1

Editing Text Versions With Layers

Marius Nita
marius@cs.washington.edu

Draft, August 12, 2010

Abstract

Layers is a nascent text editing concept that combines text versioning into the edit-
ing process. Its versioning model is always-merged, conflict-free, and fully visible and
manipulable within the editing interface. This report describes the underlying model
and some of its properties, the implementation, the user interface, and applications to
software engineering.

Introduction

Maintaining multiple alternative versions of a text is a fundamental aspect of the author-
ing process in text-centered disciplines like programming, copywriting, and editing. Some
scenarios are:

e A client of a Web firm may request multiple alternative implementations of a concept

before deciding on any implementation. Then, copywriters produce multiple versions
of the copy, layout engineers produce multiple versions of layout templates, and pro-
grammers produce multiple versions of their code. When the client has decided on one
version, the extraneous versions are discarded from mainline production.

When implementing a new feature, a programmer may pursue multiple implementation
strategies before deciding on any one of them. New knowledge gained in the act of
programming can render the current implementation strategy infeasible or undesirable,
driving the programmer to either revert to an old version, start over, or split the
current implementation path into two subpaths. After comparing and contrasting the
alternatives, the programmer chooses the best one and discards the others.

A text artifact usually has development versions, versions that are only relevant in the
context of authoring. Programs, for example, have debugging and logging modes that
are excluded in the rendering of the production versions. Other text documents will
contain notes, self-reminders, and other meta-text that is discarded in the final output.



A crude method for managing multiversion texts is to copy a document multiple times and
perform changes on the copies. A diff-like tool can be used for post-hoc identification and
explanation of the changes. However, managing multiple copies gives rise to an exponential
explosion of versions. For example, if 3 changes are made to separate parts of the document,
up to 8 (23) copies are to be maintained. Moreover, if a hard change is made (a change that
does not define a version, but rather modifies the document in place) to a part of the text
that is common to all the versions, then all the versions will have to be changed consistently.
If one desires to understand how one version simultaneously relates to the other versions, a
n-way diffing tool is required. With these complications, authors can quickly lose knowledge
pertaining to the locations and effects of their changes.

Most programmers are familiar with version management tools like SVN, Git, Mercurial,
CVS, etc. These tools employ the concept of branches, which can be used to maintain
an unlimited number of related versions that can be edited independently. Branches are
logically separated, however. While working in one branch, it is not apparent how the edits
relate to and affect the other branches. Moreover, if an edit is made to the common parts
of two related branches, the edit remains isolated to one branch and has to be manually
migrated to the other. Branching therefore fails to provide the author with a generally
coherent picture for where the edits are located and how the edits relate the possibly many
branches. Branching is useful for performing changes to a document in isolation, ignorant
of changes in other branches, but is unnatural for working from a birds-eye view, where the
effects of editing in one version are clearly understood in the context of the other versions.
Currently, branching is most widely used to temporarily manage interference among authors
working on the same project, and much less to express the versioned structure of documents.

These approaches do not help authors comprehend the impact of their edits on the version
structure, at the time of editing. The unknown version structure, lurking in the background,
may decide the edits to be invalid only at a later time, upon realization of a version conflict.
Therefore, authors are generally in a noncommittal state of mind, accepting their edits as
possibly wrong or false in the future.

We call an editing system wersion-coherent when its user knows the impact of edits
in real-time, without the chance of being invalidated by a future conflict. In short, version
coherence combines the comfort of single-version editing into a multi-version structure: every
edit is final and will not be explicitly or implicitly challenged by the system. In versioning
systems, there is a fundamental tension between version coherence and multiple concurrent
authors: multiple authors may want to edit in isolation, paying the price of post-hoc manual
conflict resolution.

This paper describes layers, a nascent text-editing concept that seamlessly combines con-
tent authoring with lightweight version management. With layers, versions are always merged
into a central structure that is updated with every keystroke. Because they are always
merged, and therefore never in conflict, layered documents are naturally version-coherent.
When using layers, the user modifies each version directly by editing, and controls the ver-
sioning structure via a simple auxiliary interface. For the time being, layers is aimed at
single users: there is no explicit consideration for several authors editing separate versions



Text on Layer 0 Text on Layer 1 Layers control panel

Bl
The lazy brown fox jumped over the lazy dog. |» New Laver

™ Layer 1
4 Layer O
Editing surface On/off state Current layer

Figure 1: Screenshot of a simple prototype implementation of layers.

at the same time. There may be a sweet spot or a configurable sliding scale between version
coherence and isolated editing. This is left for future work.

The rest of the paper is organized as follows. Section 2 gives a high-level overview of
the layers concept. Section 3 describes the TCM, the theoretical model underlying layers.
Section 4 describes an efficient implementation strategy for the TCM. Section 5 considers
user interface features and enhancements. Section 6 discusses applications for layers in the
software engineering space. Section 7 discusses related work, and Section 8 concludes. We
use the sans-serif word layers to denote the concept as distinguished from individual layers.

2 Concept Overview

We will describe layers in the context of a research prototype implementation that embodies
key aspects of the concept. A screenshot of the prototype is shown in Figure 1. On the left
side of the screenshot, there is a traditional editing surface, like we would find in any text
editor. Text can be inserted and deleted using the usual keyboard and mouse actions. On
the right is the layers control panel, which allows layers to be created, named, turned on,
turned off, deleted, and assigned a color.

A layer is a named set of edits. An edit is an insertion or a deletion of text, performed
upon the editing surface in the usual way. Sometimes, an insertion and a deletion together are
conceptualized as a replacement, but replacement needn’t be a separate entity. In Figure 1,
the two edits belonging to Layer 1 are highlighted in pink, the layer’s corresponding color.
The rest of the text is highlighted in white and thus belongs to Layer 0. In the control panel,
we see that Layers 0 and 1 are turned on, and Layer 2 is turned off. When a layer is turned
off, its corresponding edits disappear from the editing surface. Essentially, the state of the
editing surface is as if Layer 2 had never been created.!

'We will see later that it’s possible and desirable to include information about turned-off layers in the
editing surface.



The lazy brown cat jumped over the dog.

v
prd

(A) -

The lazy brown fox jumped over the lazy dog.

(B) = J Layer 2

v
=2

The lazy brown foxes jumped on the lazy dog.

v
=2

(€)

Figure 2: A sample document in the layers prototype. (A) Only Layer 0 is turned on. (B)
Layers 0 and 1 are turned on. (C) All three layers are turned on.

The red box in the control panel area denotes the current layer. Any edits performed
upon the editing surface belong to the current layer and are immediately highlighted in the
layer’s color. Therefore, the current layer is necessarily turned on. Finally, when clicking in
the box labeled “New Layer,” the box becomes an active, empty text field. Typing a name
and pressing Enter creates a new layer with that name. By clicking the color box, a new
color can be assigned to a layer. Its corresponding edits in the editing surface are recolored
accordingly.

Figure 2 shows the document in Figure 1, reconfigured three times to form three al-
ternative versions of the text, using layers. No editing was performed between the three
screenshots; the different document versions are the results of combining different layers us-
ing the on/off buttons in the control panel to the right of the editor. In Figure 2(A), only
Layer 0 is turned on. We therefore see only the edits belonging to Layer 0. In Figure 2(B),
Layers 0 and 1 are turned on, so we see their edits combined. Conceptually, there are two
edits on Layer 1. The first deletes the word ’cat’ and inserts ’fox’ in its place. The second
inserts *lazy ’ before *dog’. In Figure 2(C), all three layers are turned on. The third layer
inserts the text ’es’, deletes the word ’over’, and inserts ’on’ in its place.

