
How to Price Shared Optimizations in the Cloud

Prasang Upadhyaya, Magdalena Balazinska, and Dan Suciu
Department of Computer Science and Engineering,

University of Washington, Seattle, WA, USA
{prasang, magda, suciu}@cs.washington.edu

Abstract

Data-management-as-a-service systems are increasingly being used in collaborative settings,
where multiple users access common datasets. Cloud providers have the choice to implement
various optimizations, such as indexing or materialized views, to accelerate queries over these
datasets. Each optimization carries a cost and may benefit multiple users. This creates a major
challenge: how to select which optimizations to perform and how to share their cost among
users. The problem is especially challenging when users are selfish and will only report their
true values for different optimizations if doing so maximizes their utility.

In this paper, we present a new approach for selecting and pricing shared optimizations by
using Mechanism Design. We first show how to apply the Shapley Value Mechanism to the
simple case of selecting and pricing additive optimizations, assuming an offline game where
all users access the service for the same time-period. Second, we extend the approach to online
scenarios where users come and go. Finally, we consider the case of substitutive optimizations.

We show analytically that our mechanisms induce truthfulness and recover the optimization
costs. We also show experimentally that our mechanisms yield higher utility than the state-of-
the-art approach based on regret accumulation.

1 Introduction
Over the past several years, cloud computing has emerged as an important new paradigm
for building and using software systems. Multiple vendors offer cloud computing infrastruc-
tures, platforms, and software systems including Amazon [3], Microsoft [10], Google [20], Sales-
force [35], and others. As part of their services, cloud providers now offer data-management-
in-the-cloud options ranging from highly-scalable systems with simplified query interfaces (e.g.,
Windows Azure Storage [11], Amazon SimpleDB [9], Google App Engine Datastore [21]), to
smaller-scale but fully relational systems (SQL Azure [26], Amazon RDS [6]), to data intensive
scalable computing systems (Amazon Elastic MapReduce [4]), to highly-scalable unstructured
data stores (Amazon S3 [8]), and to systems that focus on small-scale data integration (Google
Fusion Tables [19]).

Existing data-management-as-a-service systems offer multiple options for users to trade-off
price and performance, which we call generically optimizations. They include views and indexes
(e.g., users can create them in SQL Azure and Amazon RDS), but also the choice of physical
location of data –which affects latency and price (e.g., Amazon S3)– how data is partitioned

1

(e.g., Amazon SimpleDB data “domains”), and the degree of data replication (e.g., Amazon S3
standard and reduced-redundancy storage). Cloud systems have an incentive to enable all the
right optimizations, because this increases their customer’s satisfaction and can also optimize the
cloud’s overall performance.

Today, data owners most commonly pay all costs associated with hosting and querying their
data, whether by themselves or by others. Data owners also choose, when possible, the opti-
mizations that should be applied to their data. However, there is a growing trend toward letting
users collaborate with each other by sharing data and splitting data access costs. For example,
in the Amazon S3 storage service, users can currently share their data with select other users,
with each user paying his or her own data access charges [7].

The combination of data sharing and optimizations creates a major challenge: how to select
the optimizations to implement and how to price them when one optimization can benefit multiple users.
Implementing these optimizations imposes a cost on the cloud that needs to be recovered: re-
sources spent on implementing and maintaining optimizations are resources that cannot be sold
for query processing.

A recently-proposed approach by Kantere, Dash, et al., [16, 22] addresses this problem by ask-
ing users to indicate their willingness to pay for different query performance values, observing
the query workload, and deciding on the optimizations to implement based on optimizations
that would have been helpful in the past (i.e., based on regret). The cost of the implemented
optimizations is amortized over the future queries that make use of them. This approach, how-
ever, has two key limitations as we show in Section 8. First, it assumes that users in the cloud
will truthfully reveal their valuations. In practice, users will try to game the system if doing so
improves their own utility. Other collaborative systems like peer-to-peer networks experience
widespread gaming [2] that can degrade system performance [17], and incentives to reduce gam-
ing are core components of modern peer-to-peer clients [15]. Second, this approach does not
guarantee that the cost of an optimization will be recovered.

Given these two observations, we develop a new approach to select and price optimizations
in the cloud based on Mechanism Design [31, 33]. Mechanism Design is an area of game theory
whose goal is to choose a game structure and payment scheme such as to obtain the best possible
outcome to an optimization problem in spite of selfish players having to provide some input to the
optimization. Our goal is to enable the cloud to find the best configuration of optimizations. For
this, it needs users (i.e., selfish players) to reveal their valuations for these optimizations.

The most closely related approaches from the Mechanism Design literature are cost-sharing
mechanisms [27]. Given a service with some cost, these mechanisms decide what users to service
and how much the users should pay for the service. We show how to easily adapt this technique
from the game theory community to the simplest problem of pricing a single optimization when
all users access the system for a single time-period (i.e., offline games).

The problem of pricing optimizations in the cloud, however, raises two additional challenges.
First, in the cloud, users change their workloads as well as join and leave the system at any time.
Such dynamism complicates the problem because the choice and price of optimizations must
vary over time (i.e., we need an online mechanism), and users now have new ways of gaming
the system: they can lie about the time when they need an optimization and they can emulate
multiple users. Second, multiple optimizations are available in the cloud and the value that
a user derives from these optimizations can be given by a complex function. In particular, in
this paper, we consider additive, or independent, optimizations and substitutive, or equivalent,
optimizations.

2

We seek the following standard properties for our mechanisms. First, we want the mech-
anisms to be truthful, also known as strategy-proof [31], which means that every player should
have an incentive to reveal her true value obtained from each optimization. The approach by
Dash, Kantere et al. [16, 22] mentioned above is not truthful as we discuss in Section 8: users
can benefit from lying about their value for an optimization. We also want online mechanisms
to be resilient to multiple identities and to misrepresentation of the time when a user needs an
optimization. Second, we want the mechanisms to be cost-recovering, which means that the cloud
should not lose money from performing the optimizations. In the approach by Dash, Kantere, et
al. [16, 22], the cloud first decides to implement an optimization and then the cost is amortized
over the future queries that use it. Cost-recovery is thus not guaranteed. Finally, we want the
mechanisms to be efficient, also known as value-maximizing [31], which means that we want it
to maximize the total social utility of the system i.e., the sum of user values minus the cost of
the implemented optimizations. For example, if several users could benefit from an expensive
optimization that none of them can afford to pay for individually, then the cloud should perform
the optimization and divide the cost among the users.

In summary, we make the following four contributions:
We first show how the problem of pricing optimizations maps onto a cost-recovery mecha-

nism design problem (Section 3). We also show how the Shapley Value Mechanism [27], which
is known to be both cost-recovering and truthful, solves the problem of pricing a single opti-
mization. We propose a direct extension of the mechanism to the case of additive optimizations
in an offline scenario, where all users access the system for the same time-period. We call this
basic mechanism AddOff Mechanism (Section 4).

Second, we present a novel mechanism for the online scenario where users come and go,
called the AddOn Mechanism. It turns out to be much more difficult to design mechanisms for the
online setting: algorithms that are truthful or cost-recovering in the static setting cease to be so in
the dynamic setting (see [31, p. 412]). We prove our new mechanism to be both cost-recovering
and truthful in the dynamic setting (Section 5).

Third, we extend both the AddOff Mechanism and the AddOn Mechanism to the case where
optimizations are inter-dependent, or substitutive. We call these mechanisms SubstOff Mechanism
and SubstOn Mechanism and prove them truthful (assuming users do not know other users’
valuations) and cost-recovering (Section 6).

It has been proven before that achieving both truthfulness and cost-recovery, in the face
of selfish agents, comes at the expense of total utility [27]. We experimentally compare our
mechanisms against the state-of-the art approach based on regret accumulation [16] and show
that our mechanisms produce up to a 3× higher utility and provide the same utility for ranges of
optimization costs up to 12.5× higher than the state-of-the-art approach in addition to handling
selfish users and ensuring that the cloud recovers all costs.

2 Motivating Use-Case
An important component of the astronomy research conducted by our colleagues in the astron-
omy department at the University of Washington involves large universe simulations [23], where
the universe is modeled as a set of particles, which include dark matter, gas, and stars. All parti-
cles are points in a 3D space with properties that include position, mass, and velocity. Every few
simulation time steps, the simulator outputs a snapshot of the state of the universe capturing all

3

properties of all particles at the time of the snapshot. State of the art simulations (e.g., Springel
et al. [37]) use over 10 billion particles producing a dataset of over 200 GB per snapshot.

For each snapshot, astronomers first run a clustering algorithm to detect clusters, called
halos. Some halos correspond to galaxies. Studying the evolution of these halos over time is a
major component of their research. Different astronomers research different types of halos. In
particular, our colleague indicated that: “There are in general three or four different halo mass
ranges that different people focus on: high mass which corresponds to a cluster, Milky Way
mass, slightly less than Milky Way mass and low mass/dwarf galaxies. [...] For example, I’ve
been looking for Milky Way Mass galaxies, but another person in our group might be interested
in the same sort of galaxies, but at a lower mass range. [The simulation] also helps us identify
what environment a given halo forms in – one person might be interested in a Milky Way mass
galaxy that forms in relative isolation, another person might be interested in finding a Milky
Way mass galaxy that forms near many other galaxies (a rich, cluster-like environment).” [25].
Additionally, different scientists focus on different particle types and on the simulation time steps
that correspond to interesting time-periods in the evolution of the halos that they study [25].
Thus, different users may need different optimizations (indexes and materialized views for this
use-case), and the challenge is to decide which ones to implement, and who pays for them.

In Section 7.2, we evaluate our mechanisms on real data and queries (optimized using ma-
terialized views) from this use-case. Since different scientists query different parts of the data,
they benefit from different materialized views.

3 A Mechanism Design Problem
In this section, we show how to model the problem of selecting and pricing optimizations in the
cloud as a mechanism design [31] problem. We further show that our problem requires a type
of mechanism called cost-sharing mechanism. In this paper, we assume that every optimization is
binary, i.e., the cloud either implements it or not. We do not consider continuous optimizations
(e.g., degree of replication).

