However, when
they find that a code segment is buggy, they need to find all
its clones and fix all of them. As mentioned in Section IV.B
and IV.E, searching for clones on demand rather than
generating all clone pairs at once makes CBCD more
scalable than general clone detectors. But, even if other clone
detectors adopted CBCD’s incremental approach, CBCD is
still more accurate.

CBCD uses PDG-based code clone detection principles
to detect clones. PDG-based methods usually face scalability
problems in sub-graph isomorphism checking. One proposed
solution to improve the performance of PDG-based code

11

clone detection is to match the PDG back to the AST [10], so
that the graph isomorphism problem is simplified into a tree
similarity problem. However, such a simplification excludes
information for some edges in the PDG and makes the PDG
comparison incomplete. Another proposed solution to the
scalability problem is to compare the vertex histogram of
PDGs first to exclude highly dissimilar PDGs and stop the
sub-graph isomorphism matching after the first isomorphism
is found [9]. Such a solution is lossy, because a dissimilar
vertex histogram between a small PDG and a big PDG does
not guarantee that the small PDG will not have a subgraph
isomorphism relationship with the large PDG. A PDG-based
code clone detector [7] based only on graph isomorphism
performed poorly compared to other code clone detectors
[30]. CBCD improves the accuracy of PDG-based code
clone detection by utilizing the syntax and text information
of the buggy code to prune and break the PDG to be
compared. Compared to the system in [9], CBCD is less
lossy and is more scalable to large PDGs. Yet another
proposed solution to the scalability problem is to compare
the PDG only within radius 5 of a vertex of “control-point”
kind [19]. This is lossy and depends on hard-coded choices
of radius and vertex kind; by contrast, our Opt2 is not lossy
and is general.

The studies [28, 29] transform the code query into graph
reachability patterns and match the patterns in the SDG of
the source code. Such a method can potentially be used to
detect clones of buggy code. However, developers must
manually describe the buggy code using code query
language. Compared to these methods, CBCD is easier to
use, because it automatically transforms the buggy code into
PDG graphs and then matches the buggy PDG with the PDG
of the suspected code. Similarity, graph-matching algorithm
has been used to match design patterns [34]. However, the
algorithm in [34] is not directly applicable since it finds a
hard-coded set of design patterns rather than clones of
arbitrary bugs. CP-Miner [2] is a code clone detection tool
that searches for bugs caused by code copy-paste. CP-Miner
can only find “bugs caused when programmers forget to
modify identifiers consistently after copy-pasting”. The
study [31] also compares tokens to search defect clones.

The SecureSync tool [18] is similar to CBCD, i.e. a tool
to find duplications of a software vulnerability/bug. To use
SecureSync, the clones must be classified into categories I,
II, and III first. A category I code clone is due to code
copy/paste. For such a code clone, an AST-based method is
proposed. A category II code clone is due to function reuse.
To detect such a clone, the local PDG around a function call
is built and compared. All other code clones are categorized
into III without any methods proposed to detect them.
Compared to SecureSync, CBCD is easier to use. People do
not need to categorize code clone into different categories
and treat them differently. For category I code clones, CBCD
better tolerates code insertion, deletion, and re-ordering.
CBCD can potentially support more kinds of code clone, for
example, those in category III of SecureSync. We would like
to compare CBCD with SecureSync [18], but according to its
authors, SecureSync is not available for public distribution
yet. Jiang et al. [20] investigated how to discover clone-

related bugs through comparing the nodes in parse trees. In
[21], the attributes of edges and nodes of two graphs are
extracted to optimize the performance of graph isomorphism
comparison for detecting clones of MATLAB/Simulink
models. In [22], 17-45% of bug-fixing changes were found
to be recurring, and most of them occurred in multiple files
at the same revision (i.e. in space). However, this study
targets identifying bug clones in object-oriented systems. In
[23], a few clone detection algorithms are combined with
parallel algorithm to detect buggy inconsistency in a very
large system.

VI. CONCLUSIONS AND FUTURE WORK

We have identified a new, important use case for code
clone detection (finding buggy clones), motivated its
importance in real-world systems, given an algorithm for
finding buggy clones, and evaluated its accuracy and
performance. Whereas previous work was motivated by
code refactoring or plagiarism detection, we focus on
detecting cloned buggy code.

The contributions of our work include:
1. We examined real-world bug reports and SCM data,

and established that identical (cloned) bugs are a serious
problem. In a commercial product line, cloned bugs were
common and important, comprising 4% of all bugs.

2. We proposed a methodology for improving system
reliability: After a bug is fixed, the programmer should
search for other code that behaves similarly to the detected
buggy lines. Even if a system has relatively few cloned bugs,
finding these bugs is valuable for programmers and can be
done relatively accurately and inexpensively.

3. We extended previous PDG-based clone detection
algorithms to make them more scalable, by pruning the
search space of sub-graph isomorphism matching. Detecting
small clones required different algorithms and
implementations than previous code detectors, which are less
effective in finding bug clones.

4. We implemented our algorithms in a tool, CBCD, that
detects possible clones of buggy code by comparing the Bug
PDG and the System PDG. The CBCD tool is available on
request for research purposes.

5. We evaluated CBCD with known cloned bugs and
known cloned lines of code, showing that CBCD is scalable
and effective in searching for possible clones of buggy code.
Other clone detection tools are less effective for this purpose.

The performance bottleneck of CBCD is CodeSurfer’s
PDG generation. Future work is to improve performance of
this step to make CBCD even more scalable.

ACKNOWLEDGMENTS

This work was supported in part by grant #183235/S10
from the Norwegian Research Council, by the JIP partners,
and by US NSF grant CCF-1016701.

REFERENCES

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a Multilinguistic
Token-based Code Clone Detection System for Large Scale Source

12

Code,” IEEE Trans on Software Engineering, vol. 28, no. 7, pp. 654-
670, July 2002.

[2] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding Copy-
Paste and Related Bugs in Large-Scale Software Code,” IEEE Trans
on Software Engineering, vol. 32, no. 3, pp. 176-192, March 2006.

[3] S. Ducasse, M. Rieger, and S. Demeyer, “A Language Independent
Approach for Detecting Duplicated Code,” Proc. IEEE intl. conf. on
Software Maintenance (ICSM’99), IEEE Press, Sept. 1999, pp. 109-
118.

[4] B. S. Baker, “On Finding Duplication and Near-duplication in Large
Software Systems,” Proc. the Second Working Conference on
Reverse Engineering, IEEE Press, July 1995, pp. 86-95.

[5] R. Koschke, R. Falke, and P. Frenzel, “Clone Detection Using
Abstract Syntax Suffix Trees,” Proc. the 13th Working Conference on
Reverse Engineering, IEEE Press, Oct. 2006, pp. 253-262.

[6] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and Accurate Tree-Based Detection of Code Clones,” Proc. Intl. conf.
on Software Engineering (ICSE’07), IEEE Press, May 2007, pp. 96-
105.

[7] J. Krinke, “Identifying Similar Code with Program Dependence
Graphs,” Proc. the 8th Working Conference on Reverse Engineering
(WCRE'01), IEEE Press, Oct. 2001, pp. 301-309.

[8] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication
in Source Code,” Proc. the 8th International Symposium on Static
Analysis (SAS’ 01), Spring-Verlag Press, July 2001, pp. 40-56.

[9] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: Detection of
Software Plagiarism by Program Dependence Graph Analysis,” Proc.
12th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, ACM Press, Aug. 2006, pp. 872-881.

[10] M. Gabel, L. Jiang, and Z. Su, “Scalable Detection of Semantic
Clones,” Proc. Int. Conf. on Software Engineering (ICSE’08), ACM
Press, May 2008, pp. 321-330.

[11] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An Empirical
Study of Operating Systems Errors,” Proc. the 8th ACM Symp. on
Operating Systems Principles, ACM Press, Oct. 2001, pp. 73-88.

[12] L. P. Cordella, P. Foggia, C. Sansone, and M. A. Vento, “(Sub)Graph
Isomorphism Algorithm for Matching Large Graphs,” IEEE Trans on
Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367-
1372, Oct. 2004.

[13] R. C. Read, and D. G. Corneil, “The Graph Isomorphism Disease,”
Journal of Graph Theory, vol. 1, no. 4, pp. 339–363, Winter 1977.

[14] CodeSurfer:
http://www.grammatech.com/products/codesurfer/overview.html

[15] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program
Dependence Graph and its Use in Optimization,” ACM Trans on
Programming Languages and Systems, vol. 9, no. 3, pp. 319-349,
July, 1987.

[16] G. Csárdi and T. Nepusz, “The Igraph Software Package for Complex
Network Research,” InterJournal Complex Systems, 2006, pp. 1695.

[17] B. D. McKay, “Practical Graph Isomorphism,” Congressus
Numerantium, 30 (1981), pp. 45-87.

[18] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Detection of Recurring Software Vulnerabilities,” Proc. Intl. Conf.
on Automated Software Engineering (ASE’10), ACM Press, Sept.
2010, pp. 447-456.

[19] R.-Y. Chang, A. Podgurski and J. Yang, “Discovering Neglected
Conditions in Software by Mining Dependence Graphs,” IEEE Trans
on Software Engineering, vol. 34, no. 5, pp. 579-596, Sept. 2008.

[20] L. Jiang, Z. Su, and E. Chiu, “Context-based Detection of Clone-
related Bugs,” Proc. 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symp. on The
foundations of software engineering (ESCE/FSE’07), ACM Press,
Sept. 2007, pp. 55-64.

[21] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N.
Nguyen, “Complete and Accurate Clone Detection in Graph-based
Models,” Proc. Intl. Conf. on Software Engineering (ICSE’09), IEEE
Press, May 2009, pp.276-286.

[22] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T.
N. Nguyen, “Recurring Bug Fixes in Object Oriented Programs,”
Proc. Intl. Conf. on Software Engineering (ICSE’10), ACM Press,
May 2010, pp. 315-324.

[23] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su, “Scalable and
Systematic Detection of Buggy Inconsistencies in Source Code,”
Proc. ACM intl. conf. on Object Oriented Programming Systems
Languages and Applications (OOPSLA’10), ACM Press, Oct. 2010,
pp. 175-190.

[24] J. Li, and M. D. Ernst, “CBCD: Cloned Buggy Code Detector,”
Technical Report UW-CSE-12-03-20, 2012.

[25] Simian- Similarity Analyser: http://www.harukizaemon.com/simian/

[26] CloneDR: http://www.semdesigns.com/Products/Clone/

[27] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation
of Code Clone Detection Techniques and Tools: A Qualitative
Approach,” Sci. Comput. Program, vol. 74, no. 7, pp. 470-495, May
2009.

[28] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J. X. Yu,
“Matching Dependence-related Queries in the System Dependence
Graph,” Proc. Intl. Conf. on Automated Software Engineering
(ASE’10), ACM Press, Sept. 2010, pp. 457-466.

[29] M. Martin, B. Livshits, and M. S. Lam, “Finding Application Errors
and Security Flaws using PQL: a Program Query Language,” Proc.
ACM intl. conf. on Object Oriented Programming Systems
Languages and Applications (OOPSLA’05), ACM Press, Oct, 2005,
pp. 365-383.

[30] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo,
“Comparison and Evaluation of Clone Detection Tools,” IEEE Trans
on Software Engineering, vol. 33, no. 9, pp. 577-591, Sept. 2007.

[31] S. Bazrafshan, R. Koschke, and N. Gode, “Approximate Code Search
in Program Histories,” Proc. 18th Working Conference on Reverse
Engineering, in in press, 2011.

[32] L. Jiang and Z. Su., “Automatic Mining of Functionally Equivalent
Code Fragments via Random Testing,” Proc. 8th Intl. Symp. on
Software Testing and Analysis (ISSTA '09), ACM Press, July 2009,
pp. 81-92.

[33] H. Kim, Y. Jung, S. Kim, and K. Yi, "MeCC: Memory Comparison-
Based Clone Detector," Proc. 33rd Intl. Conf. on Software
engineering (ICSE '11), ACM press, May 2011, pp. 301-310.

[34] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design Pattern Detection Using Similarity Scoring,” IEEE Trans. On
Software Engineering, vol. 32, no. 11, pp. 896-909, Nov. 2006.