An important point to emphasize here is that layers are not versions. Versions are
instead created by combining layers, and one layer may participate in many versions. (In
our example, Layer O participates in all three versions and Layer 1 participates in two of
the versions.) In general, there are 2714 versions, including the null version in which all

4



layers are off. At any time, the contents of the editing surface form one version of the text.
To transition the document to another version, the user changes the on/off layer state in the
control panel. The layers prototype has two types of “Save” commands. One saves to disk
the current version (the contents of the editing surface) into a flat text file. The other saves
the underlying document representation.

2.1 Further Design Considerations

The layers concept, as presented so far, raises a few more questions:

1. Implicit dependencies: Because Layer 1 removes the text ’cat’ inserted by Layer 0,
and supposing that Layer 0 is off, does it make sense for Layer 1 to be on? In some
situations it may be desirable to link layers in this way. A layer may not make sense in
isolation, so having to manually identify and turn on the layers upon which it logically
depends is unnecessarily laborious. In other situations, the user may wish to view and
edit the layer in isolation. For example, a programmer may want to know the functions
that are called on a layer, regardless of where. Text deleted by the layer may be shown
marked as deleted, without the context where the deletion occurs.

2. Dependency structure: On the question of representation, are layers organized in a
hierarchy, implicitly dependent upon one another, or are they in a flat, set-like, relative
relationship? It seems that because edits in one layers generally depend on edits in
other layers, they should be in a hierarchy. However, as discussed above, from the
perspective of uses it seems that regardless their logical relationship, it is often useful
to treat layers as flat: each independently viewable, without the system imposing by
rule that one layer can only be viewed in the context of another.

3. Multiple layers deleting the same text: If Layer 1, which deletes the word ’cat’ from
Layer 0, is off, and Layer 2 is on, does it make sense for Layer 2 to delete (part of) the
text ’cat’? In version control systems, this a key part of the definition of conflict:
if two branches edit the same line, they are in conflict. Because layers works at the
granularity of characters, the only way for two layers to come into conflict is to delete
the same character. The good news is that this doesn’t matter! Deleting a character
twice is as good as deleting it once or n times. Therefore, layers has no notion of conflict
and merging. A layered document is always merged and therefore always conflict-free.

4. Positional ambiguities: If Layer 1 is off and Layer 2 is on, and Layer 2 inserts the
text red ’ at the same position at which (the currently invisible) ’lazy ° is inserted
by Layer 1, should ’red ’ appear before or after ’lazy ’> when both layers are on?
More generally other words, editing a document when other edits are not visible can
introduce ambiguities. In programming, if calls to a logging library are kept on a
layer, but the majority of the time the logging layer is off, it seems sensible that the
programmer should have some indication of where the calls are, and perhaps be given
the choice to insert code before or after the invisible call, without having to turn on
the layer.



+4+ —_————t
———t++ +++++
+++++++++H+ +++++++++H+++ ++++
The lazy brown catfoxes jumped overon the lazy dog.

Figure 3: Underlying document structure for the example in Figure 2.

Leveraging the experience gained with our prototype, we began developing the Tagged Char-
acter Model, a core calculus for layers that allows formal reasoning about system invariants,
experimentation in the design space sketched in this section, and a path to an efficient
implementation.

3 Tagged Character Model

Figure 3 shows a pictorial view of one way to conceptualize the representation of the layered
document shown in Figures 1 and 2. The document is a sequence of characters, where each
character is marked above by the layer that inserted it (with a + sign) and by the layers
that deleted it (with a - sign). Intuitively, to render a document on the editing surface, we
traverse the sequence of text and for each character, we combine the +s and -s in its column.
If there is a - in the column, or neither +s nor -s, the character is rendered invisible. The
+s and -s belonging to layers that are turned off are ignored in the rendering.

The Tagged Character Model (TCM) is a lightweight calculus that represents layered
documents in the spirit of the figure above. In the TCM, a layer is nothing but a name, or
tag, and a document is a sequence of characters tagged by the layer that added it (marked
by a + sign above) and by the layers that removed it (marked by a - sign). The TCM’s core
document representation is flat, keeping all the edits of all the layers in one flat sequence. The
TCM addresses questions 1-2 of Section 2.1 by leaving dependencies out of the representation
and considering all layers as independently viewable/editable. User-controlled dependency
structure can be added, as discussed in Section 5. It answers question 3 by naturally allowing
multiple layers to delete the same text. Question 4 is addressed in Section 5.

3.1 Core definitions

Figure 3.1 shows the syntax of the TCM. A symbol k is either ¢!, a character tagged by
tag T', or a tagged character that is marked either by hidden or dangling. The hidden mark
is used for hiding inserted text when the corresponding layer is off, or hiding deleted text
when the corresponding layer is on. The dangling mark is used for denoting deleted text



k== ¢’ | hidden(c”) | dangling(c”) (symbol)
T = +t—1t (tag)
D = €|k-D (document)
e == insert(c) | delete (editing actions)
A = Turn ont | Turn off ¢ | Switch to ¢ | Edit e (system actions)
On € t— {true,false} (layer state)
S = D;On;t (system state)
t € layer names
¢ € text characters

Figure 4: Layers core syntax. ¢ denotes a set of .

when the layer that the text is deleted from is off. A tag T is +t — t, meaning “inserted by
layer ¢ and subsequently deleted by layers . (¢ is a set of tags t.) A document D is a list
defined inductively: either empty (¢) or a symbol followed by a document (k- D). One core
assumption of the TCM, evident in the tag syntax +t — ¢, is that it does not allow text to
be added by more than one layer. Intuitively, there is only one “current layer.” However,
this assumption may be relaxed in the future if simultaneous insertion on multiple layers is
found useful.

In the TCM, the core representation of the running example from prior sections is as
follows (where +0 is shorthand for +0 — (), +0 — 1 shorthand for +0 — {1}, and [J denotes
a space):

THORH0gHO[]+0] +0g+07+0y+0J+0p+0 0 5 +0p+0n +O[JH0 +H0—1 5 +0—1p+0—1p+1 o+ 1yl o2 +2[]+0
YO HOp 0 +H0qHOIH0GH0—2y+0-2-+0-2p+0—2 2 +2JH04 +0p+0 g +O[]+0] +25+25+2+2[]+2
d+0oT0g+0 +0

The symbol ct%~!, for example, denotes the fact that the character ¢ was initially inserted by
Layer 0 and subsequently deleted by Layer 1. This representation contains all the information
in the layered document. Tagged characters marked by hidden or dangling are not present
because they are introduced only when layers are turned on and off, as we will see shortly.
In this example, layers are neither on nor off.

An editing action e is either insert(c), which inserts character ¢ at the current position,
and delete, which deletes the character at the current position.? A system action A represents
actions that can be taken by the user at the top level. “Turn on ¢’ and “Turn off t” are
actions that turn layer ¢ on or off. “Switch to t” makes ¢ the current layer, and “Edit e”
performs the editing action e upon the editing surface. The function On decides which layers
are on. The state S represents the top-level state of the whole editing system and is a triple
of a document D, the state function On, and the current layer t¢.

Next, I show how to perform edits upon a TCM document:

2«Current position” will become more clear shortly.