We consider a set of users, I = {1, . . . ,m}, who are using a cloud service provider (a.k.a.,
cloud) to access and query several datasets. Any user can potentially access any dataset. Let
J = {1, . . . , n} be the set of all potential optimizations that the cloud offers for these datasets. For
example, j may represent an index; or the fact that a dataset is replicated in another data center;
or may be an expensive fuzzy join between two popular public datasets, which is precomputed
and stored as a materialized view. Upon deciding to do an optimization j, the cloud may restrict
access to j to only certain users; a grant pair (i, j) indicates that user i has been granted permission
to use the optimization j. While grant permissions artificially prevent a user from accessing
an optimization, this restriction is required to ensure that users reveal their true value for an
optimization and pay accordingly. A configuration, also called alternative, is a set of optimizations
j and a set of grant pairs1 (i, j). We denote an alternative with a and the set of all possible
alternatives with A. We also denote Sj = {i | (i, j) ∈ a} to be the users who get access to the
optimization j in alternative a.

The goal of the mechanism will be to select a configuration a ∈ A. The decision will be based
on the optimization costs and their values to users, which will determine the users’ willingness
to pay for various optimizations.

1We assume that, if an alternative contains a grant pair (i, j), then it also contains the optimization j.

4

Values to Users. Each user i obtains a certain value vij ≥ 0 from each optimization j:
e.g., monetary savings obtained from faster execution or the ability to do a more complex data
analysis. When multiple optimizations are performed, the total value to a user is given by
Vi(a) ≥ 0, and is obtained by aggregating the values vij for all grant pairs (i, j) ∈ a. In this and
the following two sections, we consider additive optimizations, where the value is given by:

Vi(a) =
∑

(i,j)∈a

vij ≥ 0 (1)

We consider substitutive optimizations in Section 6.
An important assumption in mechanism design is that users try to lie about their true values:

when asked for their value vij , user i replies with a bid bij , where bij may be different from vij .
In the case of an additive value function, we denote Bi(a) =

∑
(i,j)∈a bij , where Bi(a) is user i’s

bid about her value Vi(a).
Cost to the Cloud. For each implemented optimization j ∈ J , the cloud incurs an optimiza-

tion cost Cj > 0, which includes the initial cost of implementing the optimization (e.g., building
an index) and any possible maintenance costs (e.g., updating the index) for the duration of the
service. This cost is an opportunity cost: the resources used to perform the optimization cannot
be sold to other users. The cost of an alternative a is then given by:

C(a) =
∑
j∈a

Cj (2)

Even if each cost Cj is small, the combined cost C(a) may be large since the number of potential
optimizations is large.

Payments. Once an outcome a is determined, each user i who is granted access to an
optimization j must pay some amount pij . This payment is called the user’s cost-share, and is
determined based on all users’ bids2, (bij)i=1,m;j=1,n. If Pi =

∑
j pij is the total payment for user

i, her utility is defined as Ui(a) = Vi(a) − Pi. A standard assumption in Mechanism Design is
that users are “utility maximizers”, i.e., they bid to maximize their utility [31, 33].

Cost-Sharing Mechanism Design Problem. After collecting all bids, the mechanism chooses
an outcome a0 ∈ A that optimizes some global value function. In the case of cloud-based
optimizations, we will aim to optimize the total social utility (“total utility” for short): the out-
come’s total value (Eq. 1) minus the outcome’s cost (Eq. 2). Formally, the mechanism chooses
the following outcome a0:

a0 = arg max
a∈A

(∑
i∈I

Bi(a)− C(a)

)
(3)

Such a mechanism is called efficient [27]. Note that the mechanism does not know the true values
Vi(a), but uses the bids Bi(a) instead. The goal of mechanism design is to define the payment
functions pij so that all users have an incentive to bid their true values Bi = Vi. A mechanism
is called strategy-proof [31, 33], or truthful, if no user can improve her utility Ui(a) by bidding
untruthfully, i.e., with Bi 6= Vi. Truthful mechanisms are highly desirable, because when users
reveal their true values, the mechanism is in a better position to select the optimal alternative.

2This is a very important point: the payment depends not only on the outcome a, but on all bids. For e.g., in the
second bidders’ auction, the winner’s payment is the second highest bid [33].

5

Symbol Description
i, j, t,a Index for users, optimizations, time-slots and outcomes.

I,J,T,A Sets of users, optimizations, time-slots and outcomes.
Sj(t) Users serviced by optimization j at time t.

CSj(t) All users serviced by optimization j up until time t.
vij(t) User i’s true (private) value for optimization j at time t.
bij(t) User i’s stated value for optimization j at time t.

Bi Bi = (bij)i=1,m;j=1,n.
Vi(a) User i’s total, true (private) value for outcome a.
Bi(a) User i’s total, stated (public) value for outcome a.

pij User i’s payment for optimization j.
Pi User i’s total payment.

Ui(a) User i’s utility for outcome a.
C(a), Cj Outcome a’s cost, and optimization j’s cost, respectively.

si Slot when user i enters the system.
ei Slot when user i pays and leaves the system.

Table 1: Symbol Table. For symbols with the argument time t, we drop t for offline mechanisms.

Another desired property for cost-sharing mechanisms is to be cost-recovering, i.e., to only
pick outcomes a0 so that:

C(a0) ≤
∑
i

Pi (4)

Example 1. Consider a naïve mechanism: The cloud collects all bids bij ; if cj ≤
∑
i bij , it performs

the optimization j and asks each user to pay bij (pij = bij). Clearly it is cost-recovering. However, it
is not truthful: a user i can lie and declare a much lower value bij � vij , hoping that the optimization
would be performed anyway and she would end up paying much less than her true value. The challenge
in designing any mechanism is to ensure its truthfulness.

Formally, a mechanism is defined as follows:

Definition 1. A mechanism (f, P1, · · · , Pm) consists of a function f :
(
RA
)m → A (called social choice

function) and a vector of payment functions P1, · · · , Pm, where Pi :
(
RA
)m → R is the amount that

user i pays.

The mechanism works as follows. After collecting bids B1, . . . , Bm from all users3, it chooses
the alternative a = f(B1, . . . , Bm) where each user i must pay Pi(B1, . . . , Bm).

While we would like to design mechanisms that maximize the total utility (Eq.(3)), it is a
proven result that one cannot achieve cost-recovery (a.k.a. budget-balance), truthfulness and
efficiency [27] simultaneously. In our setting, we ensure only truthfulness and cost-recovery
(Eq.(4)) at the expense of some efficiency loss. Indeed, if the cloud cannot recover its cost, it will
not implement the loss-making optimization.

3Each bid Bi is a function A→ R.

6

4 A Mechanism for Static Collaborations
We now show how to use the Shapley Value Mechanism [27], which has many desirable proper-
ties, to solve the problem of selecting and pricing additive optimizations for one time-slot (i.e., of-
fline games). We extend it to online settings, where users come and go across multiple time-slots
in Section 5 and to substitutive optimizations in Section 6. For ease of reference, we summarize
the notations used in this paper in Table 1.

4.1 Background: Shapley Value Mechanism
We start by reviewing the Shapley Value Mechanism [27], shown in Mechanism 1. Fix a single op-
timization j, let Cj be its cost and b1j , . . . , bmj the users’ bids for this optimization. Mechanism 1
determines whether to perform the optimization or not, and, computes the set of serviced users
Sj ⊆ {1, . . . ,m}, and how much they have to pay, pij . Intuitively, it finds the minimum price p
to charge to each user who bid more than p such that the total payment is at least Cj . It starts by
setting Sj to the set of all users, and divides the cost Cj evenly among them: p = Cj/|Sj |. If p is
larger than a user’s bid bij , she is removed from Sj and a new price is recomputed by dividing
the cost evenly among the remaining users. As a result, the cost per user, Cj/|Sj |, may increase
and additional users may need to be removed from the set Sj . The process continues until either
no users remain or no further users need to be removed from Sj . Each serviced user i ∈ Sj
pays the same amount pij = Cj/|Sj |; each non-serviced user i 6∈ Sj pays nothing, i.e., pij = 0. If
Sj = ∅, no subset of users has bid enough to pay for the optimization, and it is not implemented
at all. It is obvious that this mechanism is cost-recovering, since

∑
i∈Sj

pij = Cj . The mechanism
has also been proven to be truthful [27]: if the user i bids the true value bij = vij , her utility
(which is vij − pij if i ∈ Sj , and 0 otherwise) is no smaller than her utility under any other bid.
Indeed, if she underbids, i.e., bij < vij ; two cases are possible. If bij < Cj/|Sj |, Mechanism 1
removes her from Sj and finds a smaller set of serviced users Sj that excludes her: thus, her
utility drops to 0. Else she continues to belong to Sj , so her payment pij and her utility remain
unchanged. Hence, she cannot increase her utility by underbidding. The reader may check that
overbidding can not improve her utility either.

4.2 AddOff Mechanism
We now propose our first mechanism for cloud optimization, under the simplest setting, when
the optimizations are done offline and are additive; we remove these restrictions in the next
sections. Our mechanism, called AddOff, iterates over J and runs the Shapley Value Mechanism
for each optimization. It adds to a, the grant pairs for all serviced users, and it implements the
optimization j when the set Sj is not empty. Each user pays the sum of all per-optimization pay-
ments. Since AddOff runs the Shapley Value Mechanism, independently, for each optimization,
it follows directly that it remains truthful and cost-recovering, as the latter.

Even though no mechanism can be truthful, cost-recovering and efficient simultaneously, the
Shapley Value mechanism has the important property of minimizing utility lost due to the cost-
recovery constraint [27]. We show, in Section 7, how this leads to high utilities even in the face
of selfish users compared to existing pricing techniques.

7

Mechanism 1 Shapley Value Mechanism: Computes the users serviced by an optimization j, and their
cost-share pij .
Input: Optimization cost Cj ; bids b1j , . . . , bmj .
Output: Serviced users Sj ; cost shares p1j , . . . , pmj
Sj ← {1, . . . ,m} /* The set of serviced users */
repeat
p← Cj

|Sj |
/* Divide cost evenly */

Sj ← {i | i ∈ Sj , p ≤ bij} /* Users still willing to pay */
until Sj remains unchanged, or Sj = ∅
pij ← p if i ∈ Sj /* Serviced users pay the same amount */
pij ← 0 if i 6∈ Sj . /* Non-serviced users do not pay */
return (Sj , (pij)i=1,m)

5 A Mechanism for Dynamic Collaborations
The simple offline mechanism in the previous section is insufficient for optimizations in the
cloud, because cloud users change over time. In this section, we develop a new online mechanism
for pricing cloud optimizations, where users may join and leave the system at any time. In
general, a truthful offline mechanism may no longer be truthful in an online setting [31, p.
412]; similarly, applying an offline cost-recovering mechanism to an online setting may render
it non cost-recovering. Our new mechanism is specifically designed for an online setting, and
we prove that it is both truthful and cost-recovering. We continue to restrict our discussion to
additive optimizations (we drop this assumption in the next section), and therefore, without loss
of generality, we discuss the mechanism assuming a single optimization j.