13

Appendix A: The experimented code by CBCD and evaluation results

Id Com

mit id

Buggy code Clones Type Tools resultsa

CBCD Simianb CCFindc Decardd

CloneDre

1 postgr
eSQL-
2618fc
d

2618fcd - pg_dump.c: 2672-

2675

sprintf(q, "CREATE %s
INDEX %s on %s using %s

(",
(strcmp(indinfo[i].indisuniqu
e, "t") == 0) ? "UNIQUE" :

"",
 fmtId(indinfo[i].in

dexrelname),
 fmtId(indinfo[i].in

drelname),

 indinfo[i].indamna
me);

87d96ed - Pg_dump.c 2673-2676

sprintf(q, "CREATE %s INDEX
%s on %s using %s (",

(strcmp(indinfo[i].indisunique, "t")
== 0) ? "UNIQUE" : "",

 fmtId(indinfo[i].indexre

lname),
 fmtId(indinfo[i].indreln

ame),
 indinfo[i].indamname);

1 N1 N1 N1 N1 N1

2 postgr
eSQL-
161be
69

161be69- Pathnode.c: 336

pathnode->indexqual = NIL;
1b93294-Pathnode.c: 344

pathnode->indexqual = NIL;
1 N1 N1 N1 N4 N1

3 postgr
eSQL-
dcb09
b5

dcb09b5 - Plperl.c: 2132-

2133

perm_fmgr_info(typeStruct-
>typoutput, &(prodesc-
>arg_out_func[i]));

dcb09b5 - Plperl.c: 2088-2088

perm_fmgr_info(typeStruct-
>typinput, &(prodesc-
>result_in_func));

dcb09b5 - Plperl.c: 2720-2720

perm_fmgr_info(typInput,
&(qdesc->arginfuncs[i]));

3ab N1 N2 N2 N2 N2

4 postgr
eSQL-
04d97
6f

04d975f-date.c: 505

TimeScale = pow(10,
typmod);

C456693- date.c: 505

TimeScale = pow(10, typmod);
1 N1 N1 N3 N2

(parse
error)

N1

5 postgr
eSQL-
9dbfcc
2

9dbfcc2- Plperl.c: 758-763

for (i = 0; i < tupdesc->natts;
i++){/*******************

Get the attribute
name*******************

*******/
attname = tupdesc->attrs[i]-

>attname.data;

6d239ee – Plperl.c:758-763

for (i = 0; i < tupdesc->natts;
i++){/***********************
******************* Get the

attribute
name************************

**/
attname = tupdesc->attrs[i]-
>attname.data;

1 N1 N1 N1 N1 N1

6 postgr
eSQL-
d9ddd
d1

d9dddd1 -Describe.c: 69-71

processNamePattern(&buf,
pattern, true, false,

"n.nspname", "p.proname",
NULL,

"pg_catalog.pg_function_is_v
isible(p.oid)");

d9dddd1 -Describe.c: 123-125

processNamePattern(&buf, pattern,
false, false,NULL, "spcname",

NULL, NULL);
d9dddd1 -Describe.c: :181-182

processNamePattern(&buf, pattern,
true, false,"n.nspname",
"p.proname", NULL,

"pg_catalog.pg_function_is_visible
(p.oid)");

d9dddd1 -Describe.c: 435-438

processNamePattern(&buf, pattern,
true, false, "n.nspname",

"p.proname", NULL,
"pg_catalog.pg_function_is_visible

(p.oid)");
d9dddd1 -Describe.c: 441-443

processNamePattern(&buf, pattern,
true, fals "n.nspname",

3ab N1 N2 N2 N2 N2

14

"p.proname",
NULL,"pg_catalog.pg_function_is

_visible(p.oid)");
d9dddd1 -Describe.c: 447-449

processNamePattern(&buf, pattern,
false, false,

"n.nspname", "o.oprname", NULL,
"pg_catalog.pg_operator_is_visible

(o.oid)");
d9dddd1 -Describe.c: 478-481

processNamePattern(&buf, pattern,
true,false,"n.nspname",
"r.rulename", NULL

"pg_catalog.pg_table_is_visible(c.o
id)");

d9dddd1 -Describe.c: 485-487

processNamePattern(&buf, pattern,
false, false,

"n.nspname", "t.tgname", NULL,
"pg_catalog.pg_table_is_visible(c.o

id)");
d9dddd1 -Describe.c: 535-538

processNamePattern(&buf, pattern,
false, false,

"n.nspname", "c.relname", NULL,
"pg_catalog.pg_table_is_visible(c.o

id)");
d9dddd1 -Describe.c: 1306-1308

processNamePattern(&buf, pattern,
false, false, NULL,
"r.rolname", NULL, NULL);

d9dddd1 -Describe.c: 1406-1408

processNamePattern(&buf, pattern,
true, false, "n.nspname",

"c.relname", NULL,
"pg_catalog.pg_table_is_visible(c.o

id)");
d9dddd1 -Describe.c: 1453-1457

processNamePattern(&buf, pattern,
true, false,

"n.nspname", "t.typname", NULL,
"pg_catalog.pg_type_is_visible(t.oi

d)");
d9dddd1 -Describe.c: 1489-1490

processNamePattern(&buf, pattern,
true, false, "n.nspname",

"c.conname", NULL
"pg_catalog.pg_conversion_is_visi

ble(c.oid)");
d9dddd1 -Describe.c: 1569-1572

processNamePattern(&buf, pattern,
true, false,NULL, "n.nspname",

NULL, NULL);

7 postgr
eSQL-
0d8e7f
6

0d8e7f6 - Pg_dump.c: 485

fgets(username, 9, stdin);
087eb4c-Pg_dump.c: 506

fgets(password, 9, stdin);
2ab N3 N2 N3 N3 N3

8 postgr
eSQL-
84746
00

8474600 - Int8.c:309

return (*val1 > *val2) ? val1 :
val2;

8474600 - Int8.c: 328

return (*val1 < *val2) ? val1 : val2;
3ab N1 N2 N2 N1 N2

9 postgr
eSQL-
19dac
d4

19dacd4-Timestamp.c:

3536-3537

case DTK_YEAR:
result = tm->tm_year;

f2c064a –Timestamp.c:3263-

3264

case DTK_YEAR:
result = tm->tm_year;

1 N1 N2 N3 N2
(parse
error)

N2

15

10 postgr
eSQL-
db6df0
c

3b6bf0c- Postmaster.c :

1741

if (BgWriterPID != 0)
kill(BgWriterPID,

SIGTERM);

3b6bf0c- Postmaster.c: 1775

if (BgWriterPID != 0)
kill(BgWriterPID, SIGTERM);
3b6bf0c- Postmaster.c : 1809

if (BgWriterPID != 0)
kill(BgWriterPID, SIGTERM);
3b6bf0c- Postmaster.c : 1857

if (BgWriterPID != 0)
kill(BgWriterPID, SIGQUIT);

2ab N1 N2 N1 N2
(parse
error)

N1

11 postgr
eSQL-
dcb09
b5

dcb09b5 - Int_bool.c: 199

if (lenstack &&
(stack[lenstack - 1] == (int4)
'&' || stack[lenstack - 1] ==

(int4) '!')){

dcb09b5 - ltxtquery_io.c: 244

if (lenstack && (stack[lenstack - 1]
== (int4) '&' || stack[lenstack - 1]
== (int4) '!'))

1 N1 N1 N3 N2 N3

12 postgr
eSQL-
66661
85

6666185 - Pgstattuple.c:258

scan = heap_beginscan(rel,
SnapshotAny, 0, NULL);

689d02a- index.c: 2009

scan =
heap_beginscan(heapRelation, /*
relation */ snapshot,/*
seeself */ 0, /*
number of keys */ NULL); /*

scan key */

3ab N3 N2 N4 N4
(parse
error)

N2

13 postgr
eSQL-
54bce
38

54bce38- Setrefs.c: 93

fix_opids((Node *)
((IndexScan *) plan)-

>indxqualorig);
plan->subPlan =

nconc(plan->subPlan,

pull_subplans((Node *)
((IndexScan *) plan)-

>indxqual));

54bce38- Setrefs.c: 106

fix_opids((Node *) ((MergeJoin *)
plan)->mergeclauses);

plan->subPlan =
nconc(plan->subPlan,
pull_subplans((Node *)
((MergeJoin *) plan)-
>mergeclauses));

54bce38- Setrefs.c: 145

fix_opids(((Result *) plan)-
>resconstantqual);
plan->subPlan =

nconc(plan->subPlan,
pull_subplans(((Result *) plan)-

>resconstantqual));
54bce38- Setrefs.c: 113-115

fix_opids((Node *) ((HashJoin *)
plan)->hashclauses);

plan->subPlan =nconc(plan-
>subPlan,

pull_subplans((Node *) ((HashJoin
*) plan)->hashclauses));

54bce38- Setrefs.c: 145-147

fix_opids(((Result *) plan)-
resconstantqual);

plan->subPlan =nconc(plan-
>subPlan,

pull_subplans(((Result *) plan)-
>resconstantqual));

54bce38- Setrefs.c: 168
fix_opids((Node *) plan->qual);
plan->subPlan =nconc(plan-

>subPlan,
pull_subplans((Node *) plan-

>targetlist));

3ab N1 N2 N2 N2 N2

14 postgr
eSQL-
f4d108
a

f4d108a - Parse_func.c:

902-909

 else if (nmatch == nbestMatc
h){

last_candidate-
>next = current_candidate;

last_candidate = current_cand
idate;

ncandidates++;}

42af563 - parse_oper.c:220-229

else if (nmatch == nbestMatch)
{last_candidate->next =

current_candidate;
last_candidate = current_candidate;

ncandidates++; }
/* otherwise, don't bother keeping

this one... */
else

1 N1 N2 N1 N2 N1

16

 else last_candidate-
>next = NULL;

last_candidate->next = NULL;
42af563 - parse_oper.c 273-280

else if (nmatch == nbestMatch)
{ last_candidate->next =

current_candidate;
last_candidate = current_candidate;

ncandidates++;} else
42af563 - parse_func.c 802-805

else if (nmatch == nbestMatch)
{ last_candidate->next =

current_candidate;
last_candidate = current_candidate;

ncandidates++;} else

15 git-
a3eb2
50

a3eb250-clone-pack.c: 154-

157

If(!pid){
 close(fd[1]);

 dup2(fd[0], 0);
 close(fd[0]);

a3eb250 – fetch-pack.c: 97-105

If(!pid){
 close(fd[1]);

 dup2(fd[0], 0);
 close(fd[0]);

1 N1 N2 N1 N2 N1

16 git-
b3118
bd

b3318bd-sha1_file.c:1360 -

361

 if (st == Z_BUF_ERROR &
& (stream.avail_in || !stream.a

vail_out))
 break;

b3318bd-sha1_file.c: 1599-1600

 if (st == Z_BUF_ERROR && (str
eam.avail_in || !stream.avail_out))
 break;

1 N1 N1 N1 N1 N1

17 git-
da020
4d

da0204d - builtin-fetch.c:

265
commit =

lookup_commit_reference(rm
->old_sha1);

42a3217: builtin-fetch--tool.c:

148

 commit = lookup_commit_referen

ce(sha1);

3ab N3 N2 N3 N4 N2

18 git-
cd03ee
b

cd03eeb-transport-

helper.c:41

write_in_full(helper-
>in, buf.buf, buf.len);

cd03eeb-transport-helper.c: 61

write_in_full(data->helper-
>in, "\n", 1);

cd03eeb-transport-helper.c:87

 write_in_full(helper-
>in, buf.buf, buf.len);

3ab N3 N2 N4 N4 N4

19 git-
013aa
b

013aab-a3eb250-

commit.c:55

 if (obj->type == tag_type)
 obj = ((struct tag

*)obj)->tagged;

013aab-a3eb250 – rev-list.c: 370

 if (object->type == tag_type) {
 object = tag->tagged;

3ab N2 N2 N2 N2 N2

20 linux-
5bb1a
b

5bb1ab-exthdrs.c:691

IP6_INC_STATS_BH(ipv6_s
kb_idev(skb),

IPSTATS_MIB_INHDRERR
ORS);

5bb1ab-exthdrs.c: 698

IP6_INC_STATS_BH(ipv6_skb_id
ev(skb),

IPSTATS_MIB_INHDRERRORS)
;

5bb1ab-exthdrs.c: 703

IP6_INC_STATS_BH(ipv6_skb_id
ev(skb),

IPSTATS_MIB_INHDRERRORS)
;

5bb1ab-exthdrs.c: 709

IP6_INC_STATS_BH(ipv6_skb_id
ev(skb),

IPSTATS_MIB_INTRUNCATED
PKTS);

2ab N3 N2 N3 N3 N1

21 linux-
59092
9f

590929f-mt9v001.c: 203-205

blue_gain = core-
>global_gain +

core->global_gain * core-
>blue_bal / (1 << 9);

590929f-mt9v001.c: 205-206

red_gain = core->global_gain +
core->global_gain * core-

>blue_bal / (1 << 9);

2ab N2 N2 N1 N1 N1

22 linux-
9378b

9278b63-Tsc.c :467 9278b63-Tsc.c :938

2ab N2 N2 N3 N2

(parse
N2

17

63 if (!hpet && !ref1 && !ref2) if (!hpet && !ref_start && !ref_sto
p)

error)

23 linux-
fe1cba
b

fe1cbab-transfd.c:919

err = sock_create_kern(PF_U
NIX, SOCK_STREAM, 0, &

csocket);

fe1cbab-transfd.c:957

err = sock_create_kern(PF_UNIX,
SOCK_STREAM, 0, &csocket);

2ab N1 N2 N4 N1 N1

24 linux-
d8919
7c

d8917c-Eeprom_def.c: 1065

case 2:

scaledPower -=
REDUCE_SCALED_POWE

R_BY_TWO_CHAIN;

333ba73-ar9003_eeprom.c: 4647

case 2:

scaledPower -=
REDUCE_SCALED_POWER_BY
_TWO_CHAIN;

1 N1 N1 N1 N2
(parse
error)

N1

25 linux7
-
cab75
8e

Cab758e: tcp_ipv4.c: 1591

if (nsk != sk) {

if (tcp_child_process(sk, nsk,
skb)) {

Cab758e: tcp_ipv6.c:1646

if(nsk != sk) {

if (tcp_child_process(sk, nsk, skb))

1 N1 N1 N1 N1 N2

26 linux-
00292
27

0029227 - xhci.c: 515

xhci_cleanup_msix(xhci);

0029227 - xhci.c: 551

xhci_cleanup_msix(xhci);

1 N3 N3 N3 N3 N3

27 linux-
713b3
c9

713b3c9: Ixgbe_main.c:

3731

hw->mac.ops.setup_sfp(hw);

713b3c9: Ixgbe_main.c: 5971

hw->mac.ops.setup_sfp(hw);

1 N1 N2 N3 N2
(parse
error)

N1

28 linux-
52534f
2

cfi_cmdset_0002.c: 714

 map_write(map, cfi-
>sector_erase_cmd, chip-
>in_progress_block_addr);

cfi_cmdset_0001.c: 818

map_write(map, CMD(0x70), adr);
cfi_cmdset_0001.c:816

map_write(map, CMD(0xd0), adr);

3ab N3 N2 N4 N2 N2

29 linux-
dcace0
6

dcaece6 - dw_mmc:1205

tasklet_schedule(&host-
>tasklet);

dcaece6 - dw_mmc:1214

 tasklet_schedule(&host->tasklet);

1 N3 N2 N3 N3 N3

30 linux-
a57ca0
4

a57ca04 - jedec_probe.c:

1159-1160

.devtypes = CFI_DEVICE
TYPE_X16|CFI_DEVICETY

PE_X8,

 .uaddr = MTD_UADD
R_0x0555_0x02AA, /* ??
?? */

f636ffb - jedec_probe.c 1464-

1465

.devtypes =
CFI_DEVICETYPE_X16
|CFI_DEVICETYPE_X8,

 .uaddr =
MTD_UADDR_0x0AAA_0x0555,

}

2ab N2 N2 N2 N2 N3

31 linux-
ff0ac7
4

ff0ac74-

bnx2x_main.c:10037

.get_link = ethtool_o
p_get_link,

0f77ca9 – bnx2.c:7395

 .get_link = ethtool_op_
get_link,

1 N2 N2 N2 N2
(parse
error)

N1

32 linux-
5153f7

 5153f7 - asm-

i386/processor.h: 32

 (!((desc)-

5153f7 - asm-

x86_64/processor.h :35

 (!((desc)->a + (desc)->b))

1 N2 N1 N2 N2 N1

18

>a + (desc)->b))

33 linux-
8bea8
67

8bea867 - drm_fb_helper.c:

57-63

static int my_atoi(const char
*name)

{ int val = 0;
 for (;; name++) {

 switch (*name) {
 case '0' ... '9':

 val = 10*val+(
*name-'0');

 break;
 default:

 return val; }
 } }

8bea867 - modedb.c: 409-414

static int my_atoi(const char *name
)

{ int val = 0;
 for (;; name++) {
 switch (*name) {
 case '0' ... '9':

 val = 10*val+(*name-'0');
 break;
 default:

 return val; } } }

1 N1 N1 N1 N1 N1

34 linux-
ea2d8
b5

ea2d8b5- iwl3945-base.c:

5771

 ieee80211_notify_mac(priv-
>hw, IEEE80211_NOTIFY_
RE_ASSOC);

ea2d8b5 – iwl-agn.c: 2093

 ieee80211_notify_mac(priv-
>hw, IEEE80211_NOTIFY_RE_A

SSOC);

1 N1 N2 N3 N2
(parse
error)

 N1

35 linux-
c9a2c4
6

c9a2c46 - w83781d.c: 1369-

1372

- if (!request_region(res-
>start, W83781D_EXTENT

, "w83781d")) {

c9a2c46 - lm78.c: 657-660

 if (!request_region(res-
>start, LM78_EXTENT, "lm78")
) {

2ab N1 N2 N1 N1 N1

36 linux-
d5550
09

d555009-visor.c: 609-611

 result = usb_submit_urb(priv
-

>bulk_read_urb, GFP_AT

OMIC);
 if (result) dev_err(&p

ort-
>dev, "%s failed subm
itting read urb, error %d\n",

d555009- opticon.c: 167-168

result = usb_submit_urb(priv-
>bulk_read_urb, GFP_KERNEL);
 if (result) dev_err(&port->dev,
 "%s failed resubmitting read urb,
 error %d\n",__func__, result);
d555009- opticon.c: 327-329

result = usb_submit_urb(priv-
>bulk_read_urb, GFP_ATOMIC

);
 if (result) dev_err(&port-

>dev, "%s failed submitting read
urb, error %d\n",

2ab N1 N2 N3 N2 N1

37 linux-
9601e
3f

9601e3f - inode.c 236-237

 ret = btrfs_drop_extents(tran
s, root, inode, start, aligne

d_end, start, &hint_byte);

9601e3f - inode.c : 1457-1458

 ret = btrfs_drop_extents(trans, roo
t, inode, file_pos, file_pos + num

_bytes, file_pos, &hint);

3ab N1 N2 N4 N2 N2

38 linux-
2567d
71

2567d71 - rcuclassic.c 141-

146

 rdp = &__get_cpu_var(rcu_
data);

 *rdp->nxttail = head;
 rdp->nxttail = &head->next;

 if (unlikely(++rdp-
>qlen > qhimark)) {

 rdp-
>blimit = INT_MAX;

 force_quiescent_state(rdp, &
rcu_ctrlblk); }}

2567d71 - rcuclassic.c 177-183

 rdp = &__get_cpu_var(rcu__bg_d
ata);

 *rdp->nxttail = head;
 rdp->nxttail = &head->next;

 if (unlikely(++rdp-
>qlen > qhimark)) {

 rdp->blimit = INT_MAX;
 force_quiescent_state(rdp, &rcu

_ctrlblk); }}

2ab N1 N2 N1 N1 N1

19

39 linux-
3976a
e6

3976ae6 - rt2400pci.c :296-

298

rt2x00_set_field32(®, CS
R14_TSF_COUNT, 1);

rt2x00_set_field32(®, CS
R14_TBCN,

(conf-
>sync == TSF_SYNC_BEAC

ON));
rt2x00_set_field32(®, CS
R14_BEACON_GEN, 0);

3976ae6 - rt2500pci.c: 299-302

rt2x00_set_field32(®, CSR14_
TSF_COUNT, 1);

rt2x00_set_field32(®, CSR14_
TBCN,
(conf-

>sync == TSF_SYNC_BEACON))
;

 rt2x00_set_field32(®, CSR14_
BEACON_GEN, 0);

1 N1 N1 N1 N2
(parse
error)

N1

40 linux-
c09c5
18

c09c518 - w83627hf.c 1332-

1335

if (reg & 0xff00) {
 outb_p(W83781D_REG_B

ANK,
 data-

>addr + W83781D_ADDR_R
EG_OFFSET);

 outb_p(reg >> 8,
 data-

>addr + W83781D_DATA_R
EG_OFFSET) }

c09c518 - w8362hf.c: 1347

 if (reg & 0xff00) {
 outb_p(W83781D_REG_BANK,

 data-
>addr + W83781D_ADDR_REG_

OFFSET);
 outb_p(0, data-

>addr + W83781D_DATA_REG_
OFFSET); }

393cdad - w8362hf.c: 1422

 if (reg & 0xff00) {
 outb_p(W83781D_REG_BANK,

 data-
>addr + W83781D_ADDR_REG_

OFFSET);
 outb_p(reg>>8, data-

>addr + W83781D_DATA_REG_
OFFSET); }

393cdad - w8362hf.c: 1437

 if (reg & 0xff00) {
 outb_p(W83781D_REG_BANK,

 data-
>addr + W83781D_ADDR_REG_

OFFSET);
 outb_p(0, data-

>addr + W83781D_DATA_REG_
OFFSET); }

2ab N1 N2 N2 N2
(parse
error)

N1

41 linux-
b45bfc
c

1c27327 - qp.c :1503:

 memset(ib_ah_attr, 0, sizeof
*path);

b5bfcc - mthca_qp.c: 402

memset(ib_ah_attr, 0, sizeof *path)
;

1 N3 N2 N1 N3 N3

42 linux-
34cc5
60

34cc560 - tcp_output.c: 481

 th->window = htons(tp-
>rcv_wnd);

34cc560 - tcp_output.c: 2160

 th->window = htons(req-
>rcv_wnd);

1 N3 N2 N4 N2
(parse
error)

N1

43 linux-
efbfe9
6c

efbfe96c - vmscan.c: 976-

977

 if (zone-
>prev_priority > priority)

 zone-
>prev_priority = priority;

efbfe96c - vmscan.c: 1187-1188

 if (zone->prev_priority > priority)
 zone-
>prev_priority = priority;

1 N1 N2 N1 N3 N1

44 linux-
093be
ac

093beac - mthca_qp.c 1730-

1738:

 for (nreq = 0; wr; ++nreq, w
r = wr->next) {

 if (unlikely(nreq ==
MTHCA_TAVOR_MAX_W
QES_PER_RECV_DB)) {
 nreq = 0;

 doorbell[0] = cpu_to_be

093beac - mthca_srq.c: 493-500

 for (nreq = 0; wr; ++nreq, wr = wr
->next) {

 if (unlikely(nreq == MTH
CA_TAVOR_MAX_WQES_PER_

RECV_DB)) {
 nreq = 0;

 doorbell[0] = cpu_to_b
e32(first_ind << srq->wqe_shift);

3ab N1 N2 N2 N2
(parse
error)

N2

20

32((qp->rq.next_ind << qp-
>rq.wqe_shift) | size0);

 doorbell[1] = cpu_to_be
32(qp->qpn << 8);
 wmb();

 mthca_write64(d
oorbell,

 dev-
>kar + MTHCA_RECEIVE_

DOORBELL,
 MTHCA_GET_DOO

RBELL_LOCK(&dev-
>doorbell_lock));

 doorbell[1] = cpu_to
_be32(srq->srqn << 8);
 wmb();

 mthca_write64(door
bell,

 dev-
>kar + MTHCA_RECEIVE_DOO

RBELL,
 MTHCA_G
ET_DOORBELL_LOCK(&dev-

>doorbell_lock));

45 linux-
a6230
af

a6230af - readdir.c: 217-218

 if(cifs_sb-

>mnt_cifs_flags & CIFS_MO
UNT_NO_BRL)

 tmp_inode->i_fop-
>lock = NULL;

a6230af - readdir.c: 334-335

 if(cifs_sb-
>mnt_cifs_flags & CIFS_MOUNT

_NO_BRL)
 tmp_inode->i_fop-

>lock = NULL;

1 N1 N1 N1 N1 N1

46 linux-
c87e3
4e

c87e34e - sg.c 1863-1865

 if (res > 0)
 for (j=0; j < res; j++

)
 page_cache_re

lease(pages[j]);

c87e34e - st.c: 4509-4511

 if (res > 0) {
 for (j=0; j < res; j++)

 page_cache_release(pag
es[j]);

 }

3ab N1 N1 N1 N2
(parse
error)

N2

47 linux-
59175
83

5917583-mremap.c 145-147

 if (pfn_valid(pte_pfn(pte))
&&

 pte_page(pte) == ZERO_P
AGE(old_addr))

 pte = pte_wrprotect(mk_pt
e(ZERO_PAGE(new_addr),
new_vma->vm_page_prot));

676d55a-mremap.c 145-147

 if (pfn_valid(pte_pfn(pte)) &&
 pte_page(pte) == ZERO_PAGE

(old_addr))
 pte = pte_wrprotect(mk_pte(ZE
RO_PAGE(new_addr), new_vma-

>vm_page_prot));

1 N1 N1 N1 N1 N1

48 linux-
19147
bb

19147bb -

e1000/e1000_main.c: 2052-

2057

 if (buffer_info->dma) {
 pci_unmap_page(ad

apter->pdev,
 buffer_inf

o->dma,
 buffer_inf

o->length,
 PCI_DM

A_TODEVICE);
 buffer_info-

>dma = 0;
 }

19147bb - e1000e/net_dev.c: 569-

571

 if (buffer_info->dma) {
 pci_unmap_page(adapter-

>pdev, buffer_info->dma,
 buffer_info-

>length, PCI_DMA_TODEVICE);
 buffer_info->dma = 0;

 }

1 N1 N2 N1 N1 N1

49 linux-
4c25a
2c

4c25a2c - dmar.c: 755-759

 if (non_present_entry_flush)
 {

 if (!cap_caching_mo
de(iommu->cap))

 return 1;
 else

 did = 0;
 }

4c25a2c - intel-iommu.c: 916-920

 if (non_present_entry_flush) {
 if (!cap_caching_mode(io

mmu->cap))
 return 1;

 else
 did = 0;

 }

1 N1 N1 N1 N1 N1

50 linux-
529ed
80

529ed80 - i810-i2c.c: 48-50

 i810_writel(mmio, chan-
>ddc_base, (state ? SCL_VA
L_OUT : 0) | SCL_DIR | SC
L_DIR_MASK | SCL_VAL_

MASK);
 i810_readl(mmio, chan-

529ed80 - i810-i2c.c: 59-60

 i810_writel(mmio, chan-
>ddc_base, (state ? SDA_VAL_O
UT : 0) | SDA_DIR | SDA_DIR_
MASK | SDA_VAL_MASK);

 i810_readl(mmio, chan-
>ddc_base); /* flush posted

2ab N1 N2 N1 N2
(parse
error)

N1

21

>ddc_base); /* flush
posted write */

write */

51 linux-
3083e
83

3083e83- iwl-core.c 1145-

1148

 priv-

>tx_power_next = tx_power;
 if (test_bit(STATUS_SCAN

NING, &priv-
>status) && !force) {

 IWL_DEBUG_INFO(priv,
 "Deferring tx power set whil

e scanning\n");
 return 0;

efe1cf0- iwl-core.c 1193-1196

 priv->tx_power_next = tx_power;
 if (test_bit(STATUS_SCANNIN
G, &priv->status) && !force) {

 IWL_DEBUG_INFO(priv, "Def
erring tx power set while scanning\

n");
 return 0;

1 N1 N1 N1 N2 N1

52 linux-
78794
b2

78794b2- main.c: 63-69

 INIT_RADIX_TREE(&map

ping-
>page_tree, GFP_ATOMIC);

 spin_lock_init(&mapping-

>tree_lock);

 spin_lock_init(&mapping-

>i_mmap_lock);

 INIT_LIST_HEAD(&m

apping->private_list);

 spin_lock_init(&mapping-

>private_lock);

 INIT_RAW_PRIO_TREE_
ROOT(&mapping-

>i_mmap);

 INIT_LIST_HEAD(&mappi
ng->i_mmap_nonlinear);

78794b2- page.c: 498-504

 INIT_RADIX_TREE(&mapping-

>page_tree, GFP_ATOMIC);

 spin_lock_init(&mapping-
>tree_lock);

 INIT_LIST_HEAD(&mapping-

>private_list);

 spin_lock_init(&mapping-

>private_lock);

 spin_lock_init(&mapping-

>i_mmap_lock);

 INIT_RAW_PRIO_TREE_ROOT
(&mapping->i_mmap);

 INIT_LIST_HEAD(&mapping-
>i_mmap_nonlinear);

4a N1 N2 N1 N2 N1

53 linux-
c594d
88

c594d88 - ops_address.c:

233

gfs2_holder_init(ip-
>i_gl, LM_ST_SHARED, G
L_ATIME|GL_AOP, &gh);

c594d88 - ops_address.c: 295

 gfs2_holder_init(ip-

>i_gl, LM_ST_SHARED,
 LM_FLAG_TRY_1CB|GL_A

TIME|GL_AOP, &gh);

c594d88 - ops_address.c: 369

 gfs2_holder_init(ip-

>i_gl, LM_ST_EXCLUSIVE, GL_
ATIME|GL_AOP, &ip->i_gh);

