
Technical Report UW-CSE-12-03-02

Query-Based Data Pricing

Paraschos Koutris, Prasang Upadhyaya, Magdalena Balazinska, Bill Howe, Dan Suciu

University of Washington, Seattle, WA

Abstract

Increasingly, data is being bought and sold online, and Web-based marketplace services
have emerged to facilitate selling and buying data. Current pricing mechanisms, however,
are very simple, providing a fixed set of views, each with a specific price. In this paper,
we propose a framework for pricing data on the Internet that allows the seller to set
explicit prices for only a few views, yet allows the buyer to buy any query ; the price of
the query is derived automatically from the explicit prices of the views. We call it “query-
based pricing”. We first identify two important properties that the pricing function must
satisfy, called arbitrage-free and discount-free, then prove that there exists a unique such
pricing function that extends the seller’s explicit prices to all queries. When both the
views and the query are Unions of Conjunctive Queries, the complexity of computing the
price is high. To address that, we restrict the explicit prices to be defined only on selection
views (which is the common practice today). We give an algorithm with a PTIME data
complexity for computing the price of any chain query, by reducing the problem to a
network flow problem. Furthermore, we completely characterize the class of conjunctive
queries without self-joins that have PTIME data complexity (it is slightly larger than
chain queries), and prove that all other queries are NP-complete, thus establishing a
dichotomy of the complexity of computing the price, when all views are selection queries.

1. Introduction

Whether for market research, targeted product advertisement, or other business de-
cisions, companies commonly purchase data. Increasingly, such data is being bought
and sold online. For example, Xignite [32] sells financial data, Gnip [1] provides data
from social media, PatientsLikeMe [2] sells anonymized, self-reported, patient statistics
to pharmaceutical companies, and AggData [6] aggregates various types of data available
on the Web. To support and facilitate this online data market, Web-based marketplace

Email addresses: pkoutris@cs.washington.edu (Paraschos Koutris), prasang@cs.washington.edu
(Prasang Upadhyaya), magda@cs.washington.edu (Magdalena Balazinska),
billhowe@cs.washington.edu (Bill Howe), suciu@cs.washington.edu (Dan Suciu)

services have recently emerged: The Windows Azure Marketplace [9] offers over 100 data
sources from 42 publishers in 16 categories, and Infochimps [19] offers over 15,000 data
sets also from multiple vendors.

Current marketplace services do not support complex ad hoc queries, in part because
it is not clear how to assign a price to the result. Instead, sellers are asked to define a fixed
set of (possibly parameterized) views and assign each a specific price. This simplistic
approach not only forces the seller to try and anticipate every view in which a buyer
might be interested, but also forces the buyer to browse a large catalog of views with
possibly unknown redundancies and relationships and then purchase some superset of
the data they actually need. Worse, this pricing model can expose non-obvious arbitrage
situations that can allow a cunning buyer to obtain data for less than the advertised
price. A better approach, which we explore in this paper, is to allow the seller to assign
prices to a manageable number of views and automatically derive the correct price for
any query.

Consider an example. CustomLists [14] sells the American Business Database for
$399; a customer can also buy the subset of companies that have an e-mail address for
$299 or only information about businesses in Washington State for $199. A customer
interested only in a set of specific counties in various states may not be willing to pay
$399 for data she does not need, and so refuses to buy. In response, the seller might
provide a view for each county in every state. However, the relationship between state-
based pricing and county-based pricing is difficult for either the seller or the buyer to
reason about, and inconsistencies or arbitrage situations may result. For example, if the
database does not contain any business information for some fraction of counties in a
state, then purchasing the data for the remaining counties could be cheaper, yet could
yield the same information content as purchasing the data for the entire state.

Query-based Pricing. To address the above challenge, in this paper we propose a
framework for pricing data on the Internet that allows the seller to set explicit prices on
only a few views (or sets of views), yet allows the buyer to issue and purchase any query.
The price of the query is derived automatically from the explicit prices of the views.
Thus, buyers have full freedom to choose which query to buy, without requiring the
seller to explicitly set prices on an exhaustive catalog of all possible queries. We call this
pricing mechanism query-based pricing. Our mechanism is based on a recent economic
theory of pricing information products based on versions [28] (reviewed in Section 5),
in the sense that each query corresponds to a version. Since every query (in a given
query language) is a version, our framework allows a large number of verions, and, as a
consequence, appeals to large variety of buyers with a large variety of needs.

Formally, query-based pricing consists of a pricing function, which takes as input a
database instance and a query (or set of queries) and returns a non-negative real number
representing the price. We argue that a reasonable pricing function should satisfy two
axioms.

First, the pricing function should be arbitrage-free. Consider the USA business
dataset: if p is the price for the entire dataset and p1, . . . p50 the prices for the data
in each of the 50 states, then a rational seller would ensure that p1 + . . .+ p50 ≥ p. Oth-
erwise, no buyer would pay for the entire dataset, but would instead buy all 50 states
separately. In general, we say that a pricing function is arbitrage-free if whenever a query
q is “determined” by the queries q1, . . . , qn, then their prices satisfy p ≤ p1 + . . .+ pn.

Second, the pricing function should be discount-free. This axiom concerns the way
2

the pricing function is derived from the explicit views and prices set by the seller. When
she specifies and explicit price pi for some view Vi, the sellers’ intent is to sell the view
at a discount over the entire data set: the latter is normally sold at a premium price,
p� pi. The discount-free axiom requires that the pricing function should not introduce
any new discounts over those explicitly defined by the seller.

In addition to these two axioms, we argue that the pricing function should also be
monotone with respect to database updates: when new data items are inserted into the
database, the price of a query should not decrease. We show that, in general, the pricing
function is not necessarily monotone, but give sufficient conditions under which it is.

Contributions. We present several results on query-based pricing.
Our first result is a simple but fundamental formula for computing an arbitrage-free,

discount-free pricing function that agrees with the seller’s explicit price points, and for
testing whether one exists; if it exists, we call the set of price points consistent. To
check consistency, it suffices to check that no arbitrage is possible between the explicit
price points defined by the seller: there are only finitely many arbitrage combinations,
as opposed to the infinitely many arbitrage combinations on all possible queries; hence,
consistency is decidable. When the set is consistent, the pricing function is unique, and is
given by the arbitrage-price formula (Equation 2). This implies an explicit, yet inefficient
method for computing the price, which is presented in Section 2.

Second, we turn to the tractability question. We show that even when the seller’s
explicit price points are restricted to selection queries (which is the common case for data
sold online today), computing the price of certain conjunctive queries is NP-hard in the
size of the input database. For this reason, we propose a restriction of conjunctive queries,
which we call Generalized Chain Queries, or GChQ. These are full conjunctive queries
whose atoms can be ordered in a sequence such that for any partition into a prefix and a
suffix, the two sets of atoms share at most one variable. GChQ includes all path joins, like
R(x, y), S(y, z), T (z, u), P (u, v), star joins, like R(x, y), S(x, z, u), T (x, v), P (x,w), and
combinations. We prove that, when all explicit price points are selection queries, one
can compute the price of every GChQ query in PTIME data complexity. This is the
main result of our paper, and provides a practical framework for query-based pricing.
The algorithm is based on a non-trivial reduction to the Min-Cut problem in weighted
graphs, which is the dual of the Max-Flow problem [13], Subsection 3.1.

Third, we study the complexity of all conjunctive queries without self-joins. We
prove that cycle queries (which are not generalized chain queries) can also be computed
in polynomial time: this is the most difficult result in our paper, and the algorithm is
quite different from the algorithm for GChQ. With this result, we can prove a dichotomy
of the data complexity of all conjunctive queries without self-joins, in PTIME or NP-
complete, Subsection 3.2.

Our pricing framework is based on a notion of query determinacy. Informally, we
say that a set of views V determines some query Q if we can compute the answer of Q
only from the answers of the views without having access to the underlying database.
Information-theoretic determinacy, denoted V � Q, is discussed by Segoufin and Vianu [27]
and by Nash, Segoufin, and Vianu [24, 25], and is a notion that is independent of the
database instance; their motivation comes from local-as-view data integration and se-
mantic caching, where an instance independent rewriting is needed. For query-based
pricing, however, the database instance cannot be ignored when checking determinacy,
since the price normally depends on the state of the database. For example, consider a

3

query Q1 that asks for the businesses that are located in both Oregon and Washington
State and a query Q2 that asks for the restaurants located in Oregon, Washington and
Idaho. In general, we cannot answer Q2 if we know the answer of Q1. But suppose
we examine the answer for Q1 and note that it includes no restaurants: then we can
safely determine that Q2 is empty. We define instance-based determinacy, D ` V � Q,
to mean that, for all D′ if V (D′) = V (D), then Q(D) = Q(D′). Information-theoretic
determinacy is equivalent to instance-based determinacy for every instance D. We prove
several results on the complexity of checking instance-based determinacy: for unions of
conjunctive queries, it is Πp

2, and the data complexity (when V,Q are fixed and the input
is only D) is co-NP complete (Theorem 2.3). When the views are restricted to selection
queries (which is a case of special interest in query-based pricing), then for any monotone
query Q, instance-based determinacy has polynomial time data complexity, assuming Q
itself has PTIME data complexity (Theorem 3.3).

The paper is organized as follows. We introduce the query-based pricing framework
and give the fundamental formula for checking consistency and computing the pricing
function in Section 2. We turn to the tractability questions in Section 3, where we
describe our main result consisting of the polynomial time algorithm for Generalized
Chain Queries in Subsection 3.1, and give the dichotomy theorem in Subsection 3.2. We
discuss some loose ends in Section 2 and related work in Section 5, then conclude in
Section 6.

2. The Query Pricing Framework

2.1. Notations
Fix a relational schema R = (R1, . . . , Rk); we denote a database instance with D =

(RD1 , . . . , R
D
k), and the set of all database instances with InstR [21]. In this paper we

only consider monotone queries, and we denote L a fixed query language; in particular,
CQ, UCQ are the Conjunctive Queries, and Unions of Conjunctive Queries respectively.
Q(D) denotes the answer of a query Q on a database D. A query bundle is a finite set
of queries; we use the term “bundle” rather than “set” to avoid confusion between a
set of queries and a set of answers. We denote by B(L) the set of query bundles over
L, and write a bundle as Q = (Q1, . . . , Qm). The output schema of a query bundle is
RQ = (RQ1 , . . . , RQm), and consists of one relation name for each query. Thus, a bundle
defines a function Q : InstR → InstRQ

.
The identity bundle, ID, is the bundle that returns the entire dataset, ID(D) =

(RD1 , . . . , R
D
k). The empty bundle is denoted (): it is the empty set of queries, not to

be confused with the emptyset query. Given two bundles, Q1 and Q2, we denote their
union as Q = Q1,Q2: this is the query bundle consisting of all queries in Q1 and Q2,
not to be confused with the union Q1 ∪Q2 of two queries of the same arity.

2.2. The Pricing Function
Definition 2.1 (Pricing Function). Fix a database instance D ∈ InstR. A static pricing
function is a function pD : B(L)→ R.

A dynamic pricing function is a partial function p : InstR → (B(L) → R), s.t. for
each D where p is defined, p(D) is a static pricing function. We write pD for p(D).

4

The intuition is as follows. If the user asks for the bundle Q, then she has to pay
the price pD(Q), where D is the current database instance. The static pricing function
is defined only for the current state of the database D. A dynamic pricing function p
allows the database to be updated, and associates a different pricing function pD to each
database; notice that it need not be defined for all instances D ∈ InstR. We start with
static pricing in this section, and call a static pricing function simply a pricing function;
we discuss dynamic pricing in Subsection 2.7.

The price is for an entire query bundle, not just for one query. For example, if a user
needs to compute queries Q1, Q2, and Q3, then she could issue them separately, and pay
pD(Q1) + pD(Q2) + pD(Q3), but she also has the option of issuing them together, as a
bundle, and pay pD(Q1, Q2, Q3). We will show that, in general, the pricing function is
subadditive. In particular, the price of the bundle is lower than the sum of the individual
prices.

In the query pricing framework, the seller does not specify the pricing function di-
rectly, but gives only a finite set of explicit price points, and the system computes the
pricing function on all queries; this function must, furthermore, satisfy two axioms,
arbitrage-free and discount-free. In the rest of this section we discuss the details of this
framework.

2.3. Axiom 1: Arbitrage-Free
The first axiom that a pricing function must satisfy is defined in terms of a notion of

determinacy. Intuitively, a bundle V determines a bundle Q given a database D, denoted
D ` V � Q, if one can answer Q from the answer of V by applying a function f such
that Q(D) = f(V(D)). The impact on pricing is that if the user needs to answer the
query Q, she also has the option of querying V, and then applying f . The arbitrage-free
axiom requires that pD(Q) ≤ pD(V), meaning that the user will never have the incentive
to compute Q indirectly by purchasing V. Thus, the notion of arbitrage depends on the
notion of determinacy, which we define here:

Definition 2.2 (Instance-based Determinacy). V determines Q given the database D,
denoted D ` V � Q, if for any D′, V(D) = V(D′) implies Q(D) = Q(D′).

The connection to answerability is the following. Let f : InstRV
→ InstRQ

be Q
composed with any left inverse of V: that is, for every E ∈ InstRV

, if there exists D
s.t. V(D) = E, then choose any such D and define f(E) = Q(D), otherwise, f(E) is
undefined. One can check that D ` V � Q iff ∀D′.V(D) = V(D′) ⇒ f(V(D′)) =
Q(D′). Thus, if the user knows V(D) and D ` V � Q holds, then she can compute
Q(D) as f(V(D)). We establish the following (in the Appendix, Subsection Appendix
B.2):

Theorem 2.3. The combined complexity of instance based determinacy D ` V � Q
when V,Q are in B(UCQ) is in Πp

2; the data complexity (where V,Q are fixed) is
co-NP-complete, and remains co-NP complete even for B(CQ).

Instance based determinacy is different from information theoretic determinacy, de-
fined in [24] as follows: V � Q if ∀D : D ` V � Q. Information-theoretic determinacy,
V � Q, is undecidable for B(UCQ) and its status is unknown for B(CQ) [24].

5

Example 2.4. Let Q1(x, y, z) = R(x, y), S(y, z), Q2(y, z, u) = S(y, z), T (z, u) and Q(x, y, z, u) =
R(x, y), S(y, z), T (z, u). Then (Q1, Q2) � Q, because it suffices to define f as the func-
tion that joins Q1(D) and Q2(D); then Q(D) = f(Q1(D), Q2(D)) for all D. On the
other hand, Q1 6� Q. However, let D be a database instance s.t. Q1(D) = ∅. Then
D ` Q1 � Q, because we know that Q(D) = ∅. For example, let f always return the
emptyset: then, for any D′ s.t. Q1(D) = Q1(D′)(= ∅) we have Q(D′) = f(Q1(D′)).

In this paper we use instance-based determinacy to study pricing. However, other
options are possible: for example one may use information-theoretic determinacy, or one
may use the closure that we discuss in Subsection 2.7. To keep the framework general,
we base our discussion on an abstract notion of determinacy, defined below. Our results
in this section apply to any determinacy relation that satisfies this definition, except for
complexity results, which are specific to instance-based determinacy. Our results in the
next section are specific to instance-based determinacy.

Definition 2.5. A determinacy relation is a ternary relation D ` V � Q that satisfies
the following properties:

Reflexivity: D ` V1,V2 � V1.
Transitivity: if D ` V1 � V2 and D ` V2 � V3, then D ` V1 � V3.
Augmentation: if D ` V1 � V2, then D ` V1,V′ � V2,V′.
Boundedness: D ` ID � V

We prove in Appendix Appendix B, that both instance-based and information-
theoretic determinacy satisfy this definition. We also have:

Lemma 2.6. If � is a determinacy relation, then (a) D ` V � () for every bundle V,
and (b) if D ` V � V1 and D ` V � V2, then D ` V � V1,V2.

Proof. The reflexivity axiom D ` V, () � () proves the first claim, since V, () = V. For
the second, we apply augmentation to D ` V � V1 and obtain D ` V,V � V,V1;
next apply augmentation to D ` V � V2 and obtain D ` V,V1 � V1,V2; transitivity
gives us D ` V,V � V1,V2, which proves the claim because V,V = V.

The Arbitrage-Free Axiom. We can now state the first axiom that a pricing
function must satisfy:

Definition 2.7 (Arbitrage-free). A pricing function pD is arbitrage-free if, whenever
D ` Q1, . . . ,Qk � Q, then pD(Q) ≤

∑
i pD(Qi).

Of course, even if Q1, . . . ,Qk determine Q, it may be non-trivial for the buyer to
compute the answer of Q from the answers of Q1, . . . ,Qk, for two reasons: she first needs
to find the function f for which f(Q1(D), . . . ,Qk(D)) = Q(D), and, second, it may be
computationally expensive to evaluate f . In this paper, however, we do not address the
economic cost of the computation, focusing only on the information-theoretic aspect; i.e.
we assume that the only cost that matters is that of the data itself. Thus, if an arbitrage
condition exists, then the buyer will exploit it, by avoiding to pay pD(Q) and purchasing
Q1, . . . ,Qk instead, then computing Q (at no extra cost).

Arbitrage-free pricing functions exists: the trivial function pD(Q) = 0, for all Q, is
arbitrage-free; we will show non-trivial functions below. First, we prove some properties.

6

Proposition 2.8. Any arbitrage-free pricing function pD has the following properties:

1. Subadditive: pD(Q1,Q2) ≤ pD(Q1) + pD(Q2).
2. Non-negative: pD(Q) ≥ 0.
3. Not asking1 is free: pD() = 0.
4. Upper-bounded: pD(Q) ≤ pD(ID).

Proof. We apply arbitrage-freeness to two instances of the reflexivity property. First
to D ` Q1,Q2 � Q1,Q2, and derive pD(Q1,Q2) ≤ pD(Q1) + pD(Q2), which proves
item 1. Next to D ` Q,Q′ � Q′, and derive pD(Q′) ≤ pD(Q) + pD(Q′), which implies
pD(Q) ≥ 0, proving item 2. For item 3, take Q = () and k = 0 in Definition 2.7: then
D ` Q1, . . . ,Qk � Q holds by reflexivity (D ` () � ()) and pD(Q) ≤

∑
i pD(Qi) implies

pD() ≤ 0. Also, arbitrage-freeness applied to the boundedness axiomD ` ID � Q proves
item 4.

2.4. Explicit Price Points
It is difficult to specify a non-trivial arbitrage-free pricing function, and we do not

expect the data owner to define such a function herself. Instead, the data owner specifies
a set of explicit price-points, and the system extrapolates them to a pricing function on
all query bundles. A price point is a pair consisting of a view (query bundle) and a price
(positive real number).

Definition 2.9 (Price points). A price point is a pair (V, p), where V ∈ B(L) and
p ∈ R+. We denote a finite set of price points S as {(V1, p1), . . . , (Vm, pm)}.

We will assume that D ` (V1, . . . ,Vm) � ID; i.e., the seller is always willing to
sell the entire dataset, perhaps indirectly through the other views. This is a reasonable
assumption: if the seller does not wish to sell certain parts of the data, then we can
simply not model those parts by removing relation names from the schema or removing
tuples from the instance. To simplify the discussion, in this section we assume that
(ID, B) ∈ S; i.e., ID is sold explicitly at some (high) premium price B. We will relax
this assumption in Section 3.

Definition 2.10 (Validity). A pricing function pD is valid w.r.t. a set S of price-points
if:

1. pD is arbitrage-free.
2. ∀(Vi, pi) ∈ S, pD(Vi) = pi.