7



Definition 1 | Edit(e,, D) = D'

Edit(insert,(c), D + [k] + D’) = D+ [+ [k]+ D' (ins)
Edit(delete;, D + [¢*'~!] + D) = ift =t then (dell)
D+ D
else
D + [hidden(ct*=™th)] + D
Edit(delete;, D + [hidden(cT)] + D’) = D + [hidden(c")] + D’ (del2)
Edit(delete;, D + [dangling(cT)] + D') = D + [dangling(c?)] + D’ (del3)

The function Edit(e;, D) takes an editing action e, current layer ¢, and a document D and
yields the modified document D’. There is no explicit notion of “current position” or “cursor
position” in this model, so we implicitly assume that the cursor position is picked nondeter-
ministically, by decomposing the document into D+ [k|+ D’, where k is the symbol under the
cursor, D is the portion of the document preceding it, and D’ is the portion of the document
succeeding it. We take [k] to mean the document containing the single symbol k and D + D’
the list concatenation of D and D'.

The rule (ins) simply inserts a fresh symbol c¢t*~?, regardless of the symbol under the
cursor. A more thorough definition could handle “undeletes.” For example, if the symbol
under the cursor was hidden and layer ¢t was one of the layers hiding it, we could simply
delete t from its set of removers. In this model, we opt for theoretical simplicity by allowing
documents to be larger than absolutely necessary, but without affecting expressive power.

The rule (dell) deletes the current character. If the current character was inserted by
t, the current layer, the character is simply removed. Otherwise, ¢ is added to its set of
removers and the symbol is marked as hidden. Intuitively, deleting text belonging to another
layer simply hides the text from view. Rules (del2) and (del3) encode the fact that deletes
do nothing when performed on hidden or dangling symbols.

Next, I show how the document is filtered through a state function On, revealing and
obscuring symbols according to the state function.

Definition 2 | Filter(On, D) = D’

Filter(On,¢) = €
Filter(On,c™=t- D) = if (On(t) A €1.0n(t') V (-On(t) AVt € T.~On(t')) then
hidden(c™t) - Filter(On, D)
elseif On(t) AVt € t.=On(t') then
ctt=t. Filter(On, D)
elseif =On(t) A 3t' € t.On(t’) then
dangling(ct*=*) - Filter(S, D)
Filter(On, ) = ERROR



The function Filter(On, D) takes a state function On and a document D and yields the
resulting filtered document D’. The filtered document fully retains all of the information in
D, except it marks some of the characters as hidden or dangling. An implementation can
choose how to display hidden and dangling symbols to the user. In the layers prototype, they
are simply not shown.

Filtering an empty document (¢) yields an empty document. When filtering a symbol
¢! we mark the symbol as hidden when ¢ (the layer that inserted c) and some layer in
t are both on, or when ¢ and all the layers in ¢ are all off. Intuitively, either the character
is shown by an insert and then obscured by a delete on another layer, or it’s not shown,
because t is off, and is also not obscured, because all the layers in ¢ are off. If ¢ is on and all
the layers in ¢ are off, the symbol is left unmarked. When a symbol is marked dangling, it
means that the layer that inserted it is off and some layer that deletes it is on.

Filter rejects documents that contain dangling or hidden symbols, therefore it cannot be
applied to an already filtered document. Before a filtered document can be filtered through
another On function, it has to be unfiltered:

Definition 3 | Unfilter(D) = D’

Unfilter(e) = €

Unfilter (ct*=* - D) = ct=t. Unfilter(D)
Unfilter (hidden(cT) - D) = ' - Unfilter(D)
Unfilter (dangling(c’) - D) = ¢! - Unfilter(D)

The function Unfilter(D) undoes the action of Filter by removing all dangling and hidden
marks, bringing the document back to a state ignorant of whether layers are on or off.
Intuitively, filtering followed by unfiltering should leave the document unchanged. This is
stated formally as follows:

Theorem 4 (Unfilter undoes Filter) Supposing D contains no dangling or hidden sym-
bols, then

1. Unfilter(Filter(On, D)) = D.
2. Filter(On', Unfilter(Filter(On, D))) = Filter(On', D).

Part (2) of the theorem is a direct consequence of (1) and essentially reveals the process
by which a filtered document is re-rendered when some layers are turned on and off. Given
a new function On’ (acquired by turning some layers on or off), the document, previously
filtered through On, is first unfiltered and then re-filtered through On'. Part (2) of the
theorem shows this to be the same as filtering through On’ to begin with.

Finally, I show the top-level editing semantics:



Definition 5 |D; On;t+ A — D'; On/;t'

D;On;t = Turnont — let On’ = Change(On,t’ — true) in  (on)
let D' = Filter(On', Unfilter(D))
in D'; On'; t

D;On;t + Turnoff  — let On' = Change(On,t" — false) in  (off)
let D' = Filter(On', Unfilter(D))

in D'; On': t
D;On;t + Switchtot — D;On;t (switch)
D; On;t + Edite — if =2 On(t) then (edit)
ERROR
else

Edit(e;, D); On;t

The relation D; On;t = A — D'; On’;t' means that starting in a state D; On;t and per-
forming the action A yields the state D’; On';¢’. That is, due to A, the document may have
changed to D', the state function may have changed to On’, and the current layer may have
changed to t'.

Rules (on) and (off) show how layers are turned on and off. The function Change(On,t — true)
is identical to On except On(t) is now true, if it wasn’t already. To turn a layer on, a new
state function On’ is produced that maps the layer in question to true. The current docu-
ment D is then unfiltered, and the result filtered back through On'. The rule (off) is the
same, except that the layer in question is mapped to false.

The rule (switch) simply changes the system state by replacing the current layer with ¢
In this model, switching does not by itself ensure that the switched-to layer is on. Therefore,
there exists the possibility of attempting to type on a layer when the layer is off. The last
rule, (edit), therefore ensures that the current layer is on before executing the editing action.
If the current layer is on, the editing action e is tagged with layer ¢ and the editing action is
applied to the document by calling Edit(e;, D).

3.2 Validity and editing non-interference

We would like to prove an important non-interference property: turning on a layer and
performing edits on it leaves the previous wisible state of the document (when the layer was
off) unchanged. First, we need to define validity of system states:

Definition 6 | Valid(D; On;t) = {true, false}

Valid(e; On; t) = true
Valid(ct*=*- D'; On;t) On(t) AV € T.~O0n(t") A Valid(D'; On; t')
Valid(hidden(ct*=%) - D'; On;t') = (On(t) A3t" € T.0n(t") v

=0n(t) AVt € £.=0n(t")) A Valid(D'; On;t')
Valid(dangling(ctt=%) - D’; On;t') = =On(t) A" € £.0n(t") A Valid(D'; On; t')

10



A system state D; On;t is valid when the current state of the document D is in full agreement
with the On function. An empty document is always valid. A symbol ¢*~ is valid when ¢
is on and all the layers in  are off. A symbol hidden(c**~?) is valid either when ¢ is on and
some layer in 7 is on, or when ¢ is off and all layers in f are off. A symbol dangling(ct*~?) is
valid when ¢ is off and some layer in ¢ is on.

Essentially, the validity of a state D; On;t is established by assuming D had been the
result of filtering a D’ through On and recording the conditions that Filter imposes on its
output. Naturally, validity has an operational definition in terms of Filter and Unfilter:

Theorem 7 (Operational Validity) Valid(D; On;t) iff Filter(On, Unfilter(D)) = D

Previously, we proved that Unfilter(Filter(On, D)) = D in all cases. Operational validity
shows that the reverse, Filter(On, Unfilter(D)) = D, is only true when D; On;t is valid.
Intuitively, D; On;t is valid only when D has already been filtered through On, so unfiltering
and re-filtering through On does nothing.

The following theorem establishes the crucial property that validity is never lost in editing:

Theorem 8 (Editing preserves validity) If Valid(S;) and S} F Ay,..., A, — Ss, and
Sy # ERROR, then Valid(Ss).