An optimization’s cost has two components: an initial implementation cost (e.g., building
an index) and a maintenance cost (i.e., cost of index storage and index maintenance). To avoid
oscillations where users can afford the initial implementation cost but not its maintenance cost,
we propose an approach where the cloud computes a single, fixed cost Cj , for each optimization
j. This cost captures both the initial implementation cost and the maintenance cost for some
extended period of time T (e.g., a month). Users may join and leave at anytime during T .
However, at the end of this time-period, the optimization’s cost is re-computed and all interested
users must purchase it again.

5.1 AddOn Mechanism
We first explain how we model the time T . We divide T into time-slots numbered 1 . . . z where
a slot is the smallest time interval for which a user can buy the service. If T is a month, slots
could correspond to hours, days or weeks. The value for user i is a tuple θij = (si, ei, vij). Here,
si is the slot when she enters the system (e.g., by opening an account) and ei is the slot when
she leaves the system. vij(t) is the function over the slots 1 . . . z such that: at each slot t ∈ [si, ei],
if user i gets access to the optimization j, she obtains the value vij(t); else she obtains a value of
0. We assume that if t < si or t > ei, vij(t) = 0. vij(t) can be an arbitrary non-negative function
and may be such that user i only uses the optimization for a subset of the slots in [si, ei].

Users bid for the optimization j, by declaring their values as θij = (si, ei, bij), where bij(t)
is a function of time over the interval t ∈ [si, ei]. The cloud collects the bids at each slot
t ∈ [1, z]: a bid cannot be retroactive (si < t), but users are allowed to revise their future bids

8

Mechanism 2 AddOn Mechanism: Cost-sharing mechanism for additive optimizations, for multi-
ple slots.
Input: Optimization j; cost Cj ; bids (si, ei, bij)i=1,m.
Output: Serviced users (Sj(t))t=1,z ; payments (pij)i=1,m

1: CSj(0)← ∅ pij ← 0, ∀i = 1,m
2: for each time slot t = 1, z do
3: for each user i = 1,m do
4: if i ∈ CSj(t− 1) then
5: b′ij ←∞ /* Force user i to be serviced */
6: else if t ≥ si then
7: b′ij ←

P
τ≥t bij(τ) /* Residual value at time t */

8: else
9: b′ij ← 0 /* Prune users not yet seen */
10: end if
11: end for
12: /* Update the set of serviced users */
13: (CSj(t), (p

′
ij)i=1,m)← Shapley-Mech(Cj , (b

′
ij)i=1,m)

14: Sj(t)← {i | i ∈ CSj(t), t ≤ ei} /* Service active users */
15: for i = 1,m do
16: if ei = t then
17: pij ← p′ij /* User i pays when her bid expires */
18: end if
19: end for
20: end for
21: return ((Sj(t))t=1,z, (pij)i=1,m).

(bij(t′), t′ ≥ t) upwards4. For example, at time t = 1, let user 1 bid (1, 3, [10, 10, 10]), meaning
b1j(1) = b1j(2) = b1j(3) = 10; at time t = 2 she may revise her bids as b1j(2) = 20, b1j(3) = 10.
For each time-slot t, the cloud needs to determine the set of serviced users Sj(t), based on the
current bids. When a user i leaves the system at time ei, she has to pay a certain amount pij .

Example 2. Consider an optimization j with cost Cj = 100, and two users with values: θ1j =
(1, 1, [101]), θ2j = (1, 2, [26, 26]). Thus, user 1 obtains a value of 101 at t = 1 if she can access
the optimization; user 2 obtains a value 26 at each of the times t = 1, 2, if she can access the optimization.
Consider the following naïve adaptation of the Shapley Value Mechanism to a dynamic setting. Run the
mechanism at each time-slot, until it decides to implement the optimization: at that point the cloud has
recovered the cost, and will continue to offer the optimization for free to new users. In our example, the
optimization will be performed at t = 1, each user will pay 50, and 52− 50 = 2 will be user 2’s utility.
The problem is that the mechanism is not truthful: user 2 may cheat by bidding (2, 2, [26]). That is, if
user 2 hides her value during the first slot, user 1 would pay the entire cost of the optimization, at t = 1,
and user 2 would get a free ride at t = 2, obtaining a higher utility of 26− 0 = 26.

Our mechanism addresses the challenge outlined in the above example. Mechanism 2 shows
the detailed pseudo-code. Intuitively, it works as follows: First, it runs the Shapley-Value Mech-
anism at each slot t using the residual bid

∑
τ≥t bij(τ) for each user i (line 7). The residual bid

captures the remaining value that each user would achieve if the optimization were implemented
4As a consequence, ei can only increase.

9

at the current slot t. This process repeats until the mechanism reaches a slot with a high enough
value in the residual bids to implement the optimization. At that time, the optimization is im-
plemented, the users who could afford it get access to it, and an initial cost-share is computed.
In subsequent time-slots, all previously serviced users continue to be serviced. If a new user
arrives, the system has two options: allow her to pay the previously computed cost-share and
access the optimization or recompute a lower cost-share given the extra contribution of the new
user. We choose the latter approach since it minimizes the cost-share and maximizes the num-
ber of users who get the service. As a result, the per-user cost-share decreases as new users join the
system and contribute to the optimization cost. Users actually pay for the optimization only when
they leave the system at time ei. At that time, they pay the lowest cost-share computed so far.
Notice that, when a user i pays and leaves, the cost-share does not increase for the remaining
users since i paid her share of the optimization cost.

More formally, the AddOn Mechanism computes for each time-slot t ∈ [1, z] the set of serviced
users Sj(t) (line 14), and computes the payment pij (lines 15-19) for each user i leaving at
time t, using the Shapley-Value mechanism. Denote the cumulative set of serviced users as
CSj(t) =

⋃
τ≤t Sj(τ). The key modification to the Shapley-Value mechanism is to have it operate

on CSj(t) rather than Sj(t) (line 13). This ensures that all users who have used or will use the
optimization contribute equally to pay for the cost. Once a user is serviced at some time τ ,
i ∈ Sj(τ), all her future bid are assumed to be ∞ (line 5): this ensures that the Shapley-Value
Mechanism will always include i in CSj(t). The users actually serviced, Sj(t), are the active
users in CSj(t) (line 14).

Example 3. Let’s revisit Example 2, and assume the users bid truthfully (1, 1, [101]) and (1, 2, [26, 26])
respectively. At time t = 1 both users are serviced, Sj(1) = CSj(1) = {1, 2}. User 1 leaves at this time,
so she pays Cj/2 = 50. At time t = 2 user 2 is serviced, hence the cumulative set of serviced users is
CSj(2) = {1, 2}. User 2 leaves at this time, so she pays Cj/2 = 50: her total utility is 52 − 50 = 2.
Assume that user 2 is lying and bids (2, 2, [26]). Then CSj(1) = {1} and user 1 pays 100 when leaving.
At time 2, user 2 is in no feasible set since the payment required of her is 50 (with CSj(2) = {1, 2}) but
it exceeds her reported value. Thus user 2 gets a utility of 0 and has reduced her utility by lying.

For a more complex example, consider the following example.

Example 4. Let the cost of the optimization be Cj = 100 with four users bidding
(1, 1, [101]), (1, 3, [16, 16, 16]), (2, 2, [26]), (2, 2, [26]). Then CSj(1) = {1}, CSj(2) = {1, 2, 3, 4},
CSj(3) = {1, 2, 3, 4}. Note that user 2 is not included in CSj(1) because her bid 48 is below Cj/2.
At time t = 2 her remaining total value is only 32: however, since now there are four users, each users’
share is Cj/4 and therefore all users are included in CSj(2), and in CSj(3). Users 1,2,3,4 leave at times
t = 1, t = 3, t = 2, t = 2 respectively, so they pay 100, 25, 25, 25.

5.2 Properties

We prove that AddOn has three important properties: (1) it is resilient to bids with both untruthful
values and untruthful times, (2) it is cost-recovering, and (3) although users can increase their
own utilities by using multiple identities, they can not decrease the utility of other users.

Truthful The definition of a truthful mechanism in the dynamic setting is more subtle than in
the static setting. In a static scenario, the mechanism is called truthful if for any set of bids, user

10

i cannot obtain more utility by bidding bij 6= vij than by bidding her true value bij = vij . In the
dynamic case, user utilities depend not only on the other bids received until now, but also on
what will happen in the future. We assume the model-free [31] framework to define truthfulness
in the dynamic case: it assumes that bidders have no knowledge of the future agents and their
preferences. At each time t, every agent assumes their worst utility over all future bids, and they
bid to maximize this worst utility [31].

Example 5. Consider Example 4. User 2 bids (1, 3, [16, 16, 16]), thus she could obtain a value 16 at
each of the three time-slots t = 1, 2, 3; but she is serviced only at time-slots t = 2, 3, hence her value is
16 + 16 = 32. She pays 25, thus her utility is 32 − 25 = 7. Suppose that she cheats, by overbidding
(1, 3, [17, 17, 17]). Now she is serviced at all three time-slots, but still pays only 25 (because when she
leaves there are four users in CSj). Thus, for the particular bids in Example 4, user 2 could improve
her utility by cheating. In a model-free framework, however, users do not know the future, and they must
assume the worst case scenario. In our example, the worst case utility for user 2 at t = 1 (when she places
her bid) corresponds to the case when no new bids arrive in the future: in this case, if she overbids ≥ 50,
she ends up paying 50, and her utility is 48 − 50 = −2. If she underbids, her worst case utility is still
0. By cheating at t = 1, user 3 cannot increase her worst-case utility.