Our goal is to compute a valid pricing function for a set S. In general, such a function
may not exist; if it exists, then we call S consistent.

Definition 2.11 (Consistency). A set of price points S is consistent if it admits a valid
pricing function.

1pD() means pD(()), the price of the empty bundle.

7

2.5. Axiom 2: Discount-Free
To see the intuition behind the second axiom, recall that B is the price set by the

data owner for the entire dataset. Any arbitrage-free pricing function will be ≤ B, by
Proposition 2.8 (item 4). The explicit price points in S can be seen as discounts offered
by the seller relative to the price that would be normally charged if that price point were
not included in S. The second axiom requires a pricing function to make no additional
implicit discounts.

Definition 2.12 (Discount-free). A valid pricing function pD for S is called discount-
free if for any other valid pricing function p′D we have: ∀Q, p′D(Q) ≤ pD(Q).

A discount-free pricing function is unique, because if both pD and p′D are discount
free, then we have both pD ≤ p′D and p′D ≤ pD, hence pD = p′D. We will show that, if S
is consistent, then it admits a discount-free pricing function.

2.6. The Fundamental Query Pricing Formula
The fundamental formula gives an explicit means for checking consistency and for

computing the discount-free price. We start by showing that a valid set S has a discount-
free price function.

Existence. If S is consistent, then the set of valid pricing functions is non-empty, and
may be infinite; if this set has a maximum price function, then the maximum function
is discount-free. We prove that this is indeed the case.

Lemma 2.13. Suppose S contains the identity bundle ID, and let P be a non-empty set
of pricing functions valid for S (P may be infinite). Then2 pD(Q) = suprD∈P {rD(Q)}
is also a valid pricing function for S.

Proof. Clearly, pD satisfies the second condition of validity, pD(Vi) = suprD∈P {rD(Vi)} =
suprD∈P {pi} = pi, for every price point (Vi, pi) ∈ S.

Next, we prove that the function pD is arbitrage-free. Let D ` Q1, . . . ,Qk � Q;
we will show that pD(Q) ≤

∑k
i=1 pD(Qi). We have pD(Q) = suprD∈P {rD(Q)} ≤

suprD∈P {
∑k
i=1 rD(Qi)}. Since for any bounded real functions fi we have that supx∈P {

∑k
i=1 fi(x)} ≤∑k

i=1 supx∈P {fi(x)}, it follows that suprD∈P {
∑k
i=1 rD(Qi)} ≤

∑k
i=1 suprD∈P {rD(Qi)},

and this implies our claim.

Corollary 2.14. Suppose S is consistent and contains the identity bundle ID. Then
there exists a discount-free pricing function for S.

We will show below that the requirement that S contains ID is necessary: otherwise
S may be consistent yet not admit any discount-free pricing function.

The Arbitrage-Price. The fundamental formula associates to any S (not neces-
sarily consistent) a pricing function, called arbitrage-price. To introduce the formula, we
need some notations. If Qi for i = 1, 2 . . . , k are bundles, then denote their union as⊙

i Qi = Q1, . . . ,Qk. If C ⊆ S is a set of price points, then we denote its total price as
p(C) =

∑
(Vi,pi)∈C pi.

2Note that suprD∈P {rD(Q)} is well defined (i.e. 6= ∞) because for each rD ∈ P , pD(Q) ≤ B, by
Proposition 2.8.

8

Fix a price points set S and an instance D. The support of a query bundle Q is:

suppSD(Q) ={C ⊆ S | D `
⊙

(V,p)∈C

V � Q} (1)

Definition 2.15 (Arbitrage-price). The arbitrage-price of a query bundle Q is:

pSD(Q) = min
C∈suppSD(Q)

p(C) (2)

The arbitrage price is our fundamental formula. It represents the price that a savvy
buyer would pay for the query Q: find the cheapest support C, meaning the cheapest set
of views that determine the query Q. We prove:

Lemma 2.16. (a) For all (Vi, pi) ∈ S, pSD(Vi) ≤ pi. In other words, the arbitrage-price
is never larger than the explicit price. (b) The arbitrage-price pSD is arbitrage-free.

Proof. The first claim follows from the fact that {(Vi, pi)} ∈ suppSD(Vi), because of the
reflexivity axiom D ` Vi � Vi. For the second claim, consider D ` Q1, . . . ,Qk � Q; we
will prove that pSD(Q) ≤

∑
i p
S
D(Qi). For i = 1, . . . , k, let Cmi = arg minC∈suppSD(Qi) p(C).

By definition, D `
⊙

(Vj ,pj)∈Cm
i

Vj � Qi and pSD(Qi) = p(Cmi). Let C =
⋃
i Cmi ⊆ S. Let

Vm =
⊙

(Vj ,pj)∈CVj . Since Cmi ∈ suppSD(Qi), it follows that C ∈ suppSD(Qi) because
the set suppSD(Qi) is upwards closed3. It follows that D ` Vm � Qi, for every i = 1, k.
By inductively applying Lemma 2.6 (b), we derive D ` Vm � Q1, . . . ,Qk and, by
transitivity, we further derive D ` Vm � Q. This implies C ∈ suppSD(Q), and therefore:

pSD(Q) ≤ p(C) =
∑

(Vj ,pj)∈C

pj ≤
∑
i

∑
(Vj ,pj)∈Cm

i

pj =
∑
i

pSD(Qi)

The second inequality holds because the pi’s are non-negative (Proposition 2.8). This
proves that pSD is arbitrage-free.

The arbitrage-price is a fundamental formula because it allows us to check consistency,
and, in that case, it gives the discount-free price.

Theorem 2.17. Consider a set of price points S. Let pSD denote the arbitrage-price
function, Equation 2. Then:

1. S is consistent iff ∀(Vi, pi) ∈ S, pi ≤ pSD(Vi).
2. If S is consistent, then pSD is the discount-free pricing function for S.

Proof. We claim that, for any pricing function pD valid for S and every query bundle Q,
we have that pD(Q) ≤ pSD(Q). The claim proves the theorem. Indeed, the “if” direction
of item 1 follows from two facts. First, pSD is arbitrage-free by Lemma 2.16(b). Second, if
pi ≤ pSD(Vi) holds for all price points (Vi, pi) ∈ S, then by Lemma 2.16(a) pSD(Vi) = pi.
Hence, pSD is valid, proving that S is consistent. The “only if” direction follows from the

3For any query bundle Q, if C1 ∈ suppSD(Q) and C1 ⊆ C2 then C2 ∈ suppSD(Q), by the reflexivity
axiom.

9

claim: if pD is any valid pricing function for S then pi = pD(Vi) ≤ pSD(Vi). The claim
also implies item 2 immediately.

To prove the claim, let pD be a valid pricing function (thus pD(Vi) = pi for all
(Vi, pi) ∈ S), and let Q be a bundle. Let C ∈ suppSD(Q), and V =

⊙
(Vi,pi)∈CVi. By

definition we have D ` V � Q. Since pD is arbitrage-free, we have:

pD(Q) ≤
∑

(Vi,pi)∈C

pD(Vi) =
∑

(Vi,pi)∈C

pi = p(C)

It follows:

pD(Q) ≤ min
C∈suppSD(Q)

p(C) = pSD(Q)

The theorem says that, in order to check consistency it suffices to rule out arbitrage
situations among the views in S. There are infinitely many possible arbitrage situations
in Definition 2.7: the theorem reduces this to a finite set.

Next, we examine the complexity of checking consistency and computing the price.
For this discussion, we will assume that � is the instance-based determinacy given by
Definition 2.2. Denote by Price(S,Q) the decision version of the price computation
problem: “given a database D and k, is the price pSD(Q) less than or equal to k”? Let
us also denote by Price(Q) the decision version of the same problem, but where the set
of price points S is now part of the input.

Corollary 2.18. Suppose S,Q consist of UCQs. Then, (a) the complexity of Price(Q)
is in Σp2 and (b) the complexity of Price(S,Q) is coNP-complete.

Proof. For (a), to check whether pSD(Q) ≤ k, guess a subset of price points (V1, p1), . . . , (Vm, pm)
in S, then check that both D ` V1, . . . ,Vm � Q (this is in coNP by Theorem 2.3) and
that

∑
i pi ≤ k. For (b), instead of guessing, we can iterate over all subset of price points,

since there is only a fixed number of them.

Thus, computing the price is expensive. This expense is unacceptable in practice,
since prices are computed as frequently as queries, perhaps even more frequently (for
example users may just inquire about the price, then decide not to buy). We have an
extensive discussion of tractability in Section 3, and will describe an important restriction
under which pricing is tractable. For now, we restrict our discussion of the complexity
to showing that pricing is at least as complex as computing the determinacy relation.

Let Price-Consistency(S) be the problem of deciding whether a set S is consistent
for a database D, and Determinacy(V, Q) the problem of checking determinacy D `
V � Q. The proof of Corollary 2.18 shows that the former problem is no more than
exponentially worse than the latter. We prove here a weak converse:

Proposition 2.19. There is a polynomial time reduction from Determinacy(V, Q) to4

Price-Consistency(S).

4S has one price point for each V ∈ V and one for Q; the database instance D is part of the input
in both cases.

10

Proof. Assume that we want to decide whether D ` V � Q, where V = {V1, . . . , Vk}.
We can assume w.l.o.g. that none of the Vi are constant, since in this case we could just
remove them from V. We will reduce this to an instance of the Price-Consistency
problem. Indeed, consider the following set of price points:

S = {(V1, p), . . . , (Vk, p), (Q, kp+ ε), (ID, kp+ 2ε)} ε > 0

We will prove that D ` V � Q if and only if S is not consistent for D. For the one
direction, suppose that D ` V � Q. Then, for any valid pricing function pD we must
have that k · p + ε = pD(Q) ≤

∑
i pD(Vi) = k · p, a contradiction. Hence S admits no

valid pricing function and is not consistent.
For the other direction, assume that S is not consistent. By applying Theorem 2.17,

we have that for the arbitrage price pSD either there exists some i such that pSD(Vi) < p
or pSD(Q) < kp + ε. The first case is not possible, since every set which may determine
Vi, including Vi, is priced at least p (note that Vi is not constant). Hence, it must be
that pSD(Q) < kp+ ε. It follows that there exists a choice of price points that determine
Q and are priced less than kp + ε; however, this can only be a subset V′ ⊆ V. Thus,
D ` V′ � Q and by reflexivity D ` V � Q.

We end this section with a brief discussion of the case when ID is not determined by
S = {(V1, p1), . . . , (Vk, pk)}, that is, D ` (V1, . . . ,Vk) 6� ID; the seller does not sell
the entire dataset. In that case S has no discount-free pricing function. Indeed, consider
any B such that B ≥

∑
i pi, and denote S + B = S ∪ {(ID, B)}. One can check that,

if S is consistent, then so is S + B, and that pS+B
D is a valid pricing function for S. If

pD were any discount-free pricing function for S, we fix some database instance D and
choose B > pD(ID). Then pS+B

D (ID) = B > pD(ID), contradicting the fact that p is
discount-free. In the rest of the paper, we will always assume that ID is included in the
set of price points.

2.7. Dynamic Pricing
So far we assumed that the database instance was static. We now consider the pricing

function in a dynamic setting, i.e. when the database D is updated; we consider only
insertions. Note that the set of price points S remains unchanged, even when the database
gets updated. For example, the seller has decided to sell the entire dataset for the price
B, (ID, B) ∈ S, and this price remains unchanged even when new items are inserted in
the database. This is the most common case encountered today: explicit prices remain
fixed over long periods of time, even when the underlying data set is updated.

When the database is updated, we can simply recompute the pricing function on the
new data instance. However, we face two issues. The first is that the price points S may
become inconsistent: S was consistent at D1, but after inserting some items, S becomes
inconsistent at D2. This must be avoided in practice. Second, as more data items are
added, the seller does not want any price to drop.

Example 2.20. Let V (x, y) = R(x), S(x, y) and Q() = R(x) (a Boolean query checking
whether R is non-empty). Let D1 = ∅, D2 = {R(a), S(a, b)}. Then D1 ` V 6� Q and
D2 ` V � Q. The second claim is obvious: since V (D2) = {(a, b)} we know for certain
that RD2 6= ∅. To see the first claim consider D′1 = {R(a)}. Then V (D1) = V (D′1) = ∅
but Q(D1) = false 6= Q(D′1) = true, proving that D1 ` V 6� Q.

11

This example implies two undesired consequences. First, let S1 = {(V, $1), (Q, $10), (ID, $100)}:
the owner sells the entire dataset for $100, the query Q for $10, and the view V for $1.
S1 is consistent when the database instance is D1, but when tuples are inserted and the
database instance becomes D2, then S1 is no longer consistent (because a buyer can avoid
paying $10 for Q by asking V instead, for just $1). Alternatively, consider the set of price
points S2 = {(V, $1), (ID, $100)}. The reader may check that S2 is consistent for any
database instance D. However, the price of Q decreases when the database is updated:
pS2D1

(Q) = $100, while pS2D2
(Q) = $1.

We describe next two ways to fix both issues.

Definition 2.21. Fix the bundles V,Q. We say that a determinacy relation � is
monotone for V,Q if, whenever D1 ⊆ D2 and D2 ` V � Q, then D1 ` V � Q.

Information-theoretic determinacy is vacuously monotone, since it does not depend
on the instance. But, as we saw in Example 2.20, instance-based determinacy is not
monotone in general. We prove as follows:

Proposition 2.22. If V is a bundle consisting only of selection queries and Q is a bundle
of full conjunctive queries, then instance-based determinacy is monotone for V,Q.

Proof. It suffices to prove the proposition for a single query Q. Let D2 ` V � Q. We
want to show that, if D1 ⊆ D2, then D1 ` V � Q. In order to show this, it suffices
to prove that for any tuple t ∈ D, D − t ` V � Q; then, the proposition follows by
induction.

First, notice that Q(D − t) ⊆ Q(D), since Q is monotone. Let t′ ∈ Q(D − t). Then,
t′ ∈ Q(D); consider the projections of t′ on the different atoms in Q: tR1 , . . . , tRk

. Notice
that for any i = 1, k, tRi 6= t, since otherwise t′ would not belong in Q(D − t). Now,
all these tuples must be covered by views V by Lemma Appendix E.1. Thus, (a) for
t′ ∈ Q(D − t), all its projections are covered by V.

Next, let t′ /∈ Q(D−t). If also t′ /∈ Q(D), then by Lemma Appendix E.1, there exists
some projection tRi

/∈ D (hence tRi
6= t) of t′ such that tRi

is covered by some view in
V. Otherwise, t′ ∈ Q(D) and thus t contributes to t′ in D. By Lemma Appendix E.1,
it must be covered by some selection in V. In either case, (b) for t′ /∈ Q(D), there exists
a projection tR on some atom R s.t. tR /∈ D − t and tR is covered by V.

Combining (a) and (b) and invoking Lemma Appendix E.1, we obtain the desired
proposition.

A conjunctive query is full if it has no projections; in particular, a selection query is
full. As the next example shows, the above proposition fails for conjunctive queries with
projections.

Example 2.23. Consider Q(y) = R(x, y), where Colx = Coly = {0, 1}. Let a database
D such that RD = {(0, 0), (0, 1)}. It is easy to see that D ` σR.x=0 � Q. Now, let us
consider D1 = {(0, 0)} and D2 = {(0, 0), (1, 1)}. Then, σR.x=0(D1) = σR.x=0(D2) =
{(0, 0)} and also D1 ⊆ D. However, Q(D1) = {0} and Q(D2) = {0, 1}; hence, D1 `
σR.x=0 6� Q.

The desired property for a dynamic pricing function is that it be monotone: when
data is added to the database, the price should never decrease:

12

Definition 2.24 (Monotonicity). Let p be a totally defined, dynamic pricing function.
We say that p is monotone on Q if, for any D1 ⊆ D2, pD1(Q) ≤ pD2(Q).

Fix a set of price points S. The arbitrage-price given by Equation 2 is a totally
defined function pS , since pSD is well defined for every database instance D. We prove:

Proposition 2.25. Fix S and Q, and suppose � is monotone for every subset V1, . . . ,Vm

of S, and Q. Then, the dynamic arbitrage-price pS is monotone on Q.

Proof. By Equation 1: suppSD1
(Q) ⊇ suppSD2

(Q). By Equation 2: pSD1
(Q) ≤ pSD2

(Q).

Proposition 2.26. If pS is monotone on every Vi, S is consistent on D1, and D1 ⊆ D2,
then S is consistent on D2.

Proof. To check consistency on D2 it suffices to check that pi ≤ pSD2
(Vi), for all i =

1, . . . ,m. We have pi ≤ pSD1
(Vi) since S is consistent on D1, and pSD1

(Vi) ≤ pSD2
(Vi)

because pS is monotone.

The goal in the dynamic setting is to ensure that pS is monotone on every query
(Definition 2.24). There are two ways to achieve this. One is to restrict all views to
selection queries and all queries to full conjunctive queries: we will pursue this in Sec-
tion 3. However, if one needs more general views and queries, then we propose a second
alternative: to consider a different determinacy relation along with monotone views.
Let � be any determinacy relation (Definition 2.5). Its restriction D ` V �∗ Q is:
∀D0,V(D0) ⊆ V(D), D0 ` V � Q. We prove in Subsection Appendix B.3:

Proposition 2.27. (a) �∗ is a determinacy relation (Definition 2.5), (b) �∗ is mono-
tone (Definition 2.21) for any monotone V and any Q, (c) if pSD and qSD are the arbitrage-
prices for � and �∗, respectively, then pSD(Q) ≤ qSD(Q) for all Q, and (d) if � is the
instance-based determinacy, then the data complexity of �∗ is in coNP.

Thus, by replacing instance-based determinacy � with its restriction �∗, we obtain
a monotone pricing function qS . In particular, if S is consistent in a database D, then
it will remain consistent after insertions. To illustrate, recall that in Example 2.20 S1

became inconsistent when D1 was updated to D2: this is because D1 ` V 6� Q and
D2 ` V � Q. Now we have both D1 ` V 6�∗ Q and D2 ` V 6�∗ Q, hence S1 is
consistent in both states of the database.

3. Tractable Query-Based Pricing

The combined complexity for computing the price when the views and queries are
UCQs is high: it is coNP-hard and in ΣP2 . This is unacceptable in practice. In this
section, we restrict both the views on which the seller can set explicit prices and the
queries that the buyer can ask, and present a polynomial time algorithm for computing
the price. This is the main result in the paper, since it represents a quite practical
framework for query-based pricing. For the case of conjunctive queries without self-
joins, we prove a dichotomy of their complexity into polynomial time and NP-complete,
which is our most technically difficult result.

13

The Views. We restrict the views to selection queries. We denote a selection
query by σR.X=a, where R is a relation name, X an attribute, and a a constant. For
example, given a ternary relation R(X,Y, Z), the selection query σR.X=a is Q(x, y, z) =
R(x, y, z) ∧ x = a. Throughout this section, the seller can set explicit prices only on
selection views. We argue that this restriction is quite reasonable in practice. Many
concrete instances of online data pricing that we have encountered set prices only on
selection queries5. For example, CustomLists [14] sells the set of all businesses in any
given state for $199, thus it sells 50 selection views. Infochimps [19] sells the following
selection queries, in the form of API calls. The Domains API: given IP address, retrieve
the domain, company name and NAICS Code. The MLB Baseball API: given an MLB
team name, retrieve the wins, losses, current team colors, seasons played, final regular
season standings, home stadium, and team ids. The Team API: given the team ids, get
the team statistics, records, and game ids. And, the Game API: given game id, get the
attendance, box scores, and statistics. Thus, we argue, restricting the explicit price points
to selection queries is quite reasonable for practical purposes.