2ab N3 N2 N2 N2 N3

D
1

git-
d53fe8
1

d53fe81- archive-tar.c: 281-

292

 if (args-
>baselen > 0 && args-
>base[args->baselen -

 1] == '/') {
 char *base = xstrdup

(args->base);
 int baselen = strlen(

base);
 while (baselen > 0
&& base[baselen - 1] == '/')

 base[--
baselen] = '\0';

 write_tar_entry(args
->tree-

>object.sha1, "", 0, base, 040

d53fe81 – builtin-checkout.c:

327-338

 if (args->baselen > 0 && args-
>base[args->baselen - 1] == '/') {
 char *base = xstrdup(args

->base);
 int baselen = strlen(base);
 while (baselen > 0 && ba

se[baselen - 1] == '/')
 base[--baselen] = '\0';
 write_zip_entry(args-

>tree-
>object.sha1, "", 0, base, 040777,
 0, NULL);

 free(base);
 }

 read_tree_recursive(args-

22

777,
 0, NULL);

 free(base);
 }

 read_tree_recursive(args-
>tree, args->base, args-

>baselen, 0,
args-

>pathspec, write_tar_entry, N
ULL);

>tree, args->base, args->baselen, 0,
args-

>pathspec, write_zip_entry, NULL
);

D
2

git-
3fe2a8
9

3fe2a89 – builtin-commit.c:

940-974

if (s.relative_paths)
 s.prefix = prefix;

 if (s.use_color == -1)
 s.use_color = git_use_col

or_default;
 if (diff_use_color_default

== -1)
 diff_use_color_default = git_
use_color_default;

3fe2a89 – builtin-commit.c: 982-

986

if (s.relative_paths)
 s.prefix = prefix;

 if (s.use_color == -1)
 s.use_color = git_use_color_def

ault;
 if (diff_use_color_default == -

1)
 diff_use_color_default = git_use_c
olor_default;

D
3

git-
e923ea
e

e923eae-builtin-

checkout.c:138-145

if (!hashcmp(sha1, null_sha1)
) {

 mm-
>ptr = xstrdup("");

 mm->size = 0;
 return;

 }
 mm-

>ptr = read_sha1_file(sha1, &
type, &size);
 if (!mm-

>ptr || type != OBJ_BLOB)
 die("unable to read blob
object %s", sha1_to_hex(sha1

));
 mm->size = size;

e923eae-merge-recursive.c: 608-

615

 if (!hashcmp(sha1, null_sha1))
{

 mm->ptr = xstrdup("");
 mm->size = 0;

 return;
 }

 mm-
>ptr = read_sha1_file(sha1, &type,

&size);
 if (!mm-

>ptr || type != OBJ_BLOB)
 die("unable to read blob object

%s", sha1_to_hex(sha1));
 mm->size = size;

D
4

git-
e923ea
e-2

e923eae – connect.c: 414-

425

 if (host[0] == '[') {
 end = strchr(host + 1

, ']');
 if (end) {

 *end = 0;
 end++;
 host++;

 } else
 end = host;

 } else
 end = host;

 colon = strchr(end, ':');
 if (colon) {

 *colon = 0;
 port = colon + 1;

 }

 e923eae – connect.c: 179-191
if (host[0] == '[') {

 end = strchr(host + 1, ']');
 if (end) {

 *end = 0;
 end++;
 host++;

 } else
 end = host;

 } else
 end = host;

 colon = strchr(end, ':');
 if (colon) {

 *colon = 0;
 port = colon + 1;

 }

D
5

linux-
23edcc
4

23edcc4-ipv4/tcp_input.c:

4904-4909

if
(tcp_fast_parse_options(skb,

th, tp) && tp-
>rx_opt.saw_tstamp &&

 23edcc4-ipv4/tcp_input.c: 5280-
5285

if (tcp_fast_parse_options(skb, th,
tp) && tp->rx_opt.saw_tstamp &&
 tcp_paws_discard(sk, skb)) {

 if (!th->rst) {
NET_INC_STATS_BH(sock_net(s

23

tcp_paws_discard(sk, skb)) {
 if (!th-

>rst) {
 NET_INC_STAT

S_BH(sock_net(sk),
LINUX_MIB_PAWSESTAB

REJECTED);
 tcp_send_dupack(sk,

skb);
 goto discard;

 }

k),
LINUX_MIB_PAWSESTABREJE

CTED);
 tcp_send_dupack(sk, skb);

 goto discard;
 }

D
6

linux-
ec336
79

ec33679- dcache.c: 357-360

 if (IS_ROOT(dentry))
 parent = NULL;

 else
 parent = dentry-
>d_parent;

 ec33679- dcache.c: 599-602
if (IS_ROOT(dentry))

 parent = NULL;
 else

 parent = dentry-
>d_parent;

D
7

linux-
26444
87

 2644487 – intel_overlay.c:
442-445

obj = overlay->vid_bo->obj;

i915_gem_object_unpin(obj);

drm_gem_object_unreference
(obj);

 2644487 – intel_overlay.c: 860-
862

obj = overlay->vid_bo->obj;
 i915_gem_object_unpin(obj);

drm_gem_object_unreference(obj);

D
8

linux-
a4e77
d0

a4e77d0 – netdev.c: 4672-

4674

 if (le16_to_cpu(buf) & (1 <<
0)) {

 e_warn("Warning: detected
DSPD enabled in
EEPROM\n");

}

a4e77d0 – netdev.c: 4678-4680

if (le16_to_cpu(buf) & (3 << 2)) {

 e_warn("Warning:
detected ASPM enabled in

EEPROM\n");
 }

a. There are four categories of the results as follows

• N1: no false positives,no false negatives.
• N2: no false positives, some false negatives.
• N3: some false positives, no false negatives.
• N4: some false positives, some false negatives.

b. Siminan (versn 2.3.32) parameters: threshold = 2. Others are default values
c. CCFinder (version beta 10.2.7.3) Minimum Clone length = 10, Minimum TKS = 1
d. Decard (Version 1.2.1), parameter, min_tokens = 3, stride=2, similarity = 0.95
e. CloneDr (Evaluation version www.semdesigns.com/Products/Clone/) parameters: Similiarity threshold = 0.9; Number of clone parameters = 5; Maximum
parameter count=5; Minimum clone mass = 1; Number of characters per node = 10; Starting depth = 1

24

Appendix B. Running time of CBCD, 3000HZ, 4G, Linux Ubuntu 10.04

Id Commit id Compile commanda Sys. Sizeb Running time step 1 Step2c Step3c

NLOC PDG

vertex

PDG

edge

Codesur

fer

compile

Extract

PDGs

Check

PDG sub-

comp

1 postgreSQL-
2618fcd

S: postgreSQL-87d96ed
Make all. The “Make” file has been
slimed to compile only files in the “bin”
component
B: postgreSQL-2618fcd
Make all. The “Make” file has been
slimed to compile only files in the “bin”
component

14594 16678 38997 26s 3.9s 0.7s 1s 0.3s

2 postgreSQL-
161be69

S: postgreSQL-1b93294
Make all. The “Make” file has been
slimed to compile only files in the
“lexverify” and “backend” component
B: postgreSQL-161be69
Make all. The “Make” file has been
slimed to compile only files in the
“lexverify” and “backend” component.

134064 197838 463362 13m23s 58s 2m48s 6s 2s

3 postgreSQL-
dcb09b5

S&B: postgreSQL-dcb0965
Make all. The “Make” file has been
slimed to compile only files in the
“plperl” component

13836 30179 66376 52s 45s 3.5s 1s 0.4s

4 postgreSQL-
04d976f

S: postgreSQL-c456693
Mak all. The “Make” file has been slimed
to compile only files in the “backend”
component
B: postgreSQL-04d976f
Mak all. The “Make” file has been slimed
to compile only files in the “backend”
component

173070 249251 577127 16m32s 1m26s 3m49s 8s 3s

5 postgreSQL-
9dbfcc2

S: postgreSQL-6d239ee
Mak all. The “Make” file has been slimed
to compile only files in the “pl”
component
B: postgreSQL-9dbfcc2
Mak all. The “Make” file has been slimed
to compile only files in the “pl”
component

14259 4308 7945 14s 4s 0.1s 0.2s 0.2s

6 postgreSQL-
d9dddd1

S&B: postgreSQL-d9dddd1
Mak all. The “Make” file has been slimed
to compile only files in the “bin”
component

56263 43701 107890 1m40s 5s 7.9s 2s 44s

7 postgreSQL-
0d8e7f6

S: postgreSQL-087eb4c
Mak all. The “Make” file has been slimed
to compile only files in the “bin”
component
B: postgreSQL-0d8e7f6
Mak all. The “Make” file has been slimed
to compile only files in the “bin”
component

19078 18768 43893 29s 6.5s 1s 0.6s 0.4s

8 postgreSQL-
8474600

S&B: postgreSQL-8474600
Make all. The “Make” file has been
slimed to compile only files in the
“backend” component

139795 199560 467561 18m46s 48s 2m50s 4s 2s

9 postgreSQL-
19dacd4

S: postgreSQL-f2c064a
Make all. The “Make” file has been
slimed to compile only files in the
“backend” component

227360 375304 812543 72m33s 5m10s 7m40s 7s 4s

25

B: postgreSQL-19dacd4
Make all. The “Make” file has been
slimed to compile only files in the
“backend” component

10 postgreSQL-
db6df0c

S: postgreSQL-3b6bf0c
Make all, however. The “Make” file has
been slimed to compile only files in the
“backend” component
B: postgreSQL-db6df0c
Make all, however. The “Make” file has
been slimed to compile only files in the
“backend” component

221783 378741 821737 135m 4m43s 8m26s

12s 4.5s

11 postgreSQL-
dcb09b5

S&B: postgreSQL-dcb09b5
Make ./contrib/ltree/ltxtquery_io.o

4478 895 2208 9s 1.9s 0.1s 0.1s 0.1s

12 postgreSQL-
6666185

S: postgreSQL-689d02a
Make all. The “Make” file has been
slimed to compile only files in the
“backend” component
B: postgreSQL-6666185
Make all. The “Make” file has been
slimed to compile only files in the
“backend” component

54040 90197 216941 3m42s 21s 9s 2.7s 1s

13 postgreSQL-
54bce38

S&B: postgreSQL54bce38
Make ./backend/optimizer/plan/setrefs.o

237 374 938 2s 0.8s 0.1s 0.1s 0.1s

14 postgreSQL-
f4d108a

S: postgreSQL-42af56e
Make all. The “Make” file has been
slimed to compile only files in the
“backend” component
B: postgreSQL-f4d108a
Make all. The “Make” file has been
slimed to compile only files in the
“backend” component

64040 87433 226345 3m43s 20s 41s 2s 1s

15 git-a3eb250 S: git-a3eb250
make git-fetch-pack
B: git-a3eb250
make git-clone-pack

6485 13 664 31 120 31s 3s 0.7s 0.3s 0.2s

16 git-b3118bd S&B: git-b3118bd
make git

37494 166 875 383 615 20m15s 24s 20s 3s 2s

17 git-da0204d S&B: git-da0204d
make git

55286 145 845 333 780 9m33s 19s 52s 4s 2s

18 git-cd03eeb S&B: git-cd03eeb
make git

44090 166 512 382 805 12m23s 18s 22s 6s 4s

19 git-013aab S&B: git-013aab
make git-rev-list

8730 14962 34065 46s 1.6s 0.7s 0.4s 0.2s

20 linux-5bb1ab S&B: linux-2.6-5bb1ab
make ./net/ipv6/exthdrs.o

20040 24330 58752 1m27s 21s 1.9s 0.9s 0.2s

21 linux-
590929f

S&B: linux-590929f
 make ./drivers/media/video/me9v011.o

17093 25397 60139 1m23s 24s 1.9s 0.6s 0.5s

22 linux-
9378b63

S&B: linux-9378b63
make ./arch/x86/kernel/tsc.o

19774 25904 61355 1m25s 27s 2s 0.7s 0.4s

23 linux-
fe1cbab

S&B: linux-fe1cbab
make ./net/9p/trans_fd.o

20758 26649 62947 1m32s 29s 2s 0.9s 0.4s

24 linux-
d89197c

S: linux-2.6-333ba73

make ./drivers/net/wireless/ath9k/ar9003_
eeprom.o
B: linux-2.6-d89197c
Make ./drivers/net/wireless/ath9k/eeprom
_def.o

22657 26918 64600 1m23s 29s 2s 0.7s 0.5s

26

25 linux-
cab758e

S&B: linux-cab758e
make ./net/ipv4/tcp_ipv4.o

34100 36245 86495 1m45s 50s 3s 1.3s 0.6s

26 linux-
0029227

S&B: linux-0029227
make ./drivers/usb/host/xhci.o

21307 30695 72520 1m31s 35s 2s 1.1s 0.5s

27 linux-
713b3c9

S&B: linux-713b3c9
 make ./drivers/net/ixgbe_main.o

34035 36077 86669 1m44s 40s 3s 0.9s 0.5s

28 linux-
52534f2

S&B: linux-52534f2
make ./drivers/mtd/chips/cif_cmdset_001.
o

21998 29051 70056 1m26s 30s 2s 0.9s 0.5s

29 linux-
dcace06

S&B: linux-dcace06
make ./drivers/mmc/host/dw_mmc.o

20565 27690 65281 1m28s 29s 2s 1s 0.5s

30 linux-
a57ca04

S: linux- a57ca04
make ./drivers/mtd/chips/jedec_probe.o
B: linux-f636ffb
make ./drivers/mtd/chips/jedec_probe.o

18864 21636 52292 36s 1.6s 0.6s 0.3s 0.1s

31 linux-ff0ac74 S: linux-ff0ac74
make ./drivers/net/bnx2x_main.o
B: linux-0f77ac9
make ./drivers/net/bnx2.o