With the model-free notion of truthfulness, a dynamic mechanism is called truthful if, for each
user, revealing her true preferences maximizes the minimum utility that she can receive, over all
possible bids by future users. This definition of truthfulness reduces to the classic definition of
truthfulness for the static case (i.e., with a single time slot).

Proposition 1. AddOn Mechanism is truthful.

Proof. (Sketch) Consider a user i bidding at time t, i.e., her bid is (si, ei, bij) and t ≤ si (bids cannot
be placed for the past). We claim that her minimum utility over all future users’ preferences (at
times t+1, t+2, . . .) is when no new bids arrive in the future. Indeed, any new bids in the future
can only decrease the payment due by user i (by increasing the set Sj(ei), hence decreasing her
payment pij = Cj/|Sj(ei)|), and can only increase her value at every future time slot t′ ≤ si, by
including i in a set Sj(t′) where it was previously not included. Thus, the minimum utility for
user i is when no new bids arrive after time t. But in that case, AddOn degenerates to one round
of the Shapley-Value Mechanism, run at time t, which is proven to be truthful.

Cost-recovering Intuitively, AddOn recovers all costs because it always applies the Shapley-
Value Mechanism to the game given by all bids known at the present time.

Proposition 2. AddOn Mechanism is cost-recovering.

Proof. Consider the last time slot, t = z, of the algorithm. Assume w.l.o.g. that CSj(z) 6= ∅:
otherwise, if CSj(z) = ∅, then the optimization is not implemented at all during the time period
T = 1 . . . z, and the cost-recovering property Eq.(4) holds trivially. Let p′ij be the payments
determined by Shapley-Value Mechanism for the time slot z (see Mechanism 2): by definition,
this mechanism ensures

∑
i p
′
ij = Cj . Consider any user i. We claim that its real payment

is pij ≥ p′ij . Indeed, if i 6∈ CSj(z) then pij = p′ij = 0, otherwise pij = Cj/|CSj(ei)| and
p′ij = Cj/|CSj(z)| where ei is the time when the users’ bid expires, and the claim follows from
the fact that CSj(ei) ⊆ CSj(z). Hence,

∑
i pij ≥

∑
i p
′
ij = Cj , proving the proposition.

11

Multiple Identities A user could create multiple identities and place a separate bid for each
identity. If at least one identity gets access to the optimization, she obtains her full value (by
running her queries under that identity). However, she has to pay on behalf of all identities.
It turns out that a user can increase her utility this way: by creating more identities, she could
help more users to be serviced and thus decrease her total payment. For example, consider an
optimization that costs Cj = 101 and a user Alice whose value is (1, 1, [101]). Suppose there
are 99 other users whose values are (1, 1, [1]). Of the 100 users, only Alice is serviced, because
even if all the other 99 users were serviced, each would be paying 101/100 = 1.01, which would
exceed their value of 1. However, if Alice creates two identities, each bidding (say) (1, 1, [101]),
AddOn would see 101 users and would serve all of them with each of the 99 users paying
101/101 = 1, while Alice would pay 2, once for each identity. Thus, her utility would increase
from 101 − 101 = 0 to 101 − 2 = 99. AddOn does not prevent such ways of gaming the system,
because they are indistinguishable from collaborations. For example, instead of cheating, Alice
could ask Bob (whose value is at least 1) to participate in the game, then reimburse Bob for his
payment: this is indistinguishable from creating a fake identity. On the other hand, this is not
undesirable: through her action, she caused more users to be serviced, while agreeing to pay a
bit more than the other users’ shares. We can prove that this holds in general.

Proposition 3. Suppose a user i can increase her utility under AddOff or AddOn by creating multiple
identities i1, i2, . . . Then no other users’ utility decreases.

Proof. (Sketch) Consider two games, one with user i with a single account and one with user i
creating k identities i1, . . . , ik and associated bids. Her utility can increase by creating dummy
identities only if the total payment by the dummies is less than the total payment without the
dummies. Let user i’s payment with no dummies be pi and the total payment of her dummies
be p′i. Since creating dummies increases i’s utility p′i < pi, and the payment per dummy (which
would be the payment per user as well with the dummy accounts) is p′i/k < p′i < pi. Thus, for
all users served in the game with no dummies are surely served with dummies too since the
payment per user is lower than without the dummies. Hence the utility of no user decreases.

6 Mechanisms for Substitutable Optimizations
In this section, we relax the requirement that optimizations be independent. Indeed, when

multiple optimizations (e.g., indexes or materialized views) exist, the value to the user from a
set of optimizations can be a complex combination of the individual optimization values. In this
section, we consider the case of substitutable optimizations. Formally, each user defines a set
of substitutable optimizations Ji ⊆ J such that ∀j, k ∈ Ji : vij = vik = vi > 0. Additionally,
given an outcome a, Vi(a) = vi if ∃j ∈ Ji : (i, j) ∈ a and Vi(a) = 0 otherwise. In comparison
to the substitutable valuation, the valuation function that we previously used was the sum:
Vi(a) =

∑
(i,j)∈a vij . With substitutable valuations, a user bid takes the form θi = (Ji, vi), where

Ji is the set of substitutable optimizations and vi is the user value if she is granted access to at
least one optimization in Ji.

Substitutable optimizations capture the case where implementing any optimization from a set
(e.g., indexes, materialized views, or replication) can speed-up a workload by a similar amount
and the user does not have any preference as to which optimization is responsible for the speed-
up. However, she gets no added value from multiple optimizations being implemented at the

12

Mechanism 3 SubstOff Mechanism: Cost-sharing mechanism for substitutable optimizations for
a single slot.
Input: Opts. J ; costs (Cj)j=1,n; bids (bij)i=1,m;j=1,n

Output: Alternative a ∈ A; cost shares (pij)i=1,m;j=1,n

a← ∅ pij ← 0, ∀i = 1,m ∀j = 1, n
loop

for each optimization j in J do
/* Compute serviced users, discard payments */
(Sj , (p

′
ij)i=1,m)← Shapley-Mech(Cj , (bij)i=1,m)

end for
/* Find the smallest cost-share optimization */
Jf ← {j ∈ J |Sj 6= ∅} /* Set of feasible opts */
if Jf 6= ∅ then
jmin ← arg minj∈Jf

`
Cj/|Sj |

´
a← a ∪ {jmin} /* Perform optimization jmin */
for each user i ∈ Sjmin do
a← a ∪ {(i, jmin)}
pijmin ← Cjmin/|Sjmin |
bij ← 0 ∀j ∈ J /* Remove i from future loops */

end for
Cjmin ←∞ /* Remove jmin from future loops */

else
return (a, (pij)i=1,m;j=1,n)

end if
end loop

same time either because they may be redundant (e.g., a materialized view may remove the need
for a specific index) or because she is indifferent to further performance gains.

6.1 SubstOff Mechanism
We first consider the SubstOff Mechanism for static games where all users use the system for the
same time period.

Example 6. Consider three optimizations with costs C1 = 60, C2 = 180, and C3 = 100. The bid
({1, 2}, 100) indicates that the user values the access to either optimization 1 or 2 at 100. Other example
bids include ({3}, 101), ({1, 2, 3}, 60), and ({2}, 70), for users {2, 3, 4}, respectively.

The challenge with substitutable optimizations is that users may bid for partially overlapping
sets of optimizations as in Example 6. They also have a new way of cheating. In addition to
lying about their value vi and emulating multiple users, they may lie about the optimizations
they want by either bidding for ones they do not want or by not bidding for the ones they do
want. Our mechanisms are truthful under the model-free notion and are also resistant to cheating
with dummy users under the practical assumption that no user knows other users’ bids.

SubstOff Mechanism (Mechanism 3) works in a sequence of phases. In the first phase, it
runs the Shapley Value mechanism for each optimization j (along with the users who bid for
j) independently and selects the optimization jmin with the lowest cost-share. Users who want

13

Mechanism 4 SubstOn Mechanism: Cost-sharing mechanism for substitutable optimizations, for
multiple slots.
Input: Opts J ; costs (Cj)j=1,n; bids (si, ei, (bij)j=1,n)i=1,m.
Output: Serviced users (Sj(t))t=1,z ; payments (pij)i=1,m

a← ∅ pij ← 0, ∀i = 1,m
for each time slot t = 1, z do

for each user i = 1,m do
if ∃j ∈ J. (i, j) ∈ a then
b′ij ←∞ /* Force user i to be serviced */
b′ij′ ← 0 ∀j′ ∈ J, j′ 6= j /* Force i to only use j */

else if t ≥ si then
b′ij ←

P
τ≥t bij(τ) /* Remaining value know at t */

else
b′ij ← 0 /* Prune users not yet seen */

end if
end for
/* Update the set of serviced users */
(a, (p′ij)i=1,m;j=1,n)← SubstOff(J, (Cj)j=1,n, (b

′
ij)i=1,m;j=1,n)

Sj(t)← {i | ∃j.(i, j) ∈ a, t ≤ ei}
for i = 1,m do

if ei = t then
pij ← p′ij /* User i pays when her bid expires */

end if
end for

end for
return ((Sj(t))j=1,n;t=1,z, (pij)i=1:m,j=1:n)

jmin and can pay its cost-share get access to it. The mechanism then recursively applies the
algorithm to the remaining users and optimizations in subsequent phases.

Example 7. Consider example 6. SubstOff first identifies optimization 1 as having the lowest cost-share
with S1 = {1, 3} and cost-share 60

2 = 30, and thus implements optimization 1 and services users 1 and
3. Next, SubstOff considers the remaining users {2, 4} and the remaining optimizations {2, 3}. For these
optimizations, S2 = ∅ while S3 = {2}. Optimization 3 is thus implemented and user 2 is given access to
it. User 4 gets access to no optimization.

We now prove that SubstOff is cost-recovering and truthful. Example 8 provides an intuition
for its truthfulness.

Proposition 4. The SubstOff Mechanism is cost-recovering.

Proof. This property follows directly from the mechanism construction: When the mechanism
implements an optimization, it splits the optimization cost across all serviced users. It then
discards the serviced users from consideration for further optimizations.

Proposition 5. SubstOff is truthful.

Proof. We prove by induction on |J |. For any user i the following holds.

