
Quality of Service Profiling and Autotuning for Energy-Aware Approximate
Programming

Michael F. Ringenburg Adrian Sampson Luis Ceze Dan Grossman
Department of Computer Science & Engineering, University of Washington

{miker,asampson,luisceze,djg}@cs.washington.edu

July 11, 2012

Abstract
One promising approach to energy-efficient computation, ap-
proximate computing, trades off output precision for gains in
energy efficiency. Many applications can easily tolerate small
errors, especially if they are handled in a disciplined man-
ner. However, approximation introduces an inherent tradeoff
between quality of service and energy efficiency. Existing
approaches lack ways to quantify and study these tradeoffs.
This paper proposes tools to prototype, profile, and automat-
ically tune the quality of programs designed to run on future
approximate hardware. We describe the software layers re-
quired in such a system and discuss design considerations.
We also present an OCaml-based prototype of our tool suite,
and describe three case studies that we performed with it.

1 Introduction
Energy efficiency has become a critical component of com-
puter system design. Battery life is a major concern in mo-
bile and embedded devices; power bills make up a large part
of the cost of running data centers and supercomputers; and
the dark silicon problem limits the amount of usable chip area
due to power constraints [7].

Approximate computing is a promising approach that al-
lows systems to trade accuracy for energy efficiency or per-
formance. If applications can tolerate occasional errors, hard-
ware can consume less power. For example, reducing the re-
fresh rate of DRAM saves energy at the cost of occasional
memory errors [13]. Similarly, we can execute instructions
on a low-powered pipeline if we can tolerate occasional logic
errors [8].

Many applications have kernels that are amenable to ap-
proximation. For example, applications that work with au-
dio, video, or images are inherently error-tolerant—in fact,
common media storage formats involve lossy compression.
Any code that involves a randomized or approximate algo-
rithm can also tolerate imprecision.1 However, even the most

1In fact, one of the sample applications we considered for this paper was
a genetic algorithm, but it turned out that when we added approximation the
results were a better fit for the data than when we ran it precisely. Thus it

approximable applications require some code to execute pre-
cisely. For example, memory allocation, control flow, and
bounds checking must be precise to avoid faults. Some appli-
cations also have certain phases that must execute precisely.
For instance, while we can often approximate the pixels of
an image, approximation in the image header may be catas-
trophic.

Energy savings from approximate computing typically
come from hardware. However, only the application can de-
termine where approximation is appropriate. Thus, a lan-
guage with support for approximation must allow program-
mers to distinguish parts of a program—variables, operations,
methods, loops, and so on—that are tolerant to error. One ex-
ample of such a language is our EnerJ extension to Java [18].
EnerJ programmers annotate data that can be approximated
and the type system ensures that approximate data does not
flow into precise data without explicit programmer permis-
sion.

Approximate computing represents a tradeoff between en-
ergy efficiency and quality of service (QoS). Researchers (and
developers) investigating approximate computing need tools
to help quantify this tradeoff and understand how much QoS
must be sacrificed to achieve desired efficiency gains. Users
can also benefit from understanding which portions of their
code should be approximate, and which precise, to optimize
this tradeoff.

To address these challenges, we propose an architecture
for a tool that prototypes, profiles, and autotunes approximate
applications designed for future approximate hardware using
only readily-available conventional hardware. Our architec-
ture consists of approximation, profiling, and autotuning lay-
ers. The approximation layer is responsible for simulating
the effects of approximate hardware. Both the approxima-
tion model and the energy cost model are customizable. The
profiling layer uses the approximation layer to monitor both
the quality lost and the efficiency gained due to approxima-
tion. Because QoS is an application-specific measurement,
the profiler takes a QoS-evaluation function as input. Finally,

was not an interesting test case for our profiler and autotuner.

1

the autotuning layer builds on the previous layers to explore
alternate precise–approximate decompositions of user code
blocks. It searches for points along the Pareto frontier of op-
timal quality–efficiency tradeoffs. We have implemented this
architecture for OCaml programs by modifying the OCaml
implementation. We call our tool EnerCaml. It is available at
our website [6].