40078 35044 83241 45s 2s 1.5s 0.7s 0.3s

32 linux- 5153f7 S&B: linux- 5153f7
 make ./arch/i386/kernel/process.o

7375 8594 19149 40s 1s 0.6s 0.2s 0.1s

33 linux-
8bea867

S: linux-8bea867
make drivers/video/modedb.o
B: linux-8bea867
make drivers/gpu/drm/drm_fb_helper.o

17894 24 446 58 836 1m30s 3s 2s 0.06s 0.3s

34 linux-
ea2d8b5

S: linux-ea2d8b5
make drivers/net/wireless/iwlwifi/iwl-
agn.o
B: linux-ea2d8b5
make
drivers/net/wireless/iwlwifi/iwl3945-
base.o

30407 29 302 69 367 1m19s 3s 2s 0.07s 0.04s

35 linux-
c9a2c46

S: linux-c9a2c46
make drivers/hwmon/lm78.o
B: linux-c9a2c46
make drivers/hwmon/w83781d.o

16965 22 717 56 345 1m38s 3s 2s 0.08s 0.3s

36 linux-
d555009

S: linux-d555009
make drivers/usb/serial/opticon.o
B: linux-d555009
make drivers/usb/serial/visor.o

19294 24 902 59 373 1m23s 7s 2s 0.9s 0.3s

37 linux-
9601e3f

S&B: linux-9601e3f
make fs/btrfs/inode.o

27516 34 074 81 865 1m27s 9s 3s 1s 0.6s

38 linux-
2567d71

S&B: linux-2567d71
make kernel/rcuclassic.o

16170 22 857 56 629 1m36s 9s 2s 1s 0.4s

39 linux-
3976ae6

S: linux-3976ae6
make
drivers/net/wireless/rt2x00/rt2500pci.o
B: linux-3976ae6
make
drivers/net/wireless/rt2x00/rt2400pci.o

18295 25 879 60 099 1m16s 8s 2s 1.6s 0.6s

40 linux-
c09c518

S&B: linux-c09c518
make drivers/hwmon/w83627hf.o

7007 12 452 28 032 49s 4s 2s 0.4s 0.2s

41 linux-
b45bfcc

S: linux-b45bfcc
linux-1c27cb7/make
drivers/infiniband/hw/mlx4/qp.o
B: linux-b45bfcc
drivers/infiniband/hw/mthca/mthca_qp.o

9870 13 990 33 362 49s 5s 2s 1.5s 0.4s

42 linux-
34cc560

S&B: linux-34cc560
make net/ipv4/tcp_output.o

51599 98 426 239 895 49s 18s 10s 2.7s 1.3s

27

43 linux-
efbfe96c

S&B: linux-efbfe96c
make mm/vmscan.o

12434 11 039 25 107 41s 4s 2s 0.3s 0.1s

44 linux-
093beac

S: linux-093beac
make
drivers/infiniband/hw/mthca/mthca_qp.o
B: linux-093beac
make
drivers/infiniband/hw/mthca/mthca_srq.o

8695 6 481 17 020 26s 4s 2s 0.8s 0.3s

45 linux-
a6230af

S&B: linux-a6230af
make fs/cifs/readdir.o

3592 1 745 4 144 25s 1s 1s 0.07s 0.02s

46 linux-
c87e34e

S: linux-c87e34e
make drivers/scsi/st.o
B: linux-c87e34e
make drivers/scsi/sg.o

11500 6221 17260 27s 2s 1s 0.3s 0.1s

47 linux-
5917583

S: /linux-676d55a/make mm/
B: make mm/

32372 52 384 123 130 1m32s 9s 2s 1.3s 0.7s

48 linux-
19147bb

S: linux-19147bb
make drivers/net/e1000e/netdev.o
B: linux-19147bb
make drivers/net/e1000/e1000_main.o

29291 32 388 77 348 1m37s 8s 2s 0.8s 0.04

49 linux-
4c25a2c

S: linux-4c25a2c
make drivers/pci/intel-iommu.o
B: linux-4c25a2c
make drivers/pci/dmar.o

20889 26 632 62 840 1m16s 2s 2s 0.6s 0.3s

50 linux-
529ed80

S&B: linux-529ed80
make drivers/video/i810/

15774 23 310 55 491 1m12s 2s 2s 0.9s 0.4s

51 linux-
3083e83

S: linux-efe1cf0
 make drivers/net/wireless/iwlwifi/iwl-
core.o
B: linux-3083e83
make drivers/net/wireless/iwlegacy/iwl-
core.o

11158 26 493 62 373 1m30s 2s 3s 0.8s 0.3s

52 linux-
78794b2

S: linux-78794b2
make fs/nilfs2/page.o
B: linux-78794b2
make fs/gfs2/main.o

20276 25 328 59 730 1m20s 7s 3s 1.9s 0.6s

53 linux-
c594d88

S&B: linux-c594d88
make fs/gfs2/ops_address.o

9024 10 023 22 441 39s 2s 8s 0.2s 0.1s

D1 git-d53fe81 S&B: git-d53fe81
make git

67294 157 328 358 183 5m36s 23s 56s 13s 5s

D2 git-3fe2a89 S&B: git-3fe2a89
make git

75414 196 871 441 496 13m32s 44s 1m2s 4s 2s

D3 git-e923eae S&B: git-e923eae
make git

80944 181 424 414 780 16m18s 40s 1m4s 9s 3s

D4 git-e923eae-2 S&B: git-e923eae-2
make git

80944 181 424 414 780 16m18s 41s 1m4s 6s 2s

D5 linux-
23edcc4

S&B: linux-23edcc4
make net/

170021 4 33 970 1 022
407

23m9s 1m25 8m 15s 6s

D6 linux-
ec33679

S&B: linux-ec33679
make fs/

140325 367300 830575 18m35s 1m8s 6m36s 16s 3.7s

D7 linux-
2644487

S&B: linux-2644487
make drivers/

363440 859 526 1 970
025

126m38s 3m32s 30m9s 39s 8s

D8 linux-
a4e77d0

S&B: linux-a4e77d0
make drivers/

313044 705 068 1 645
538

72m29 2m49s 21m17s 17s 7s

a. In some cases, the buggy code and its clones stay in different files or even different versions of the system. Thus, we sometimes have to compile the file
including the buggy code and the file including the clones separately to generate Bug PDG and System PDG respectively. The “S” is the compiling
command we used to generate the System PDG and the “B” is the command for generating the Bug PDG. To compile Linux to include both the buggy code

28

and its clones is tricky because:

• We always run the “make defconfig” command first the set the value of the variables in the compiling configuration file

• When we run “make” command afterwards, only the files that are related to our hardware, i.e. the ones identified though “make defconfig” will
included for compiling. Due to the hardware setting of our experiment machine, many of the files containing the buggy code or the files
containing the system code cannot be included for compiling if we just simply run the command “make” or “make drivers”. For example, when
we run the command “make driver” the file “drivers/net/e1000e/netdev.o” will not be included in the compiled result, because we do not have the
hardware related to this file. Fortunately, you can always compile only one “.o” file of Linux. Thus, we only compiled the “.o” file of the buggy
code and its clones. This works for the code in the drivers, net, fs, and mm modules. However, for code in the arch or kernel modules, specific
hardware is needed to compile .c/.cpp to generate even the “.o” code. For example, the ARM processor is needed to compile an “.o” file that is
related to the ARM processor. Thus, we have to exclude some cases, which need specific hardware installation, in our experiment.

• For d1 to d8 cases to test the performance of the CBCD, we got many cases return when we searched the Linux and Git SCM using the keyword
“duplicate”. Thus, we managed to find files, which include a certain code segment and its duplications, that can be compiled using command like
“make drivers”

• In some cases e.g. postgreSQL-2618fcd , the buggy code and its clones are in different commits/versions of the project. That is why another
commit IDs are different for the suspected code and for the buggy code.

b. The system size includes the number of different vertexes and the edges in the System PDG.

c. This running time reflect the time that CBCD need to search for the clone of a bug.

29

Appendix C. Improvement of the optimizations, 3000HZ, 4G, Linux Ubuntu 10.04

Id Commit Id Running time with

all optimizationsa

Without Opt1, i.e. prune irrelevant edgesb Without

Opt2, break

system

PDGc

Without

Opt3,

exclude

irrelevant

system

PDGd

Without

Opt4, split

Bug PDGe

Step 2 Step 3 Time for step3

(Times step3

time with all

opts)

Edge size

before prune

Edge

size

after

prune

Edge

size

reductio

n rate

Time for

step3 (Times

step3 time

with all

opts)

Time for

step3

(Times

step3 time

with all

opts)

Time for

step3 (Times

step3 time

with all opts)

1 postgreSQL-2618fcd 1s 0.3s 1.4s (4) 38997 11692 70% 0.3s (1) 0.3s (1) N/A

2 postgreSQL-161be69 6s 2s 24s (12) 463362 2 99% 2s (1) 2s (1) N/A

3 postgreSQL-dcb09b5 1s 0.4s 0.8s (2) 66376 8261 88% 0.4s (1) 0.4s (1) N/A

4 postgreSQL-04d976f 8s 3s 5.6s (2) 577127 92115 84% 3s (1) 3s (1) N/A

5 postgreSQL-9dbfcc2 0.2s 0.2s 0.1s (0.5) 7945 42 99% 0.1s (0.5) 0.1s (0.5) N/A

6 postgreSQL-d9dddd1 2s 44s 2m43s (4) 107890 18743 83% 2m26s(4) 1m11s(2) N/A

7 postgreSQL-0d8e7f6 0.6s 0.4s 0.4s (1) 43893 5603 87% 0.3s (1) 0.2s (0.5) N/A

8 postgreSQL-8474600 4s 2s 6.3s (3) 467561 4002 99% 2s (1) 4s (2) N/A

9 postgreSQL-19dacd4 7s 4s 9s (2) 812543 3 99% 4s (1) 4s (1) N/A

10 postgreSQL-db6df0c 12s 4.5s 35s (8) 821737 95006 88% 4.5s (1) 4.6s (1) N/A

11 postgreSQL-dcb09b5 0.1s 0.1s 0.1s (1) 2208 41 98% 0.1s (1) 0.1s (1) N/A

12 postgreSQL-6666185 2.7s 1s 1.5s (2) 216941 42052 81% 1.1s (1) 1.1s (1) N/A

13 postgreSQL-54bce38 0.1s 0.1s 0.1s (1) 938 287 69% 0.1s (1) 0.1s (1) N/A

14 postgreSQL-f4d108a 2s 1s 1.9s (2) 226345 2354 99% 1s (1) 1s (1) N/A

15 git-a3eb250 0.3s 0.2s 8s (40) 31120 324 99 % 0.55s (3) 0.4s (1) N/A

16 git-b3118bd 3s 2s 3s (1.5) 383615 8 99 % 3.5s (2) 3s (2) N/A

17 git-da0204d 4s 2s 9s (5) 333780 22 99 % 6.5s (3) 4s (2) N/A

18 git-cd03eeb 6s 4s 12s (3) 382805 248417 35 % 24s (6) 9.8s (2) N/A

19 git-013aab 0.4s 0.2s 0.3s(2) 34065 409 99% 0.2 (1) 0.3(2) N/A

20 linux-5bb1ab 0.9s 0.2s 1s (5) 24579 19634 20% 0.5s (3) 0.3s (1) N/A

21 linux-590929f 0.6s 0.5s 0.4s (1) 60139 3106 95% 0.3s (1) 0.3s (1) N/A

22 linux-9378b63 0.7s 0.4s 0.5s (1) 61355 851 99% 0.3s (1) 0.3s (1) N/A

23 linux-fe1cbab 0.9s 0.4s 0.4s (1) 62947 10685 83% 0.3s (1) 0.3s (1) N/A

24 linux-d89197c 0.7s 0.5s 0.4s (1) 64600 1 99% 0.3s (1) 0.4s (1) N/A

25 linux7-cab758e 1.3s 0.6s 0.6s (1) 86495 14209 84% 0.5s (1) 0.4s (1) N/A

26 linux-0029227 1.1s 0.5s 0.6s (1) 72520 14354 80% 0.5s (1) 0.4s (1) N/A

27 linux-713b3c9 0.9s 0.5s 0.5s (1) 86669 202 99% 0.4s (1) 0.4s (1) N/A

28 linux-52534f2 0.9s 0.5s 0.6s (1) 70056 6571 91% 0.4s (1) 0.4s (1) N/A

29 linux-dcace06 1s 0.5s 0.8s (1) 65281 12656 81% 0.4s (1) 0.5s (1) N/A

30 linux- a57ca04 0.3s 0.1s 0.1s (1) 52292 0 100%f 0.1s (1) 0.1s (1) N/A

31 linux-ff0ac74 0.7s 0.3s 0.3s(1) 83241 0 100% 0.3s (1) 0.3s (1) N/A

32 linux- 5153f7 0.2s 0.1s 0.1s (1) 19149 0 100% 0.1s (1) 0.1s (1) N/A

33 linux-8bea867 0.06s 0.3s 0.7s (2) 58836 79 99 % 0.7s (2) 0.6s (2) N/A

34 linux-ea2d8b5 0.07s 0.04s 0.9s (23) 69367 2 99 % 2.9s (72) 0.06s (2) N/A

30

a. These are the running time of the step 2 (prune the system PDG) and step 3 (subgraph testing) of CBCD with all Opts included.

b. Here are the data of CBCD step 3 running time without Opt1, i.e. without pruning the system PDG before subgraph testing. The data in the parentheses
are the ratio between the running time here and the running time with all Opts included. The data here also show how much percentages of the edges are
pruned out before in step 2 before step 3.

c. The data here show the CBCD step 3 running time without Opt2, i.e. without breaking the system PDG into smaller ones using neighbor graphs. The
results show that the running time here is often 2-3 times the CBCD step 3 running times with the Opt2.

d. The data here show the CBCD step 3 running time without Opt3, i.e. excluding the system neighbor subgraphs that are irrelevant. The results show that
the running time here is often 2-3 times the CBCD step 3 running times with the Opt3.

e. The data here show the CBCD step 3 time without splitting the bug code segments, when the code segments are big. Here we chose just three cases for
experiment, because these the bug code segments of these three cases have more than 8 lines of code.

f. In the linux-a57ca04 case, the edge reduction ratio is 100%, because no Bug PDG was generated, due to Codersurfer cannot catch the buggy code
information.