An important assumption made by sellers today is that the set of values on which
to select is known. For example, the set of valid MLB team names is known to the
buyers, or can be obtained for free from somewhere else. In general, for each attribute
R.X we assume a finite set ColR.X = {a1, . . . , an}, called the column. This set is known
both to the seller and the buyer. Furthermore, the database D satisfies the inclusion
constraint RD.X ⊆ ColR.X . The input to the pricing algorithm consists of both the
database instance D, and all the columns ColR.X : thus, the latter are part of the input
in data complexity. A column should not be confused with a domain: while a domain
may be infinite, a column has finitely many values. It should not be confused with the
active domain either, since the database need not have all values in a column. We also
assume that columns always remain fixed when the database is updated.

We call the set of all selections on column R.X, ΣR.X = {σR.X=a | a ∈ ColR.X}, the
full cover of R.X. Note that D ` ΣR.X � R. We denote Σ the set of all selections on
all columns. Given V ⊆ Σ, we say that it fully covers R.X if ΣR.X ⊆ V. Thus, the
explicit price points S = {(V1, p1), (V2, p2), . . .} are such that each Vi ∈ Σ. We denote
p : Σ→ R+ the partial function defined as: p(Vi) = pi if (Vi, pi) ∈ S.

Recall that Price(S,Q) denotes the data complexity of the pricing problem in Sec-
tion 2. Since now S can be as large as Σ, we treat it as part of the input. Thus, we denote
the pricing problem as Price(Q), where the input consists of the database instance D,
all columns ColR.X , and the function p.

We start with a basic lemma.

Lemma 3.1. Let V ⊆ Σ. Then D ` V � σR.X=a iff (a) it is trivial (i.e. σR.X=a ∈ V),
or (b) V fully covers some attribute Y of R.

Proof. Assume that D ` V � σR.X=a and neither (a) or (b) holds. Let R(X1, . . . , Xk).
Then, for every attribute Xi of R, there exists a selection σR.Xi=ai /∈ V. Let X = X1 and
consider the database D′ = D∪{R(a, a2, . . . , ak)}. It is easy to see that V(D) = V(D′),
since the tuple tR = R(a, a2, . . . , ak) does not appear in any of the views. However,
tR ∈ σR.X=a(D′) and tR /∈ σR.X=a(D), a contradiction.

5The only exception are sites that sell data by the number of tuples; for example, Azure allows the
seller to set a price on a “transaction”, which means any 100 tuples.

14

The lemma has two consequences. First, recall that in Subsection 2.4 we required
that the views in S determine ID. By the lemma, this requirement becomes equivalent
to requiring that, for any relation R, S fully covers some attribute X. Second, the lemma
gives us a simple criterion for checking whether S is consistent. By Theorem 2.17, this
holds iff there is no arbitrage between the views in S. The lemma implies that the only
risk of arbitrage is between a full cover ΣR.Y and a selection view σR.X=a, hence:

Proposition 3.2. S is consistent iff for every relation R, any two attributes X,Y of R
and any constant a ∈ ColR.X :

p(σR.X=a) ≤
∑

b∈ColR.Y

p(σR.Y=b)

Note that now consistency is independent of the database instance; this is unlike
Subsection 2.7, where we showed that consistency may change with the database.

The Queries. We would like to support a rich query language that buyers can use,
while ensuring tractability for the price computation. We start with an upper bound on
the data complexity of pricing. We say that a query Q has PTIME data complexity if
Q(D) can be computed in polynomial time in the size of D. UCQ queries, datalog queries,
and extensions of datalog with negation and inequalities have PTIME data complexity[4].

Theorem 3.3. Assume V ⊆ Σ. Let Q be any monotone query that has PTIME data
complexity. Then, D ` V � Q for V ⊆ Σ can be decided in PTIME data complexity.

We give the proof of this in the Appendix, Appendix Appendix C.

Corollary 3.4. Let Q be a bundle of monotone queries that have polynomial time data
complexity. Then Price(Q) is in NP (data complexity).

Proof. To check if pSD(Q) ≤ k, guess a subset of selection views V ⊆ Σ, then check that
both D ` V � Q (which is equivalent to D ` V � Qi, for all Qi ∈ Q, by Lemma 2.6)
and that

∑
V ∈V p(V) ≤ k.

Thus, the restriction to selection queries has lowered the complexity of price compu-
tation from Σp2 (Corollary 2.18) to NP. However, for some conjunctive queries the price
is NP-complete (the proof is in Appendix Appendix D):

Theorem 3.5 (NP-Complete Queries). Price(Q) is NP-complete (data complexity)
when Q is any of the following queries:

H1(x, y, z) = R(x, y, z), S(x), T (y), U(z) (3)
H2(x, y) = R(x), S(x, y), T (x, y) (4)
H3(x, y) = R(x), S(x, y), R(y) (5)
H4(x) = R(x, y) (6)

If Q is one of H1, H2, H3 then the pricing complexity remains NP-complete even is the
database instance D is restricted s.t. Q(D) = ∅.

Thus, we cannot afford to price every conjunctive query. In Subsection 3.1, we in-
troduce a class of conjunctive queries whose prices can be computed in PTIME. In
Subsection 3.2, we study the complexity of all conjunctive queries without self-joins, and
establish a dichotomy for pricing into PTIME and NP-complete.

15

3.1. A PTIME Algorithm
We define a class of conjunctive queries, called Generalized Chain Queries, denoted

GChQ, and we provide a non-trivial algorithm that computes their prices in polynomial
time.

We consider conjunctive queries with interpreted unary predicates C(x) that can be
computed in PTIME: that is, we allow predicates like x > 10 or User-Defined-Predicate(x),
but not x < y. A conjunctive query is without self-joins if each relation Ri occurs at
most once in Q; e.g. query H3 in Theorem 3.5 has a self-join (since R occurs twice), the
other three queries are without self-joins. A conjunctive query is full if all variables in the
body appear in the head; e.g. queries H1, H2, H3 are full, while H4 is not. We restrict
our discussion to full, conjunctive queries without self-joins. We abbreviate such a query
with Q = R0, R1, . . . , Rk, C1, . . . , Cp, where each Ri is an atomic relational predicate, and
each Cj is an interpreted unary predicate; we assume the order R1, . . . , Rk to be fixed.
For 0 ≤ i ≤ j ≤ k, we denote Q[i,j] the full conjunctive Q[i,j] = Ri, Ri+1, . . . , Rj (ignor-
ing the unary predicates). For example, if Q(x, y, z) = R(x), S(x, y), T (y), U(y, z), V (z),
then Q[1:2](x, y) = S(x, y), T (y). If k is the index of the last relational predicate, then
we abbreviate Q[j,k] with Q[j:∗]. Denote V ar(Q) the set of variables in Q.

Definition 3.6. A generalized chain query, GChQ, is a full conjunctive query without
self-joins, Q, such that, for all i, |Var(Q[0:i−1]) ∩ Var(Q[i:∗])| = 1. We denote xi the
unique variable shared by Q[0:i−1] and Q[i:∗]. The (not necessarily distinct) variables
x1, . . . , xk are called join variables. All other variables are called hanging variables.

In other words, a GChQ query is one in which every join consists of only one shared
variable. Note that the definition ignores the interpreted unary predicates occurring in
Q. The following are some examples of GChQ queries:

Q1(x, y) = R(x), S(x, y), T (y)
Q2(x, y, z, w) = R(x, y), S(y, z), T (z), U(z), V (z, w)
Q3(x, y, z, u, v, w) = R(x, y), S(y, u, v, z), T (z, w), U(w)

On the other hand, none of the queries in Theorem 3.5 are GChQ: the atoms in
queries H1 and H2 cannot be ordered to satisfy Definition 3.6, H3 has a self-join, and
H4 is not a full query.

We can now state our main result in this paper:

Theorem 3.7 (Main Theorem). Assume that all explicit price points in S are selec-
tion queries. Then, for any GChQ query, one can compute its price in PTIME (data
complexity).

Before we give the algorithm, we illustrate pricing with an example.

16

R S T
X X Y Y Q(x, y) = R(x), S(x, y), T (y)

a1 b1 Q[0:1](x, y) = R(x), S(x, y)
a1 a1 b2 b1 Q[1:2](x, y) = S(x, y), T (y)
a2 a2 b2 b3

a3 b2 Colx = {a1, a2, a3, a4}
a4 b1 Coly = {b1, b2, b3}

(a)
Q[0:1](D) =
X Y
a1 b1
a1 b2
a2 b2

Q[1:2](D) =
X Y
a1 b1
a4 b1

Q[0:2](D) = Q(D)
X Y
a1 b1

(b)

R(x)

S(x,y)

T(y)

s
R.a1

R.a2

R.a3

R.a4

t

S.a1

S.a2

S.a3

S.a4

S.b1

S.b2

S.b3

T.b1

T.b2

T.b3

!"#$

!"%$

!"&$

'"#$

'"%$

'"&$

()*%+%,$

(c)

Figure 1: (a) The database D and query Q for Example 3.8. (b) The answers to the partial queries

Q[0:1], Q[1:2], Q[0:2]. (c) The flow graph describing the example (see Theorem 3.13).

Example 3.8. Consider Q = R(x), S(x, y), T (y) over the database D in Figure 1(a). We
have Q(D) = {(a1, b1)}. There are 14 possible selection queries: ΣR.X = {σR.X=a1 , σR.X=a2 , σR.X=a3 , σR.X=a4},
ΣS.X = {σS.X=a1 , σS.X=a2 , σS.X=a3 , σS.X=a4}, and similarly for S.Y and T.Y . Suppose
S assigns the price $1 to each selection query.

To compute the price of Q, we need to find the smallest set V ⊆ Σ that “deter-
mines” Q: that is, forall D′ s.t. V(D) = V(D′), the query must return the same answer

17

{(a1, b1)} on D′, as on D. First, V must guarantee that (a1, b1) is an answer, and
for that it must ensure that all three tuples R(a1), S(a1, b1), T (b1) are in D′; for exam-
ple, it suffices to include in V the views V0 = {σR.X=a1 , σS.X=a1 , σT.Y=b1} (we could
have chosen σS.Y=b1 instead of σS.X=a1). Second, V must also ensure that none of the
other 11 tuples (ai, bj) are in the answer to Q. V0 is not sufficient yet. For example,
consider the tuple (a3, b2), which is not in the answer. Let D′ = D ∪ {R(a3), T (b2)};
then V0(D) = V0(D′), since V0 does not inquire about either R(a3) or T (b2), yet
Q(D′) contains (a3, b2). Thus, V must ensure that either R(a3) is not in D′, or that
T (b2) is not in D′. Continuing this reasoning, leads us to the following set of views
V = {σR.X=a1 , σR.X=a3 , σR.X=a4 , σS.X=a1 , σS.X=a2 , σT.Y=b1 , σT.Y=b2}. The reader may
check that this is a minimal set that determines Q, hence the price of Q is pSD(Q) = 6.

We can also generalize the algorithm to GChQ query bundles, which are defined as
follows.

Definition 3.9. A GChQ query bundle is a set Q of GChQ queries without interpreted
predicates, such that any two queries Q,Q′ ∈ Q only share in common a prefix and/or
a suffix: ∃i, j,m : Q[0:i−1] = Q′[0:i−1], Q[j:∗] = Q′[m:∗], and Q[i:j−1], Q′[i:m−1] have no
common relation names.

For example, the bundle {Q1 = S(x, y), R(y, z), U(z), Q2 = S(x, y), T (y, z), Q3 =
S(x, y), T (y, z), U(z)} is a GChQ bundle. To simplify the presentation, we discuss here
only single queries. We now describe the algorithm, which consists of the four steps
below.

STEP 1: Remove Atomic Predicates. Suppose Q has a variable x with an
atomic predicate C(x): here we simply shrink the column6 of x to Col ′x = {a ∈ Colx |
C(a) = true}, thus removing all constants that do not satisfy C. Let S ′ ⊆ S be obtained
by removing all selection views that refer to these constants, and similarly D′ ⊆ D be the
database obtained by filtering on the predicate C. Finally, let Q′ be the query obtained
from Q by removing the predicate C(x). We prove in Proposition Appendix G.2 that
pS
′

D′(Q
′) = pSD(Q).

To illustrate this construction, let Q(y, w, z) = R(y), S(y, w, z), T (z), w = a1 and
Colw = {a1, a2, a3}. Then, we restrict the column of w to {a1}, remove the views
σS.W=a2 , σS.W=a3 from S to obtain S ′, filter D on w = a1 to obtain D′, and then
compute the price of Q′(x, y, z) = R(y), S(y, w, z), T (z).

STEP 2: Remove Multiple Variable Occurrences from Each Atom. We only
sketch this step, and defer the details to Proposition Appendix G.4. Suppose a variable
x occurs twice in the atom R(x, x, z), where R has schema R(X,Y, Z). Let R′(X,Z)
be a new relation name s.t. ColR′.X = Colx, and set the prices on R′.X as follows:
p(σR′.X=a) = min{p(σR.X=a), p(σR.Y=a)}. We prove that the price of the new query
(obtained by replacing the atom R(x, x, z) with R′(x, z)) is the same as the price of Q.

STEP 3: Removing Hanging Variables. Recall that a hanging variable is one
that occurs in only one atom of Q; by the previous step, it only occurs in one position
R.X. We prove in Appendix Appendix E the following:

6If x occurs on several attribute positions R.X, S.Y , etc, then we may assume w.l.o.g. that ColR.X =
ColS.Y = . . . and denote it with Colx.

18

Lemma 3.10. Let x be a hanging variable in Q, occurring in the attribute position R.X.
Let V ⊆ Σ. If D ` V � Q then either (a) V fully covers R.X or (b) D ` (V\ΣR.X) � Q
(in other words, every view in V referring to R.X is redundant).

Thus, when computing the price of Q, for each hanging variable we need to consider
two cases: either fully cover it, or not cover it at all. We claim that each of these cases
becomes another price computation problem, namely for the query Q′, obtained from
Q by replacing R with R′ (obtained from R by removing the attribute R.X), on the
database D′ obtained from D by projecting out R.X:

Lemma 3.11. Let R.X be an attribute containing a hanging variable in Q, V ⊆ Σ, and
V′ = V \ ΣR.X .

• If V fully covers R.X, let Y be any attribute Y 6= X of R. Then D ` V � Q iff
D′ ` V′,ΣR′.Y � Q′.

• If V does not fully cover R.X, then D ` V � Q iff D′ ` V′ � Q′.

We prove this as part of Proposition Appendix G.6. The lemma gives us an algorithm
for removing hanging variables: compute two prices for Q′, and take the minimum. The
first price corresponds to the case when R.X is fully covered: in that case, we give out
R′ for free (by setting all prices σR′.Y=a to 0, for some other attribute Y) and compute
the price of Q′: then, add to that the true cost of the full cover ΣR.X , i.e.

∑
a p(σR.Y=a).

The second price corresponds to the case when R.X is not covered at all, and is equal
to the price of Q′. For a simple example, if Q(x, y, z) = R(x, y), S(y, z), T (z), then
Q′(y, z) = R′(y), S(y, z), T (z). Let p1 be the price of Q′ where we set all prices of
σR′.Y=b to 0; let p2 be the regular price of Q′ (where all prices are unchanged, but the
views σR.X=a are removed); return min(p1 + p(ΣR.X), p2). In general, we need to repeat
this process once for every hanging variable; thus, we end up computing 2k prices, if
there are k attributes with hanging variables.

STEP 4: Reduction to Maximum Flow. Finally, we have reached the core of
the algorithm. At this point, the query is a Chain Query:

Definition 3.12. A Chain Query is a full conjunctive query without self-joins, Q =
R0, R1, . . . , Rk s.t.: (a) every atom Ri is either binary or unary, (b) any two consecutive
atoms Ri, Ri+1 share exactly one variable, denoted xi, (c) the first and the last atoms
are unary, R0(x0), Rk(xk). Denote ChQ the set of chain queries.

We show that the price of chain query can be we reduced to the Min-Cut problem,
which is the dual of the Max-Flow graph problem and can be solved in polynomial
time [13].

Given a chain query Q, denote xi, xi+1 the variables occurring in Ri: if Ri is unary,
then xi = xi+1. In particular, x0 = x1 and xk = xk+1 since the first and last atoms are
unary. Thus, each query Q[i:j] = Ri, . . . , Rj has variables xi, . . . , xj+1. Let us also define
Q[i:i−1] = Colxi

= ColRi−1.Y ∩ ColRi.X . Define the left-, middle-, and right-partial-
answers:

Lt i =Πxi(Q[0:i−1](D)), 0 ≤ i ≤ k
Md [i:j] =Πxi,xj+1(Q[i:j](D)), 1 ≤ i ≤ k, i− 1 ≤ j ≤ k − 1

Rtj =Πxj+1(Q[j+1:k](D)), 0 ≤ j ≤ k

We construct the following graph G. Its vertices are:
19

• A source node s and a target (sink) node t.
• For each attribute R.X and constant a ∈ ColR.X , we introduce two nodes: vR.X=a

and wR.X=a.

Its edges are:

View edges: For each attribute R.X and constant a ∈ ColR.X we create the edge:

vR.X=a
view−→ wR.X=a

Capacity = the price7 p(σR.X=a) in S.
Tuple edges: For each binary atom R(X,Y), and constants a ∈ ColR.X , b ∈ ColR.Y ,

we create:

wR.X=a
tuple−→ vR.Y=b

Capacity =∞.
Skip edges: For all partial answers we create the edges:

s
skip−→ vRi.X=a if a ∈ Lt i

wRj−1.Y=b
skip−→ vRi+1.X=a if (b, a) ∈ Md [j:i]

wRj .Y=b
skip−→ t if a ∈ Rtj

In all cases, capacity =∞.

In particular, since Lt0 = Colx0 , Md [i:i−1] = Colxi
, Rtk = Colxk

we also have the
following skip edges:

s
skip−→vR0.X=a

wRi−1.Y=a
skip−→vRi.X=a

wRk.Y=a
skip−→t

We explain now the intuition behind the graph construction, and will also refer to
Figure 1 (b) and (c), which illustrates the graph for Example 3.8. Notice that the edges
of finite capacity in G are in one-to-one correspondence with the views in S. The main
invariant (which we prove in Subsection Appendix F.1) is: for every set of edges C of
finite capacity, C is a “cut” (it separates s and t) if and only if the corresponding set of
views V determines the query. Before justifying this invariant, note that the core of the
graph consists of sequences of three edges:

vRi.X=a
view−→ wRi.X=a

tuple−→ wRi.Y=b
view−→ wRi.Y=b

for all binary relations Ri(X,Y) and constants a ∈ ColRi.X , b ∈ ColRi.Y . (Unary rela-
tions have just one view edge.) Consider a possible answer to Q, t = (u1, u2, . . . , uk),

7If the query has no explicit price in S then capacity =∞.