The rest of this paper describes the layers of our archi-
tecture, as well as how they were implemented in our pro-
totype. Specifically, Section 2 discusses the approximation
layer, Section 3 describes the profiling layer, and Section 4
reviews the autotuning layer. We also discuss three case stud-
ies in Section 5.

2 Approximation Layer
To determine how a prototype application can leverage ap-
proximate computing, we need a way for programmers to
indicate where approximation is acceptable. To determine
how the application responds to different kinds of approxi-
mate hardware, we need a way to run the application such
that approximation occurs according to some model. This
section describes our design for both needs.

2.1 Code-Centric Approximation
We assume most code will be written assuming precise ex-
ecution but that some energy-consuming kernels will lever-
age approximation. We therefore have explicit markers in the
program to indicate that the execution of some code block
can be approximate. (In languages like OCaml with higher-
order functions, such a marker can just be a function tak-
ing a function, so an approximate computation e looks like
approximate (fun () -> e), but the syntax is not
essential.) Conversely, users can indicate that a subcompu-
tation of an approximate computation should be precise (e.g.,
precise (fun () -> e)). This code-centric approach
has complementary advantages to data-centric approaches
that mark approximate data elements instead of code blocks.
In prototyping applications, we often found the code-centric
approach avoided unnecessary copying of data into and out
of kernels.

Even within approximate computations, many operations
would lead to crashes and other bad behavior if executed
approximately. Examples include control flow and memory
management. Therefore, we take a conservative approach to
approximate execution and allow imprecision only in arith-
metic operations, comparisons, and loads from numeric ar-
rays. Approximate array loads model approximate memory
since whether the load or the storage system introduces the
error is irrelevant to the application.

When prototyping how approximation can change applica-
tion behavior, one simply marks approximate sections of code
(and precise subsections within them). This purposely simple
approach adds only directly relevant work over implementing
the original algorithm.

2.2 Simulating Approximation
For understanding and prototyping approximation, we argue
against this natural approach: Build an approximate hardware
platform (or simulator), write a compiler, run the program,
and measure QoS and energy usage. Such an approach gives
little feedback in terms that make sense with respect to the
high-level algorithm. Moreover, tweaking low-level param-
eters (e.g., DRAM refresh rate) will likely have inscrutable
effects on quality of service.

Instead, we advocate and have implemented a high-level
configurable approximation model directly corresponding to
the operations visible in the programming language. For each
approximated operation, we apply a transformation to the pre-
cise output to produce the approximate output. For example,
one simple model is that with probability p a load is cor-
rect and with probability 1− p it is a uniformly random bit-
pattern. A model representing approximate arithmetic func-
tional units could incorporate that low-order bits are more
likely to be wrong. We expect users to design these models
based on complementary research on approximate hardware,
allowing a key separation of concerns between high-level ap-
plication design and low-level hardware design.

An essential advantage of this approach is that making the
approximation model configurable is easy: We can provide
hooks (e.g., a library API) for users to plug in arbitrary func-
tions to replace each approximate result. For example, to
configure EnerCaml such that approximate integer arithmetic
produces the wrong low-order bit with probability 0.1, one
would just run this code:

let flip p i = (if ((Random.float 1.0)<p)
then (i lxor 1) else i)

in set_integer_approximation (flip 0.10)

Users can also customize the technique used to estimate
the amount of energy saved via approximation. During ex-
ecution, the runtime records a trace of approximable events:
those for which the system supports error injection. The trace
records the kind of each event and whether it was approxi-
mate or precise. To model a given hardware technique for
approximation, the user can provide a function that processes
a trace and returns a “score”: a number between 0.0 and 1.0
proportional to the amount of energy hypothetically saved.
The system runs the scoring function after every execution to
quantify the gain from approximate execution.

To model a hardware approximation technique in our pro-
posed architecture, the user simply supplies error injection
and energy quantification functions written in the applica-
tion’s native source language. This flexibility makes it pos-
sible to use our approach to evaluate a wide range of approx-
imation techniques.