35 linux-c9a2c46 0.08s 0.3s 26s (130) 56345 22 99 % 1.5s (5) 1.8s (6) N/A

36 linux-d555009 0.9s 0.3s 101m11s

(20237)

59373 430 99 % 1.8s (6) 1.8s (6) N/A

37 linux-9601e3f 1s 0.6s 49s (82) 81865 214 99 % 4.5s (7) 0.9s (1) N/A

38 linux-2567d71 1s 0.4s 79m16s

(11890)

56629 134 99 % 3.5s (8) 1.8s (4) N/A

39 linux-3976ae6 1.6s 0.6s 17s (28) 60099 13454 77 % 6.9s (4) 6.6s (4) N/A

40 linux-c09c518 0.4s 0.2s 2.5s (12) 28032 12 99 % 0.8s (4) 0.8s (4) N/A

41 linux-b45bfcc 1.5s 0.4s 2s (5) 33362 120 99 % 6.2s (15) 1.4 (3) N/A

42 linux-34cc560 2.7s 1.3s 5s (4) 239895 3623 98 % 4s (3) 3.7s (3) N/A

43 linux-efbfe96c 0.3s 0.1s 0.3s (3) 25107 2 99 % 0.6s (6) 0.2s (2) N/A

44 linux-093beac 0.8s 0.3s 5.1s (15) 17020 14276 16 % 5.6s (15) 3s (10) N/A

45 linux-a6230af 0.07s 0.02s 0.1s (3) 4144 2 99 % 0.24s (12) 0.05s (2) N/A

46 linux-c87e34e 0.3s 0.1s 0.3s (3) 17260 239 98 % 0.7s (7) 0.2s (2) N/A

47 linux-5917583 1.3s 0.7s 2.2s (4) 123130 520 99 % 2s (3) 1.4s (2) N/A

48 linux-19147bb 0.8s 0.04 4.5s (110) 77348 5 99 % 2s (50) 0.7s (17) N/A

49 linux-4c25a2c 0.6s 0.3s 19s (63) 62840 5 99 % 0.6s (2) 0.6s (2) N/A

50 linux-529ed80 0.9s 0.4s 3s (8) 55491 16 99 % 4s (10) 1.8s (4) N/A

51 linux-3083e83 0.8s 0.3s 14s (47) 62373 57 99 % 0.9s (3) 0.6s (2) N/A

52 linux-78794b2 1.9s 0.6s 1m43s (172) 59730 131 99 % 7.2s (12) 3s (5) N/A

53 linux-c594d88 0.2s 0.1s 0.45s (5) 22441 220 99 % 1.1s (10) 0.2s (2) N/A

D1 git-d53fe81 13s 5s 6m7s (74) 358183 47099 86 % 54s (10) 12s (2) 10m2s (120)

D2 git-3fe2a89 4s 2s 14s (7) 441496 21 99 % 11s (5) 6s (3) N/A

D3 git-e923eae 9s 3s 3m49s (76) 414780 23843 94 % 17s (6) 11s (3) 3s (1)

D4 git-e923eae-2 6s 2s 15s (7) 414780 12212 97 % 8s (4) 7s (4) 2s (1)

D5 linux-23edcc4 15s 6s Aborted 1022407 292 99 % 6s (1) 7.8s (1) N/A

D6 linux-ec33679 16s 3.7s 24.8s (8) 830575 12 99 % 8.8 (2) 6.8s (2) N/A

D7 linux-2644487 39s 8s 55s (7) 1970025 94 99 % 39s (5) 31s (4) N/A

D8 linux-a4e77d0 17s 7s 15m38s (134) 1645538 3125 99 % 7.7s (1) 7.7 (1) N/A

31

Appendix D. Commit information of the evaluated code

Id Commit id Commit info. of the bug Commit info. of clones

1 postgreSQL-
2618fcd

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=88800aac14c54f595d288
be0e1fac8720f5f5b5d

Ok. BTW Mr. Kataoka who is maintaing Japanese version of PostgreSQL
ODBC driver have found a bug in 6.3.2 pg_dump and have made patches.

I confirmed that the same bug still exists in the current source
tree. So I made up patches based on Kataoka's. Here are some

explanations.

o fmtId() returns pointer to a static memory in it. In the meantime
there is a line where is fmtId() called twice without saving the
first value returned by fmtId(). So second call to fmtId() will

break the first one.

o findTableByName() looks up a table by its name. if a table name
contanins upper letters or non ascii chars, fmtId() will returns

a name quoted in double quotes, which will not what findTableByName()
wants. The result is SEG fault. -- Tatsuo Ishii t-ishii@sra.co.jp

sprintf(q, "CREATE %s INDEX %s on %s using %s (",
 (strcmp(indinfo[i].indisunique, "t") == 0) ? "UNIQUE" : "",

- fmtId(indinfo[i].indexrelname),
- fmtId(indinfo[i].indrelname),

+ id1,
+ id2,

 indinfo[i].indamname);

http://git.postgresql.org/gitweb/?p=po
stgresql.git;a=commit;h=b542fa1a6e8
38d3e32857cdfbe8aeff940a91c74

The same file, but different version

2 postgreSQL-
161be69

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=7d572886d63101111478
7caa31b90ecaf52c17db

Fix coredump seen when doing mergejoin between indexed tables,
for example in the regression test database, try

select * from tenk1 t1, tenk1 t2 where t1.unique1 = t2.unique2;
6.5 has this same bug ...

pathnode->indexkeys = index->indexkeys;

- pathnode->indexqual = NIL;

http://git.postgresql.org/gitweb/?p=po
stgresql.git;a=commit;h=275a1d054e
72b35bfd98c9731e51b2961ab8dbf5

Undo Jan's typo that broke regress.sh'
s detection of system

type name.

The same file

pathnode->indexkeys = index-
>indexkeys;

 344 pathnode->indexqual = NIL;

3 postgreSQL-
dcb09b5

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=7748e9e7e5aef280be
a4e204017e8ac7dca14177;hp=7c0c9b3ccec4718c1c7cef7b5282fd56b727d965

pltcl, plperl, and plpython all suffer the same bug previously fixed
in plpgsql: they fail for datatypes that have old-style I/O functions
due to caching FmgrInfo structs with wrong fn_mcxt lifetime.

Although the plpython fix seems straightforward, I can't check it here

since I don't have Python installed --- would someone check it?

- fmgr_info(typeStruct->typinput, &(prodesc->result_in_func));

Three different files in the same
submission

Because there are too many bugs in

the plperl.c of the current version, it is
impossible to compile it. So, we use
the commit in 11 to run the test.

There, the buggy function name has
been changed to perm_fmgr_in fo(..).

32

4 postgreSQL-
04d976f

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=1392cbd0ed97f1bf956d4
aa2cc4325f9a6418e8b

AdjustTimeForTypmod has the same bug ...

http://git.postgresql.org/gitweb/?p=po
stgresql.git;a=commit;h=64dff0beac3
c76dd7035bfaa2e4357aa4798cc96

Fix some problems in new variable-

resolution-timestamp code.

5 postgreSQL-
9dbfcc2

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=fe055e928095658eb2a8c
d52ff32f090720de3de

Looks like plperl has same bug as pltcl.

for (i = 0; i < tupdesc->natts; i++)
 {

+ /* ignore dropped attributes */
+ if (tupdesc->attrs[i]->attisdropped)

+ continue;

http://git.postgresql.org/gitweb/?p=po
stgresql.git;a=commit;h=9dbfcc22613
379e89283282db5cd616898bf6e4f

Fix some problems with dropped colu
mns in pltcl functions.

6 postgreSQL-
d9dddd1

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=39ed8c4049c2900af3
48059efe362becdcaf9eb1;hp=d9dddd11000a1f97ad521af7466cc3fb89666997

pg_dump as well as psql. Since psql already uses dumputils.c, while there's

not any code sharing in the other direction, this seems the easiest way.
Also, fix misinterpretation of patterns using regex | by adding parentheses

(same bug found previously in similar_escape()). This should be backpatched.

Same commitment

7 postgreSQL-
0d8e7f6

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=3ac9688ae80ec6bcbb
9bdafa8ef30eadc8c6dd6e;hp=087eb4cd1a1faba95699b642883ba588bf709157

prompt_for_password code that psql does. We fixed psql a month or
two back to permit usernames and passwords longer than 8 characters.

I propagated the same fix into pg_dump.

Tom Lane

 printf("Username: ");
- fgets(username, 9, stdin);

http://git.postgresql.org/gitweb/?p=po
stgresql.git;a=commit;h=cb7cbc16fa4
b5933fb5d63052568e3ed6859857b

Hi, here are the patches to enhance ex
isting MB handling. This time

I have implemented a framework of e
ncoding translation between the

backend and the frontend. Also I have
 added a new variable setting

command:

SET CLIENT_ENCODING TO 'enco
ding';

Other features include:

Latin1 support more 8 bit cleaness

See doc/README.mb for more detai
ls. Note that the pacthes are
against May 30 snapshot.

Tatsuo Ishii

8 postgreSQL-
8474600

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=1d1cf38c0d02908e3c
6520dab94c878947ca8152;hp=84746009c2e5686217679ccaae6ed2a18164d37c

rather than reusing the input storage.

Also made the same fix to int8smaller(), though there wasn't a symptom,
 and went through and verified that other pass-by-reference data types

 do the same thing. Not an issue for the by-value types.

return (*val1 > *val2) ? val1 : val2;

The same commitment

9 postgreSQL-
19dacd4

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=c584103f56040f1c3d2d1
25256b005ff09c4d94e

Patch of 2004-03-30 corrected date_part(timestamp) for extracting

http://git.postgresql.org/gitweb/?p=po
stgresql.git;a=commit;h=fd071bd478f
489c81208029265e1fef954a9b5fa

33

the year from a BC date, but failed to make the same fix in
date_part(timestamptz).

 case DTK_YEAR:
- result = tm->tm_year;

Fix to_char for 1 BC. Previously it re
turned 1 AD.

Fix to_char(year) for BC dates. Previ

ously it returned one less than
the current year.

Add documentation mentioning that t

here is no 0 AD.

10 postgreSQL-
db6df0c

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=0cb117eb33558bc779
df833480958a97227dcbc2;hp=3b6bf0c07d49b1172ee0326e3e06583068fa305d

Repair some problems in bgwriter start/stop logic. In particular, don't
allow the bgwriter to start before the startup subprocess has finished

... it tends to crash otherwise. (The same problem may have existed for
the checkpointer, I'm not entirely sure.) Remove some code that was

redundant because the bgwriter is handled as a member of the backend list.

The same file

11 postgreSQL-
dcb09b5

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=abc10262696e53773c9a8
c9f279bbd464b464190

After parsing a parenthesized subexpression, we must pop all pending
ANDs and NOTs off the stack, just like the case for a simple operand.

Per bug #5793.

Also fix clones of this routine in contrib/intarray and contrib/ltree,
where input of types query_int and ltxtquery had the same problem.

Back-patch to all supported versions.

The same commitment

12 postgreSQL-
6666185

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=b775d93acb961ceea1371
d6c724317e1ea6f3242

Fix pgstat_heap() to not be broken by syncscans starting from a block
higher than zero. Same problem as just detected in CREATE INDEX

CONCURRENTLY.

- scan = heap_beginscan(rel, SnapshotAny, 0, NULL);

http://git.postgresql.org/gitweb/?p=po
stgresql.git;a=commitdiff;h=d3b1b1f
9d8d70017bf3e8e4ccf11b183d11389
b9;hp=689d02a2e9c56dbad3982a440

278e937fd063260

Fix CREATE INDEX CONCURREN
TLY so that it won't use synchronized

 scan for
its second pass over the table. It has t

o start at block zero, else the
"merge join" logic for detecting whic

h TIDs are already in the index
doesn't work. Hence, extend heapam.
c's API so that callers can enable or
disable syncscan. (I put in an option t

o disable buffer access strategy,
too, just in case somebody needs it.)
Per report from Hannes Dorbath.

13 postgreSQL-
54bce38

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=2190cf2926961b43e7c2d
4415db23c1ccf4c026e

Repair bug reported by ldm@apartia.com: Append nodes, which don't
actually use their targetlist, are given a targetlist that is just a

pointer to the first appended plan's targetlist. This is OK, but what
is not OK is that any sub-select expressions in said tlist were being

entered in the subPlan lists of both the Append and the first appended
plan. That led to two startup and two shutdown calls for the same
plan node at exec time, which led to crashes. Fix is to not generate
a list of subPlans for an Append node. Same problem and fix apply
to other node types that don't have a real, functioning targetlist:

Material, Sort, Unique, Hash.

The same commitment

34

14 postgreSQL-
f4d108a

http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=5253c518aef4c906dc
6c922c51c2d77b0a78bf75;hp=f4d108a25747754b5d265b12ef32c791ab547782

agg_select_candidate, which could cause them to keep more candidates

than they should and thus fail to select a single match. I had
previously fixed the identical bug in oper_select_candidate, but

didn't realize that the same error was repeated over here.
Also, repair func_select_candidate's curious notion that it could

scribble on the input type-OID vector. That was causing failure to
apply necessary type coercion later on, leading to malfunction of

examples such as select date('now').

http://git.postgresql.org/gitweb/?p=po
stgresql.git;a=commitdiff;h=5adebf83
b6cffbf4133ff97dbe6d5da0ff59bff1;h
p=42af56e1ead3306d2c056ff96ea770

e4eee68e9d

Clean up some bugs in oper_select_ca
ndidate(), notably the

last loop which would return the *first
* surviving-to-that-point candidate

regardless of which one actually passe
d the test. This was producing

such curious results as 'oid % 2' gettin
g translated to 'int2(oid) % 2'

15 git-a3eb250 Fix the "close before dup" bug in clone-pack too
Same issue as git-fetch-pack.