20

where u1 ∈ Colx1 , . . . , uk ∈ Colx2 . If D ` V � Q, then, for all D′ s.t. V(D) = V(D′),
V must ensure two things: if t ∈ Q(D) then it must ensure that t ∈ Q(D′), and if
t 6∈ Q(D) then it must ensure that t 6∈ Q(D′). Take the first case, t ∈ Q(D). For each
i = 0, . . . , k, denoting a = ui and8 b = ui+1, we have: a ∈ Lt i (is a left partial answer),
Ri(a, b) ∈ D, and b ∈ Rt i (is a right partial answer). Hence there are two skip edges:

s
skip−→ vRi.X=a wRi.Y=b

skip−→ t

Combined with the three edges above, they form an s − t path: thus, any cut of finite
capacity must include one of the two view edges, hence, the corresponding set of views
V includes either σRi.X=a or σRi.Y=b, ensuring Ri(a, b) ∈ D′. Since this holds for any i,
it follows that D′ has all the tuples needed to ensure t ∈ Q(D′). For example, in Figure 1
the answer (a1, b1) ∈ Q(D) leads to three s− t paths:

s
skip−→vR.X=a1

view−→ wR.X=a1

skip−→t

s
skip−→vS.X=a1

view−→ wS.X=a1

tuple−→vS.Y=b1
view−→ wS.Y=a1

skip−→ t

s
skip−→vT.Y=b1

view−→ wT.Y=b1
skip−→ t

Any cut ensures R(a1), S(a1, b1), T (b1) are present.
Take the second case, t 6∈ Q(D). Then some of the tuples Ri(ui, ui+1) are missing

from D, and V must ensure that at least one is missing. The sequence u1, . . . , uk consists
of partial answers, alternating with missing tuples. We are interested only in the latter
and the skip edges help by skipping over the partial answers. Thus the missing tuples are
on a path from s to t. For an illustration, assume that exactly two tuples are missing,
Ri(ui, ui+1) and Rj(uj , uj+1); denoting a = ui, b = ui+1, c = uj , d = uj+1 we have:

a ∈ Lt i, (a, b) 6∈ Md [i:i], (b, c) ∈ Md [i+1:j−1], (c, d) 6∈ Md [j:j], d ∈ Rtj

leading to the following s− t path:

s
skip−→ vRi.X=a

view−→ wRi.X=a
tuple−→ wRi.Y=b

view−→ wRi.Y=b

skip−→ vRj .X=c
view−→ wRj .X=c

tuple−→ wRj .Y=d
view−→ wRj .Y=d

skip−→ t

To summarize, we prove the following in Subsection Appendix F.1:

Theorem 3.13. The cost of the minimum cut in G is equal to the price of Q. Therefore,
the price of Q can be computed in polynomial time, by reduction to Min-cut.

3.2. A Dichotomy Theorem
Are there any other queries besides GChQ whose data complexity is in PTIME? The

answer is yes. We study them here, and give a full characterization of the complexity
of all conjunctive queries without self-joins, showing that for each query its complexity
is either PTIME or NP-complete. Note that our characterization applies to all queries

8When i = k then ui = ui+1, hence a = b.

21

without self-joins, not just full queries. However, it only applies to single queries, not to
query bundles: we leave open whether query bundles admit a similar dichotomy as single
queries.

We start by characterizing the PTIME class. Clearly, all GChQ queries are in
PTIME. By definition, every GChQ query is connected: it is easy to check that PTIME
queries are closed under cartesian products:

Proposition 3.14. Assume that Q is disconnected, and partitioned into Q(x̄1, x̄2) :
−Q1(x̄1), Q2(x̄2), where x1, x2 are disjoint sets of variables. Then,

pSD(Q) =

min{pSD(Q1), pSD(Q2)} if Q1(D) = Q2(D) = ∅,
pSD(Q1) if Q1(D) = ∅, Q2(D) 6= ∅,
pSD(Q2) if Q2(D) = ∅, Q1(D) 6= ∅,
pSD(Q1) + pSD(Q2) else

We prove this proposition, along with the converse reduction, in Proposition Ap-
pendix G.1. As a consequence, the complexity of any disconnected query is no larger
than that of any of its connected components.

A more surprising class of queries that admits a PTIME algorithm is the the class of
cyclic queries:

Theorem 3.15. For any integer k, Price(Ck) is in PTIME, where Ck(x1, . . . , xk) =
R1(x1, x2), . . . , Rk(xk, x1).

The algorithm for computing Ck is in Subsection Appendix F.2. It is technically the
most difficult result in this paper, and is quite different from the reduction to Min-cut
that we used for GChQ, suggesting that these two classes cannot be unified in a natural
way. The class of queries Ck is also much more brittle than GChQ: adding a single unary
predicate makes the query NP-hard. For example, see the query H2 in Theorem 3.5: it
is obtained by adding one unary predicate to C2, and is NP-hard. By contrast, we can
add freely unary predicates to GChQ.

We conclude our analysis with the following theorem, whose proof is in Appendix Ap-
pendix G:

Theorem 3.16 (Dichotomy Theorem). Let S contain only selection views (in Σ) and
Q be a CQ w/o self-joins. The data complexity for Price(Q) is the following:

• If Q has connected components Q1, . . . , Qk, then: if all components Qi are in
PTIME, it is in PTIME, and if one component Qi is NP-complete, Q is NP-
complete.

• Else if Q is neither full nor boolean, it is NP-complete.
• Else if Q is a boolean query, then let Qf be the corresponding full query (add all

variables to the head); then the complexity of Q is the same as that of Qf .
• Else if Q is a full CQ, let Q′ be obtained from Q by removing all hanging variables,

constants and multiple occurrences of a variable in the same atom: (a) if Q′ is a
GChQ then it is PTIME, (b) if Q′ = Ck for some k, then it is also PTIME, (c)
otherwise, Q is NP-complete.

22

4. Discussion

We end this this paper with a brief discussion on loose ends and design choices.
Step v.s. smooth pricing function. The pricing function pS is a step function:

its range is always finite, because the arbitrage-price pSD(Q) is always the sum of a
subset of prices from S. In some applications, this may be too limiting. One example of
interest is in selling private data, where the price should be proportional to the degree of
privacy revealed by the query: since privacy mechanisms add a noise that can be tuned
continuously (e.g. the ε parameter in differential privacy [16]), one expects the pricing
function to also vary continuously. Studying “smooth” pricing functions is part of future
work.

Pricing and query containment. The price should not be required to be monotone
w.r.t. query containment. Recall that two queries (of the same arity) are said to be
contained if Q1(D) ⊆ Q2(D) for any database D. If Q2 always returns at least as much
data as Q1, one might insist that pD(Q1) ≤ pD(Q2). We argue against this.

Example 4.1. Consider Q1(x, y) = R(x), S(x, y) and Q2(x, y) = S(x, y). Then, Q1 ⊆
Q2, but the information in Q1 may be more valuable than that in Q2. For example,
S(x, y) may be the list of the top 500 companies and their stock price, while R(x) may be
an analyst’s confidential list of 5 companies with very high potential for growth. Clearly,
the seller wants to set pD(Q1)� pD(Q2).

There is also a theoretical argument: if pD is arbitrage-free and monotone w.r.t.
query containment, then all Boolean queries have the same price! Indeed, let T be the
Boolean query that is always true, i.e. T (D) = true for any database D, and let Q be any
Boolean query. We have Q ⊆ T , hence pD(Q) ≤ pD(T); on the other hand, D ` Q � T ,
which implies pD(T) ≤ pD(Q).

Price updates. What happens if the seller adds price points to S? We prove next
that, as long the price points remain consistent, the prices never increase; in other words,
the seller can only add more discounts, but cannot raise the prices (of course, one can
modify S to raise prices, but prices do not increase through additions to S.)

Proposition 4.2. If a set of price points S is consistent for D and S ′ ⊇ S is also
consistent for D, then ∀Q : pS

′

D (Q) ≤ pSD(Q).

Proof. The key observation is that pS
′

D will also be a valid pricing function for S under
D, since it is arbitrage-free and also, if (V, p) ∈ S, then pS

′

D (V) = p. For the sake
of contradiction, assume that there exists D,Q such that pSD(Q) < pS

′

D (Q). Then,
by Lemma 2.13, the pricing function max{pSD, pS

′

D } also is valid, which contradicts the
uniqueness of pSD.

Selections on Multiple Attributes. The PTIME algorithm in Subsection 3.1
allows explicit prices only on selection queries on single attributes, e.g. σR.X=a. A
natural question is whether one can extend it to prices on two or more attributes, e.g.
σR.X=a,R.Y=b. The answer to this question varies. For Chain Queries (Definition 3.12)
this is possible: simply modify the flow graph by setting the capacity of the tuple-edge
(wR.X=a, vR.Y=b) to p(σR.X=a,R.Y=b) instead of ∞. For Generalized Chain Queries,
however, this is not possible in general. In fact, even for a very simple query, Q(x, y, z) =

23

R(x, y, z), if S has prices on all these types of selection queries: σR.X=a, σR.Y=b, σR.Z=c,
σR.X=a,R.Y=b,R.Z=c, then we prove in the full version of this paper that computing the
price of Q is NP-hard.

5. Related Work

There exist many independent vendors selling data online [1, 2, 6, 14, 32] and Amazon
cloud users can sell their S3 data for a profit [7]. In addition, digital market services
for data have recently emerged in the cloud [9, 19, 30], which enable content providers
to upload their data and make it available either freely or for a fee, and support some
limited forms of views. In the case of Infochimps [19], the seller can set prices on APIs
(modeled as selection queries) or entire datasets. The Azure DataMarket [9] uses data
subscriptions with query limits: i.e., a group of records returned by a query and that can
fit on a page (currently 100) is called a transaction. WebScaled is a pre-launch startup
providing a marketplace for datasets from ongoing Web crawls: social graphs, lists of
sites using a particular advertising platforms, frequency of specific doctypes and other
HTML elements, etc. [30, 31]. Apollo Mapping sells access to satellite imagery [8]. The
approach that we develop in this paper extends these pricing methods with the ability
to interpolate prices for arbitrary queries over a seller’s database.

While the interaction between data management and economics has been studied in
the database research community before [15, 29], to the best of our knowledge, this paper
is the first to study the problem of data pricing, with the exception of a short vision paper
that we recently published [10].

There is a rich literature on pricing information products (e.g., [20, 28]). We were most
influenced by Shapiro and Varian [28], who argued that the price of information products
is quite different from that of physical goods, and proposed a new theory for pricing
information products, based on the notion of versions. The difference is that information
products have very high fixed costs, while the marginal costs are tiny. For example, the
cost of conducting a detailed consumer survey in several countries is very high, while the
cost of distributing the resulting data tiny (copying a file). As a consequence, the price
of information products cannot be determined by traditional means (production costs
and competition), but must be linked to the value that the buyers place on the data.
Different buyers may use the data in different ways, and should be charged different
prices. For example, a retailer may be willing to pay a high price for the entire consumer
survey, while a journalist may only be willing to pay a small amount for a few interesting
statistics from the consumer survey. In order to leverage these differences in willingness to
pay, Shapiro and Varian conclude that information products should be offered in different
versions, at different prices. Our approach extends version-based pricing to relational
data, by associating a version of the product to each query that a user may ask.

The classic notion of determinacy was extensively studied by Nash, Segoufin and
Vianu [27, 24, 25], who have investigated both the decidability question, and the subtle
relationship between determinacy and rewritability. We have reviewed information theo-
retic determinacy earlier (V � Q if forall D,D′, V(D) = V(D′) implies Q(D) = Q(D′)).
Rewritability is specific to a query language R: Q can be rewritten using V in the lan-
guage R if there exists a query R ∈ R s.t. Q(D) = R(V(D)) for all D. One goal of
this line of research was to establish tight bounds on the language R; a surprising result
is an example where both V and Q are conjunctive queries, yet R is non-monotone,

24

proving that no monotone language is sufficient for CQ to CQ rewriting. In our query
pricing framework we do not impose any restriction on the language used for rewriting;
in other words, we assume that the user has unrestricted computational power, and as
a consequence the two notions become equal. A second goal of the research [27, 24, 25]
is to study the decision problem for determinacy: it is shown to be undecidable even
for Unions of Conjunctive Queries, and its status is open for Conjunctive Queries. How-
ever, several classes of CQ queries where determinacy is well-behaved have been found:
path queries [5], syntactic restrictions of FO and UCQ which are called packed FO and
UCQ [22] and monadic views [25]. Determinacy has also been examined in the restricted
setting of aggregate queries [18].

A key difference in our paper is that we consider instance-based determinacy, where
determinacy is defined with respect to a given view extension. While applications like
data integration or semantic caching require instance-independent determinacy, in query
pricing the current state of the database cannot be ignored;. Instance-based determinacy
is identical to the notion of lossless views [12] under the exact view assumption. The
definition is based on the notion of certain answers [3]. We note that instance-specific
reasoning also arises in data security and authorization views: in that context, Zhang and
Mendelzon study conditional query containment, where the containment is conditioned
on a particular view output [33].

Finally, we should mention that, on the surface, our complexity results for pricing
seem related to complexity results for computing responsibility [23]. The PTIME algo-
rithm for responsibility is also based on network flow, and some queries have the same
complexity for both the pricing and the responsibility problems. However, the connection
is superficial: the price of H2 is NP-complete, while its responsibility is in PTIME; and
the price of C3 is in PTIME while its responsibility is NP-complete.

6. Conclusion

We have presented a framework for pricing relational data based on queries. The
seller sets explicit prices on some views, while the buyer may ask arbitrary queries;
their prices are determined automatically. We gave several results: an explicit formula
for the price, a polynomial time algorithm for pricing generalized chain queries, and a
dichotomy theorem for conjunctive queries without self-joins. We also gave several results
on instance-based determinacy.

Interesting future work includes considering competition: when a seller sets prices for
her data, she needs to consider other data instances on the market that offer “related”
data, to avoid arbitrage. This requires reasoning about mappings between the different
data sources, and these mappings are often approximate in practice. Another is the
interaction between pricing and privacy. Most of the literature on data privacy [16]
focuses on restricting access to private information. Privacy, however, has a broader
definition, and usually means the ability of the data owner to control how her private
information is used [26]. Setting a price for private data is one form of such control that
we plan to investigate.
Acknowledgments. This work is supported in part by the NSF and Microsoft through
NSF grant CCF-1047815.

25

References

[1] http://gnip.com.
[2] http://www.patientslikeme.com.
[3] Abiteboul, S., and Duschka, O. M. Complexity of answering queries using materialized views.

In PODS (1998), ACM Press, pp. 254–263.
[4] Abiteboul, S., Hull, R., and Vianu, V. Foundations of Databases. Addison-Wesley, 1995.
[5] Afrati, F. N. Rewriting conjunctive queries determined by views. In MFCS (2007), pp. 78–89.
[6] http://www.aggdata.com/.
[7] Using Amazon S3 Requester Pays with DevPay. http://docs.amazonwebservices.com/

AmazonDevPay/latest/DevPayDeveloperGuide/index.html?S3RequesterPays.html.
[8] http://www.apollomapping.com/.
[9] https://datamarket.azure.com/.

[10] Balazinska, M., Howe, B., and Suciu, D. Data markets in the cloud: An opportunity for the
database community. Proc. of the VLDB Endowment 4, 12 (2011).

[11] Calvanese, D., Giacomo, G. D., Lenzerini, M., and Vardi, M. Y. Answering regular path
queries using views. In ICDE (2000), pp. 389–398.

[12] Calvanese, D., Giacomo, G. D., Lenzerini, M., and Vardi, M. Y. Lossless regular views. In
PODS (2002), L. Popa, Ed., ACM, pp. 247–258.

[13] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algorithms,
Second Edition. The MIT Press and McGraw-Hill Book Company, 2001.

[14] http://www.customlists.net/.
[15] Dash, D., Kantere, V., and Ailamaki, A. An economic model for self-tuned cloud caching. In

Proc. of the 25th ICDE Conf. (2009), pp. 1687–1693.
[16] Dwork, C. A firm foundation for private data analysis. Commun. ACM 54, 1 (2011), 86–95.
[17] Gottlob, G., and Senellart, P. Schema mapping discovery from data instances. J. ACM 57, 2

(2010).
[18] Grumbach, S., and Tininini, L. On the content of materialized aggregate views. J. Comput. Syst.

Sci. 66, 1 (2003), 133–168.
[19] http://www.infochimps.com/.
[20] Jain, S., and Kannan, P. K. Pricing of information products on online servers: Issues, models,

and analysis. Management Science 48, 9 (2002), 1123–1142.
[21] Libkin, L. Elements of Finite Model Theory. Springer, 2004.
[22] Marx, M. Queries determined by views: pack your views. In PODS (2007), L. Libkin, Ed., ACM,

pp. 23–30.
[23] Meliou, A., Gatterbauer, W., Moore, K. F., and Suciu, D. The complexity of causality and

responsibility for query answers and non-answers. PVLDB 4, 1 (2010), 34–45.
[24] Nash, A., Segoufin, L., and Vianu, V. Determinacy and rewriting of conjunctive queries using

views: A progress report. In ICDT (2007), pp. 59–73.
[25] Nash, A., Segoufin, L., and Vianu, V. Views and queries: Determinacy and rewriting. ACM

Trans. Database Syst. 35, 3 (2010).
[26] Schneier, B. Secrets & Lies, Digital Security in a Networked World. John Wiley & Sons, 2000.
[27] Segoufin, L., and Vianu, V. Views and queries: determinacy and rewriting. In PODS (2005),

C. Li, Ed., ACM, pp. 49–60.
[28] Shapiro, C., and Varian, H. R. Versioning: The smart way to sell information. Harvard Business

Review 76 (November-December 1998), 106–114.
[29] Stonebraker et al. Mariposa: a wide-area distributed database system. VLDB Journal 5, 1

(1996), 048–063.
[30] http://webscaled.com/.
[31] Web marketing. Google group forum post, http://groups.google.com/group/webmarketing/msg/

c6643da409802f85.
[32] http://www.xignite.com/.
[33] Zhang, Z., and Mendelzon, A. O. Authorization views and conditional query containment. In

ICDT (2005), pp. 259–273.

26

http://gnip.com
http://www.patientslikeme.com
http://www.aggdata.com/
http://docs.amazonwebservices.com/AmazonDevPay/latest/DevPayDeveloperGuide/index.html?S3RequesterPays.html
http://docs.amazonwebservices.com/AmazonDevPay/latest/DevPayDeveloperGuide/index.html?S3RequesterPays.html
http://www.apollomapping.com/
https://datamarket.azure.com/
http://www.customlists.net/
http://www.infochimps.com/
http://webscaled.com/
http://groups.google.com/group/webmarketing/msg/c6643da409802f85
http://groups.google.com/group/webmarketing/msg/c6643da409802f85
http://www.xignite.com/

Appendix A. Case Study

CustomLists.net [14] is an online vendor of marketing data including business and con-
sumer contact information9. The CustomList database includes different tables. Table
Business(name, email, address, city, state, zip, phone, fax, category_code,
category_descr, url) contains 28.6 million entries describing American businesses.
The table Consumer(email, fname, lname, address, city, state, zip)) contains
59.8 million records with consumer information. The price for the entire Business
table is $399. The price is only $199 for a single state and it is only $299 for the
subset of American businesses that also have an email address (i.e., for the query
select * from Business where email NOT NULL). The consumer table costs $699 and
the subset of consumers in each state costs only $349. Buyers thus have the flexbility to
purchase the views that most closely match their needs.

Whether the prices satisfy the arbitrage-free property depends on the database con-
tent. If all businesses have an email address then the corresponding view determines the
Business table, creating an arbitrage opportunity.

With the above prices, however, a buyer who wishes to purchase only Alabama busi-
nesses in the automotive category must purchase and pay for all of Alabama’s business
information. Similarly, a buyer interested only in consumers who interact with busi-
nesses in the automotive category, must buy the entire consumers table. In this paper,
we posit that such restrictions limit business opportunities because some buyers may not
be willing to pay extra for the unnecessary data. Ideally, the seller and buyer should be
able to negotiate and price personalized data products. AggData [6] is an example data
seller that provides such custom solutions. However, such one-on-one negotiations are
not scalable to large numbers of buyers and large numbers of personalized data products.