That is, executing any number of system actions, starting in a valid state S; and ending in
a state So, S5 is also valid, provided it isn’t the ERROR state. If validity weren’t preserved
by editing, then any reasoning about the relationship between D and On in the middle of
editing would be generally false.

Before we can state the non-interference theorem, we need a way to establish equivalence
among the wvisible renderings of two documents. That is, two documents may be different
when compared point-wise, but may appear as identical to the user, their differences being
in the hidden text. The following function serves this purpose:

Definition 9 | Save(D) = Plaintext

Save(e) = €
Save(ctt=t - D) = ¢ Save(D)
Save(hidden(c’) - D) = Save(D)
Save(dangling(c’) - D) = Save(D)

The function Save(D) discards all tags and ignores all hidden and dangling symbols, saving
only the visible text, in the order in which it appears in the document. It is likely that
D # D' when Save(D) = Save(D'). For example, D may contain twice as many hidden
symbols as D', but they are all ignored by Save.

The non-interference theorem is stated as follows:

Theorem 10 (Editing non-interference) If a layer is initially turned off, and we turn
it on, switch to it, perform any number of edits, and turn it off, then the initial rendered
(saved) state of the document remains unchanged.

Suppose Valid(Dy; Ony;ty) and Onq(ty) = false. Then we take the following steps:

11



D —» Turnont— Editont —» Turn offt —» D'

~
~ //
~ -
~ -
~ -

~ -
~

Save ~~~_ _-~" Save

Figure 5: Layers non-interference depicted graphically. Edits on a layer leave the previous
state of the document unchanged under Save.

1. Dy1; Ong;ty B Turn on ty — Dy; Onog;ty.

2. Dy; Ong;ty B Switch to t9 — Dy; Ong; to.

3. Dq; Ong;ty F Edit eq, ..., Edit e, — Dsy; Ong; to.
Then, if we perform the following steps,

4. Dy; Ong;ty F Turn off t5 — Ds3; Ong;ts.

5. Ds3; Ony;ty B Switch to t;1 — Ds; Ong;ty.
Save(Dy) = Save(Ds).

Notice that I inline obvious transitions. For example, in step (4), the output state function
is Onq, rather than some Ong that is separately shown to equal On;.

Figure 5 shows a graphical depiction of the non-interference theorem. FEssentially, D
and D’ are equal under Save when the transition from D to D’ turns on a layer, makes
an arbitrary number of edits on it, and turns it off. This property is crucial for inspiring
user confidence when using layers. With non-interference, users can feel confident making
arbitrary edits on layers, removing layers, etc., confident that they can always go back to
the prior state of the document.

4 Implementing the TCM using regions

The fine, character-level granularity of the TCM makes reasoning clear and simple. A direct
implementation of the TCM at the character level may be undesirable, however. First,
filtering each character every time the document is rendered may be inefficient: worst-case
O(#Layers x #Characters). Second, implementing some UI features is more natural when
manipulating text regions rather than individual characters. For example, an interface may
place a single marker wherever a sequence of related text is elided. In short, using text
regions speeds up rendering and provides a better, higher-level interface for programmatically
manipulating layered documents.

12



+-H ————+H
———++H +++++
++++++++++++++ -+ +++++++H+H++H [ ++++
The lazy brown |catfoxles| jumped |overon the [lazy |[dog.

+0 +0-1 +1 +2 +0 +0-2 +2 +0 +1 +0

Figure 6: Representing documents using regions. Every box denotes a region. Below each
box is the region’s tag.

To implement the TCM with regions, we represent the document as a list of tagged
regions, rather than a list of tagged characters. Figure 6 shows a pictorial representation
of a region-based representation. Instead of tagging individual symbols, adjacent symbols
with identical tag are grouped together into a single tagged region. Maintaining the minimal
number of regions is preserved throughout editing.

Sketched below are the algorithms for performing text insertions and deletes upon a
document representation based on regions. We write ¢ 7'~ to represent a tagged region,
where ¢ is a sequence of characters. We write ¢ ;- ¢ to mean the concatenation of strings
1 and ¢4, and "¢’ to mean the singleton string made from character c.

insert1 (¢t t,c,p) = deletel (¢t~ t,p) =
T1,Cy = findSplit(?,p) T1,7¢", €y = £indChar (¢ ,p)
if t ==t && t =1 then if ¢ == t' then
[(?1 e ?2)+t—i] [(?1 . ?2>+t’—f]
else B B else B B
[?ii-t’—t , o +t—0 , ?;—t’—t] [?i—t’—t , & +t'—(tU{t}) , ?;—t’—t]
insert(¢,c,p) = delete(t,p) =
r,p’ = findRegion(p) r,p’ = findRegion(p)
if r == null then if r == null then
addRegion ("¢’ H-0) return
else else
rs = inserti(r,t,c,p’) rs = deletel(r,t,p’)
replaceAndFuse (r,7s) replaceAndFuse (r,7s)

The function insert(t,c,p) inserts character ¢ on layer ¢ at position p. The position p is a
position into the user-visible, rendered text. The function findRegion(p) finds the region
at position p. It can be implemented as a linear search over the region list, skipping hidden
regions and counting characters in the visible regions. When the desired region is found, it is

13



returned along with p’s relative position inside of the region. The function addRegion simply
inserts the given region to the end of the region list. The » == null case only arises when
the document is empty. The function replaceAndFuse(r,rs) first inserts the sequence rs
in place of the region r in the region list. If rs contains empty regions, they are ignored. It
then fuses together adjacent regions with identical tag, both within rs, and at the boundaries
between rs and its neighbors in the region list. The function delete(?,p) deletes, on layer
t, the character at position p.

The functions insertl and deletel are the position-aware, region-based analogues of
the cases (ins) and (dell), respectively, from Definition 1. The function findSplit (¢ ,p)
splits the sequence ¢ into two sequences, at position p. The function findChar (¢ ,p) is
similar, except it returns a triple ¢1,7¢”, €4 the text before position p, the character at
position p, and the text after p. If the found region belongs to the current layer, the inserts
and deletes are performed directly within the region. Otherwise, the region is split in half
around position p and a new region is inserted between the two resulting regions. The syntax
[r1,...,r,] denotes the list containing ry,...,r,.

Cases (del2) and (del3) from Definition 1 do not have analogues in the region-based
implementation because in the implementation there are no regions explicitly marked hidden
or dangling. These states are computed directly as functions over regions.

5 User Interface Considerations

So far, we have discussed a basic prototype implementation of layers, its underlying model,
and some of its properties. A number of user interface questions have not been considered:
What should the editing surface expose to the user? How would the user navigate a layered
document? Should some layers be dependent upon one another? The rest of this section
gives consideration to each of these questions in turn.

Representing State on the Editing Surface
The underlying representation of a layered document contains all of the inserted and deleted
text, properly labeled by the layers taking action upon it. In our examples so far, however,
only a subset of the text is shown to the user, depending on the layers on/off state. For
example, if a layer is turned on, its inserts are shown and its deletes are hidden. If it is off,
its deletes are shown and its inserts are hidden. In the prototype implementation, when a
region of text is hidden, there is no indication, from the user’s perspective, that text is being
elided at that particular location. In some applications, it is desirable to place indicators at
the locations where text is hidden. For example, if debugging/tracing code is written on a
layer, it is useful to keep that code out of the way when irrelevant (by keeping the layer off),
but it is also useful to understand where the debugging statements are inserted, to keep an
abstract view for how an edit affects the document as a whole.