14

Base case: When |J | = 1, the mechanism is identical to AddOff Mechanism which is truthful
for single optimizations (refer to Section 4.2).

Inductive case: Now, assume that the mechanism is truthful for |J | ≤ n. Consider |J ′| = n+1.
Let j be the optimization found by Mechanism 3 with the minimum cost-per-user, pij , with
feasible user set Sj . If i ∈ Sj , increasing her bid bij > vij will not reduce pij (and hence not
change her utility). Similarly, reducing bij < vij leads to either the same value for pij (so her
utility is unchanged) or increases pij enough to lead to the denial of optimization j to i and
a zero utility. User i might still get serviced a higher-priced optimization but that would also
reduce i’s utility. If i /∈ Sj , then

1. the minimum price to access j is more than i’s value for j and hence increasing her bid to
obtain the optimization would lead to negative utility.

2. vij = 0: in this case, i might want to increase pij for some j with the hope that j will not
get implemented and hence some users from Sj might contribute to another optimization
j′ that i is interested in. However, bidding any non-negative value for j can only decrease
pij further and increasing the bid for an optimization j′ 6= j has no impact on pij . If i
belongs to the feasible set of optimization j′ then increasing her bid will not reduce pij′
below pij since increasing the bid beyond pij′ does not decrease pij′ . Reduce bij′ below
pij′ will remove i from j′ service set and render a utility of zero from j′. If i does not
belong to the feasible set of any optimization j′ that it is interested in it implies that the
minimum price to access j′ is more that i’s value for j′ and increasing her bid to obtain
the optimization would lead to negative utility.

Thus, the optimization j with the minimum cost per user is implemented and I ← I \ Sj and
J ← J ′ \ {j}.

By induction, the mechanism will be utility-maximizing, and hence truthful, for the smaller
set of users and the smaller set of optimizations.

Example 8. Consider example 7. If, to cheat, user 3 bids any value in the range [30,∞), the outcome and
her utility would not change. If she bids below 30, however, she would not be serviced by optimization
1 as her bid would be below the cost-share. She would not get serviced by any other optimization either,
because their cost-shares are higher than that of optimization 1, which has the lowest cost-share. Her
utility would be (0 < 30). Finally, if she, being untruthful, does not bid for optimization 1, even though
it benefits her, and bids ({2, 3}, 60), then both optimization 1 and 2 would tie for the lowest cost-share at
60. Assuming that SubstOff makes a random choice and implements optimization 2, then she would get
access to optimization 2 and would pay the cost-share of 60, achieving a strictly lower utility of 0.

6.2 SubstOn Mechanism
We now consider substitutable optimizations, but in a dynamic setting where users can join
and leave the system in any time-slot. Given substitutable optimizations Ji, user i bids ωi =
(si, ei, bi, Ji), with [si, ei] as the requested interval of service and bi(t) is the value she gets at
time t.

SubstOn Mechanism, shown in Mechanism 4, works by running SubstOff at each time-slot
t with the residual value of all the users seen. The first time a user i is granted access to
optimization j her bid for j is updated to ∞ (so that she is always in the feasible set of j),
while her bids for the other optimizations are updated to 0 (so that she remains serviced only
by optimization j).

15

Example 9. Consider three optimizations {1, 2, 3} with costs C1 = 60, C2 = 100, C3 = 50. User 1 bids
(1, 2, 100, {1, 2}), which is interpreted as follows: she values any optimization in {1, 2} at 100 for the
time-slots [1, 2]. User 2 bids (2, 3, 100, {1, 2, 3}) and user 3 bids (3, 3, 100, {3}). At t = 1, SubstOn

runs SubstOff with user 1 (the only user at that time) and ends up implementing optimization 1, with
a payment of 60. Then, SubstOn updates user 1’s bid to optimization {1} valued at ∞. At time t = 2,
SubstOn runs SubstOff with users {1, 2} and ends up granting user 2 access to optimization 1 with the
new payments for both users being 60/2 = 30. User 1 leaves after paying 30, while user 2’s bids are
updated to optimization {1} valued at ∞. At time t = 3, SubstOn again executes SubstOff with all three
users (although user 1 left, she is included while invoking SubstOff, to compute the proper cost-share for
user 2), and ends up implementing optimization 3, but only for user 3, at a payment of 50. User 2 is
not serviced optimization 3 since she is already using optimization 1 and SubstOn does not allow her to
switch to a new optimization. The system ends with user 2 paying 30 and user 3 paying 50. The inability
to switch is crucial for truthfulness: otherwise, a new user, say user 4, who prefers optimization {1, 3},
arriving at time t = 3, might only bid for optimization 3 hoping that user 2 would switch to optimization
3. If user 2 could switch, each would pay 50/3 = 16.7, while without the switch, user 2 pays 60/2 = 30
(as before) and users {3, 4} pay 50/2 = 25.

We now prove that SubstOn is both truthful and cost-recovering.

Proposition 6. The SubstOn Mechanism is cost-recovering.

Proof. (Sketch) At each time-slot t the SubstOn mechanism is just an instance of some SubstOff

mechanism. Since the SubstOff mechanism is cost-recovering by Proposition 4, so is the SubstOn

mechanism.

Proposition 7. The SubstOn Mechanism is truthful.

Proof. (Sketch) We claim that for all known users at time t their minimum utility over all future
users’ preference (at times t + 1, t + 2, . . .) is when no bids arrive in the future. Indeed, any
new future bids can only reduce the payment due by user i by increasing the set Sj(ei), hence
decreasing her payment pij = Cj/|Sj(ei)|. It can also only increase her value at every future
time slot t′ ≤ si, by including i in a set Sj(t′) where it was previously not included. Thus, the
minimum utility for user i is when no new bid arrive after time t. In that case, however, SubstOn

reduces to SubstOff, executed at time t, which is truthful by Proposition 5.

Multiple Identities The dummy users can, in theory, increase their utility at the expense of
other users, for substitutable optimizations, though this is hard to do in practice. We illustrate
this for SubstOff, but the conclusions also apply to SubstOn. Consider users {1, 2, 3} with single-
slot bids ({1}, 5), ({1, 2}, 2.51), and ({2}, 7) for optimizations {1, 2} with costs C1 = 6 and C2 = 5.
With no dummy users, optimization 2 is implemented with a payment of 2.5 and utilities of 0.01
for user 2 and 4.5 for user 3. If user 1 creates two identities 1′ and 1′′ that make a bid of 2.5
each for optimization 1, then both optimizations are implemented with optimization 1 serving
{1′, 1′′, 2} with utilities of 1, 0.51, and 2 for users 1, 2, and 3 respectively. Note that user 3’s
utility has reduced. However, to cheat, user 1 needed to know the number of other users and
their bids, which is not publicly known in practice. She may try guessing, but in the worst case,
her guess can lead to a reduction in her utility, as we show below. Thus, being truthful is the
optimal strategy when the user does not know the other bids.

16

Proposition 8. Constructing multiple identities can, in the worst case, lead to a reduction in utility as
compared to the utility with a single identity.

Proof. Consider user 1 who wants optimization {1}, n12 identical users who want any op-
timization amongst optimizations {1, 2}, and n2 identical users who want optimization {2}.
If optimization 1 is not implemented because the cost-per-user for optimization 2 is lower,
i.e., C1/(1 + n12) > C2/(n12 + n2), then user 1 may create n1 dummy bids (apart from her
original bid) and cause the n12 users who wanted either of {1, 2} to be serviced optimiza-
tion 1 instead of optimization 2. Thus, the payment-per-user for optimization 1 would be-
come less than that of optimization 2, i.e., C1/(1 + n1 + n12) ≤ C2/(n12 + n2). This leads
to a total payment of (1 + n1)C1/(1 + n1 + n12) for user 1 and an increase in utility of
C1− (1 +n1)C1/(1 +n1 +n12) = C1n12/(1 +n1 +n12) ≤ C2n12/(n12 +n2). This gain can become
arbitrarily small depending on the value of C2 and the ratio n2

n12
. Further, the minimum number

of dummy users that need to be created is n1 ≥ C1/C2(n12 + n2) − n12 − 1. Again, this value
can be made arbitrarily high be increasing n2. Suppose then that user 1 guesses a high enough
value of n1 and creates n1 dummy users. Then, although she ends up increasing her utility in
this game, in the worst case (shown below), this may cause her to pay more for optimization
1 than she would have paid had she not cheated. In the worst case, consider another game
with n0 identical users (apart from 1 and her dummies), who also bid only for optimization {1}.
Without cheating user 1 pays C1/(1+n0), while with cheating she pays (1+n1)C1/(1+n0 +n1).
The extra money she pays is C1

n1
2(2+n1)

. This value can be made arbitrarily close to C1/2 as n1

increases. Thus, user 1 may end up paying extra while cheating with multiple dummy accounts.
Since we assume that she has no a priori information about the bids by the other players and
their numbers, bidding with multiple identities is no better, in the worst case, than bidding with
a single user, and vice versa.

7 Evaluation
Our mechanisms guarantee truthfulness and cost-recovery, but they do not optimize for total util-
ity. In this section, we empirically evaluate the total utility that our solutions provide. We focus
on the two online mechanisms (i.e., AddOn Mechanism and SubstOn Mechanism) and compare
them to the state-of-the-art regret-based approach (Section 7.1) [16, 22]. The experiments consist
of both the motivating use-case (Section 2) and simulated scenarios (Sections 7.3 through 7.6).

7.1 Regret-based Amortization
Kantere, Dash, et al. [16, 22] proposed a regret-based approach (called Regret, henceforth) to
select optimizations. They developed a detailed economy of the cloud and considered detailed
query plans for computing regret. In this paper, we abstract away and evaluate the performance
of the core regret-based approach without the surrounding economy or plan details. We briefly
describe the algorithm.

The regret for an optimization j at time t, termed Rj(t), is defined as the total value that
would have been realized, over all users, until time t (and excluding time t), had j been im-
plemented at t = 0. Formally, Rj(t) =

∑
τ<t

∑
i∈I vij(τ), where I is the set of all users and

vij is user i’s valuation for optimization j. The policy we adopt is the greedy approach [31]
where the optimization is implemented at that time-slot t when cj ≤ Rj(t). For substitutable

17

optimizations, once an optimization j is implemented for a user i, she stops benefiting from the
other optimizations J \ {j} and does not contribute to their regret.