Similarly, one can not expect that the seller will be able to manually set the prices
of every possible query ahead of time. There are two reasons for this. First, if the goal
is to allow any query to be asked on the database, the seller must manually determine
the prices for an extremely large (infinite actually) sets of queries. Moreover, one cannot
expect that the seller will be a database expert and thus have the knowledge about query
determinacy to set valid prices to the queries.

On the other hand, the data marketplace can not be solely responsible for setting the
prices of the views. The seller must be able to regulate the prices according to economic
models, demand on the market, and other constraints. Thus, the seller must be able
to provide a rough sketch of how to price the queries. In order to reconcile the pricing
decisions of the seller and the constraints of pricing relational queries, we propose a
framework where the seller specifies some pricing points, i.e., the prices of some queries,
and the underlying data marketplace decides whether these points are consistent and, if
yes, infers the prices of the other queries.

Continuing the CustomLists example, our framework should automatically infer the
price for the queries that ask only for automotive industries in Alabama or consumers
interacting with such industries.

Here, we should emphasize that the goal is to price the queries based on the informa-
tion content of the query result. For example, a query that returns an empty result may
not be priced necessarily to zero, since it may reveal information about the database.

9All data is opt-in and permission-based according to the company website.

27

Consider the following query: who are the Monterey, CA consumers who interact
with businesses in the Beads Wholesale category. In the case that the query result is
empty, the query will not necessarily be priced to zero, as it reveals information: we now
know that none of the consumers located in Monterey purchase Beads.

Appendix B. Determinacy

In this section, we discuss in detail the two notions of determinacy that are mentioned
in this paper: information-theoretic and instance-based determinacy.

Appendix B.1. Information-Theoretic Determinacy
Here, we review the information-theoretic determinacy introduced by Nash, Segoufin

and Vianu [25].

Definition Appendix B.1 (Information-Theoretic Determinacy). Let V, Q be two
query bundles. We say that V determines Q, in notation V � Q, if for all D1, D2 ∈
InstR, V(D1) = V(D2) implies Q(D1) = Q(D2).

Let RV and RQ denote the output schemas of the query bundles V, Q respectively.
In other words, V is a function V : InstR → InstRV

, and similarly Q : InstR → InstRQ
.

The following is easy to check.

Proposition Appendix B.2. V � Q iff there exists a function f : InstRV
→ InstRQ

such that Q = f ◦V. In other words, for all instances D, Q(D) = f(V(D)).

This justifies the interest in information-theoretic determinacy: V � Q holds iff, for
any instance D, the answer Q(D) can be obtained by examining only the view output
V(D), and not the instance itself. It is also easy to check that:

Proposition Appendix B.3. The information-theoretic determinacy D ` V � Q
satisfies all properties in Section 2.

Notice that the determinacy relationship satisfies also vacuously monotonicity, since
it does not depend on the database instance. The following facts are known about
information-theoretic determinacy.

• The following problem is undecidable: given UCQ’s V1, . . . , Vk, Q, decide whether
V1, . . . , Vk � Q.

• It is an open problem whether the following is decidable: given CQs V1, . . . , Vk, Q,
decide whether V1, . . . , Vk � Q.

• The following is also an open problem: given CQs V1, . . . , Vk, Q such that V1, . . . , Vk �
Q, what is the minimum language L that we cane express the function f?

The fact that information-theoretic determinacy is very hard to decide is an argu-
ment against using this determinacy for pricing. The other characteristic of information-
theoretic determinacy is that the prices are independent of the database instance. Hence,
using this determinacy may be appropriate for applications where the seller wants the
prices to remain unchanged in the case of updates.

28

Appendix B.2. Instance-Based Determinacy
In this subsection, we discuss in detail instance-based determinacy.

Definition Appendix B.4 (Instance-Base Determinacy). Let D be an instance and V,
Q be two query bundles. We say that V determines Q given D, in notation D ` V � Q,
if for all D′ ∈ InstR, V(D′) = V(D) implies Q(D′) = Q(D).

It will be also very useful to keep in mind the notion of certain answers.

Definition Appendix B.5 (Certain Answers Under CWA). Let V be a set of views,
E corresponding view extensions, and Q a query. A tuple t is a certain answer (under
the closed world assumption, CWA) if t ∈ Q(D) for every D such that V(D) = E.

Moreover, let certQ,V(E) be the set of certain answers. Alternatively, certQ,V(E) =⋂
D′:V(D′)=E Q(D′).

The definition of instance-based determinacy is indentical to the definition of lossless
views under the exact view assumption proposed in [12]. We next show the equivalence
for alternative definitions of instance-based determinacy.

Proposition Appendix B.6. Let V be a set of views, a database D, and a query Q.
Then, the following are equivalent:

1. ∀D′, D′′ s.t. V(D′) = V(D′′) = V(D): Q(D′) = Q(D′′).
2. ∀D′ s.t. V(D′) = V(D): Q(D′) = certQ,V(V(D)).
3. ∀D′ s.t. V(D′) = V(D): Q(D′) = Q(D).

Proof. For ease of exposition, let E = V(D). Then,
(1) ⇒ (2). Consider a database D′ such that V(D′) = E. Then, by definition (1),

for every D′′ such that V (D′′) = E, we have that Q(D′′) = Q(D′). Hence, Q(D′) =
certQ,V(E).

(2) ⇒ (1). Let us consider databases D′, D′′ such that V(D′) = V(D′′) = E. By
definition (2), Q(D′) = certQ,V(E); hence, Q(D′′) ⊆ Q(D′). Due to symmetry, we also
have that Q(D′′) ⊆ Q(D′). Thus, Q(D′) = Q(D′′).

(1) ⇒ (3). Consider a database D′ such that V(D′) = E. Then, for the pair of
databases D,D′ we have that V(D′) = V(D) = E. Hence, by definition (1), we have
that Q(D′) = Q(D).

(3)⇒ (1). Let D′, D′′ be a pair of databases such that V(D′) = V(D′′) = E. Since
V(D′) = E, by definition (1) we have that Q(D′) = Q(D). Similarly, since V(D′′) = E,
Q(D′′) = Q(D). Thus, Q(D′) = Q(D) = Q(D′′).

Our interest in instance-based determinacy is justified by the following proposition,
similar to Proposition Appendix B.2:

Proposition Appendix B.7. For any V,Q there exists a function f : InstRV
→

InstRQ
such that, forall D, if D ` V � Q, then Q(D) = f(V(D)).

Moreover, if there exists a function f such that for all D′ such that V(D′) = V(D),
f(V(D′)) = Q(D′), then D ` V � Q.

29

Proof. Define f as follows:

f(E) =

{
Q(D) if there exists D such that V(D) = E,
⊥ else.

Now, consider a database D such that D ` V � Q. We need to show that f(V(D)) =
Q(D). By the construction of f , there exists some D′ such that V(D′) = V(D). Thus, by
Definition Appendix B.4, we also have that Q(D′) = Q(D). It follows that f(V(D)) =
Q(D′) = Q(D).

For the second part, let D′ : V(D′) = V(D). Then, Q(D′) = f(V(D′)) = f(V(D)) =
Q(D).

Thus, we can still compute Q by examining only the view V, but only for those
instances where the instance-based determinacy holds.

Proposition Appendix B.8. Instance-based determinacy satisfies all properties in
Section 2.

Proof. Reflexivity: Let some D′ such that Q1(D′) = Q1(D) and Q2(D′) = Q2(D).
Since Q1(D′) = Q1(D), Q1,Q2 determine Q1 under D.

Transitivity: Let D ` Q1 � Q2 and D ` Q2 � Q3. Let D′ such that Q1(D′) =
Q1(D). By the first determinacy relation, Q2(D′) = Q2(D). By the second determinacy
relation now, Q3(D′) = Q3(D). Hence, D ` Q1 � Q3.

Augmentation: Let D ` V � Q. Consider some D′ such that V(D′) = V(D) and
V′(D′) = V′(D). The first equality, together with the determinacy relation imply that
Q(D′) = Q(D). Hence, D ` V,V′ � Q,V′.

Boundedness: Given ID, we can construct D exactly, and then answer Q(D).
Hence, D ` ID � Q

In contrast to information-theoretic determinacy, instance-based determinacy is in
general not monotone, as we showed in Example 2.20. More importantly though, instance-
based determinacy is decidable for a large class of queries. We prove next Theorem 2.3
in two steps.

Theorem Appendix B.9. For views and query in UCQ, the combined complexity of
Instance-based determinacy is in Πp

2, while the data complexity is in co-NP.

Proof. We reduce the problem of instance-based determinacy to the problem of finding
certain answers. Given a set of views V, a query Q, and the views extension E, to show
that V does not determine Q relative to E, it suffices to find a witness tuple t such that

1. t is a possible answer: ∃D1 : V(D1) = E ∧ t ∈ Q(D1)
2. t is not a certain answer: ∃D2 : V(D2) = E ∧ t /∈ Q(D2)

Thus, we need to find independently two databases D1, D2 such that D1 satisfies condi-
tion (1) and D2 satisfies condition (2).

Our proof strategy is to find the witness tuple by enumeration over all possibilities.
Let us assume that Q has arity k. Let C = {c1, . . . , ck} be new distinct constants that
do not appear in E. Moreover, let A be the set of all constants appearing in E. Then, it
follows from the genericity of the database that we need only check for the witness from

30

(A ∪ C)k. These are at most (|E| + k)k, which is polynomially many to the size of the
view extension.

Moreover, in [11], it is shown that checking whether a tuple is a possible answer can
be reduced to checking that a tuple is not a certain answer. Indeed, notice that we can
rewrite condition (1) as ∃D1 : V(D1) = E ∧ {t} ⊆ Q(D1) ∧ c /∈ (Q′(c) = false) (the last
condition is trivially correct). However, this is exactly equivalent to checking whether c
is not a certain answer for Q′ under the views V, Q, where we have to interpret Q under
the open world assumption. Futher, the size of the new set of views to check for certain
answers is linear in the size of (V, Q).

Hence, conditions (1) and (2) are both equivalent to asking whether t is not a certain
answer for certain views and extensions. Additionally, it is known from [3, Th. 3.1] that
for UCQs it suffices to look for databases of polynomial size to extensions and views to
find the counterexample database. Hence, our problem is now transformed as follows:
(a) guess a tuple t (there are polynomially many), (b) guess two databases D1, D2 of
polynomial size to E,V, Q and finally (c) check that V(D1) = V(D2) = E, t ∈ Q(D2)
and t /∈ Q(D1).

Since query evaluation for UCQs has PTIME data complexity and NP-complete com-
bined complexity, we have:

• For data complexity, finding a witness tuple is in NP; hence, instance-based deter-
minacy is in co-NP.

• For combined complexity, finding a witness tuple is in NPNP ; hence, instance-
based determinacy is in ΠP

2 .

This concludes the proof.

We next show the co-NP completeness of Instance-Based Determinacy in terms
of data complexity.

Theorem Appendix B.10. Instance-Based Determinacy is co-NP hard for CQs.

Proof. We will reduce Non-3-Colorability to Instance-Based Determinacy. The
proof is similar to [3]. Let G = (V,E) be a graph with at least one edge (otherwise
3-colorability is trivial). Fix a relational schema R with the relations color(X,Y) (node
X has color Y) and edge(X,Y) (node X is connected with node Y). Next, consider
the bundle V = (V1, V2, V3), where V1(X) = color(X,Y), V2(Y) = color(X,Y) and
V3(X,Y) = edge(X,Y).

The database D is such that edge(X,Y) = E and color(X,Y) assigns exactly one of
three colors {a, b, c} to a node of G. Let Q() = edge(X,Y), color(X,Z), color(Y, Z), i.e.
Q asks whether there exist two neighboring nodes with the same color. We will show
that D ` V � Q if and only if G is not 3-colorable. Notice first that any database D′

such that V(D′) = V(D) is equivalent to a color assignment to each node of the graph.
Indeed, assume that G is not 3-colorable. Then, for every coloring Q returns true.

Hence, for every database D′ such that V(D′) = V(D), Q is true. This implies that V
determines Q.

For the other direction, assume that V determines Q under D. Then, for every
database D′ such that V(D′) = V(D), Q returns the same answer, true or false. Consider
the database D′ which assigns to every node the same color. In this case, since G has at

31

least one edge, Q on D′ will return true. Hence, Q will always return true. This implies
that for any coloring, Q can find a pair of neighbors with the same color; hence, G is not
3-colorable.

Appendix B.3. Restriction of Instance-Based Determinacy
Let � be any determinacy relation (Definition 2.5). Its restriction D ` V �∗ Q is:

∀D0,V(D0) ⊆ V(D), D0 ` V � Q. We prove:

Proposition Appendix B.11. (a) �∗ is a determinacy relation (Definition 2.5), (b)
�∗ is monotone (Definition 2.21) for any monotoneV and any Q, (c) if pSD and qSD are
the arbitrage-prices for � and �∗, respectively, then pSD(Q) ≤ qSD(Q) for all Q, and (d)
if � is the instance-based determinacy, then the data complexity of �∗ is in coNP.

Proof. (a) Reflexivity: Since � is a determinacy relation, it is reflexive. Hence,
∀D0, (V1,V2)(D0) ⊆ (V1,V2)(D), D0 ` V1,V2 � V1. Hence D ` V1,V2 �∗ V1

and �∗ is reflexive.
Transitivity: Given D ` V1 �∗ V2 and D ` V2 �∗ V3, and by the definition

of �∗, we know that ∀D0,V1(D0) ⊆ V1(D), D0 ` V1 � V2 and ∀D0,V2(D0) ⊆
V2(D), D0 ` V2 � V3. Thus, ∀D0,V1(D0) ⊆ V1(D), D0 ` V1 � V2,V2(D0) ⊆
V2(D), D0 ` V2 � V3, D0 ` V1 � V3. The last subformula comes from the transitivy
of �. Hence, �∗ is transitive.

Augmentation: Given D ` V1 �∗ V2 and by the definition of �∗, we know
that ∀D0,V1(D0) ⊆ V1(D), D0 ` V1 � V2. Since � permits augmentation we know
that D0 ` V1,V′ � V2,V′. Thus, ∀D0, (V1,V′)(D0) ⊆ (V1,V′)(D), D0 ` V1,V′ �
V2,V′.

Boundedness Since � is bounded, ∀D,D ` ID � V. Hence �∗ is also bounded.
(b) Since D1 ⊆ D2 and V is monotone, V(D1) ⊆ V(D2). Given D2 ` V �∗ Q,

we know that ∀D′,V(D′) ⊆ V(D2), D′ ` V � Q. Thus, ∀D′,V(D′) ⊆ V(D1) ⊆
V(D2), D′ ` V � Q. Hence, D1 ` V �∗ Q.

(c) Let the minimum priced support for Q with the determinacy relation �∗ be
V ⊆ S. Thus p(V) = qSD. But V is also a support for Q with the determinacy relation
� (because by definition of �∗, D ` V �∗ Q implies D ` V � Q). Hence, pSD ≤
p(V) = qSD.

(d) We prove that �∗ is in co-NP. We refer the reader to the proof of Theorem Ap-
pendix B.9. To show that a set of views V with views extension E does not determine
Q under �∗, we need to find a witness tuple t for any view extension E′ ⊆ E. Note that
the size of the counterexample database is polynomial in size to the extensions E′, and
hence polynomial in size of E which is a super-set of E′, and the views V. Thus, the data
complexity of finding a witness tuple is in NP; hence, the restriction of instance-based
determinacy is in co-NP.

Appendix C. Complexity of Determinacy

In this subsection, we prove Theorem 3.3, namely that D ` V � Q can be decided
in PTIME data complexity when V ⊆ Σ and Q is any monotone query that can be
evaluated in PTIME.

32

First, we define two databases Dmin and Dmax. For a relation R(X1, . . . , Xk) in Q,
let us call a tuple t ∈ ColX1×· · ·×ColXk

invisible in R if, for any selection σR.Xi=a ∈ V,
t.Xi 6= a. Then, for R:

RD
min

=
⋃

σR.A=c∈V

σR.A=c(D) (C.1)

RD
max

= RD
min

∪ {t | t invisible in R} (C.2)

Notice that both databases are of polynomial size to the size of the columns and the
input database. Moreover, they can be defined only using V(D), without having access
to D. Additionally, Dmin ⊆ Dmax. The following lemma establishes that both instances
we have constructed agree with D on the views D.

Lemma Appendix C.1. V(Dmin) = V(Dmax) = V(D).

Proof. We first examineDmin. For a view σR.A=c ∈ V, consider a tuple tR ∈ σR.A=c(Dmin).
Then, by construction, tR ∈ D. For the converse, if tR ∈ σR.A=c(D), then tR ∈ RD

min

and thus in Dmin.
As forDmax, by definition the new tuples we have added to a relation R are invisible in

this relation under the views V, hence they can not appear in any V. Thus, V(Dmax) =
V(Dmin).

The next lemma justifies the way we have constructed Dmin and Dmax: they are the
minimum and maximum databases respectively that can agree with V(D).

Lemma Appendix C.2 (Sandwich Lemma). For any database D′ s.t. V(D′) = V(D):
Dmin ⊆ D′ ⊆ Dmax.

Proof. We will first show that Dmin ⊆ D′. For the sake of contradiction, suppose that
there exists some tuple tR ∈ RD

min

such that tR /∈ D′. By the definition of Dmin,
tR ∈ σR.A=c(D) for a view σR.A=c ∈ V. However, we also have that tR /∈ σR.A=c(D′).
This implies that V(D′) 6= V(D), a contradiction.

We next show that Dmax ⊇ D′. Again, for the sake of contradiction let us assume
that there exists some tuple tR ∈ RD

′
such that tR /∈ Dmax. We now distinguish

two cases. In the first case, let tR ∈ σR.A=c(D′) for some σR.A=c ∈ V. We can ap-
ply Lemma Appendix C.1 to obtain that σR.A=c(D′) = σR.A=c(Dmax). This would
imply that tR ∈ σR.A=c(Dmax), a contradiction. Otherwise, tR /∈ σR.A=c(D′) for any
σR.A=c ∈ V. This implies in turn that tR is invisible in R under V. By the construction
of Dmax, we would have that tR ∈ Dmax, a contradiction.

We can now show how to characterize determinacy using the databases Dmin and
Dmax.

Proposition Appendix C.3. Let Q be any monotone query. Then, D ` V � Q if
and only if Q(Dmin) = Q(Dmax).

Proof. For the one direction, let us assume that Q(Dmin) = Q(Dmax). Consider a
database D′ such that V(D′) = V(D). By Lemma Appendix C.2, Dmin ⊆ D′ ⊆ Dmax.
Since Q is monotone, it follows that Q(Dmin) ⊆ Q(D′) ⊆ Q(Dmax). By the equality of

33

Q(Dmin), Q(Dmax), Q(D′) = Q(Dmin). Notice also that we can apply Lemma Appendix
C.2 to sandwich D between Q(Dmin), Q(Dmax). Thus, Q(D) = Q(Dmin) and Q(D) =
Q(D′).

For the other direction, assume thatQ(Dmin) 6= Q(Dmax). Then, since by Lemma Ap-
pendix C.1 we have that V(Dmin) = V(Dmax) = V(D), the databasesDmin, Dmax form
a counterexample for determinacy.