Figure 7 shows a mockup of Figure 2, annotated with edit markers. A show/hide marker
is either a thin vertical line, the height of one character, that is painted on the background
of the editing surface between any two characters. A delete marker is a thin horizontal line

14



The lazy brown cat] jumped evex the [dog. > New Layer

(A) -

The lazy brown |[fox| jumped evex the lazy dog.
(B) = J Layer 2

v
=2

The lazy brown |[fox€§ jumped |on the lazy dog.

v
=2

(€)

Figure 7: Figure 2, enhanced with edit markers.

that strikes-through a region of text. An insert marker is a solid block of color highlighting
a region of text. Show/hide markers belonging to a layer are colored in a slightly darkened
version of the layer’s color, to be visually distinguished from insert markers. So far in our
examples, we used only insert markers.

In Figure 7(A), we see delete markers over the words cat and over, meaning Layer 1
and Layer 2 would delete those two words, respectively, when turned on. We see show /hide
markers in three separate locations. A show/hide marker means that either a layer that is
on deletes text, or a layer that is off inserts text, at that location. In Figure 7(B), Layer 1
is turned on. The word cat is replaced by a show/hide marker in Layer 1’s color. What was
previously a show /hide marker is now expanded into the word fox. Similarly, the show/hide
marker before the word dog is now expanded into an insert marker highlighting ’lazy ’.
Figure 7(C) proceeds similarly, for Layer 3.

Using markers in this manner presents a fundamental tension, visible in Figure 7(A).
Both Layers 1 and 2 insert text after the word cat, but only one marker is visible. The
tension is this: either we disturb the space-formatting of the text by taking up extra buffer
real-estate to display all the markers, or we leave the original formatting alone and limit
ourselves to using a fixed amount of space to display a generally unbounded amount of
information. In Figure 7, I chose to use black (the color of the text) to denote multiple
insertions. A mouse-over action could display all the layers involved, in a pop-up bubble.

15



LadyE NEW Laye New Laye NEW La

Layer 4 4 Layer 4 ™ Layer 4 O Layer 4

= Layer 3 = Layer 3 | Layer 3 = Layer 3
O . Layer 2 4l . Layer 2 ™ . Layer 2 d . Layer 2
= Layer 1 = Layer 1 O Layer 1 = Layer 1
O Layer 0 O O Layer O =
Turn on Layer2 — Turn on Layer 3 — Turn off Layer 4 —

Figure 8: Mockup of a dependency-aware layers control panel. Layers 2 and 3 are shown
dependent upon Layer 4 by the level of nesting. When Layer 2 is turned on, its parent Layer
4 is simultaneously turned on. When Layer 4 is turned off, its children, Layers 2 and 3, are
simultaneously turned off.

Navigating Layered Document Sets

A layer’s edits can be scattered arbitrarily across a document. Depending on the implemen-
tation, a layer’s edits can span multiple files, scattered arbitrarily across the filesystem. For
many tasks, it is useful to quickly find all the edits on a layer. For example, a programmer
may want to change all the calls to foo() on a layer into calls to bar (), due to switching to
a new library. Locating the layer’s edits is then a crucial prerequisite.

One method for quickly locating a layer’s edits within a document is scrollbar markers,
as implemented in Edit Wear and Read Wear [5] and Rob Miller’s LAPIS [9]. The vertical
background area of the scrollbar can be annotated with colored markers, each marker de-
noting an edit on a layer. When the marker is clicked, the scrollbar automatically scrolls to
that location, revealing the edit in question.

Another method is to implement a horizontal-split view that shows all the edits on a layer,
in sequence and in context. Each layer in the control panel is accompanied by a button that
opens that layer in a split view. Each edit in the split view is accompanied by a button
that opens the file containing that edit, scrolled to the correct position, for more thorough
editing. One version of the layers prototype, implemented by Michael Bayne,® features such
a split view.

Supporting Dependencies Among Layers

The layers model and prototype implementation do not keep track of dependencies among
layers. In some cases, however, it is useful to denote a layer as depending on another layer—
meaning that if A depends on B, then A should never be on without B also being on. For
example, in Figure 7, it may be intuitive from the user’s perspective to declare Layer 2 as
dependent upon Layer 1, since the insertion es makes sense only in the context of fox, which
is inserted by Layer 1.

3http://cs.washington.edu/homes/mdb

16



One way to extend layers with user-specified dependencies is to consider layers (previ-
ously without structure) to be organized as a set of unordered trees. A layer’s children are
dependent upon that layer, and a layer depends on all of its ancestors. When a layer is
turned off, all of its children are turned off. When a layer is turned on, all of its parents are
turned on.

Figure 8 shows how dependencies can be represented in the layers Ul. Layers 2 and 3
are shown dependent upon Layer 4 by the nesting level. When either Layer 2 or Layer 3
are turned on, Layer 4, the parent, is automatically turned on. When Layer 4 is turned
off, its children are automatically turned off. To add a new dependency, a layer in the
control panel can be dragged and dropped onto another layer, thus becoming its child. To
remove a dependency, a layer is dragged and dropped between two layers at the top level.
UI techniques for managing precisely this type of dependency structure are numerous. For
example, the bookmark manager in the Safari Web browser.

6 Applications to Software Engineering

Graphic designers, using tools like Photoshop and Illustrator, enjoy simple and usable tech-
niques for representing design alternatives, work in progress, and in general working with
many versions in varying stages of completion. Software designers, despite taking on the
vastly complex task of correct software construction, rely on crude and primitive combina-
tions of tools tools that make basic design tasks difficult, cumbersome, and in many cases
impossible. Layers seeks to provide a simple and integrated platform for versioning in the
development process. It makes it natural to work with ephemeral, task-only code and to
represent development alternatives. In general, it provides a simple way to view and edit
versioned text objects.

Delimiting Task-Specific Code

Often, the programmer needs to make a change but does not know what the change should
be. A typical example is in the case of a bug. The programmer knows that the bug should be
fixed but does not yet know which code structures give rise to the bug. The programmer then
engages in program understanding tasks, such as code reading, testing, and running analyses.
One easy, natural, and typical program understanding task is to change the program and
observe how the changes affect its behavior. The quintessential example is to insert print
statements at locations of interest.

Although this approach comes naturally to programmers, it suffers from the problem of
entangling program code with task-specific edits. Task-specific edits are ephemeral and have
meaning only with respect to a programming task. When the task is completed, the edits
becomes meaningless, and so they should be removed. To find and remove the edits without
tool support, programmers resort to leaving behind bread crumbs in the form of comments,
working on copies, or searching for and removing the code after the fact.