We now explain how Regret sets prices. For ease of explanation we assume a single optimiza-
tion j that Regret implements at time tr. Users in subsequent time-slots can get access to it only
after paying a price pj . Regret chooses pj to be the minimum payment such that the total payment
from future users equals cj . If no price pj can recover the cost, it picks a price that minimizes
the cloud’s loss. Note that Regret uses the residual value in the game assuming perfect knowledge
of future users’ values. If Ij(p, tr) = |{i |

∑
t>tr

vij(t) ≥ p}| is the number of future users who
would pay p for optimization j, then the cloud-loss would be Lj(p, tr) = (cj − pIj(p, tr)). The
payment pj minimizes this loss, i.e., pj = arg minp max{Lj(p, tr), 0}. (Choose the smallest pj , in
case of ties, so that user utilities are maximized.) Thus, our price point is the optimal choice
to minimize the cloud-loss: it gives an upper bound on how well Regret would work in practice.
The total social utility (a.k.a. total utility) for Regret is defined the same way as for the mecha-
nisms (Section 3): the total value realized by the users for the slots they are serviced minus the
implemented optimizations’ costs. The cloud balance is the costs of the optimizations minus the
total payments by the users. A negative balance means that the cloud incurs a loss.

Our approach thus computes regret the same way as Kantere, Dash, et al. [22, 16] except
that, in their approach, users assign values to individual queries. Our approach aggregates this
information and assigns values to workloads spanning larger periods of time.

7.2 Evaluation on the Motivating Use-Case
The workload from the motivating use-case in Section 2 traces the evolution of halos over 27
snapshots of a universe simulation. Each astronomer starts with a subset of halos, γ, in the final
snapshot at t27 and, for each halo g ∈ γ, she (a) computes the halos in each previous snapshot
contributing the most particles to g, and (b) recursively computes a chain of halos (hg1, . . . , h

g
26, g)

such that hgt contributes the most mass to the halo hgt+1 in the next snapshot. Our optimizations
materialize the following relation for each snapshot: (particleID, haloID) to speed-up the
queries.

We experiment with six users with differing workloads: two workloads (in use by the as-
tronomers) trace the evolution of halos γ1 and γ2, respectively, using all 27 snapshots. Based on
the astronomers’ feedback, we define two new users for each of γ1 and γ2: one user uses every
2nd snapshot while the other uses every 4th snapshot. This simulates faster, exploratory studies
of the data. In our experiments, we measure the total utility (Sec. 3) for both AddOn and Regret.

We take each optimization’s cost to be the dollar amount of storing the materialized view on
a yearly subscription of the Amazon EC2 High-Memory Extra Large Instance [5]. This yields an
average cost of $2.31 per optimization.5

We take the money saved, by completing queries earlier, to be the value of an optimization
(Amazon also charges for each hour of use in addition to the subscription fee). For the six
users, the run-time of their workload without any optimizations is 81, 36, 16, 83, 44 and 17 mins.
Materializing the view on the snapshot 27 saves 44, 18, 8, 39, 23, and 9 min which corresponds
to monetary savings of 18, 7, 3, 16, 9, and 4 cents for one execution of the workloads. The other
optimizations reduce run-time by 2.5 min each for a saving of 1 cent. Since the optimizations
affect different queries in the workload, we take them to be additive.

5We could have used a different instance. We chose this one as it was the most similar to our local machine, on which
we obtained the storage space and query run-time values.

18

-­‐50	

0	

50	

100	

150	

1	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	

Am
ou

nt
	
 (i
n	

$)
	

Number	
 of	
 1mes	
 workload	
 is	
 executed	
 by	
 each	
 user	

Performance	
 on	
 the	
 Astronomy	
 Use-­‐Case	

AddOn	
 U2lity	

Regret	
 U2lity	

Regret	
 Balance	

Baseline	
 Cost	

Figure 1: Operating expenses without optimization and total utility (equal to total money saved) by AddOn

and Regret for the astronomy workload on an Amazon EC2 subscription, as workloads are executed more
frequently.

We consider a year-long time-period where each user uses the service in multiples of a quarter
(3 months). We explore all the 106 ways that the group can bid for slots. For each alternative,
we then vary the total number of executions of each user’s workload, and we compute the
total utility achieved by each approach. Figure 1 shows the average and the standard deviation
of the utilities across the 106 alternatives as we change usage intensity from low (1 workload
execution/quarter) to medium (1 workload execution/day).

Compared to the baseline cost, taken to be the total cost of executing the workloads without
optimizations, AddOn and Regret yield total utilities of 28%-47% and 16%-40% of the base line
cost, respectively. Since AddOn ensures that users will pay the entire cost, the total utility is
exactly the amount of money saved by the group; while for Regret, the total money users save
is the sum of the total utility and the unpaid fraction of the cost, i.e. the cloud balance. We
add this balance to the utility since the total utility includes the utility of both the users and the
cloud.6 Thus, both approaches significantly reduce the cost of using the cloud.

Comparing AddOn to Regret, we find that AddOn yields a total utility that is 18%-118%
higher than Regret, at 90 and 40 executions per user, respectively. Further, while the cloud never
makes a loss with AddOn, loss by Regret can be up to a substantial 92% of Regret’s utility (at
40 executions). As noted before, our outcomes for Regret are an upper bound and with more
realistic bids Regret is likely to do even worse.

In practice, users would execute their workloads multiple times and datasets are likely to be
larger. For example, the upcoming NCSA/IBM Blue Waters system [28] can generate 10 TB to 200
TB per snapshot (as opposed to 4.8 GB per snapshot for our experiments). With a 3 to 5 orders
of magnitude increase in data size, building optimizations and executing workloads would be
correspondingly costlier, and sharing optimizations would lead to proportionately larger savings
in the order of tens of thousands of dollars.

6In the case of a scientific collaboration, we can also assume that one of the researchers pays a public cloud to
implement the optimization. She then asks the other researchers to pay her back. That researcher is then the one who
incurs the loss. In this case, the total social utility would be the amount saved by the entire group of researchers.

19

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0.
03
	

0.
21
	

0.
39
	

0.
57
	

0.
75
	

0.
93
	

1.
11
	

1.
29
	

1.
47
	

1.
65
	

1.
83
	

2.
01
	

2.
19
	

2.
37
	

2.
55
	

2.
73
	

2.
91
	

Am
ou

nt
	
 o
f	
 M

on
ey
	

Op.miza.on	
 cost	

Addi.ve	
 Op.miza.on	

AddOn	
 U3lity	

Regret	
 U3lity	

Regret	
 Balance	

(a) Small collaboration

-­‐15	

-­‐10	

-­‐5	

0	

5	

10	

15	

0.
12
	

0.
84
	

1.
56
	

2.
28
	
 3	

3.
72
	

4.
44
	

5.
16
	

5.
88
	

6.
6	

7.
32
	

8.
04
	

8.
76
	

9.
48
	

10
.2
	

10
.9
2	

11
.6
4	

Am
ou

nt
	
 o
f	
 m

on
ey
	

Op-miza-on	
 cost	

Addi-ve	
 Op-miza-on	

AddOn	
 U3lity	

Regret	
 U3lity	

Regret	
 Balance	

(b) Large collaboration

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

0.
03
	

0.
21
	

0.
39
	

0.
57
	

0.
75
	

0.
93
	

1.
11
	

1.
29
	

1.
47
	

1.
65
	

1.
83
	

2.
01
	

2.
19
	

2.
37
	

2.
55
	

2.
73
	

2.
91
	

Am
ou

nt
	
 o
f	
 M

on
ey
	

Op.miza.on	
 cost	

Subs.tu.ve	
 Op.miza.on	

SubstOn	
 U6lity	

Regret	
 U6lity	

Regret	
 Balance	

(c) Small collaboration

-­‐15	

-­‐10	

-­‐5	

0	

5	

10	

15	

0.
12
	

0.
84
	

1.
56
	

2.
28
	
 3	

3.
72
	

4.
44
	

5.
16
	

5.
88
	

6.
6	

7.
32
	

8.
04
	

8.
76
	

9.
48
	

10
.2
	

10
.9
2	

11
.6
4	

Am
ou

nt
	
 o
f	
 M

on
ey
	

Op.miza.on	
 cost	

Subs.tu.ve	
 Op.miza.on	

SubstOn	
 U6lity	

Regret	
 U6lity	

Regret	
 Balance	

(d) Large collaboration

Figure 2: Total utility as a function of optimization cost for different collaboration sizes. Also showing
regret balance (optimization costs minus user payments). AddOn and SubstOn outperform Regret for a large
range of optimization costs, for both additive and substitutive optimizations, and for both low and high
degrees of collaboration amongst users. Further, they never incur a loss, while Regret can incur significant
loss. Detailed analysis in Section 7.3.

7.3 Collaboration Size
In the remaining sections, we use a variety of simulated configurations to explore how our
mechanisms and the Regret approach compare in different settings. In all cases, we measure the
total utility.

The first key parameter affecting utility is the cost of optimizations as a proportion of the
user values. This ratio affects the number of users that are necessary to cover the optimizations’
cost. In all simulations, we change this proportion by varying the per-optimization cost along
the x-axis while keeping the average user values constant. In this section, we measure the utility
of both approaches when the total number of users available to cover the optimizations’ cost
is either small (small collaborations) or large (large collaborations). For both approaches, users
in larger collaborations can buy costlier optimizations to get higher utilities. We experiment
with a small group of 6 users and a large one with 24 users. We let users pick one service slot,
uniformly at random, from 12 slots7. This gives us an expected number of users/slot of 0.5 and
2, respectively.

7.3.1 Additive Optimizations

We first consider additive optimizations. We only consider one optimization since optimizations
are independent.

For small collaborations, Figure 2(a) shows that as we move from cheap to costly optimiza-
tions, Regret provides good total utility, but then quickly leads to cloud loss, followed by negative
total utility; while AddOn never leads to cloud loss or negative utilities. Negative utilities by Re-
gret imply that the optimization was implemented but it failed to provide enough value to justify
its implementation. Restricting our attention to the costs where Regret yields a positive utility,
AddOn achieves an average total utility 1.43× higher than Regret. Further, while Regret leads
to cloud loss (curve “Regret Balance” in the figure) at a cost of 0.18, even for optimizations
7× costlier, AddOn yields substantial utility (taken to be 0.3, 10% of total user value). Regret

7The number 12 was chosen since 2, 3, 4, and 6 divide it perfectly and give us a larger space of parameter values
to experiment with as compared to some other number like 10 or 15. The other parameter values were chosen to be
multiples of 12 for ease of understanding.