2.3 EnerCaml’s Approximation Layer
EnerCaml is a prototype implementation of our architec-
ture for the OCaml language. Users create approximation

2

approximate (unit->’a) -> ’a approx Executes its thunked argument
approximately, wraps the result
in an approximate type, and re-
turns it.

continue approx ’a approx->(’a->’b)->’b approx Takes an approximate value and
a function, and approximately
applies the function to the value.

endorse ’a approx -> ’a Transforms its approximately-
typed argument into a precisely-
typed return value.

precise (unit -> ’a) -> ’a Executes its thunked argu-
ment precisely, and returns the
thunk’s result.

lift ’a approx approx-> ’a approx Lifts an approx approx
type to an approx type.

set float approximation (float->float) -> unit Specifies the float approxima-
tion function.

set integer approximation (int->int) -> unit Specifies the integer approxima-
tion function.

set load approximation (int->int) -> unit Specifies the integer array load
approximation function.

set load float approximation (float->float) -> unit Specifies the float array load ap-
proximation function.

Table 1: The EnerCaml approximation primitives.

in EnerCaml programs by passing a thunked code block to
the function EnerCaml.approximate, which has type
(unit -> ’a) -> ’a approx. The EnerCaml sys-
tem then executes the thunk approximately and returns the
result wrapped inside an approximate type. Before us-
ing the approximately-typed result in a precise computa-
tion, the user must endorse it with a call to a function
EnerCaml.endorse of type ’a approx -> ’a. The
use of approximate types and explicit endorsements is mod-
eled after EnerJ. It enforces a boundary between approximate
and precise computations and requires users to explicitly ac-
knowledge every location where data crosses the boundary
from the approximate realm into the precise realm.

For example, consider the following code snippet from a
ray-tracer (downloaded from the website of Flying Frog Con-
sultancy [9]), where the function intersect is used to de-
termine where a ray intersects a scene:

let x, n = intersect zero dir (inf, zero)
scene

in let g = dot n light in ...

To execute the intersection approximately, we simply write:

let x, n = EnerCaml.endorse (
Enercaml.approximate (

fun () -> intersect zero dir (inf, zero)
scene))

in

let g = dot n light in ...

The call to approximate causes the EnerCaml system to
simulate executing the intersection computation on approxi-
mate hardware (we discuss this in more depth in Section 2.4).
The call to endorse allows the values returned from the ap-
proximate intersection to be used in future precise computa-
tions. Alternatively, approximate values can be passed to fu-
ture approximate computations via the continue approx
primitive. The continue approx primitive has type ’a
approx -> (’a->’b) -> ’b approx. It takes an
approximate value and a function and approximately ap-
plies the function to the value, returning another approximate
value.

Table 1 lists the approximation primitives we used
in our prototype . We described the approximate,
continue approx, and endorse primitives above. The
precise primitive allows programmers to specify that cer-
tain code should always be executed precisely, even inside
an approximate dynamic context. precise takes a thun-
ked block of code as its argument and executes it precisely,
returning the return value of the thunk. Outside of an approx-
imate dynamic context (or directly nested inside another pre-
cise context), the precise primitive is simply a direct ap-
plication of the thunk. We also provide a lift primitive that
converts an approx approx type into an approx type.
This is useful when an approximate thunk returns the result

3

of a nested approximate thunk, resulting in an ’a approx
approx when we would prefer an ’a approx. This could
be handled by the endorse primitive, but that would be mis-
leading because we are not really endorsing a flow as much
as saying that multiple levels of approx are equivalent to a
single level.

The EnerCaml approximation layer also provides primi-
tives that allow developers to pass arbitrary approximation
routines to the approximation layer. These approximation
routines specify how the approximable operations should be
approximated, as described previously in Section 2.2. We
also list these primitives in Table 1. They all take an approx-
imation routine of the appropriate type (e.g., int -> int
for the integer approximation routines) and return unit. If
no approximation functions are specified with these primi-
tives, the EnerCaml system defaults to using random bit-flips
for all array loads and integer arithmetic, and to calculating
within an error margin for floating point math. We provide
additional primitives to set the probability of bit flips and
floating point errors (as well as the size of the floating point
errors) for the default approximation routines.

Finally, the EnerCaml approximation layer allows users
to set the energy scoring function by modifying the mutable
reference EnerCaml.score callback. As described in
Section 2.2, the scoring function should process a list of ap-
proximate and precise events and return a score between 0.0
and 1.0 proportional to the amount of energy saved.