Figure 9 shows layers being used to delimit task-specific code. In Figure 9(A), task-
specific code is written on a layer. When the task has reached its goal, the layer can be

17



Tag tl = t.copy(); R - New Layer

tl.addRemover(1l);
O

System.out.println(“Tag: " + tl1);
Base

A&

// r.remove(pos, pos + text.length());

Region adj = getRightAdjacent(r);
System.out.println("Got adj: " + adj);
if (pos != r.length())
System.out.println(“pos isn't equal to r.length()");
if (adj != null && adj.getTag().equals(tl) && pos == r.length()) {
(‘\) // transfer the deleted text to the neighbor
adj.insert(text, 0);
if (r.empty())
removeRegionAndFuse(r);
else
System.out.println(“region isn't empty"”);

[ — )

}
else {
// split as per usual
Pair<Region,Region> pair = r.splitAt(pos);
Region rl = new Region(tl, text);
replacewWith(r, pair.getLeft(), rl, pair.getRight());
}
Tag tl = t.copy(); : . New Layer
tl.addRemover(1l);

(=] findbug
r.remove(pos, pos + text.length()); ™

Region adj = getRightAdjacent(r);
if (adj != null && adj.getTag().equals(tl) && pos == r.length()) {
// transfer the deleted text to the neighbor
adj.insert(text, 0);
if (r.empty())
removeRegionAndFuse(r);

®) ?else { [Il i

// split as per usual

Pair<Region,Region> pair = r.splitAt(pos);

Region rl = new Region(tl, text);

replacewWith(r, pair.getLeft(), rl, pair.getRight());

public Region getRightAdjacent(Region r) {
for (int i = 0; i < regions.size(); ++i) {

Figure 9: Using layers for ad-hoc debugging. In (A), the programmer writes as-hoc code on
the findbug layer to corner a behavior. In (B), the findbug layer is turned-off or discarded
once the behavior has been discovered. Non-interference guarantees that editing actions
taken in (A) do not affect (B), the original state of the program.

turned off or discarded, leaving the previous state of the program unchanged (Figure 9(B)).
The editing non-interference property of layers guarantees that edits on the debugging layer
do not in any way affect the prior state of the program text.

Creating and Maintaining Development Alternatives
When implementing a requirement, programmers may create several implementations be-
fore settling on any one in particular. This may be due to not being able to comprehend
in advance the tradeoffs of doing things one way or another and wanting to test both to
understand the differences. Often, however, programmers must provide several alternatives
by client request.

In Figure 10, a hypothetical client requested that several implementations of the layers
prototype be provided, including one in which the layers control panel is placed to the right
of the editing surface, and one in which the order of the control panel and editing surface

18



scrollPaneForLog.setPreferredsize(new Dimension(4, 200)); S . New Laver
Laye

JsplitPane splitPane = new JSplitPane(JSplitPane.HORIZONTAL_ SPLIT, M Move Panel
scrollPanelLeft, -

(A) sideListScrollPane); ™ Base]
splitPane.setDividerLocation(530); fD
splitPane.setOneTouchExpandable(true);
scrollPaneForLog.setPreferredsize(new Dimension(4, 200)); [ : . New Laver

New Laye
JSplitPane splitPane = new JSplitPane(JSplitPane.HORIZONTAL SPLIT, ™ D
sideListScrollPane,

(B) scrollPaneLeft); ™ Base
splitPane.setDividerLocation(190); m
splitPane.setOneTouchExpandable(true);
scrollPaneForLog.setPreferredsize(new Dimension(4, 200)); [ 5 New Lave

NEeW Lavyer
JSplitPane splitPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT, ™ Move Panel Di
sideListScrollPane,

©) scrollPaneLeft); ™ Move Panel
splitPane.setDividerLocation(175); fD @ Base

splitPane.setOneTouchExpandable(true);

Figure 10: Using layers to express development alternatives. (A) shows code from the layers
prototype. (B) shows a version of layers that places the layers control panel to the left of the
editing surface. (C) shows a further refinement of (B).

is swapped. When the layer named “Move Panel” is turned on, the resulting code swaps
the two panels. Not only does layers enable maintaining two versions of the code, but the
relationship between the versions can be examined and understood clearly in the editor.
Figure 10(C) shows a further refinement upon “Move Layer” that changes the position of
the center divider. The programmer can either compile the three versions separately, or give a
live demonstration by flipping between and running the versions directly in the development
environment.

This type of code alternative is called a development alternative because it is only perti-
nent in the development process: the choice between the alternatives is not relevant to the
user, but only to the development team and client. Other development alternatives may
include development-only logging, tracing, and assert statements that are to be excluded
from the shipped code, and partially-implemented features that are to be kept out of the
way when not being worked on.

Contextual Display of Analysis Results

So far, we have discussed applications of layers in cases that demand maintaining multi-
ple versions of code. Often, programmers deal with tasks that have a naturally versioned
structure but this structure isn’t expressible in current tools. For example, when running
an analysis on a program’s source code, the analysis results are positionally linked to the
code: the results refer to line numbers and names in the program. Just like a text file along
with a positionally-linked diff form two versions of the file, so a program and its analysis

19



public SearchResult findRegion(int position) ({ 8 . New Laver
int init = position;
™ Compile Errors
for (Region r : this.regions) { Eﬂ
if (! r.hidden()) {
if (position - r.length() <= 0) {
return new SearchResult(position);

Base

cannot find symbol
symbol: constructor SearchResult(int)

}

position -= r.length();
}

}
|

return 0;
incompatible types (
found : int
required: rmodel.SearchResult ﬂf

}

Figure 11: Using code to display compile errors in context. (The technology to automatically
generate the error layer is not yet implemented.)

results form two versions: the original program, and the program together with its analysis
results. To understand the results, the programmer implicitly considers the program and
the analysis results as one object, looking up a program location in order to make sense of
a result and vice versa.

Figure 11 shows layers being used to present Java compile errors contextually, placing error
messages on a layer, directly at the code position to which it refers. Although the code that
automatically generates this layer has yet to be written, all of the required information (line
number, character position, and error text) are available in the user-readable error message.
Analysis results in general can be presented in this manner, eliminating the awkward manual
matching gap between the messages and the program text.

7 Related Work

To our knowledge, layers is the only technology that enables direct manipulation of versions
seamlessly into the editing process. Similar in intent to layers is change tracking, as im-
plemented in word processors like Microsoft Word, Apple Pages, and OpenOffice. In layers
terms, change tracking consists of a single layer whose edits can be individually accepted
or rejected. It is best suited for communicating edits to a document among authors and
editors; it does not support multiple layers and therefore does not explicitly support editing
a document from multiple perspectives and maintaining several interdependent versions.
Juxtapose [4] is an end-to-end program authoring system that supports creating and
maintaining program alternatives. Its code editor employs a modified version of the linked
editing technique [14] to concurrently edit the parts of the code that are common to all
versions. With linked editing turned off, changes remain local to the version being edited.

20



Juxtapose therefore assumes that the versions being edited are stand-alone copies, and linked
editing is used to avoid making the same edit n times to n versions. Layers, on the other hand,
maintains a single document in which all versions are combined. Code that is shared among
versions exists as a single copy, so there is no need for auxiliary technology to manage this
type of duplication. Like the layers implementation, Juxtapose has an analogue to regions
and uses them to keep linked code blocks aligned for linked editing.

LAPIS [9, 10] is an editing system supporting lightweight text structure. LAPIS supports
multiple selections of text, simultaneous editing (a precursor to linked editing) of a set of
selections, and automated inference of ad-hoc text structure. Its implementation is heavily
based on regions and an algebra that supports many operations on regions and region sets.
Layers and LAPIS are complementary. LAPIS is concerned with the structure of the under-
lying text, while layers ignores the structure of the text and manages only the higher-level
version structure. LAPIS techniques, in particular selection inference, could help the user
identify code that should be on a layer, simultaneously edit regions within a layer, etc.

The C preprocessor (CPP) includes directives (#if, #ifdef) that can be used for main-
taining ad-hoc program versions. The version structure is encoded directly in the program
source and version selection is achieved by running the preprocessor over the program text.
When using the preprocessor in this manner, there is no notion of editing a version after
it has been selected. All versions are edited in the original, combined form, and selection
usually only occurs at the time of compilation. Layers is an editing-level technology that
does not interfere with the program text and naturally enables focused editing on individual
versions. In terms of expressiveness, CPP supports a full language of conditionals (¢t && t/,
t || ', etc.), while layers supports only the specialized conditional +t—¢, whose full meaning is
evident in Definitions 2 and 6. Layers does not directly support ¢ && ' and t || t/, essentially
because it does not support text entry on multiple layers (there is only one current layer).
Although these conditionals can be simulated in layers by duplicated insertions, it isn’t yet
clear where they would be useful in the layers paradigm.