20

under-performs against AddOn for two reasons. First, for cheap optimizations that should be
implemented, Regret loses user value while building up regret. Second, for costly optimizations,
Regret suffers a loss and negative total utility since it implements the optimization even when
the available future values is insufficient to recoup the cost.

For larger collaborations, Figure 2(b) shows that as we move to costlier optimizations, AddOn

provides worse utility than Regret. Intuitively, AddOn looses some opportunities to implement
optimizations because it is more cautious than Regret: to avoid losses, AddOn only implements
an optimization when it is certain to recoup the costs given current information. The benefit of
Regret, however, is limited: Regret soon starts losing money and leads to negative total utility.
In fact, only in less than 10% of the range where Regret achieves a positive utility ([0, 4.92]), does
it also outperform AddOnand yield no loss. Over the entire range of costs in [0, 3.0] the average
total utility of AddOn is 0.87 while that of Regret is −0.63.

For large collaborations, AddOn utilities sharply decrease after a point because when costs
increase, the payment per user increases super-linearly, since AddOn prunes out users for whom
the payments are larger than the value. No users are pruned by Regret and thus it sees a linear
reduction in utilities with increasing costs.

Interestingly, the range of costs for which Regret makes a loss depends on the number of
users who bid. It yields a loss at a cost of 0.18 for the small group (Figure 2(a)) and 1.80 for the
large one (Figure 2(b)). Thus, without knowing the future users, the cloud can not know when
to avoid Regret.

7.3.2 Substitutive Optimizations

To compare SubstOn and Regret in the case of substitutive optimizations, we consider a scenario
with 12 optimizations. Each user selects 3 optimizations, uniformly at random, as the set of
substitutes (Section 7.6 experiments with other ratios). Unlike the additive case, the costs of the 12
optimizations are sampled uniformly from [0, 2c] so that c is the average optimization cost: this is
to simulate that not all substitutes are equally expensive. Thus the x-axes of Figures 2(c) and 2(d)
are the mean value of the optimizations.

Compared to the corresponding additive optimizations in Figures 2(a) and 2(b), both SubstOn

and Regret achieve lower overall utility. Indeed, with substitutes, each optimization has fewer
users bidding for it and, once an optimization is implemented, the serviced users no longer pay
for the other optimizations. Hence, fewer optimizations are implemented and, in the case of
Regret, there are fewer users over whom the costs can be amortized. In the scenarios shown,
Regret yields a loss earlier than in the additive case.

When averaged over those costs for which Regret yields positive utility, SubstOn yields 1.63×
and 3× more utility than Regret for group sizes of 24 and 6, respectively.

7.4 Overlap in Usage
The second key parameter that affects utility is how the user values are distributed across time.
We study this parameter using a small group of 6 users collaborating on a single, additive
optimization. We vary the degree of user overlap and its manner. First, we repeat the experiment
from Figure 2(a) while decreasing the total number of slots from 12 to 1. Figure 3(a) shows
that, with fewer slots to sample from and hence with increased overlap amongst users, AddOn

21

0	

2	

4	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 Ad
dO

n	

u'

lit
y	

m
in
us
	

Re
gr
et
	
 u
'l
ity

	

Number	
 of	
 'me	
 slots	
 available	

Single-­‐slot	
 collabora'on	

(a) More collaboration on the left. x-axis is the
total number of slots. The users bid for 1 slot.

0	

0.5	

1	

1.5	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 Ad
dO

n	

u'

lit
y	

m
in
us
	

Re
gr
et
	
 u
'l
ity

	

Dura'on	
 of	
 slots	
 serviced	

Mul'-­‐slot	
 collabora'on	

(b) Less collaboration on the left. X-axis is the #
of contiguous slots that each user bids for.

Figure 3: AddOn vs Regret performance with varying degree of collaboration. (Section 7.4)

generates 0.77 to 2.75 more utility, on average, than Regret. Thus, AddOn gets 25%-91% of the total
user value (3.0) as additional utility over Regret. Decreasing the number of slots, increases the
probability that AddOn finds enough value in some slot to justify implementing the optimization.
In contrast, regret accumulation stays unchanged.

Next, we study what happens when user values are spread across an interval rather than
being concentrated in a single time-slot. The setup in Figure 3(b) is identical to the additive
case with the group size of 6 in Figure 2(a) except that instead of bidding for only one slot,
users bid as (si, si + d − 1), where d is the duration of the service and is varied on the x-axis.
si is chosen uniformly at random from 12 slots. Users divide their values, chosen uniformly at
random from [0, 1), equally among all d time slots in their bids. The average extra value that
AddOn generates over Regret increases from 0.77 to 0.98. Indeed, as users spread their value
across multiple time-slots, AddOn becomes more likely to find a single time-slot with sufficient
value to justify implementing the optimization.

7.5 Arrival Skew
We now consider the small collaboration of 6 users bidding for a single optimization, where they
arrive: (a) uniformly at random in one of 12 slots, (b) early following an exponential distribution
with mean 1.28, (c) late following a distribution that is 12 − t with t sampled exponentially
with mean 1.2. Case (b) simulates datasets that become stale, while (c) simulates datasets that
become popular over time. We look at the ratio of the utility in different settings to that of the
utility of AddOn with early arrivals. Figure 4 shows that total utility by AddOn improves while
that for Regret worsens with irregular arrivals. AddOn outperforms Regret substantially as user
arrival becomes non-uniform (and Regret soon starts generating negative utilities). With skew,
AddOn improves due to increased chances of finding a slot with enough value to pay for all
costs. For e.g., with AddOn, early arrivals can be 6.7× and 1.8× more efficient that uniform and
late, respectively. On the other hand, Regret worsens since skew increases the chance that more

8With mean 1.2, the maximum starting time slot of 6 users in 1000 runs was 12 as it is in case (a).

22

-­‐1	

-­‐0.5	

0	

0.5	

1	

1.5	

0.
03
	

0.
15
	

0.
27
	

0.
39
	

0.
51
	

0.
63
	

0.
75
	

0.
87
	

0.
99
	

1.
11
	

1.
23
	

1.
35
	

1.
47
	

1.
59
	

1.
71
	

Ra
#o

	
 o
f	
 u

#l
ity

	

Cost	
 of	
 op#miza#on	

Effect	
 of	
 Skew	
 in	
 Time	
 on	
 U#li#es	

Uniform-­‐AddOn	

Uniform-­‐Regret	

Early-­‐AddOn	

Early-­‐Regret	

Late-­‐AddOn	

Late-­‐Regret	

Figure 4: AddOn improves while Regret worsens with temporal skew. Ratios taken with the utility of
AddOn with users clustered early. (Section 7.5)

regret is accumulated than required9. For e.g., with Regret, at the cost of 0.54, late and uniform
arrivals have 16% and 40% higher total utility than early arrivals, respectively. This points to
an interesting property of the mechanism-design-based approach: the approach performs much
better as non-uniformity increases.

7.6 Selectivity of Substitutes
We now vary the selectivity of the substitutes, that is defined as the ratio of the number of
substitutable optimizations to the total number of optimizations. Figures 5(a) and 5(b) show the
total utility for selectivities of 0.75 and 0.25, where each user chooses 3 optimizations uniformly
at random from 4 and 12 optimizations, respectively. The figures show that, with more selective
users, absolute utilities derived by both algorithms decrease. For e.g., Regret goes from a utility
of 1.10 to -0.23 while SubstOn goes from 2.38 to 1.90 for the optimization cost of 0.36 as selectivity
increases. Indeed, with more selective users, the number of users per optimization decreases and
more optimizations have to be be implemented to satisfy the users. For Figures 5(a) and 5(b),
SubstOn yields an average total utility of 1.0 for optimizations that are 2.5× and 12.5× costlier
than those at which Regret generates utilities of 1.0, respectively.

Summary. In summary, our mechanism-based approaches not only guarantee truthfulness
and cost-recovery but also yield utility that frequently exceeds that of Regret. Our approaches
work especially well in scenarios where many users derive significant value from an optimization
during the same time-slot. They under-perform compared to Regret in scenarios where users
value the same optimization but during non-overlapping periods.

9Regret is computed after every time slot hence it increases in discrete values. The difference in regret and the
optimization cost is wasted value and is smaller for uniform arrival.

23

-­‐4	

-­‐2	

0	

2	

4	

0.
03
	

0.
33
	

0.
63
	

0.
93
	

1.
23
	

1.
53
	

1.
83
	

2.
13
	

2.
43
	

2.
73
	
 Am

ou
nt
	
 o
f	
 m

on
ey
	

Op-miza-on	
 cost	

Low	
 Selec-vity	

SubstOn	
 U6lity	

Regret	
 U6lity	

(a) Each user chooses 3 uniformly random opti-
mizations out of 4.

-­‐4	

-­‐2	

0	

2	

4	

0.
03
	

0.
33
	

0.
63
	

0.
93
	

1.
23
	

1.
53
	

1.
83
	

2.
13
	

2.
43
	

2.
73
	
 Am

ou
nt
	
 o
f	
 m

on
ey
	

Op-miza-on	
 cost	

High	
 Selec-vity	

SubstOn	
 U6lity	

Regret	
 U6lity	

(b) Each user chooses 3 uniformly random opti-
mizations out of 12.

Figure 5: Effect of change in selectivities of substitutable optimization on total utility. (Section 7.6)

8 Related Work
Today, cloud providers use two strategies for pricing optimizations. In the first, the cost of the
optimization is included in the base service price. For e.g., Amazon SimpleDB [9] automatically
indexes user data and includes the corresponding overhead in the base-price computation (45
bytes of extra storage are added to each item, attribute, and attribute-value). Similarly, SimpleDB
and SQL Azure [26] automatically replicate data and include that cost in the base service cost.
The key limitation with this approach is that the cloud must decide up-front what optimizations
are worth offering and it forces users to pay for these optimizations. In other cases, users choose
desired optimizations and pay their exact cost. For example, in Amazon RDS [6] a user can choose
to launch and pay-for a desired number of read-replicas to speed-up her query workload. This
approach, however, works well only in the absence of collaborations.