The algorithm for determinacy computes Dmin, Dmax from V(D) and then checks
whether Q(Dmin) = Q(Dmax), in which case it outputs yes, otherwise no. The validity of
the algorithm follows from Proposition Appendix C.3. Moreover, the algorithm runs in
PTIME, since the databases Dmin, Dmax are of polynomial size and also the evaluation
of Q can be done in polynomial data complexity. Theorem 3.3 follows directly from this
discussion.

We next show that, under stronger conditions than monotonicity and PTIME evalua-
tion, we can have an algorithm such that its complexity depends only on |V(D)| and not
on the size of the columns (hence, the columns can even be infinite). More specifically,
we prove the following.

Lemma Appendix C.4. Let Q be a positive Datalog query without inequalities. Then,
there exists a database Dm of polynomial size to V(D) such that (a) V(Dm) = V(D),
and (b) Q(Dmax) = Q(Dmin) if and only if Q(Dmin) = Q(Dm).

Proof. The database Dm is constructed from Dmax as follows. For each column Colx,
consider a fixed value cx that does not appear in V(D). Then, construct a function
f : Col → Col, such that each value of Colx that does not appear in V(D) is mapped
to cx; otherwise it is mapped to itself. Let Dm = f(Dmax). Clearly, Dm is of size
polynomial to |V(D)| (considering Q,V fixed). Also, by construction, Dm ⊆ Dmax.

It is also easy to see that V(Dm) = V(Dmax) = V(D). It remains to show
that Q(Dm) = Q(Dmin) iff Q(Dmax) = Q(Dmin). Indeed, suppose that Q(Dmax) =
Q(Dmin). Then, since Dm agrees with D on V, by Lemma Appendix C.2, Q(Dm) is
sandwiched between Q(Dmin), Q(Dmax) and hence Q(Dm) = Q(Dmin). For the other
direction, suppose that Q(Dmin) 6= Q(Dmax). Since Q(Dmin) ⊆ Q(Dmax), there exists
t ∈ Q(Dmax) such that t /∈ Q(Dmin). Now, Q is in Datalog without any inequalities,
so f(t) ∈ Q(Dm). To conclude the proof, we will show that f(t) /∈ Q(Dmin). Suppose
that f(t) ∈ Q(Dmin) and consider the tuples t1, . . . , tk that contribute to f(t). By the
definition of Dmin, every tuple ti is selected by some view in V. Thus, every constant ap-
pearing in the ti’s appears also in V(D). This implies that f(t) = t, hence t ∈ Q(Dmin),
a contradiction.

Appendix D. Hardness Results

In this subsection, we prove the NP-hardness of the queries H1, H2, H3, H4 and H5.

34

b3

c1

c2

a1

a2

b1

b2

(a)

S T U R
x y z x y z

a1 b1 c1
a2 b2 c1
a1 b3 c2

(b)

Figure D.2: An example 3-partite 3-uniform Hypergraph and the corresponding database
for the reduction to Price(H1).

Proposition Appendix D.1. Price(H1) is NP-complete, where

H1(x, y, z) = R(x, y, z), S(x), T (y), U(z)

Proof. We will show the NP-hardness also for the queriesH ′1(x, y, z) = R(x, y, z), S(x), T ′(y, z)
and H ′′1 (x, y, z) = R(x, y, z), S′(x, y, z). In order to present a uniform approach, we will
assume a query Q such that the variables x, y, z appear, apart from R, in the rela-
tions Rx, Ry, Rz respectively (which are not necessarily different, for example for H ′1,
Ry = Rz).

The reduction for Q is from 3-Partite 3-Uniform Hypergraph Vertex Cover
(3P3UHVC), which is proven NP -complete in [17]. In this, we are given a hypergraph
G(A,B,C,E) which is 3-partite (no vertices of the same partition can belong in the
same hyperedge) and let A,B,C be the partitions. The graph is also 3-uniform, i.e. each
hyperedge contains exactly 3 vertices. The decision version asks whether there exists a
vertex cover of G of size ≤ K.

Let the columns be Colx = A, Coly = B,Colz = C. Let the database D have
RDx , R

D
y , R

D
z empty and RD = E (see Figure D.2). Notice that Q(D) = ∅. Let us price

every selection query on R to 0 and every selection query of the form σRi.i=a to 1, where
i = x, y, z. Notice that there exists a straightforward one-to-one mapping from nodes
in G to selection queries on the relations Rx, Ry, Rz. Let σ(v) be the selection query
corresponding to node v. Moreover, let ΣR denote the set of all selection queries in R.
We will show that G has a vertex cover of size K if and only if Q can be determined by
a subset of Σ with cost K.

For the one direction, assume that G has a vertex cover C of size K. We will prove
that D `

⊙
v∈C σ(v),ΣR � Q (notice that the cost of this set of views is exactly K).

Since Q(D) = ∅, it suffices to show that for every D′ such that the views agree with D,
Q(D′) = ∅. Let (a, b, c) ∈ Q(D′). Since ΣR contains all views from R, it must be that
(a, b, c) also appears in RD and so (a, b, c) is a hyperedge of G. Hence, it is covered by
some node, let it be a. Thus, σ(a) = σRx.x=a belongs in the views we have selected.
Since σRx.x=a(D′) = σRx.x=a(D) = ∅, a does not join anywhere, so (a, b, c) /∈ Q(D′), a
contradiction.

For the converse direction, assume that there exists a set of views V that determines
Q and has price K. This means that V has exactly K views selecting from Rx, Ry, Rz:
let v1, . . . , vk be the corresponding vertices in G. We will show that {v1, . . . , vk} is a
vertex cover for G. Indeed, suppose that it is not a vertex cover. Then, there exists an
edge (a, b, c) ∈ E that is not covered; this means that the views σRx.x=a, σRy.y=b, σRz.z=b

35

are missing from V and also (a, b, c) ∈ RD. Now, take D′ = D ∪ {Rx(a), Ry(b), Rz(c)}
(if Rx = Ry, we add Rx(a, b), and if Rx = Ry = Rz we add Rx(a, b, c)). It is easy to
observe that D′ agrees with D for the views V. However, Q(D′) = {(a, b, c)} 6= ∅, a
contradiction for the determinacy.

e3

v2

v1

e1

e2

v3

(a)

R S T
x x y x y
v0 v1 e1 v2 e1

v2 e2 v3 e2

v3 e3 v1 e3

(b)

Figure D.3: An example graph G and the corresponding database for the reduction to
Price(H2).

Proposition Appendix D.2. Price(H2) is NP-complete, where

H2(x, y) = R(x), S(x, y), T (x, y)

Proof. We reduce Vertex Cover (VC) to pricing H2(x, y). Given an undirected graph
G(V,E), we construct an instance of H2(x, y) as follows: (a) take the columns to be
Colx = V ∪ {v0} where v0 /∈ V is a dummy value, and Coly = E, (b) ∀e = (v1, v2) ∈ E
add (v1, e) to S and (v2, e) to T (here, assume an arbitrary orientation of the edges that
will be fixed throughout the reduction), i.e., for each edge one endpoint contributes to
S and the other to T , and (c) add v0 to R. Note that H2(x, y) = ∅, since R = {v0} and
v0 has no corresponding tuples to join, since ∀e ∈ Colx, S(v0, e) and T (v0, e) are both
false.

To construct the price points S, we price the selection queries as follows: (a) ∀v ∈ V ,
p(σR.x=v) = 1 and p(σR.x=v0) = 0, (b) ∀a ∈ Colx, p(σS.x=a) = p(σT.x=a) = |E|, and
(c) ∀e ∈ Coly, p(σS.y=e) = p(σT.y=e) = 1. Note that given a set of selections V that
determines H2, i.e., D ` V � H2, if σS.x=a ∈ V, then we can replace σS.x=a by⊙

e∈E σS.y=e to get a new set of selections that determines H2 and that is no costlier
than V. This is because ∀a ∈ Colx : D ` ΣS.y � σS.x=a and p(

⊙
e∈E σS.y=e) =∑

e∈E 1 = |E| = p(σS.x=a).
We next show that there exists a vertex cover C ⊆ V of size ≤ k, iff there exists a

set of views V that determines H2, such that p(V) ≤ k + |E|.
To prove the forward direction, assume that |C| = k. Define V to be the set of

selections that includes ∀v ∈ C : σR.x=v and σR.x=v0 . Moreover, ∀e = (vi, vj) ∈ E:

1. if vi, vj ∈ C, include σS.y=e

2. if vi ∈ C and vj /∈ C, include σS.y=e

3. if vi /∈ C and vj ∈ C, include σT.y=e

(notice that vi, vj /∈ C is not possible since C is a vertex cover). It is easy to see that
p(V) = |C| + |E|. Further, D ` V � H2. Indeed, consider a possible answer (v, e). If
v ∈ C, σR.x=v = ∅ is selected and hence any database D′ that agrees with σR.x=v ∈ V

36

can not contain (v, e). If v /∈ C, then either v is an endpoint of e or it is not. In the latter
case, the selection over e (either σS.y=e or σT.y=e) does not include (v, e); hence, for any
database D′ agreeing with the selection, (v, e) /∈ H2(D′). In the former case, w.l.o.g.
we can assume that e = (v, vj). Then, vj must belong in C and this is case (3) in the
construction of V; hence, σT.y=e ∈ V. However, by the construction of T it is equal to
(v, e) /∈ σT.y=e(D) and thus, for any database D′ that agrees with V, (v, e) /∈ H2(D′).

For the converse direction, consider a set of selections V that determines H2 with
p(V) = k + |E|, where k < |V |. For costlier selections, the proposition is trivially
valid by choosing the cover C = V . Now, for each e ∈ E, V necessarily includes
σS.y=e or σT.y=e, else we can construct database D′ with (v0, e) ∈ SD

′
, TD

′
. Then,

(v0, e) ∈ H2(D′) 6= ∅ = H2(D) even though V(D) = V(D′), leading to a contradiction.
Further, for e = (vi, vj), if both σS.y=e, σT.y=e ∈ V, then we can replace σS.y=e with
σR.x=vi or replace σT.y=e with σR.x=vj and have an equal cost determinacy set. Indeed,
the views σS.y=e, σT.y=e ∈ V prevents (v, e) (for any v ∈ Colx) to belong to H2(D). And,
so does σR.x=vi

, σT.y=e ∈ V, since σT.y=e = {(vj , e)} and σR.x=vi
= ∅. A symmetrical

argument holds for replacing σT.y=e with σR.x=vj
.

Thus, each edge has a selection from exactly one of S or T (|E| of them), and for each
edge, at least one of its endpoints is selected in R. Suppose not: then, consider the edge
e = (vi, vj) for which this not true. Then, σR.x=vi

, σR.x=vj
/∈ V. Moreover, w.l.o.g. let

σS.x=e ∈ V and σT.y=e /∈ V. Since σS.x=e(D) = (vi, e), we can add tuples T (vj , e), R(vj)
to create a database D′ that agrees with D in the views, but now (vj , e) ∈ H2(D′). Hence
the selections from R lead to a valid vertex cover of size p(V)− |E| = k.

Proposition Appendix D.3. Price(H3) is NP-complete, where

H3(x, y) = R(x), S(x, y), R(y)

Proof. The reduction is from Vertex Cover. Consider a graph G(V,E), where we ask
whether there exists a vertex cover of size ≤ k. Fix a schema {R(X), S(X,Y)} and let
ColX = ColY = V . Let a database D such that RD = ∅ and SD = E (fix an arbitrary
direction for the undirected edges E). As for the prices, let p(σS.X=c) = p(σS.Y=c) = 0
and p(σR.X=c) = 1. Notice that H3(D) = ∅. We now show that G has a vertex cover of
size k if and only if H3 can be determined with cost k.

For the one direction, assume that G has a vertex cover C = {v1, . . . , vk} of size
k. Let ΣS be the set of all the selections that include relation S. Then, we will show
that for VC =

⊙k
i=1 σR.X=vi

,ΣS , we have D ` VC � H3. The cost of this set of
views is k. In order to show the determinacy, it suffices to show that for every D′

such that the view agrees with D, H3(D′) = ∅. For the sake of contradiction, assume
that (a, b) ∈ H3(D′). Then, it must be that (a, b) ∈ SD

′
and (a), (b) ∈ RD

′
. Since

σS.X=a ∈ VC , (a, b) ∈ SD. Hence, (a, b) is an edge of the graph and one of the two
vertices, let is be a, is covered by the vertex cover. Thus, σR.X=a ∈ VC as well. Since
σR.X=a(D) = ∅, and (a) ∈ σR.X=a(D′), we have reached a contradiction.

For the converse direction, assume that there exists a set of views V that determines
H3 and has price k. This means that V has exactly k views of the form σR.X=vi . We
will show that {v1, . . . , vk} is a vertex cover for G. Indeed, suppose that it is not a
vertex cover. Then, there exists an edge (a, b) ∈ E that is not covered; this means
that σR.X=a, σR.X=b /∈ V. We can also assume w.l.o.g. that (a, b) ∈ V(D). Let D′ =

37

D∪{R(a), R(b)}. It is easy to observe that D′ agrees with D for the views V. However,
H3(D′) = {(a, b)} 6= ∅, a contradiction for the determinacy.

Proposition Appendix D.4. Price(H4) is NP-complete, where

H4(x) = R(x, y)

Proof. We prove the hardness by reduction from Set Cover. Consider a universe U
and a family of subsets S ⊆ 2U . We ask for the minimum size subset of S that covers
every element from U .

In order to do the reduction, we define a schema {R(X,Y)} such that ColX = S and
ColY = U . Then, consider the database D where (a, b) ∈ RD iff b ∈ a. Notice that
H4(D) = U . Let us price p(σR.Y=c) = |S|, p(σR.X=S) = 1. We will show that U has a
set cover of size k if and only if H4 can be determined by a set of views of price k.

For the one direction, consider a set cover {S1, . . . , Sk}. Then, construct the set of
views V = {σR.X=Si | i = 1, k}. We will show that D ` V � H4 (notice that V costs k).
Let us consider a database D′ such that V(D′) = V(D) and for the sake of contradiction
assume that some a /∈ H4(D′). However, by the construction of V, some set S covers a,
hence (S, a) ∈ σR.X=S(D) and σR.X=S ∈ V. This implies that (S, a) ∈ σR.X=S(D′), a
contradiction.

For the converse direction, suppose that H4 is determined by a set of views V of
price k. We can assume w.l.o.g. that no view from R.Y belongs in V, since in this case
k ≥ |S| and we could instead buy all the views σR.X=a for a cost of |S| and determine
H4 trivially. Hence, V contains views of the form σR.X=Si

for i = 1, . . . k. We will show
that S1, . . . , Sk is a set cover. Suppose not; then, there exists an element a ∈ U not
covered by any set. Consider the database D′ = D \ {R(S, a) | a ∈ S}. It is easy to see
that D′, D agree with the views, since V contains no view of the form σR.X=S for a ∈ S.
Moreover, a /∈ H4(D′), a contradiction.

Proposition Appendix D.5. Price(H5) is NP-hard, where

H5(x1, x2, x3, y) =R1(x1), S1(x1, y),
R2(x2), S2(x2, y),
R3(x3), S3(x3, y).

Proof. We prove the hardness of H5 by applying the same idea presented in the hardness
proof of H1, namely by showing a reduction from 3P3UHVC.

Let the graph be G(A,B,C,E). Consider the schema {Ri(Xi), Si(Xi, Y)} (i = 1, 2, 3)
and let ColX1 = A, ColX2 = B, ColX3 = C. Let ColY = {1, . . . , |E|}. Next, consider
any one-to-one mapping m : E → ColY . For the construction of D, let RDi = ∅. The
construction of the Si’s is as follows: for every edge (a, b, c) ∈ E, we add to D the tuples
S1(a,m(a, b, c)), S2(b,m(a, b, c)), S3(c,m(a, b, c)). Notice that H5(D) = ∅. Finally, we
set the prices for the selections on Si to be zero and for the Ri to be 1. We prove that G
has a vertex cover of size K if and only if H5 can be determined by a subset of selection
views with cost K. Let ΣS be the set of selections from S1, S2, S3.

For the one direction, assume that G has a vertex cover C of size K. For a vertex
v ∈ C, let σ(v) be the corresponding selection. We will prove that D `

⊙
v∈C σ(v),ΣS �

Q. It suffices to show that for every D′ such that the views agree with D, H5(D′) =
38

∅. Let (a, b, c,m) ∈ H5(D′). Since ΣS contains all views from Si, it must be that
S1(a,m), S2(b,m), S3(c,m) ∈ D. However, this means that m = m(a, b, c) and thus
(a, b, c) is a hyperedge of G. Hence, it is covered by some node, let it be a. Then, σ(a) =
σR1.X=a belongs in the views we have selected. Since σR1.X=a(D′) = σR1.X=a(D) = ∅,
a does not join anywhere, so (a, b, c,m) /∈ H5(D′), a contradiction.

For the converse direction, assume that there exists a set of views V that determines
H5 and has price K. This means that V has exactly K views selecting from R1, R2, R3:
let v1, . . . , vk be the corresponding vertices in G. We will show that {v1, . . . , vk} is a
vertex cover for G. Indeed, suppose that it is not a vertex cover. Then, there exists an
edge (a, b, c) ∈ E that is not covered; this means that the views σR1.X=a, σR2.Y=b, σR3.Z=c

are missing from V. Let w.l.o.g. R1(a,m(a, b, c)), R2(b,m(a, b, c)), R3(c,m(a, b, c)) ∈ D.
Now, take D′ = D ∪ {R1(a), R2(b), R3(c)}. It is easy to observe that D′ agrees with D
for the views V. However, Q(D′) = {(a, b, c)} 6= ∅, a contradiction.

Appendix E. Technical Tools

We develop here a set of tools that will be useful for analyzing the determinacy
relation in the case of views with selections.

Let us say that a set of selections V ⊆ Σ covers a tuple t = (a1, . . . , ak) in a relation
R(X1, . . . , Xk) if for some i = 1, . . . , k, σRi.Xi=ai ∈ V. Notice that this definition is
independent of any database instance.

Lemma Appendix E.1. Let a database D, V ⊆ Σ and Q a full CQ. Then, D ` V � Q
if and only if, for any t = (a1, . . . , ak) ∈ ColX1 × · · · × ColXk

:

• If t ∈ Q(D), then for any projection tR of t at some relation R in Q, tR is covered
by V.

• If t /∈ Q(D), there exists a projection tR of t at some relation R in Q such that
tR /∈ RD and V covers tR.

Proof. Let t ∈ Q(D). If V does not cover some tR, then for the database D− = D −
{R(tR)} we have that V(D−) = V(D), but t /∈ Q(D−); hence V can not determine Q.
On the other hand, if V covers every tuple tR for any R, any D′ that agrees with V(D)
discovers correctly that t ∈ Q(D).

Let t /∈ Q(D) and assume that for any atom R in Q such that the projection tR /∈ RD,
V does not cover it. Then, consider the database D+ that adds to D all such tuples.
Clearly, the views V are not modified; however, t ∈ Q(D+), a contradiction. For the
converse direction, if V covers at least one tuple tR /∈ RD, any database that agrees with
V(D) knows that t can not belong in Q(D).

Definition Appendix E.2. Given a database D and a query Q, we call a subset T c

of the database D critical if Q(D) 6= Q(D − T c).

For a set of tuples T and a view V , let us define (V − T)(D) = V (D − T). We also
extend this notation to (V − T)(D) = {(V − T)(D) | V ∈ V}.

Lemma Appendix E.3. If D ` V � Q, where V ⊆ Σ and Q is a full CQ, then
D ` (V − T) � Q, for any non-critical subset T of D.