Tools like Git, SVN, CVS, Mercurial, etc., enable versioning of text documents. Unlike
layers, these tools are disconnected from the editing process. Version commands are issued
outside the editor, and individual versions are edited in isolation, unaware of the underlying
versioning structure. This process naturally gives rise to conflicts (two versions editing the
same line of text), which become evident only at the point of version merging and are resolved
manually by the user. Layers has no notion of conflict, as the versions are always merged,
always conflict-free. One clear advantage that these tools have over layers is support for
multiple developers working in isolation, unaware of each other’s activity until the point of
the merge. As of yet, there has been no significant consideration for multiple users editing
the same layered document concurrently. A baseline possibility is to propagate the edits in
real-time, in the manner of Google Wave.* Another is to carefully consider the notions of
branching and merging in the context of layers.

The Choice Calculus [3] is a recent formal model for software variation. Like the Tagged
Character Model, it provides an abstract, mathematical setting for theoretical exploration of

4http:/ /www.waveprotocol.org

21



version management. Its language is powerful, able to succinctly represent complex, multi-
dimensional variation. The TCM is much simpler, avoiding to precisely capture notions like
version and alternative, and focusing mainly to ensure that the layered document structure
yields a simple editing model. The Choice Calculus seems to focus on providing a structured,
sound alternative to CPP, while layers focuses on version integration into the editor.

Aspect-oriented programming (AOP) [7] is a language-based technique for maintaining
crosscutting concerns. With AOP, a concern is written separately as an aspect and woven
into the program at points of interest, called join points. Join points are described in a
regular expression language, so a short description (called a pointcut) can capture a large
number of join points. Layers can be considered to be an aspectual editing technique. The
analogue of an aspect is a layer and the analogue of a join point is the location at which an
edit is inserted. Layers has no explicit notion of pointcut, so unlike AOP, it cannot describe
insertion at multiple positions.

A newer version of AOP that is more closely related to layers is Fluid AOP [6]. Fluid
AOP aims to integrate AOP into the development environment, allowing developers to view
a program with aspects applied to it. (In non-fluid AOP, aspect weaving happens at compile
time or runtime — there is no notion of viewing/editing a woven program.) Unlike Fluid
AOP, layers is ignorant to program structure and allows programmers to make arbitrary
edits to versions. It is possible that layers is an appropriate editing interface for technologies
like Fluid AOP.

Changeboxes [2, 11] is a technique that treats programs as end-to-end versioned, evolving
structures. A program is a hierarchy of changeboxes, and a changebox is either empty or a
set of edits to an existing changebox. Compiling, running, and interacting with a changebox
is treated as independent from the other changeboxes. Changeboxes are similar to layers in
that layers are defined in terms of one another, and layers provide a way to gain a multitude
of wiews upon a system. Layers is currently ignorant of the underlying system structure,
however, and provides no further support beyond multiversion editing. It is unclear whether
a changebox-aware text editor exists.

Code bubbles [1] is a recent code editing technique that allows related method-level
program fragments to be edited together. In general, the user is responsible for constructing
the groups of related methods. Like code bubbles, layers enables grouping of related code (all
code on a layer is logically grouped together) and expressing cross-cutting concerns. Unlike
code bubbles, layers is edit-based, delimiting not code, but code transformations that can be
enabled or disabled on demand. It is currently unclear how version management could be
combined with code bubbles.

Finally, layers is somewhat related to both programming by example (PBE) and program
translation. It is a PBE system in that a layer’s editing action is directly specified by the
user simply by editing text, without specifying an abstraction. It is a program translation
system, similar to AspectJ [8], ARCUM [13], and Twinning [12], in that a layer (a user-
specified translation) is applied to a text on demand. Because there is no inference in the
editing process, there is no ambiguity in the application of the translation.

22



8 Conclusions

We have presented the current state of layers, a new text-editing concept that combines a
form of lightweight versioning into the editing process. Unlike other versioning techniques,
layers exhibits version coherence: a layered document is always merged, always conflict-free;
therefore, all edits are final and never rejected by a future conflict. Layers seems particularly
pertinent to programmers, by providing editing scratch space for exploratory programming,
allowing coherent maintenance of multiple development alternatives, and providing a frame-
work for presenting analysis results and other code annotations in context, directly in the
source code. The layers editing non-interference property (Theorem 10) guarantees that edit-
ing on a layer does not affect the previous state of the document (when the layer is off), and
so programmers should feel confident making arbitrarily destructive edits on a layer.

This paper only scratches the surface. We have yet to consider integrating layers into the
filesystem, temporal (checkpoint- or commit-based) versioning of layered documents, and
the full space of layers uses, particularly in the code domain.

References

[1] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman,
F. Adeputra, and J. J. L. Jr. Code bubbles: Rethinking the user interface paradigm of
integrated development environments. In Proc. ICSE, 2010.

[2] M. Denker, T. Girba, A. Lienhard, O. Nierstrasz, L. Renggli, and P. Zumkehr. Encap-
sulating and exploiting change with changeboxes. In ICDL ’07: Proceedings of the 2007
international conference on Dynamic languages, pages 2549, 2007.

3] M. Erwig and E. Walkingshaw.  Change theory and variation management.
http://web.engr.oregonstate.edu/ erwig/ToSC/.

[4] B. Hartmann, L. Yu, A. Allison, Y. Yang, and S. R. Klemmer. Design as exploration:
Creating interface alternatives through parallel authoring and runtime tuning. In Proc.

UIST, 2008.

[5] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless. Edit wear and read wear.
In CHI ’92: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 3—9, 1992.

[6] T.Hon and G. Kiczales. Fluid aop join point models. In OOPSLA ’06: Companion to the
21st ACM SIGPLAN symposium on Object-oriented programming systems, languages,
and applications, pages 712713, 2006.

[7] G. Kiczales and E. Hilsdale. Aspect-oriented programming. In ESEC/FSE, 2001.

23



8]

[10]
[11]

[13]

[14]

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of aspectj. In ECOOP ’01: European Conference on Object-Oriented Program-
ming, 2001.

R. C. Miller and B. A. Myers. Interactive simultaneous editing of multiple text regions.
In USENIX Annual Technical Conference, 2002.

R. C. Miller and B. A. Myers. Multiple selections in smart editing. In Proc. 1UI, 2002.

O. Nierstrasz, M. Denker, T. Girba, and A. Lienhard. Analyzing, capturing and taming
software change. In ECOOP Workshop on Revival of Dynamic Languages, 2006.

M. Nita and D. Notkin. Using twinning to adapt programs to alternative apis. In Proc.
ICSE, 2010.

M. Shonle, W. G. Griswold, and S. Lerner. Beyond refactoring: a framework for modular
maintenance of crosscutting design idioms. In ESEC/FSE, 2007.

M. Toomim, A. Begel, and S. L. Graham. Managing duplicated code with linked editing.
In IEEE Symposium on Visual Languages - Human Centric Computing, 2004.