The same file

16 git-b3118bd Fix incorrect error check while reading deflated pack data
The loop in get_size_from_delta() feeds a deflated delta data from the
pack stream _until_ we get inflated result of 20 bytes[*] or we reach the

end of stream.
Side note. This magic number 20 does not have anything to do with the
 size of the hash we use, but comes from 1a3b55c (reduce delta head

 inflated size, 2006-10-18).

In the same file

17 git-da0204d Avoid scary errors about tagged trees/blobs during git-fetch
This is the same bug as 42a32174b600f139b489341b1281fb1bfa14c252.
The warning "Object $X is a tree, not a commit" is bogus and is
not relevant here. If its not a commit we just need to make sure
we don't mark it for merge as we fill out FETCH_HEAD.

Avoid scary errors about tagged trees/
blobs during git-fetch

18 git-cd03eeb use write_str_in_full helper to avoid literal string lengths
This is the same fix to use write_str_in_full() helper to write a constant
string out without counting the length of it ourselves.

The same file

19 git-013aab [PATCH] Dereference tag repeatedly until we get a non-tag.

When we allow a tag object in place of a commit object, we only
dereferenced the given tag once, which causes a tag that points at a tag

that points at a commit to be rejected. Instead, dereference tag
repeatedly until we get a non-tag.

This patch makes change to two functions:

 - commit.c::lookup_commit_reference() is used by merge-base,
 rev-tree and rev-parse to convert user supplied SHA1 to that of

 a commit.
 - rev-list uses its own get_commit_reference() to do the same.

Dereferencing tags this way helps both of these uses.

if (obj->type == tag_type)

- obj = ((struct tag *)obj)->tagged;

 if (object->type == tag_type) {

The same commitment

20 linux-5bb1ab http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commit;h=2570a4f5428bcdb1077622342181755741e7fa60

ipv6: skb_dst() can be NULL in ipv6_hop_jumbo().

This fixes CERT-FI FICORA #341748

Discovered by Olli Jarva and Tuomo Untinen from the CROSS

project at Codenomicon Ltd.

Just like in CVE-2007-4567, we can't rely upon skb_dst() being
non-NULL at this point. We fixed that in commit

e76b2b2567b83448c2ee85a896433b96150c92e6 ("[IPV6]: Do no rely on
skb->dst before it is assigned.")

http://git.kernel.org/?p=linux/kernel/g
it/torvalds/linux-

2.6.git;a=commitdiff;h=483a47d2fe7
94328d29950fe00ce26dd405d9437;h
p=3bd653c8455bc7991bae77968702b

31c8f5df883

35

However commit 483a47d2fe794328d29950fe00ce26dd405d9437 ("ipv6: added
net argument to IP6_INC_STATS_BH") put a new version of the same bug

into this function.

Complicating analysis further, this bug can only trigger when network
namespaces are enabled in the build. When namespaces are turned off,

the dev_net() does not evaluate it's argument, so the dereference
would not occur.

So, for a long time, namespaces couldn't be turned on unless SYSFS was

disabled. Therefore, this code has largely been disabled except by
people turning it on explicitly for namespace development.

With help from Eugene Teo eugene@redhat.com

ipv6: added net argument to IP6_INC
_STATS_BH

21 linux-590929f http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=32127363eebdf63be2f375ed94838a4cdb1d6fe0;hp=590929f32a

dc3aaa702c287b624a0d0382730088

The implementation of the gain calculation for this sensor is incorrect.
It is only working for the first 127 values.

The reason is, that the gain cannot be set directly by writing a value
into the gain registers of the sensor. The gain register work this way
(see datasheet page 24): bits 0 to 6 are called "initial gain". These
are linear. But bits 7 and 8 ("analog multiplicative factors") and bits
9 and 10 ("digital multiplicative factors") work completely different:
Each of these bits increase the gain by the factor 2. So if the bits

7-10 are 0011, 0110, 1100 or 0101 for example, the gain from bits 0-6 is
multiplied by 4. The order of the bits 7-10 is not important for the

resulting gain. (But there are some recommended values for low noise)

The current driver doesn't do this correctly: If the current gain is 000
0111 1111 (127) and the gain is increased by 1, you would expect the
image to become brighter. But the image is completly dark, because the

new gain is 000 1000 0000 (128). This means: Initial gain of 0,
multiplied by 2. The result is 0.

This patch adds a new function which does the gain calculation and also
fixes the same bug for red_balance and blue_balance. Additionally, the
driver follows the recommendation from the datasheet, which says, that

the gain should always be above 0x0020.

Same commitment, same file

22 linux-9378b63 http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=62627bec8a601c5679bf3d20a2096a1206d61b71;hp=9378b63cc

b32b9c071dab155c96357ad1e52a709

x86: tsc: Fix calibration refinement conditionals to avoid divide by zero

Konrad Wilk reported that the new delayed calibration crashes with a
divide by zero on Xen. The reason is that Xen sets the pmtimer
address, but reading from it returns 0xffffff. That results in the
ref_start and ref_stop value being the same, so the delta is zero

which causes the divide by zero later in the calculation.

The conditional (!hpet && !ref_start && !ref_stop) which sanity checks
the calibration reference values doesn't really make sense. If the

refs are null, but hpet is on, we still want to break out.

The div by zero would be possible to trigger by chance if both reads
from the hardware provided the exact same value (due to hardware

wrapping).

So checking if both the ref values are the same should handle if we
don't have hardware (both null) or if they are the same value (either by

invalid hardware, or by chance), avoiding the div by zero issue.

[tglx: Applied the same fix to native_calibrate_tsc() where this
 check was copied from]

Same commitment, same file

36

23 linux-fe1cbab http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=e75762fdcd27c1d0293d9160b3ac6dcb3371272a;hp=fe1cbabaea

5e99a93bafe12fbf1b3b9cc71b610a

Teach 9p filesystem to work in container with non-default network namespace.
(Note: I also patched the unix domain socket code but don't have a test case

for that. It's the same fix, I just don't have a server for it...)

To test, run diod server (http://code.google.com/p/diod):
 diod -n -f -L stderr -l 172.23.255.1:9999 -c /dev/null -e /root

and then mount like so:
 mount -t 9p -o port=9999,aname=/root,version=9p2000.L 172.23.255.1 /mnt

Same commitment

24 linux-d89197c http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=21fdc87248d1d28492c775e05fa92b3c8c7bc8db;hp=333ba7325

213f0a09dfa5ceeddb056d6ad74b3b5

ath9k: fix two more bugs in tx power

This is the same fix as

 commit 841051602e3fa18ea468fe5a177aa92b6eb44b56
 Author: Matteo Croce <technoboy85@gmail.com>

 Date: Fri Dec 3 02:25:08 2010 +0100

 The ath9k driver subtracts 3 dBm to the txpower as with two radios the
 signal power is doubled.

 The resulting value is assigned in an u16 which overflows and makes
 the card work at full power.

in two more places. I grepped the ath tree and didn't find any others.

scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;

http://git.kernel.org/?p=linux/kernel/g
it/torvalds/linux-

2.6.git;a=commitdiff;h=841051602e3
fa18ea468fe5a177aa92b6eb44b56;hp
=d89197c7f34934fbb0f96d938a0d6cf

e0b8bcb1c

ath9k: fix bug in tx power

The ath9k driver subtracts 3 dBm to t
he txpower as with two radios the

signal power is doubled.
The resulting value is assigned in an u

16 which overflows and makes
the card work at full power.

 scaledPower -

= REDUCE_SCALED_POWER_BY
_TWO_CHAIN;

25 linux7-cab758e http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=1eddceadb0d6441cd39b2c38705a8f5fec86e770;hp=cab758ef30

e0e40f783627abc4b66d1b48fecd49

Le jeudi 16 juin 2011 à 23:38 -0400, David Miller a écrit :
> From: Ben Hutchings <bhutchings@solarflare.com>

> Date: Fri, 17 Jun 2011 00:50:46 +0100
>

> > On Wed, 2011-06-15 at 04:15 +0200, Eric Dumazet wrote:
> >> @@ -1594,6 +1594,7 @@ int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)

> >> goto discard;
> >>

> >> if (nsk != sk) {
> >> + sock_rps_save_rxhash(nsk, skb->rxhash);

> >> if (tcp_child_process(sk, nsk, skb)) {
> >> rsk = nsk;
> >> goto reset;

> >>
> >

> > I haven't tried this, but it looks reasonable to me.
> >

> > What about IPv6? The logic in tcp_v6_do_rcv() looks very similar.
>

> Indeed ipv6 side needs the same fix.
>

> Eric please add that part and resubmit. And in fact I might stick
> this into net-2.6 instead of net-next-2.6

>

OK, here is the net-2.6 based one then, thanks !

[PATCH v2] net: rfs: enable RFS before first data packet is received

First packet received on a passive tcp flow is not correctly RFS
steered.

The same commitment

37

One sock_rps_record_flow() call is missing in inet_accept()

But before that, we also must record rxhash when child socket is setup

26 linux-0029227 http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=40a9fb17f32dbe54de3d636142a59288544deed7;hp=0029227f1

bc30b6c809ae751f9e7af6cef900997

xhci: Do not run xhci_cleanup_msix with irq disabled

The same commitment

27 linux-713b3c9 http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=4c7e604babd15db9dca3b07de167a0f93fe23bf4;hp=713b3c9e4c

1a6da6b45da6474ed554ed0a48de69

ixgbe: fix panic due to uninitialised pointer

Systems containing an 82599EB and running a backported driver from
upstream were panicing on boot. It turns out hw->mac.ops.setup_sfp is
only set for 82599, so one should check to be sure that pointer is set
before continuing in ixgbe_sfp_config_module_task. I verified by

inspection that the upstream driver has the same issue and also added a
check before the call in ixgbe_sfp_link_config.

Same commitment

28 linux-52534f2 http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=100f2341e305f98de3aa12fb472771ab029cbda7;hp=52534f2dba

5d033c0c33e515faa2767d7e8e986a

mtd: fix hang-up in cfi erase and read contention

cfi erase command hangs up when erase and read contention occurs.
If read runs at the same address as erase operation, read issues

Erase-Suspend via get_chip() and the erase goes into sleep in wait queue.
But in this case, read operation exits by time-out without waking it up.

I think the other variants (0001, 0020 and lpddr) have the same problem too.

Tested and verified the patch only on CFI-0002 flash, though.

Same commitment

29 linux-dcace06 http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commitdiff;h=6e83e10d92e12fa0181766a1fbb00d857bfab779;hp=1d56c453b1

4854637567c838109127b8decbf328

mmc: dw_mmc: protect a sequence of request and request-done.

Response timeout (RTO), Response crc error (RCRC) and Response error (RE)
signals come with command done (CD) and can be raised preceding command

done (CD). That is these error interrupts and CD can be handled in
separate dw_mci_interrupt(). If mmc_request_done() is called because of
a response timeout before command done has occured, we might send the

next request before the CD of current request is finished. This can
bring about a broken sequence of request and request-done.

And Data error interrupt (DRTO, DCRC, SBE, EBE) and data transfer

over (DTO) have the same problem.

 host->cmd_status = status;
 smp_wmb();

 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
- tasklet_schedule(&host->tasklet);

Same commitment

30 linux- a57ca04 mtd: jedec_probe: fix NEC uPD29F064115 detection

linux v2.6.31-rc6 can not detect NEC uPD29F064115.

uPD29F064115 is a 16 bit device.
datasheet:

 http://www.cn.necel.com/memory/cn/download/M16062EJ2V0DS00.pdf

This applies the same fix as used for SST chips in commit

The unlock_addr rework in kernel 2.6
.25 breaks 16-bit SST chips. SST
39LF160 and SST 39VF1601 are both
 16-bit only chip (do not have BYTE#
pin) and new uaddr value is not correc
t for them. Add
MTD_UADDR_0xAAAA_0x5555 fo
r those chips. Tested with SST 39VF
1601

38

ca6f12c67ed19718cf37d0f531af9438de85b70c ("jedec_probe: Fix SST 16-bit
chip detection").

chip.

31 linux-ff0ac74 This is the same fix as commit
7959ea254ed18faee41160b1c50b3c9664735967 ("bnx2: Fix the behavior of

ethtool when ONBOOT=no"), but for bnx2x:

 When configure in ifcfg-eth* is ONBOOT=no,
 the behavior of ethtool command is wrong.

 # grep ONBOOT /etc/sysconfig/network-scripts/ifcfg-eth2

 ONBOOT=no
 # ethtool eth2 | tail -n1
 Link detected: yes

 I think "Link detected" should be "no".

I found a little bug.

When configure in ifcfg-
eth* is ONBOOT=no,
the behavior of ethtool command is w
rong.

 # grep ONBOOT /etc/sysconfig/net
work-scripts/ifcfg-eth2
 ONBOOT=no
 # ethtool eth2 | tail -n1
 Link detected: yes

I think "Link detected" should be "no"
.

32 linux- 5153f7 Chuck Ebbert noticed that the desc_empty macro is incorrect. Fix it.

Thankfully, this is not used as a security check, but it can falsely
overwrite TLS segments with carefully chosen base / limits. I do not

believe this is an issue in practice, but it is a kernel bug.

The same commitment

33 linux-8bea867 drivers/gpu/drm/drm_fb_helper.c: don't use private implementation of atoi()

Kernel has simple_strtol() which would be used as atoi().

This is quite the same fix as in 2cb96f86628d6e97fcbda5fe4d8d74876239834c
("fbdev: drop custom atoi from drivers/video/modedb.c") because code in
drivers/gpu/drm/drm_fb_helper.c is based on drivers/video/modedb.c.

fbdev: drop custom atoi from drivers/
video/modedb.c

Kernel has simple_strtol() implement
ation which could be used as atoi().

34 linux-ea2d8b5 iwl3945: fix deadlock on suspend

This patch fixes iwl3945 deadlock during suspend by moving notify_mac out
of iwl3945 mutex. This is a portion of the same fix for iwlwifi by Tomas.

iwlwifi: fix suspend to RAM in iwlwi
fi

This patch fixes suspend to RAM afte
r by moving
notify_mac out of iwlwifi mutex

35 linux-c9a2c46 hwmon: (lm78) Fix I/O resource conflict with PNP

Only request I/O ports 0x295-0x296 instead of the full I/O address
range. This solves a conflict with PNP resources on a few motherboards.