39

Proof. Since D−T ⊆ D, we can apply Proposition 2.22 to obtain that D−T ` V � Q.
Hence, it follows from Proposition Appendix B.7 that there exists a function f that
for any D′ s.t. V(D′) = V(D − T), f has the property: f(V(D′)) = Q(D − T). Now,
consider any database D0 such that (V − T)(D0) = (V − T)(D). We will show that
f((V− T)(D0)) = Q(D). Notice first that V(D0 − T) = (V− T)(D0) = (V− T)(D) =
V(D−T). Thus, f((V−T)(D0)) = f(V(D0−T)) = Q(D−T) = Q(D), where the last
equality follows from the fact that T is a non-critical.

We next show the main theorem of this subsection.

Theorem Appendix E.4. Let Q be a full CQ and D ` V � Q, where V ⊆ Σ. Let
V0 ⊆ V such that a tuple t ∈ V0(D) is either non-critical or belongs in (V \V0)(D).
Then, D ` V \V0 � Q.

Proof. Let T = V0(D) and let T c ⊆ T contain the individually non-critical tuples of T ,
i.e. the tuples t ∈ T c such that Q(D) = Q(D − {t}). We first show that:

Lemma Appendix E.5. The set T c is non-critical.

Proof. Suppose that T c is critical; then Q(D − T c) 6= Q(D). Since D − T c ⊆ D and Q
is monotone, Q(D − T c) ⊂ Q(D) and hence there exists some tuple t ∈ Q(D) such that
t /∈ Q(D − T c). However, since Q is full, it suffices to delete a single tuple t′ ∈ T c from
D to delete t from Q(D). Thus, t′ is critical, a contradiction.

We can now apply Lemma Appendix E.3 to obtain that D ` (V − T c) � Q. We
next show that D ` ((V \V0)− T c) � (σR.y=c − T c) for any σR.y=c ∈ V0. Indeed, by
our assumption, (σR.y=c − T c)(D) contains only tuples that also belong to some view
other than those in V0 and hence it can be precisely reconstructed.

Applying repeatedly augmentation and transitivity, we obtain that D ` ((V \V0)−
T c) � (V−T c). One more application of transitivity results in: D ` ((V\VR)−T c) �
Q. For the final step, notice that

Lemma Appendix E.6. For any V ∈ Σ, D ` V � (V − T c).

Proof. Notice that for selection views, (V − T c)(D) = V (D) − T c; hence, (V − T c)(D)
can be constructed from V (D) by applying the function f(V (D)) = V (D)− T c.

Applying this lemma together with the transitivity property, we obtain that D `
V \V0 � Q.

Lemma Appendix E.7. If D ` σR.A=d, σR.B=d,V0 � Q, where V ⊆ Σ, and Q
requires that R.A = R.B, then D ` σR.B=d,V0 � Q.

Proof. From Theorem Appendix E.4, it suffices to show that every tuple tR ∈ σR.A=d

is either non-critical or belongs in σR.B=d. Indeed, if tR ∈ T is critical, then it must
be that the positions R.A,R.B in the tuple will have the same value d. Hence, tR ∈
σR.B=d(D).

Finally, we present the proof of Lemma 3.10.

40

Proof. We will assume that R.X is not fully covered and then show that ΣR.X (i.e.
views of the form σR.X=a) is redundant to V. By Theorem Appendix E.4, it suffices
to show that a tuple tR ∈ ΣR.X(D) is either non-critical or belongs to some view in
(V \ ΣR.X)(D).

For the sake of contradiction, suppose that tR is critical and also that it does not
belong in any view of the set (V \ΣR.X)(D). Since R.X is not fully covered, there exists
some c ∈ ColR.X such that σR.X=c /∈ V. Now, construct a database D′ = D ∪ {R(t′R)},
where t′R is as tR apart from the attribute R.X, where its value is c. The new tuple t′R
does not belong in any of the views in V(D′), hence V(D′) = V(D). Next, since tR is
critical, it contributes to an answer t ∈ Q(D). When t′R is added, we will thus get an
answer t′ ∈ Q(D′), where t is as t′ apart from position R.X which has value c. However
t′ /∈ Q(D), a contradiction.

Appendix F. PTIME Algorithms

Appendix F.1. Reduction to Maximum Flow
In this subsection, we show that the reduction to Min-Cut presented in Subsec-

tion 3.1 is valid. First, notice that there exists a one-to-one correspondence of views in Σ
to edges with non-infinity capacity in G: for a view V ∈ Σ, let e(V) be the corresponding
edge, and for an edge e, let V (e) be the corresponding edge.

The first observation we need shows that G admits an s− t cut of finite cost.

Lemma Appendix F.1. The minimum s− t cut in G has finite cost.

Proof. By the construction, from the source node s we can reach only a v-node. Moreover,
the only way to leave from a v-node is to go through an edge of finite capacity to the
corresponding w-node. Hence, any path from s to t has finite capacity.

Lemma Appendix F.2. Let V ⊆ Σ s.t. D ` V � Q. Then, every s− t path in G is
cut by an edge in C = {e(V) | V ∈ V}.

Proof. Suppose not. Then, there exists an uncut path that goes from s to t. First,
notice that we can describe a path uniquely by listing the non-infinity edges it crosses,
which correspond to selections (since any path visits alternatingly u, v nodes). Moreover,
if a path crosses a selection σRi.Xi=a, where Ri is binary, the path will also have to
cross some selection σRi.xi+1=b. Hence, any path can be viewed as a sequence of tuples
P = t1, t2, . . . , t`, which may or may not occur in D.

They crucial observation is that we can add/remove the tuples t1, . . . , t` without
modifying the views V, since the selections on these values are not present in V. Consider
the two databases D+ = D ∪ {t1, . . . , t`} and D− = D − {t1, . . . , t`}. We have that
V(D+) = V(D−) = V(D).

Now, consider two consecutive tuples in the path: ti, ti+1 (i = 1, ` − 1) and let
ti ∈ Rj , ti+1 ∈ Rj′ , where j < j′. Let a = ti.xj+1, b = ti+1.xj′ . The path P then
goes from the node wRj .xj+1=a to vRj′ .xj′=b through an infinity edge, which implies that
(a, b) ∈ Md[j+1:j′−1]. For the first tuple t1, notice that it is directly connected to s and
hence t1.X ∈ Ltm, whereas also for t`, it must be that t`.Y ∈ Rtm′ . Hence, D+ is going
to have an extra answer in Q(D+), since each partial query has a result and the partial
queries are connected with the tuples t1, . . . , t`. This extra answer will not be in D−, a
contradiction.

41

Lemma Appendix F.3. If S is a finite cost cut of G, then for V = {V (e) | e ∈ S},
D ` V � Q.

Proof. We consider two cases. First, assume that t ∈ Q(D). Then, consider all the
projections of t on the different atoms in Q: tR0 , . . . , tRk+1 . Let us consider a tuple
tRi

= (a, b) w.l.o.g. (it may be that tRi
= a). Notice that a ∈ Lti−1 and b ∈ Rti. Hence,

by the construction of G, there exists a skip edge from s to the view edge σRi.xi=a, and
a skip edge that connects the view edge σRi.xi+1=b to t. This implies that there exists
an s− t path that crosses only the two selections (or one) for Ri, on a and b. Hence, the
tuple tRi

will be covered, which implies that the tuple t will be ensured to be in any D′

that agrees with V(D).
For the other case, let t /∈ Q(D). Again, consider the projections of t: tR0 , . . . , tRk+1

and keep only the tuples that do not belong in D: t1, . . . , t`. Then, by the construction
of G, there exists a path P = t1, . . . , t`. Assume that the path will be cut by S in some
selection of the tuple ti; in this case, ti will be discovered not to be in the database, which
ensures that any database that agrees with V(D) will not contain ti in the answer.

Combining both lemmas, we can now easily derive the proof of Theorem 3.13.

Appendix F.2. An Algorithm for Cyclic Queries
We describe and analyze an algorithm with polynomial data complexity for cyclic

queries, i.e. queries of the form

Ck(x0, . . . , xk) : −R0(x0, x1), . . . , Rk(xk, x0)

The algorithm reduces the pricing of a cyclic query to Weighted Bipartite Vertex
Cover, which is a PTIME problem. We first extend the definition of a full cover.

Definition Appendix F.4 (Full Cover). Let variables xi, xj, where 1 ≤ i ≤ j ≤ k.
Then, for V ⊆ Σ, we say that the pair (xi, xj) is fully covered by V if, for every
values a ∈ ColRi−1.xi

, b ∈ ColRj .xj
such that (a, b) ∈ Md [i:j−1], V contains σRi−1.xi=a or

σRj .xj=b.
If i = j, we just say instead that xi is fully covered by V. Finally, we say that x0 is

fully covered if for every a ∈ Colx0 , V contains one of σR0.x0=a, σRk.x0=a.

We next show a useful lemma about full covers.

Lemma Appendix F.5. If D ` V � Ck, where V ⊆ Σ, at least one variable xi is
fully covered.

Proof. Suppose not. Then, for every variable xi, there exists a value ai ∈ Colxi such
that σRi−1.xi=ai

, σRi.xi=ai
/∈ V (or for x0, σR0.x0=a, σRk.x0=a /∈ V). Thus, we can re-

move or add the tuples T = {R0(a0, a1), . . . , Rk(ak, a0)} in D without modifying V(D).
Now, consider the databases D+ = D ∪ T and D− = D \ T . By our assumption,
V(D+) = V(D−); however, (a0, . . . , ak) ∈ Ck(D+), whereas (a0, . . . , ak) /∈ Ck(D−), a
contradiction.

We can generalize Lemma Appendix F.5 for any full CQ and not only cyclic queries,
but this suffices for this algorithm. Notice that Lemma Appendix F.5 guarantees that

42

at least a variable xi is fully covered. Fix this variable (due to symmetry, we can assume
that it is w.l.o.g. x1) and then fix also a choice of whether any pair of variables (xi, xj),
1 ≤ i ≤ j ≤ k, is fully covered or not. Let us denote this choice by F .

The Graph. We now describe the construction of the weighted bipartite graph
G[F] = (A,B,E). Notice that the graph depends on the choice F . In G[F], every node
corresponds to a selection from Σ. The left partition A includes the selections that occur
left in a relation (i.e. of the form σRi.xi=a), whereas B the selections that occur to the
right (i.e. of the form σRi.xi+1=a). The weight of each node is equal to its price.

As for the edges, we distinguish the following cases:

Start edges: for any a ∈ Colx0 , we add the edge (σR0.x0=a, σRk.x0=a).

Full Cover edges: if the pair (xi, xj) is fully covered, for every (a, b) ∈ Md [i:j−1], we
introduce the edge (σRi−1.xi=a, σRj .xj=b).

Tuple edges: for each tuple t = (a0, . . . , ak) ∈ Colx0×· · ·×Colxk
, consider the sequence

of tuples projected at each relation tR0 , . . . , tRk
.

1. If t ∈ Q(D), for any i = 0, . . . , k, add the edge (σRi.xi=ai
, σRi.xi+1=ai+1).

2. If t /∈ Q(D), let tRi1
, . . . , tRi`

be the tuple projections that do not belong in
D and consider all the pairs of variables Pt = {(xi1+1, xi2), . . . , (xi`−1+1, xi`)}.
Add an edge (σRi1 .xi1=ai1

, σRi`
.xi`+1=ai`+1) if none of the pairs in Pt is fully

covered.

The Algorithm. We can now describe the full algorithm Cyclic Price.

1. Iterate over all choices of F .
2. For any F , construct the graph G[F] and solve the vertex cover to obtain a set of

selections V[F] ⊆ Σ with price p(V[F]).
3. Output minF {p(V[F])}.

Notice that Cyclic Price has polynomial data complexity, since the choices for F
depend only on the size of Ck and bipartite vertex cover is in PTIME. We next show the
validity of the algorithm. For this, it suffices to show the following proposition.

Proposition Appendix F.6. If the optimum solution to pricing Ck satisfies F , the
minimum cost of a vertex cover of G[F] equals the price of Ck.

Proof. Assume a vertex cover C for G[F] and for any vertex v, let σ(v) be the corre-
sponding selection. Moreover, denote V =

⊙
v∈C σ(v). We show that D ` V � Ck.

Consider a tuple t = (a0, . . . , ak) ∈ Ck(D). Then, by the construction, every edge of
the form (ai, ai+1) will be covered by V. Let t /∈ Ck(D). Then, consider all the tuple
projections to atoms of Q s.t. the tuples do not belong in D: tRi1

, . . . , tRi`
. If some of

the pair of variables (xi1+1, xi2), . . . , (xi`−1+1, xi`) is fully covered, then some tuple will
be covered by V. Else, there exists an edge (σRi1 .xi1=ai1

, σRi`
.xi`+1=ai`+1), which means

that a tuple will again be covered. We can apply Lemma Appendix E.1 to conclude the
one direction.

For the inverse direction, consider any V ⊆ Σ such that D ` V � Ck and V satisfies
F . Suppose that the corresponding set of vertices C is not a vertex cover for G[F]. Then,

43

there exists an edge e that is not covered. Notice that, by our assumption for V satisfying
F , this edge can not be one of the full cover edges or start edges. Also, it can not be one
of the tuple edges of a tuple that belongs in an answer, since by Lemma Appendix E.1
this edge will be covered.

Hence, it must be an tuple-edge introduced in step 2. This implies that there
are tuples tRi1

, . . . , tRi`
that do not appear in D. Consider two consecutive tuples in

the sequence, tRim
= (aim , aim+1), tRim+1

= (aim+1 , aim+1+1). Notice that there ex-
ists (aim+1, aim+1) ∈ Md [im:im+1], but by our construction (xim+1, xim+1) is not fully
covered. This implies that there exists some (a′im+1, a

′
im+1

) ∈ Md [im:im+1]such that
σRim .xim+1=a′im+1

, σRim+1 .xim+1=a′im+1
/∈ V. We can apply this for any two consecu-

tive tuples, hence we have a value a′im for each position of the tuples such that the
corresponding selections are not in V. We can then create databases D−, D+ that re-
move/add to D the tuples that can be created by these constants. The views V remain
the same, but Ck(D+), Ck(D−) have different answers now, a contradiction.

Appendix G. Proof the Dichotomy Theorem

In this section, we complete the proof of the dichotomy theorem. For the first part
of the analysis, we will focus on full Conjunctive queries w/o self-joins. We will show in
the end how to deal with projections.

We will denote Price(Q1) ≺ Price(Q2) if we can reduce Price(Q1) to Price(Q2)
in polynomial time. We write Price(Q1) ∼ Price(Q2) if there is a PTIME reduction
in both directions.

The proof consists of several steps:

1. We first show that it suffices to look at one connected component (Proposition Ap-
pendix G.1).

2. We next show that ∼ holds if we remove constants (Proposition Appendix G.3),
multiple occurrences of a variable in one atom (Proposition Appendix G.4), and
hanging variables (Proposition Appendix G.6): we call this class of queries nor-
malized queries.

3. Using Proposition Appendix D.1, we show that pricing a normalized query is
NP-hard if it contains a ternary predicate.

4. Finally, using Proposition Appendix D.5, we show that if a query is not cyclic or
GChQ, it is NP-hard.

We start by examining queries with more than one connected component. The fol-
lowing proposition establishes that for a query Q with connected components Q1, Q2,
pricing Q is in PTIME if and only if pricing both Q1, Q2 is also in PTIME. Notice that
the proposition holds not only for full CQs, but even for CQs with projections.

Proposition Appendix G.1. Assume that Q can be partitioned such that Q(x̄1, x̄2) =
Q′1(x̄′1), Q′2(x̄′2), where x̄′1, x̄

′
2 are disjoint sets of variables, x̄1 ⊆ x̄′1 and x̄2 ⊆ x̄′2. Let

Q1(x̄1) = Q′1(x̄′1) and Q2(x̄2) = Q′2(x̄′2). Then, Price(Qi) ≺ Price(Q) and Price(Q) ≺
Price(Q1, Q2).

Proof. In order to show that Price(Q) ≺ Price(Q1, Q2), we prove the equation in
Proposition 3.14. Assume a database D and a set of price points S.

44

First, consider the case where Qi(D) = ∅ for some i = 1, 2. Let Vi ⊆ Σ such that
D ` Vi � Qi. Notice that Vi also determines Q, since Qi(D) being empty implies that
Q(D) = ∅ as well. Hence, D ` Vi � Q. This implies that, in the case that Qi(D) = ∅,
pSD(Q) ≤ pSD(Qi).

Next, consider the case where Q1(D) 6= ∅. We will show that, if D ` V � Q,
then D ` V � Q2. This implies that pSD(Q) ≥ pSD(Q2). Indeed, since V determines
Q2, we can decide Q(D). Since Q1(D) 6= ∅, however, Q2(D) = πx̄2(Q(D)). This holds
symmetrically when Q2(D) 6= ∅.

Combining the two inequalities, we can show case 2 (and symmetrically case 3) of
the equation. In order to prove case 1 (where both Q1, Q2 are empty), assume that we
have some V that does not determine neither Q1 or Q2. Then, consider the tuples t1, t2
that witness the non-determinacy for Q1, Q2 for databases D′1, D

′
2 which are of minimum

size. The tuple t1 ◦ t2 will then be a witness for not being able to determine Q, for the
database D1′ ∪ D2′ . This implies that pSD(Q) ≥ min{pSD(Q1), pSD(Q2)} and concludes
case 1.

As for case 4, where both Q1, Q2 are non-empty, notice that D ` V � Q implies
that for every i = 1, 2, D ` V � Qi. Let Vi be the selections from V that are only on
atoms from Qi. Then, it easy to see that D ` Vi � Qi as well. Since V1 ∩V2 = ∅ and
V1,V2 = V, we have that pSD(Q) ≥ pSD(Q1) + pSD(Q2). The lower bound is trivial, so
this concludes case 4.

We finally show that Price(Qi) ≺ Price(Q) (w.l.o.g. let i = 1). Assume that
we want to compute the price of Q1 for some database D1 under price points S. We
construct a database D = D1∪D2, where D2 is a fixed database is such that Q2(D2) 6= ∅
(such a D2 always exists, since Q2 is not trivially empty). Moreover, let us price for S ′
every selection on the atoms of Q2 (the set Σ2) to 0 and every other selection (in Σ1)
the same. An immediate observation is that ∀t2 ∈ Q2(D2), t ◦ t2 ∈ Q(D) iff t ∈ Q(D1).
This gives us a map between the query answers. Notice also that for V ⊆ Σ1, it is
immediate to obtain V(D),Σ2(D) from V(D1) and vice versa, since V(D) = V(D1) and
Σ2(D) is fixed. Hence, D1 ` V � Q1 if and only if D ` V,Σ2 � Q; this implies that
pSD1

(Q1) = pS
′

D (Q).

We next show how to deal with constants (and constraints more general). The first
proposition holds for any atomic constraint.

Proposition Appendix G.2. Suppose Q has a variable x with an atomic predicate
C(x). Let Q′ be the query obtained by deleting C(x) from Q. Then, Price(Q) ≺
Price(Q′).