2.4 Implementation of Approximation in En-
erCaml

The EnerCaml implementation is designed around the idea
of tracking precise and approximate execution by using dual
versions of each function—a precise version and an ap-
proximate version. The precise version is called when-
ever we apply the function in a precise context (i.e., in-
side precise code) or execute the thunked argument of an
EnerCaml.precise call. The approximate version is
called whenever we apply the function in an approximate
context (i.e., inside approximate code) or execute the thun-
ked argument of an EnerCaml.approximate call. We
track the two versions of each function by adding a second
code pointer to each function closure. We also create approx-
imate versions of some of the OCaml primitives by adding the
approx suffix to their names and placing pointers to them

in the approximate slots of their original primitives’ closures.
This is useful for handling approximation of floating point
operations and array loads because these operations are all
handled by calls to primitives in the OCaml runtime.

This approach works well for prototyping and profiling,
which is the goal of EnerCaml. On real energy-saving ap-
proximate hardware, however, it may be less compelling be-
cause the extra space required for dual closures would use
more energy. Thus designers of such systems should con-
sider alternate approaches that send code to an approximate

core when an approximate call is encountered or track the
current approximate state (e.g., via a bit in hardware) and ex-
ecute either approximate or precise instructions based on that
state.

The changes to the bytecode compiler to support proto-
typing approximate computations were straightforward and
localized. No changes had to be made to the front end of
the compiler, since the EnerCaml functionality is entirely de-
fined by calls to primitives in our new EnerCaml module. We
had to modify a few data structures and instructions in the
back end to track the additional code pointer (to the approx-
imate version of the function) present in EnerCaml closures.
We also had to modify the compiler to output two versions
of each function. When it outputs the approximate version
of a function, the compiler replaces integer arithmetic and
function application bytecodes with new approx versions
of those bytecodes. The approx versions of the integer
arithmetic bytecodes specify that the interpreter should apply
the integer approximation function (see below) to the result
of the computation. For function applications, the approx
version of the bytecode specifies that the approximate code
pointer should be followed (rather than the precise pointer).
This includes applications of primitive functions, which re-
sults in the approximate versions of the floating point and ar-
ray load primitives being called where appropriate.

We also changed the bytecode interpreter to support ap-
proximation in EnerCaml. As with the compiler, we modified
a few data structures and instructions to track the dual func-
tion closures. We also added approximate versions of every
function application bytecode and made them follow the ap-
proximate code pointer. We modified the code that constructs
closures for primitives to search for approx versions of the
primitives. If found, we place the pointer to the approx
version of a primitive in the approximate code pointer slot
of the original primitive’s closure. Otherwise, we place a
pointer to the standard version of the primitive in both code
pointer slots (precise computation is always a legal approx-
imation). To simulate integer arithmetic approximation, we
added cases for the approx version of each integer oper-
ation to the main interpreter loop. These cases all call the
approx int arith routine, which in turn applies either
the user-specified integer approximation function or a default
bit-flip approximator. To simulate approximation of array
loads and floating point operations, we added approx ver-
sions of the appropriate primitives. Like the approximate in-
teger bytecodes, these approximate primitives pass their re-
sults to a routine that applies either the default approximator
or a user-specified approximator.

The final piece of the approximation layer is the imple-
mentation of the approximation primitives. The precise
primitive simply passes its argument to the callback routines
that are provided as part of the OCaml-C interface. For
the approximate primitive, we create new approximate
versions of these callback routines that follow the approxi-

4

mate code pointer rather than the precise code pointer. The
endorse primitive does not require a C implementation.
The approximate type is implemented as an abstract type
(type ’a approx = ’a) in the EnerCaml module, so
endorse is simply the identity function:

let endorse (x : ’a approx) = (x : ’a)

The lift primitive is identical. The continue approx
primitive is also implemented in the EnerCaml module:

let continue_approx (x: ’a approx)
(fn: ’a->’b)=

approximate(fun () -> fn x)

3 Profiling Layer
The profiling layer is responsible for estimating the energy
savings and quality of service for an execution of an approx-
imate application. This may vary between runs due to dif-
ferent inputs and the randomness present in most forms of
approximation.