Also request the I/O ports in two parts (4 low ports, 4 high ports)
during device detection, otherwise the PNP resource make the request
(and thus the detection) fail.

This is the exact same fix that was applied to driver w83781d in
March 2008 to address the same problem:
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commit;h=2961cb22ef02850d90e7a12c28a14d74e327df8d

hwmon: (w83781d) Fix I/O resource
conflict with PNP

drivers/hwmon/w83781d.c

36 linux-d555009 USB: serial: fix race between unthrottle and completion handler in visor

usb:usbserial:visor: fix race between unthrottle and completion handler

visor_unthrottle() mustn't resubmit the URB unconditionally
as the URB may still be running.

the same bug as opticon.

USB: serial: fix race between unthrott
le and completion handler in opticon

37 linux-9601e3f Btrfs: fix fallocate deadlock on inode extent lock

The btrfs fallocate call takes an extent lock on the entire range
being fallocated, and then runs through insert_reserved_extent on each
extent as they are allocated.

The problem with this is that btrfs_drop_extents may decide to try
and take the same extent lock fallocate was already holding. The solution

The same commitment

39

used here is to push down knowledge of the range that is already locked
going into btrfs_drop_extents.

It turns out that at least one other caller had the same bug.

38 linux-2567d71 rcu classic: new algorithm for callbacks-processing(v2)

This is v2, it's a little deference from v1 that I
had send to lkml.
use ACCESS_ONCE
use rcu_batch_after/rcu_batch_before for batch # comparison.

rcutorture test result:
(hotplugs: do cpu-online/offline once per second)

The same file different functions

39 linux-3976ae6 rt2x00: Only disable beaconing just before beacon update

We should not write 0 to the beacon sync register during
config_intf() since that will clear out the beacon interval
and forces the beacon to be send out at the lowest interval.

(reported by Mattias Nissler).

The side effect of the same bug was that while working with
multiple virtual AP interfaces a change for any of those

interfaces would disable beaconing untill an beacon update
was provided.

This is resolved by only updating the TSF_SYNC value during

config_intf(). In update_beacon() we disable beaconing
temporarily to prevent fake beacons to be transmitted.
Finally kick_tx_queue() will enable beaconing again.

hwmon: (w83627ehf) don't assume ba
nk 0

40 linux-c09c518 hwmon: (w83627hf) don't assume bank 0

The bank switching code assumes that the bank selector is set to 0
when the driver is loaded. This might not be the case. This is exactly
the same bug as was fixed in the w83627ehf driver two months ago:

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=commit;h=0956895aa6f8dc6a33210967252fd7787652537d

In practice, this bug was causing the sensor thermal types to be

improperly reported for my W83627THF the first time I was loading the
w83627hf driver. From the driver history, I'd say that it has been

broken since September 2005 (when we stopped resetting the chip by
default at driver load.)

41 linux-b45bfcc IB/mlx4: Take sizeof the correct pointer in call to memset()

When clearing the ib_ah_attr parameter in to_ib_ah_attr(), use sizeof
*ib_ah_attr instead of sizeof *path. This is the same bug as was
fixed for mthca in 99d4f22e ("IB/mthca: Use correct structure size in
call to memset()"), but the code was cut and pasted into mlx4 before the
fix was merged.

IB/mthca: Use correct structure size i
n call to memset()

42 linux-34cc560 [TCP]: Prevent pseudo garbage in SYN's advertized window

TCP may advertize up to 16-bits window in SYN packets (no window
scaling allowed). At the same time, TCP may have rcv_wnd
(32-bits) that does not fit to 16-bits without window scaling
resulting in pseudo garbage into advertized window from the
low-order bits of rcv_wnd. This can happen at least when
mss <= (1<<wscale) (see tcp_select_initial_window). This patch
fixes the handling of SYN advertized windows (compile tested
only).

…

[tcp_make_synack() has the same bu
g, and I've added a fix for

 that to this patch -DaveM]

43 linux-efbfe96c [PATCH] vmscan: Fix temp_priority race

The temp_priority field in zone is racy, as we can walk through a reclaim
path, and just before we copy it into prev_priority, it can be overwritten

The same commitment

40

(say with DEF_PRIORITY) by another reclaimer.

The same bug is contained in both try_to_free_pages and balance_pgdat, but
it is fixed slightly differently. In balance_pgdat, we keep a separate
priority record per zone in a local array. In try_to_free_pages there is
no need to do this, as the priority level is the same for all zones that we
reclaim from.
…

44 linux-093beac IB/mthca: Fix posting lists of 256 receive requests to SRQ for Tavor

If we post a list of length exactly a multiple of 256, nreq in
doorbell gets set to 256 which is wrong: it should be encoded by 0.

This is because we only zero it out on the next WR, which may not be
there. The solution is to ring the doorbell after posting a WQE, not

before posting the next one.

This is the same bug that we just fixed for QPs with non-shared RQ.

Same commitment, but in the file
drivers/infiniband/hw/mthca/mthca_q

p.c

45 linux-a6230af [CIFS] Fix cifs trying to write to f_ops

patch 2ea55c01e0c5dfead8699484b0bae2a375b1f61c fixed CIFS clobbering the
global fops structure for some per mount setting, by duplicating and having
2 fops structs. However the write to the fops was left behind, which is a
NOP in practice (due to the fact that we KNOW the fops has that field set
to NULL already due to the duplication). So remove it... In addition, another
instance of the same bug was forgotten in november.

Same commitment

46 linux-c87e34e [SCSI] sg: fix a bug in st_map_user_pages failure path

sg's st_map_user_pages is modelled on an earlier version of st's
sgl_map_user_pages, and has the same bug: if get_user_pages got some but

not all of the pages, then those got were released, but the positive res
code returned implied that they were still to be freed.

[SCSI] st: fix a bug in sgl_map_user_
pages failure path

47 linux-5917583 [PATCH] mm: move_pte to remap ZERO_PAGE

Move the ZERO_PAGE remapping complexity to the move_pte macro in
asm-generic, have it conditionally depend on

__HAVE_ARCH_MULTIPLE_ZERO_PAGE, which gets defined for MIPS.

For architectures without __HAVE_ARCH_MULTIPLE_ZERO_PAGE, move_pte beco
mes

a noop.

From: Hugh Dickins <hugh@veritas.com>

Fix nasty little bug we've missed in Nick's mremap move ZERO_PAGE patch.
The "pte" at that point may be a swap entry or a pte_file entry: we must

check pte_present before perhaps corrupting such an entry

Linux v2.6.14-rc2

Avast, ye scurvy land-
lubbers! Time to try out a new release

.

Arrr!

48 linux-19147bb e1000: fix unmap bug

This is in reference to the issue shown in kerneloops (search e1000 unmap)

The e1000 transmit code was calling pci_unmap_page on dma handles that it
might have called pci_map_single on.

Same bug as e1000e

e1000e: fix unmap bug

This is in reference to https://bugzilla.
redhat.com/show_bug.cgi?id=484494
Also addresses issue show in kernelo
ops

The e1000e transmit code was calling
 pci_unmap_page on dma handles tha
t it
might have called pci_map_single on.

49 linux-4c25a2c As we just did for context cache flushing, clean up the logic around
whether we need to flush the iotlb or just the write-buffer, depending

on caching mode.

Fix the same bug in qi_flush_iotlb() that qi_flush_context() had -- it
isn't supposed to be returning an error; it's supposed to be returning a

flag which triggers a write-buffer flush.

The same commitment

41

Remove some superfluous conditional write-buffer flushes which could
never have happened because they weren't for non-present-to-present

mapping changes anyway.

50 linux-529ed80 These patch fix a longstanding bug in the i810 frame buffer driver.

The handling of the i2c bus is wrong: A 1 bit should not written to the
i2c, these will be done by switch the i2c to input. Driving an 1 bit

active is against the i2c spec.

An active driven of a 1 bit will result in very strange error, depending
which side is the more powerful one. In my case it depends on the

temperature of the Display-Controller-EEprom: With an cold eprom a got
the correct EDID datas, with a warm one some of the 1 bits was 0 :-(

The same bug is also in the intelfb driver in the file

drivers/video/intelfb/intelfb_i2c.c. The functions intelfb_gpio_setscl()
and intelfb_gpio_setsda() do drive the 1 bit active to the i2c bus. But
since i have no card which is used by the intelfb driver i cannot fix

it.

The same commitment

51 linux-3083e83

Same fix as f844a709a7d8f8be61a571afc31dfaca9e779621
"iwlwifi: do not set tx power when channel is changing"

Mac80211 can request for tx power a
nd channel change in one ->config

call. If that happens, *_send_tx_powe
r functions will try to setup tx

power for old channel, what can be no
t correct because we already change
the band. I.e error "Failed to get cha

nnel info for channel 140 [0]",
can be printed frequently when operat

ing in software scanning mode.

52 linux-78794b2 Michael Leun reported that running parallel opens on a fuse filesystem
can trigger a "kernel BUG at mm/truncate.c:475"

Gurudas Pai reported the same bug on NFS.

The reason is, unmap_mapping_range() is not prepared for more than

one concurrent invocation per inode. For example:

 thread1: going through a big range, stops in the middle of a vma and
 stores the restart address in vm_truncate_count.

 thread2: comes in with a small (e.g. single page) unmap request on
 the same vma, somewhere before restart_address, finds that the
 vma was already unmapped up to the restart address and happily

 returns without doing anything.
…

The same commitment

53 linux-c594d88 This fixes a race between the glock and the page lock encountered
during truncate in gfs2_readpage and gfs2_prepare_write. The gfs2_readpages
function doesn't need the same fix since it only uses a try lock anyway, so

it will fail back to gfs2_readpage in the case of a potential deadlock.

This bug was spotted by Russell Cattelan.

Same commitment

D1 git-d53fe81 archive: centralize archive entry writing

Add the exported function write_archive_entries() to archive.c, which uses
the new ability of read_tree_recursive() to pass a context pointer to its
callback in order to centralize previously duplicated code.

The new callback function write_archive_entry() does the work that every
archiver backend needs to do: loading file contents, entering subdirectories,
handling file attributes, constructing the full path of the entry. All that
done, it calls the backend specific write_archive_entry_fn_t function.

D2 git-3fe2a89 status: reduce duplicated setup code

We have three output formats: short, porcelain, and long.
The short and long formats respect user-config, and the
porcelain one does not. This led to us repeating

42

config-related setup code for the short and long formats.

Since the last commit, color config is explicitly cleared
when showing the porcelain format. Let's do the same with
relative-path configuration, which enables us to hoist the
duplicated code from the switch statement in cmd_status.

As a bonus, this fixes "commit --dry-run --porcelain", which
was unconditionally setting up that configuration, anyway.

D3 git-e923eae refactor duplicated fill_mm() in checkout and merge-recursive

The following function is duplicated:
 fill_mm
Move it to xdiff-interface.c and rename it 'read_mmblob', as suggested
by Junio C Hamano.
Also, change parameters order for consistency with read_mmfile().

D4 git-e923eae-2 connect.c: move duplicated code to a new function 'get_host_and_port'
The following functions:
 git_tcp_connect_sock (IPV6 version)
 git_tcp_connect_sock (no IPV6 version),
 git_proxy_connect

have common block of code. Move it to a new function 'get_host_and_port'

D5 linux-23edcc4 tcp: Add tcp_validate_incoming & put duplicated code there

Large block of code duplication removed.

Sadly, the return value thing is a bit tricky here but it
seems the most sensible way to return positive from validator

on success rather than negative.

net/ipv4/tcp_input.c 4904-4909
parents:

orinoco: Add MIC on TX and check on RX

Use the MIC algorithm from the crypto subsystem.

23edcc4147ad36f8d55f0eb79c21e245ffb9f211

52second generate pdg

D6 linux-ec33679 fs: consolidate dentry kill sequence

The tricky locking for disposing of a dentry is duplicated 3 times in the
dcache (dput, pruning a dentry from the LRU, and pruning its ancestors).
Consolidate them all into a single function dentry_kill.

fs/dcache.c 304-310

parent: ec33679d78f9d653a44ddba10b5fb824c06330a1

fs: use RCU in shrink_dentry_list to reduce lock nesting

44second generate pdg

D7 linux-2644487 drm/i915: overlay: extract some duplicated code

I've suspected some bug there wrt to suspend, but that was not
the case. Clean up the code anyway.

drivers/gpu/drm/i915/intel_overlay.c 441-446

parents:

drm/i915: remove Pineview EOS protection support

43

HW guys have an evaluation about the impact about EOS, and say the impact
is quite small, so they have removed EOS detection support. This patch
removes EOS feature.

revert commit 043029655816ed4cfc2ed247020ef97e5d637392
directly reverting it gives a hunk error, so please use this one.

26444877812fb2a2b9301b0b3702fdf9f9e06e4b

121second generate pdg

D8 linux-a4e77d0 With 2.6.27-rc3 I noticed the following messages in my boot log:

0000:01:00.0: 0000:01:00.0: Warning: detected DSPD enabled in EEPROM
0000:01:00.0: eth0: (PCI Express:2.5GB/s:Width x1) 00:16:76:04:ff:09

The second seems correct, but the first has a silly repetition of the
PCI device before the actual message. The message originates from
e1000_eeprom_checks in e1000e/netdev.c.

With this patch below the first message becomes

 e1000e 0000:01:00.0: Warning: detected DSPD enabled in EEPROM

which makes it similar to directly preceding messages.

Use dev_warn instead of e_warn in e1000_eeprom_checks() as the interface
name has not yet been assigned at that point.

[akpm@linux-foundation.org: coding-style fixes]

drivers/net/e1000e/netdev.c 4671-4674

parents: atl1e: remove the unneeded (struct atl1e_adapter *)

Remove the unneeded (struct atl1e_adapter *) casts, for hw->adapter
already has type atl1e_adapter *.

a4e77d063d61e4703db813470fefe90dac672b55