Proof. The idea is to shrink the column of x to Col′x = {a ∈ Colx | C(a) = true} for Q′.
Let D′ ⊆ D be the database obtained by filtering all the tuples of D with the predicate
C. Finally, let S ′ be the corresponding price points for D′, where the prices remain the
same. We show that pSD(Q) = pS

′

D′(Q
′). The key observation is that if for some V ⊆ Σ,

D ` V � Q, then we can assume that no selection on x = a,¬C(a) appears in V
(this follows from the fact that any tuple in such a selection would be non-critical and
Theorem Appendix E.4). It is now easy to see that, under this assumption, D ` V � Q
iff D′ ` V � Q′. Indeed, Q(D) = Q′(D′). Moreover, if D′ ` V � Q′, then we can take
V(D), compute V(D′) by filtering the tuples with C, then use determinacy to compute
Q′(D′) = Q(D). For the converse, if D ` V � Q, then it follows that D−TC ` V � Q,

45

where TC are the tuples of D filtered by C (from Proposition 2.22). Now, we can take
V(D′) = V(D − TC), and from that compute Q(D − TC) = Q(D) = Q′(D′).

Proposition Appendix G.3. Suppose Q has a constant a in some atom R. Let Q′ be
the query where R is replaced with R′ s.t. a is removed. Then, Price(Q) ∼ Price(Q′).

Proof. We first show that Price(Q) ≺ Price(Q′). Indeed, we can rewrite Q by intro-
ducing a new variable xa to replace the constant a and add the constraint xa = a. By
Proposition Appendix G.2, we can now remove the constraint xa = a. Then, notice
that xa is a hanging variable, so we can remove it as well by Proposition Appendix G.6
to obtain Q′. To prove that Price(Q′) ≺ Price(Q), we can apply the same proof as
in the second part of Proposition Appendix G.6 to reduce Q′ to Q′′, where we have
added to R′ an extra attribute xa with column Colxa

= {a}. But know adding to Q′′

the constraint xa = a gives an equivalent query, which is Q.

We next show that it suffices to characterize the complexity of a query by looking at
the one that occurs after having removed multiple occurrences of the same variable in
the same atom of Q.

Proposition Appendix G.4. Let Q contain an atom R where a variable x appears
more than once and let Q′ be the query obtained if we replace R by R′, where we keep
only one occurrence of x. Then, Price(Q) ∼ Price(Q′).

Proof. For ease of exposition, let us assume w.l.o.g. that R appears in Q as R(x, x, . . .),
where R has schema R(A,B, . . .). Let R′ be the corresponding relation in Q′, with
schema R(A, . . .).

We first show that Price(Q′) ≺ Price(Q). Suppose we want to compute the price
of Q′ for a database D′ and prices S. Then, we create a database D for Q such that
for S 6= R : SD = SD

′
and also replace R′D

′
with RD such that (a, . . .) ∈ R′D

′
iff

(a, a, . . .) ∈ RD. It is easy to observe that Q′(D′) = Q(D). Let the prices in S ′ be
p(σR.A=a) = p(σR.B=a) = p(σR′.x=a) for any a ∈ Colx and keep the same price for any
other selection. It is easy to see now that pSD(Q) = pS

′

D′(Q
′) (since we have a 1-1 mapping

between views and query answers).
We next show that Price(Q) ≺ Price(Q′). Given a database D,Q and S, we con-

struct a new database D′ where we replace only RD with R′D
′

such that (a, . . .) ∈ R′D′

iff (a, a, . . .) ∈ RD. Moreover, for S ′ we let p(σR′.x=a) = min{p(σR.A=a), p(σR.B=a)}
for any a ∈ Colx and keep the other prices the same. Again, it is easy to observe that
Q(D) = Q′(D′). Now, consider the minimum priced V ⊆ Σ such that D ` V � Q.
By Lemma Appendix E.7, V can not contain the maximum priced selection out of
σR.A=a, σR.B=a, for any a ∈ Colx. Hence, by replacing the minimum priced σR.A=a with
σR′.x=a (w.l.o.g.), we can obtain an equal cost set V′. We next show that D′ ` V′ � Q′.
Indeed, if T are the tuples from RD such that t.A 6= t.B, we have from Lemma Appendix
E.3 that D − T ` V � Q. Now, from V′(D′) we can compute V(D − T), which by the
determinacy assumption gives Q(D − T) = Q(D) = Q′(D′). For the converse direction,
let D′ ` V′ � Q′. We will show that D ` V′ � Q. Indeed, if we know V′(D), we can
compute V(D′), and then by the determinacy assumption Q(D′) = Q(D).

We next deal with hanging variables. Let Q be a query with a hanging variable R.x,
where R(X1, . . . , Xk, X). For a tuple t = (a1, . . . , ak, a) ∈ R, define for b ∈ ColR.x,
t(b) = (a1, . . . , ak, b). Also, let M(t) = {t(b) | b ∈ ColR.x}.

46

Lemma Appendix G.5. Let Q be a query with a hanging variable R.x, where R(X1, . . . , Xk, X).
Given a database D, define DC = D

⋃
t∈RD M(t). Then, for any price points S, pSD(Q) =

pSDC
(Q).

Proof. It suffices to show that D ` V � Q iff DC ` V � Q.
The one direction comes from Proposition 2.22, since D ⊆ DC . For the other direc-

tion, let t ∈ D and a ∈ ColR.x. Let Da = D ∪R(t(a)). We will show that Da ` V � Q;
then, the lemma follows by induction. Indeed, notice that (Da− t) ` V � Q by generic-
ity and since x is hanging. Moreover, Q(Da) = Q(D)∪Q(Da−t). Hence, having V(Da),
we can compute both V(D),V(Da− t), then compute the answers and union the results
to obtain Q(Da).

Proposition Appendix G.6. Let QH be the query obtained from Q if we remove all
the hanging variables. Then, Price(QH) ∼ Price(Q).

Proof. We will show this for the case of one hanging variable; then, we can obtain
the proposition using induction. Let us assume that the hanging variable is of the
form R.X and let Q−x be the query obtained by removing variable x from the atom
R(X1, . . . , Xk, X), obtaining the new atom isR′(X1, . . . , Xk). Notice thatR also contains
at least one other variable (since we can assume w.l.o.g. one connected component).

We first show that Price(Q) ≺ Price(Q−x). Let D be a database and S price points
for Q. From Lemma Appendix G.5, we can instead consider the database DC with the
same price points.

Let D′ the database for Q−x, where we have replaced RDC by R′D
′
, such that

R′D
′

contains the tuples from RDC where x has been projected out. A key property
is that if the head variables are (x, x1, . . .), then (a1, . . .) ∈ Q−R.x(D′) iff ∀a ∈ ColR.x :
(a, a1, . . .) ∈ Q(DC). We now distinguish two cases for the prices: S ′ prices every selec-
tion in R′ to zero, and every other selection to the same price. S ′′ keeps all the prices
the same. We show that

pSDC
(Q) = min{pS

′

D′(Q
−x) + p(ΣR.X), pS

′′

D′ (Q
−x)}

Note that by Lemma 3.10, if D ` V � Q, we can consider only two cases: either V
contains every view in the set ΣR.X = {σR.X=a | a ∈ Colx} or none of them.

We first show that, if ΣR.X ⊆ V, then DC ` V � Q iff D′ ` R,V \ ΣR.X � Q−x

(notice that R is free). Indeed, we have a function to go from Q(DC) to Q−R.x(D) and
vice versa. Moreover, we also have a function to map V(DC) to R(D′), (V \ ΣR.X)(D′)
and vice versa.

If ΣR.X 6⊆ V, we can assume that V contains no views from ΣR.X at all and show
that DC ` V � Q iff D′ ` V � Q−x. Again, we have a direct mapping from V(D′) to
V(DC) and vice versa and also the mapping for the query answers.

For the other direction, we want to show that Price(Q−x) ≺ Price(Q). Suppose
some D′,S ′ for Q−x. Let Dom(R.X) = {a}. We create a new database D where RD

is populated as follows: t = (a1, . . . , ak, a) ∈ RD iff (a1, . . . , ak) ∈ R′D′ . The rest of the
relations remain exactly as in D′.

We now observe that, by construction, (a1, . . . , al) ∈ Q−x(D) iff (a1, . . . , al, a) ∈
Q(D). We define the price points S by pricing the single selection σR.x=a at the cost of
the table R and keeping all the other prices the same. This implies that we can assume

47

w.l.o.g. that the optimal pricing pSD will never choose σR.x=a, since we could just replace
it by asking for the individual selections of the cheapest attribute of R. Hence, any
selection set for Q corresponds to a selection set for Q−x. Moreover, we have a one-
to-one mapping of the answers of Q,Q−x and a one-to-one mapping for V(D),V(D′).
Thus, pSD(Q) = pS

′

D′(Q
−x).

We next present a very useful lemma for hardness reductions. The lemma states that,
given a hard query, we can add any variable in any atom and the query still remains
hard. The lemma holds also for CQs with projections. Given a query Q that contains an
atom R with a variable x, we denote by Q−R.x the query obtained by removing x from
R (and if R has a single attribute, remove R).

Lemma Appendix G.7. Price(Q−R.x) ≺ Price(Q).

Proof. Without loss of generality, we can assume that x is not hanging (by Proposi-
tion Appendix G.6).

Consider pricing the query Q−R.x under some database D and price points S. We will
show how to compute this query by reducing it to a computation of Q for S ′, D′. Assume
that Q is obtained from Q−R.x by replacing R(X1, . . . , Xk) with R′(X1, . . . , Xk, Y) (we
add Y at the end w.l.o.g.). The column of Y is ColY = Colx. In order to create D′ from
D, we replace only RD with a new relation R′D

′
such that ∀b ∈ ColY : (a1, . . . , ak, b) ∈

R′D
′

if and only if (a1, . . . , ak) ∈ RD. If R does not exist in Q−R.x, we just add R′D
′

=
Colx.

We now claim that Q−R.x(D) = Q(D′). Indeed, consider a tuple t ∈ Q(D′) and any
tuple from R′D

′
that contributes to t, let it be tR′ = (a1, . . . , ak, b). Then, (a1, . . . , ak) ∈

RD. Since the other tables are unchanged, t ∈ Q−R.x(D). For the opposite direction, let
t ∈ Q−R.x(D) and a tuple tR = (a1, . . . , ak) from RD that contributes to t. Moreover,
for the assignment of values to variables that results in tR contributing to t, let b be
the value of the attribute x at tuple t (since x appears somewhere in Q−R.x). Then, by
our construction, (a1, . . . , ak, b) ∈ R′D

′
. Again, since the other tables remain unchanged,

t ∈ Q(D′).
In order to compute S ′, we let the price of any selection on R.x to be equal to the

price of R and all the other prices remain the same as in S. Hence, we can assume w.l.o.g.
that no selection from R.x will be chosen for any V that determines Q. In order to prove
that pS

′

D′(Q) = pSD(Q−R.x), it suffices to show that D ` V � Q−R.x iff D′ ` V � Q.
However, this follows from the fact that we can compute V(D) from V(D′) and vice
versa, as well as the fact that Q−R.x(D) = Q(D′).

We also need another useful reduction.

Lemma Appendix G.8. Let Q(z̄) = Q1(x, x̄′), R(x, y), Q2(y, ȳ′) be a CQ. Moreover,
let Q′(z̄′) = Q1(x, x̄′), Q2(x, ȳ′), where z̄′ is obtained from z̄ by replacing y with x. Then,
Price(Q′) ≺ Price(Q).

Proof. Assume a database D′ for Q′, along with a set of price points S ′. In order to
prove the reduction, we construct a new database D where we have added to D′ the
relation RD = {(a, a) | a ∈ Colx}. It is easy to see that this construction allows a one-
to-one mapping from tuples in Q(D) to Q′(D′) and vice versa. More precisely, y does
not appear in z̄, then Q(D) = Q′(D′). Otherwise, we distinguish two cases. First, Q

48

has head variables (x, y, . . .) and Q′ has (x, . . .). Then, (a, . . .) ∈ Q′(D′) if and only if
(a, a, . . .) ∈ Q(D). Second, Q has head variables (y, . . .) and thus Q′ has (x, . . .). In
this case, we again have that Q(D) = Q′(D′).

As for the set of price points S, we keep the prices for the other relations the same as
in S ′, and price every selection from R to zero. In order to show that pSD(Q) = pS

′

D′(Q
′),

it suffices to prove that D ` V,ΣR.x � Q iff D′ ` V � Q′. However, there is a
direct mapping from V(D),ΣR.x(D) to V(D′) (since R is constant and the other views
are exactly the same) and vice versa. This, together with the mapping of the answer
concludes the proof.

At this point, it suffices to characterize the complexity for pricing a normalized query
to conclude the proof of the dichotomy.

Proposition Appendix G.9. If a normalized query Q contains an atom with ≥ 3
attributes, Price(Q) is NP-complete.

Proof. Assume that Q contains an atom R(x, y, z, . . .). Notice that x, y, z will be differ-
ent. Applying repeatedly Lemma Appendix G.7, we can obtain a query Q′ that contains
only the variables x, y, z. Since Q is normalized, Q′ will be normalized as well and thus
x, y, z appear in other atoms in Q′. Applying again Lemma Appendix G.7, let Q′′ be
the query obtained from Q by keeping exactly two occurrences of each x, y, z: one in R
and the other in Rx, Ry, Rz respectively.

We now distinguish several cases: (a) Rx, Ry, Rz are different. Then, Q′′(x, y, z) =
R(x, y, z), Rx(x), Ry(y), Rz. (b) Rx = Ry 6= Rz (and the symmetric cases). Then,
Q′′(x, y, z) = R(x, y, z), Rx(x, y), Rz(z) and (c) Rx = Ry = Rz. Then, Q′′(x, y, z) =
R(x, y, z), Rx(x, y, z). For all of these cases, Price(Q′′) is NP- complete by applying
Proposition Appendix D.1 and its more general proof.

Hence, it now suffices to characterize normalized queries where every atom has at
most 2 attributes: we call these 2-normalized queries.

Proposition Appendix G.10. Any query of the form C+
k (x1, xk) = Si1(xi1), . . . , Si`(xi`), Ck(x1, . . . , xk)

is NP-complete.

Proof. First, we can apply Lemma Appendix G.7 to keep only one unary predicate,
let it be S(x1). The query is then Q′(x̄) = S(x1), R1(x1, x2), . . . , Rk(xk, x1). We
can then apply repeatedly Lemma Appendix G.8 to remove the relations R3, . . . , Rk.
More precisely, one application of Lemma Appendix G.8 will give the query Q′′ =
S(x1), R1(x1, x2), . . . , Rk−1(xk−1, x1), and so on. In the end, we obtain the query Q0 =
S(x1), R1(x1, x2), R2(x2, x1), which is the NP-complete query H2 (Proposition Appendix
D.2).

Proposition Appendix G.11. Consider a 2-normalized query Q where a variable x
appears in ≥ 3 binary predicates. Then, Price(Q) is NP-complete.

Proof. Let the three binary predicates be R1(x, y1), R2(x, y2), R3(x, y3) and consider the
query Q′ that we obtain by removing all the other variables apart from x, yi and keeping
these 3 occurrences of x along with a second occurrence of each yi (Lemma Appendix
G.7 justifies this). We now distinguish several cases.

49

If any of them are equal, let it be y1 = y2, then the queryQ′′(x, y) = R1(x, y1), R2(x, y1), R3(x)
that occurs from Q′ is NP-complete by Proposition Appendix D.2. If they are all
different, let S1, S2, S3 the relations they appear in Q′. If all Si are different, then
Q′(x, y1, y2, y3) = S1(y1), R1(x, y1), S2(y2), R2(x, y2), S3(y3), R3(x, y3), which is NP-complete
by Proposition Appendix D.5. Finally, if two of Si are equal (it cannot be 3, since
the relations are at most binary), let it be that S1 = S2, we can obtain a query
Q′′(x, y1, y2) = S1(y1, y2), R1(x, y1), R2(x, y2), R3(x), which is NP-complete by Propo-
sition Appendix G.10.

Finally, we complete the dichotomy by a syntactic characterization.

Proposition Appendix G.12. Let Q be a 2-normalized query. Then, Q either:

1. is Ck or C+
k

2. has a variable x that appears in ≥ 3 predicates.
3. is a GChQ query.

Proof. Suppose that every variable of Q appears in at most 2 binary predicates. We
distinguish two cases. In the first case, every variable xi belongs in exactly 2 binary
predicates. It is easy to see that Q is the cycle Ck plus some (or none) unary predicates,
i.e. it is Ck or C+

k .
Otherwise, there exists a variable x1 that belongs in exactly one binary predicate

(since Q is normalized, it can never be zero). Order the binary relations starting from
the one that contains x1 and following the joining variables. Notice that in the end of
the process we will have seen all variables and all binary relations. Since all the other
relations are unary, Q will be a GChQ.

Projections. Finally, we show how to extend our result for CQs with projections.

Lemma Appendix G.13. If Q is a boolean query, Price(Q) ∼ Price(Qf), where Qf

is the corresponding full query of Q.

Proof. Let D be a database for which we price Q. If Q(D) is false, then pricing Q is
equivalent to pricing Qf , because Q is false iff Qf is empty. If Q(D) is true, then to
determine this we need to find the cheapest witness for Q(D) being true. This can be
done in PTIME though: compute Qf (D), then compute the price of each tuple in the
answer (for each relation, compute the minimum priced selection) and find the minimum
priced tuple.

Now, assume that Price(Qf) is NP-hard. The crucial observation is that all the
hardness reductions use instances D where the query result is empty. Hence, Price(Q)
is NP-hard as well. If Price(Qf) is in PTIME, then we distinguish two cases, depending
on whether the query is true or false. By our previous observation, both cases are in
PTIME, hence Price(Q) is also in PTIME.

Lemma Appendix G.13, along with Proposition Appendix D.4 imply the following
dichotomy for CQ’s with projections.

Theorem Appendix G.14. For a conjunctive query Q without self-joins and one
connected component, let Qf be the corresponding full CQ. Then:

• If Q is full or boolean, Price(Q) ∼ Price(Qf).
50

• Else, Price(Q) is NP-complete.

Proof. The first part follows from the dichotomy theorem for full CQs and Lemma Ap-
pendix G.13. For the second part, assume a query Q(x̄) = Q1(x̄, ȳ), where x̄, ȳ are not
empty (since it is not full nor boolean). Consider any two variables x0 ∈ x̄ and y0 ∈ ȳ.
Notice that both x0, y0 must exist in some atom with at least two attributes, since Q has
one connected component. Let R,S such atoms for x0, y0 respectively. Moreover, since
Q is one connected component, there will be w.l.o.g. a sequence of atoms R1, . . . , R` such
that any two consecutive atoms Ri, Ri+1 share a variable xi, R and R1 share a variable x1

and R` and S share a variable x`. Applying Lemma Appendix G.7, we can remove any
other variable from Q to obtain a query Q′(x̄′) = R(x0, x1), R1(x1, x2), . . . , R`(x`, y0),
where x̄′ ⊆ x̄, but still containing x0. Finally, we can repeatedly apply Lemma Ap-
pendix G.8 to obtain the query Q′′(x0) = R(x0, y0), which is the NP-complete query H4

(Proposition Appendix D.4).

51

	Introduction
	The Query Pricing Framework
	Notations
	The Pricing Function
	Axiom 1: Arbitrage-Free
	Explicit Price Points
	Axiom 2: Discount-Free
	The Fundamental Query Pricing Formula
	Dynamic Pricing

	Tractable Query-Based Pricing
	A PTIME Algorithm
	A Dichotomy Theorem

	Discussion
	Related Work
	Conclusion
	Case Study
	Determinacy
	Information-Theoretic Determinacy
	Instance-Based Determinacy
	Restriction of Instance-Based Determinacy

	Complexity of Determinacy
	Hardness Results
	Technical Tools
	PTIME Algorithms
	Reduction to Maximum Flow
	An Algorithm for Cyclic Queries

	Proof the Dichotomy Theorem