Appendix: Proof sketches

Theorem 11

1. Valid(Dy + Do; On;t) = Valid(Dy; On;t) A Valid(Ds; On;t).

2. Save(Dy + Do) = Save(Dy) - Save(Dy).

3. Unfilter(Dy + Do) = Unfilter(Dy) + Unfilter(D,).

4. Filter(On, Dy + Dy) = Filter(On, Dy) + Filter(On, Dy)

Proof Sketch: Filter, Unfilter, and Save are defined inductively, without reasoning about

list

positions, so if they hold for whole lists, they hold for sublists and vice versa. O

Proof sketch for Thm. 4:
Part (1) goes by induction on D:

e Case D = e. Then Unfilter(Filter(On,¢)) = Unfilter(e) = e.
e Case D = ¢t D' Filter(On, D) is either

— ¢t Filter(On, D)
— hidden(c**=) - Filter(On, D)
— dangling(ct*~t) - Filter(On, D')

24



Either way,

Unfilter(Filter(On, D)) = c+t_f - Unfilter(Filter(On, D’)) (Unfilter defn.)
et p/ (induction)

[l
5o

e Other cases not possible, by assumption.

Part (2) is a direct consequence of part (1). O

Proof sketch for Thm. 7:
By induction on D:

e (Case €. Follows immediately.
e Case ¢™'~*. D’. From the induction hypothesis:
1. Valid(D'’; On;t) = Filter(On, Unfilter(D')) = D'.
2. Filter(On, Unfilter(D")) = D" = Valid(D'; On;t).
First assuming (1): from the definition of Valid(D; On;t’) we get (a) On(t) AVt €
t.=On(t") and (b) Valid(D'; On;t’). Then,

Filter(On, Unfilter(D)) = Filt«ir(On,c+t_z~ Unfilter(D'")) by Unfilter(—) defn.
= ¢ Filter(On, Unfilter(D')) by (a) and Filter(—, —).
= ¢ttt D by (1) and (b)
= D

Going the other direction, we have:

Filter(On, Unfilter(D)
Filter(On, Unfilter(c**=t . D)
Filter(On, =t . Unfilter(D')

k - Filter(On, Unfilter(D")

D top-level assumption

LD ditto

et Dy Unfilter(—) defn.
t.D'"  Filter(—,—) defn.

I
o a

)
)
)
)

Expanding the standard definition for equality over lists, we have (a) k = ¢**~* and (b)
Filter(On, Unfilter(D")) = D’. Inspecting the definition for Filter(—,—), (a) can be
true only if (¢) On(t) AVt" € t.=0n(t"). Applying (b) to (2), we get Valid(D'; On;t').
This, together with (c), proves Valid(D; On;t').

e Case hidden(c**?) - D’. Similar to the above.
e Case dangling(ct*?) - D’. Similar to the above. O

Proof sketch for Thm. 8:
By induction on n.

25



e (Case 0. Vacuous.

e Case n. By induction, n — 1 actions have been performed and Valid(Ds; Ong;ts). We
need to show that if Dy; Ong;ta = A — Ds; Ong; ts, then Valid(Ds; Ong;ts). With the
aid of Theorem 7, it suffices to show Filter(Ons, Unfilter(D3)) = D3. We exhaust A:

Case (on). D3 = Filter(Ons, Unfilter(Ds)). By Theorem 4 part (1),

Unfilter (Filter(Ong, Unfilter(Ds))) = Unfilter(Ds), so Unfilter(Ds) = Unfilter(Ds).

Case (off). Same as (on).

Case (switch). The valid input state remains unchanged.

Case (edit). D3 = FEdit(es,, D) and Ong = Ony. We therefore need to show

Filter(Onsg, Unfilter( Edit(e.,, D2))) = Edit(ey,, Dy). Noticing that Ons(ts) =

true, per our assumption that Sy # ERROR, we examine the cases for Edit(e;,, Ds):

x Case (ins). Edit(inserty,(c), Dy) = D + [c™27% + [k] + D'. By induction, we

know Valid(D + [k] + D’; Ona; t3), and from Theorem 11, we have Valid(D; Ona;ts)
and Valid([k] + D’; Ona;ty). It remains to be shown that Valid([cT27%]; Ongy; ty).

Filter(Ony, Unfilter([ct*279))) = Filter(Ony, [c727%]) (Unfilter defn.)
— [C+t2—@] (On(ty) = true)

By Theorem 7, Valid([cT27?]; Ona;ts).
x Case (dell). Edit(e,,, Dy) is either D+ D’ or D+ [hidden(ct*~{*2})] 4+ D’. The
first case follows from induction and Theorem 11. In the latter case, we have

Filter(Onsy, Unfilter([hidden(ct={21)])) = Filter(Ony, [ctt={2}])
= [hidden(ctt—{t2})]

the latter due to Ony(t) being true. So Valid([hidden(ct*={%2})]; Ony;ty). The
rest follows from induction and Theorem 11.

« Cases (del2) and (del3) follow directly from the induction hypothesis, since
the document remains unchanged. 0J

Proof sketch for Thm. 10:
By induction on n.

e Case 0. If zero edits are performed, then D = Dy, since nothing happens at step (3).
By inspecting step (4), D3 = Filter(Ony, Unfilter(Ds)) = Filter(Ony, Unfilter(Dy)).
We need to show that Save(D;) = Save(Filter(Ony, Unfilter(D;))). But because we
assume Valid(Dy; Onq;ty), we have Dy = Filter(Ony, Unfilter(Dy)).

e Case n. By induction, n — 1 edits have been performed and upon performing steps (4)
and (5), Save(D;) = Save(Ds), or, by inspecting step (4),

Save(Dy) = Save(Filter(Ony, Unfilter(D3)))

26



Between steps (3) and (4), we perform the nth edit,
Dy; Ong;ty = Edit e — Edit(ey,, Ds); Ono; ty
Then, step (4) gives
Edit(et,, Dy); Ong;ta = Turn off to — Filter(Ony, Unfilter(Edit(et,, D2))); Ong;ty
We need to show:
Save(Dy) = Save(Filter(Ony, Unfilter(Edit(es,, Ds))))
We case on the edit:

— Case (ins). Edit(ey,, Dy) = D + [¢t27% 4+ [k] + D’. By induction, we have
Save(Dy) = Save(Filter(Ony, Unfilter(D + [k] + D’))). Therefore, we must show
Save(Filter(Ony, Unfilter([ct279)))) = €. Because On,(ty) = false, Filter will
yield [hidden(ct*2=?)], which Save takes to e.

— Case (dell). Edit(ey,, D) is either (a) D+ D’ or (b) D+ [hidden(ctt =™ty 4 D7,

By induction, Save(D;) = Save(Filter(Ony, Unfilter(D + [cT'~*] 4 D"))).

When (a) is the case, we essentially need to show
Save(Filter(Ony, Unfilter([ct* 1)) = €

We know t' = t5 and so On (') = false. Therefore, Filter(Ony,[ct?~]) yields
either a hidden or dangling symbol which is taken to € by Save.

When (b) is the case, we need to show
Save(Filter(Ony, Unfilter([¢' 1)) = Save(Filter(Ony, Unfilter([hidden(c™ 71Vit21)])))

or
Save(Filter(Ony, [c+t/_¥])) = Save(Filter(Ony, [c“l_zu{t?}]))

We know ¢’ # ¢, and ty € ¢. Theorem 8 and Definition 6 give Ony(t') = true
and V" € t.-0ny(t"). Because On; and Onsy coincide except at argument ¢s,
On(t') = true and V" € t.=O0ny(t"). Also, we know Onq(ty) = true. Therefore,

Save(Filter(Ony, [ 7)) = Save(Filter(Ony, [¢7 1)) = «¢”

— Cases (del2) and (del3) follow from induction, since the document remains un-
changed. O

Omitted details involve invoking Theorems 7, 8, and 11 as needed.

27