Quality is measured by comparing an approximate execu-
tion with a precise execution with identical inputs. It is inher-
ently application-specific, so the profiling layer must provide
a way for users to specify how executions should be com-
pared. This involves specifying the outputs to be compared
along with an output comparison function (the QoS function).
The profiling layer runs the code twice, collects the outputs
of both runs, and compares them using the QoS function.

For example, an EnerCaml programmer writing a ray tracer
might record the final pixel values for comparison:

let _ = EnerCaml.record_profile_output g
in Printf.fprintf pgm_file "%c" g

and compare them using peak signal-to-noise ratio (PSNR):

let rec se_sum prec_l app_l =
match prec_l, app_l with

prc_hd::prc_tl, app_hd::app_tl ->
(app_hd -. prc_hd) *.
(app_hd -. prc_hd) +.
(se_sum prc_tl app_tl)

| _ -> 0.
in
let mse prec app = (se_sum prec app) /.

(float_of_int (List.length prec)) in
let psnr precL appL = 10. *. (log10

((255. *. 255.)/.(mse precL appL))) in
EnerCaml.eval_qos psnr

The record_profile_output function appends its
argument to a list of output data specific to the current ex-
ecution. After the precise execution, the profiling layer saves
this list and starts a new list for the approximate execution.
At the end of the approximate execution, we apply the QoS
function (the argument to eval_qos) to the two lists. We
then output the computed QoS and an estimate of the energy
saved. As mentioned in Section 2.2, we provide hooks that

let users customize the estimation of energy savings from ap-
proximation.2 By default, we use a simple metric propor-
tional to the percentage of approximable operations executed
approximately (i.e., the computed score is the percentage of
the recorded events whose approximate flag is set to true).

3.1 Implementation of Profiling in EnerCaml
The code changes required to implement the EnerCaml pro-
filer were once again straightforward. We modified the inter-
preter to run the code multiple times. In standard profiling
mode, there are only two runs: one fully precise run and one
run with all user-specified approximation enabled. Section 4
describes our autotuning layer, which adds additional runs.
During the fully precise run, the interpreter simply follows
the precise code pointer at every function application byte-
code (including the approx application bytecodes). The
only other change required for profiling EnerCaml codes was
to implement the EnerCaml.eval qos primitive. For this
to work we had to ensure that the list of output data from the
precise run did not get moved or deleted by the garbage col-
lector once we started subsequent approximate runs. To ac-
complish this, we take advantage of the fact that eval qos
is called after all of the data is produced. From the user’s
perspective, eval qos does nothing during a precise run.
However, behind the scenes, we modified it to copy the pre-
cise output data list from the OCaml heap to the C heap. We
store a pointer to the copied list. On subsequent approximate
runs, eval qos computes the quality of service by applying
the passed-in QOS function to this previously-stored precise
output list and the approximate output list collected during
the current approximate run.

4 Autotuning Layer
The profiling layer lets programmers investigate the QoS and
efficiency implications of their approximate programs. How-
ever, to improve QoS–energy tradeoffs, programmers must
be able to determine which portions of their code are most
amenable to approximation and which should be kept precise.
Doing this by hand is tedious and time-consuming due to the
number of possible combinations of precise and approximate
annotations. The autotuning layer automates part of this pro-
cess and generates a set of simple code changes that improve
QoS and/or efficiency.

The autotuner builds on the profiling system to navigate
the search space of alternate precise/approximate decompo-
sitions of the original program. The goal is to automatically
identify program annotations that offer better efficiency–QoS
tradeoffs than an initial annotation provided by the program-
mer. Using search heuristics, the autotuner generates many
alternative program decompositions and profiles each in turn
to assess its energy efficiency and QoS. The configurations

2The profiler formats the energy score as a percentage (i.e., the score
returned by the customized metric is multiplied by 100, so for example 0.948
will be output as as 94.8).

5

(a) (b) (c) (d)

Figure 1: Static call trees illustrating the various strategies we use to search the precise-approximate decompositions of Ener-
Caml programs for improved quality of service versus efficiency tradeoffs. A black node represents an approximate function
application and a white node represents a precise application. Figure (a) shows the originally specified approximation. Figure
(b) shows the result of treating one of the approximate applications as if it were called inside a precise thunk. Figure (c) shows
the result of narrowing the approximation to just that same call site. Finally, figure (d) illustrates the result of making two
sibling call sites precise.

with the best efficiency and QoS are reported to the program-
mer.