Significant recent work studies existing cloud pricing schemes, economic models, and their
implications [24, 39, 43]. In contrast we develop a new pricing mechanism.

Most closely related to our work, Dash et al., developed an approach for pricing data structures
(indexes, materialized views, etc.) in a DBMS cloud cache [16]. In their approach, the cloud
selects the structures to build based on the notion of regret and its cost is amortized over the
first N queries that use it. To compute regret, the cloud relies on user supplied budget functions,
that indicate their willingness to pay for various quality of service. In follow-up work Kantere et
al. [22] tuned their approach and developed a regression-based technique to predict the extent of
cost amortization. In contrast to our work, this previous approach relies on users being truthful
and does not guarantee that the cost will be recovered. For example, consider a user who needs
to run one, very expensive query over a private dataset. No structure will be implemented if
she is truthful. Instead, she thus submits a large number of inexpensive queries over the same
dataset while she expresses her willingness to pay zero for processing the extra queries, yet
indicates a preference for low execution times over low costs. The regret-based approach will let
her manually pick slow and cheap service for these queries. It will then compute the maximum
possible regret for the missing data structure that would have enabled faster plans for these

24

queries. When the cloud accumulates enough regret, she can run the expensive query and pay
a small fraction of the total cost of the optimization.

Significant research applies economic principles to resource allocation in distributed sys-
tems [1, 12, 13, 14, 18, 34, 36, 42], collaboration promotion in peer-to-peer systems [30, 29, 41],
or more recently, VM allocation in the cloud [40]. We study how to choose and price optimiza-
tions rather than allocate processing resources. The Mariposa distributed database system [38]
introduced a micro-economic paradigm for optimizing distributed query evaluation and data
placement. This is a problem orthogonal to ours.

We build on the Shapley Value Mechanism, which is an instance of Moulin Mechanisms [27]
that have been designed for various offline combinatorial cost-sharing problems [32]. We design
Moulin mechanisms in an online setting.

Online mechanisms [31, Ch. 16] consider games where valuations come one at a time.
While there is work on characterizing truthful mechanisms to maximize social utility in dy-
namic games [31, Thm. 16.17], to the best of our knowledge, no work applies to cost-sharing in
dynamic games.

9 Conclusions
We studied how a cloud data service provider should activate and price optimizations that benefit
many users. We have shown how the problem can be modeled as an instance of cost-recovery
mechanism design. We also showed how the Shapley Value mechanism solves the problem of
pricing a single optimization in an offline setting. We then developed a series of mechanisms
that enable the pricing of either additive or substitutive optimizations in either an offline or
an online game. We proved analytically that our mechanisms are truthful and cost-recovering.
Through simulations, we demonstrated that our mechanisms also yield high utility compared
with a regret-based state-of-the-art approach.

10 Acknowledgment
The astronomy simulation dataset was graciously supplied by T. Quinn, F. Governato, and S.
Loebman of the UWDept. of Astronomy. We also thank S. Loebman for providing the astronomy
use-case and working with us on it. We also thank Nodira Khoussainova, Paraschos Koutris,
Emad Soroush, and the anonymous reviewers for their comments on early drafts of this paper.
This work is partially supported by NSF grant CCF-1047815 and Microsoft.

References
[1] D. Abramson, R. Buyya, and J. Giddy. A computational economy for grid computing and its im-

plementation in the Nimrod-G resource broker. Future Generation Computer Systems, 18(8):1061–1074,
2002.

[2] E. Adar and B. A. Huberman. Free riding on gnutella, 2000.
[3] Amazon Web Services (AWS). aws.amazon.com.
[4] Amazon Elastic MapReduce. aws.amazon.com/elasticmapreduce.
[5] Amazon EC2 Instances. aws.amazon.com/ec2/instance-types/.

25

aws.amazon.com
aws.amazon.com/elasticmapreduce
aws.amazon.com/ec2/instance-types/

[6] Amazon Relational Database Service. aws.amazon.com/rds/.
[7] Amazon S3: Requester Pays Buckets. http://docs.amazonwebservices.com/AmazonS3/latest/dev/

index.html?RequesterPaysBuckets.html.
[8] Amazon Simple Storage Service (Amazon S3). http://www.amazon.com/gp/browse.html?node=

16427261.
[9] Amazon SimpleDB. http://www.amazon.com/simpledb/.
[10] Windows Azure Platform. microsoft.com/windowsazure/.
[11] Windows Azure Storage Services REST API Ref. http://msdn.microsoft.com/en-us/library/

dd179355.aspx.
[12] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based load management in federated

distributed systems. In Proc. of the Symposium on Networked Systems Design and Implementation, pages
15–15, 2004.

[13] R. Buyya, H. Stockinger, J. Giddy, and D. Abramson. Economic models for management of resources
in peer-to-peer and grid computing, 2001.

[14] B. N. Chun. Market-based cluster resource management. PhD thesis, University of California at Berkeley,
2001.

[15] B. Cohen. Incentives build robustness in bittorrent, 2003.
[16] D. Dash, V. Kantere, and A. Ailamaki. An economic model for self-tuned cloud caching. In Proc. of

the IEEE Int’l Conf. on Data Engineering, pages 1687–1693, 2009.
[17] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-riding and whitewashing in peer-to-peer

systems. In Proc. of the ACM SIGCOMM Workshop on Practice and Theory of Incentives in Networked
Systems, pages 228–236, 2004.

[18] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini. Economic models for allocating resources in
computer systems, pages 156–183. World Scientific Publishing Co., 1996.

[19] H. Gonzalez, A. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley, and W. Shen. Google fusion
tables: data management, integration and collaboration in the cloud. In ACM Symposium on Cloud
Computing, pages 175–180, 2010.

[20] Google App Engine. http://code.google.com/appengine/.
[21] Google App Engine Datastore. code.google.com/appengine/docs/datastore.
[22] V. Kantere, D. Dash, G. Gratsias, and A. Ailamaki. Predicting cost amortization for query services. In

Proc. of the ACM SIGMOD, pages 325–336, 2011.
[23] Y. Kwon, D. Nunley, J. P. Gardner, M. Balazinska, B. Howe, and S. Loebman. Scalable clustering

algorithm for n-body simulations in a shared-nothing cluster. In Proc. of the Int’l Conf. on Scientific and
Statistical Database Management, pages 132–150, 2010.

[24] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: shopping for a cloud made easy. In HotCloud,
pages 5–5, 2010.

[25] S. Loebman. Personal communication.
[26] Microsoft SQL Azure. microsoft.com/windowsazure/sqlazure/.
[27] H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: budget balance versus efficiency.

Economic Theory, 18(3):511–533, 2001.
[28] About the Blue Waters project. ncsa.illinois.edu/BlueWaters/.
[29] C. Ng, D. C. Parkes, andM. Seltzer. Strategyproof computing: systems infrastructures for self-interested

parties. In 1st Workshop on the Economics of P2P systems, 2003.

26

aws.amazon.com/rds/
http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?RequesterPaysBuckets.html
http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?RequesterPaysBuckets.html
http://www.amazon.com/gp/browse.html?node=16427261
http://www.amazon.com/gp/browse.html?node=16427261
http://www.amazon.com/simpledb/
microsoft.com/windowsazure/
http://msdn.microsoft.com/en-us/library/dd179355.aspx
http://msdn.microsoft.com/en-us/library/dd179355.aspx
http://code.google.com/appengine/
code.google.com/appengine/docs/datastore
microsoft.com/windowsazure/sqlazure/
ncsa.illinois.edu/BlueWaters/

[30] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing fair sharing of peer-to-peer resources. In
IPTPS Workshop, 2003.

[31] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory. Cambridge University
Press, 2007.

[32] M. Pal and E. Tardos. Group strategyproof mechanisms via primal-dual algorithms. In FOCS, pages
584–593, 2003.

[33] D. C. Parkes. Iterative Combinatorial Auctions: achieving economic and computational efficiency. PhD thesis,
University of Pennsylvania, 2001.

[34] J.-A. Quiané-Ruiz, P. Lamarre, S. Cazalens, and P. Valduriez. Managing virtual money for satisfaction
and scale up in p2p systems. In Proc. of DaMaP Workshop, pages 67–74, 2008.

[35] Salesforce. http://www.salesforce.com/.
[36] T. Sandholm. An implementation of the contract net protocol based on marginal cost calculations. In

Int’l Workshop on Distributed Artificial Intelligence, pages 295–308, 1993.
[37] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker,

D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and
F. Pearce. Simulations of the formation, evolution and clustering of galaxies and quasars. NATURE,
435:629–636, 2005.

[38] Stonebraker et al. Mariposa: a wide-area distributed database system. VLDB Journal, 5(1):048–063,
1996.

[39] P. B. Teregowda, B. Urgaonkar, and C. L. Giles. Implications of moving to the cloud: a digital libraries
perspective. In HotCloud, 2010.

[40] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and A. Delis. Flexible use of cloud
resources through profit maximization and price discrimination. In Proc. of the 27th ICDE Conf., pages
75–86, 2011.

[41] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A secure economic framework for
peer-to-peer resource sharing. In Workshop on the Economics of Peer-to-Peer Systems, 2003.

[42] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S. Stornetta. Spawn: a distributed
computational economy. Tran. on Software Engineering, 18(2):103–117, 1992.

[43] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou. Distributed systems meet economics: pricing
in the cloud. In HotCloud, pages 6–6, 2010.

27

http://www.salesforce.com/

	Introduction
	Motivating Use-Case
	A Mechanism Design Problem
	A Mechanism for Static Collaborations
	Background: Shapley Value Mechanism
	AddOff Mechanism

	A Mechanism for Dynamic Collaborations
	AddOn Mechanism
	Properties

	Mechanisms for Substitutable Optimizations
	SubstOff Mechanism
	SubstOn Mechanism

	Evaluation
	Regret-based Amortization
	Evaluation on the Motivating Use-Case
	Collaboration Size
	Additive Optimizations
	Substitutive Optimizations

	Overlap in Usage
	Arrival Skew
	Selectivity of Substitutes

	Related Work
	Conclusions
	Acknowledgment