The autotuner’s search heuristics consist of removing ap-
proximation from code that was marked as approximate in
the original code. We never add approximation to code that
was originally specified as precise—the programmer’s initial
annotation bounds approximation to code that can be safely
relaxed. Each alternative program decomposition consists of
a set of static call sites within an approximate computation
that are marked as precise (as if with the precise marker).
The idea is that programmers can roughly indicate an area
where approximation might be appropriate and the autotuner
refines the region to improve QoS–efficiency tradeoffs.

Exhaustively considering every subset of the call sites in an
approximate computation would create an exponential search
space. Thus, the autotuner must use heuristics to choose
which call sites to evaluate. We found that the following
heuristics (illustrated by the static call trees in Figure 1)
worked well in EnerCaml:

• Treat a single call site as if it were surrounded by a call to
the precise primitive (illustrated in Figure 1b). Note
that this also causes any calls under it to execute pre-
cisely (unless another call to approximate is encoun-
tered).

• Make all call sites in the computation precise except for
one. Note that this includes the call to the code passed
to approximate, thus this effectively “narrows” ap-
proximation to the chosen site (Figure 1c).

• Make a pair of call sites that appear in the same calling
function precise. Intuitively, these “adjacent” call pairs
are more likely to have a synergistic effect—i.e., the ben-
efit of making them both precise may be more than the

sum of the benefits of making them individually precise
(Figure 1d). For example, the two may pass data from
one to the other or both may pass data to a third function.

The chosen heuristics represent a tradeoff between autotuning
time and the thoroughness of the search. Additional strategies
would be easy to add but, in our studies, we found that the
above strategies were sufficient.

The autotuner profiles each alternative configuration and
collects its QoS and estimated energy savings. If one re-
sult has both better QoS and higher energy savings than an-
other result, we say that the former result dominates the lat-
ter. The tool reports all configurations that are not dominated.
This represents the Pareto frontier of the best discovered QoS
versus efficiency tradeoffs. Users may also iteratively refine
these configurations by rerunning the autotuner. Figure 2 de-
picts an excerpt of the tool’s output, including a textual listing
and a graph.

4.1 Implementation of Autotuning in Ener-
Caml

The code changes required to implement the EnerCaml auto-
tuning layer were straightforward and localized. In particular,
the only compiler change that was necessary was to track and
record the source location of every function application byte-
code. We were able to reuse code that supports the OCaml
debugger to do this, with a few small additions. The byte-
code offset and corresponding source location are stored in
a file which is read in by the interpreter when it executes in
autotuning mode. This allows the autotuner to map function
applications back to locations in the source, which in turn al-
lows it to report the changes it made for each partial approxi-
mate run in a user-readable form.

We also changed the interpreter to implement the auto-
tuner’s search strategies. In autotuning mode, our interpreter

6

records each approximate function application that it executes
during the original approximate run as well as the calling
function that contains it (necessary for the final strategy that
pairs function applications with the same parent). The PCs
of these applications are stored in a simple hash table with
no duplicates. After the fully approximate run we gather
all of the application PCs into an array and use it to de-
termine which function applications should be precise and
which should be approximate in the subsequent partially ap-
proximate runs. We then check the current PC every time
we execute an approximate function application bytecode in
a partial approximate run to see if we need to follow the pre-
cise code pointer.

5 Case Studies
We used the EnerCaml system to profile and tune the ap-
proximation properties of three existing OCaml applications,
none of which were written by us. This section discusses our
experiences with those applications. First, Section 5.1 de-
scribes profiling the ray tracer application mentioned previ-
ously. Next, Section 5.2 discusses our experiences with pro-
filing an N-body simulation application. Finally, Section 5.3
discusses a collision detection kernel.

5.1 Ray Tracer
Our initial experience with the EnerCaml system involved
adding approximation to a ray tracer (downloaded from the
website of Flying Frog Consultancy [9]). The ray tracer has
two phases: scene creation and ray tracing. The scene cre-
ation phase creates a scene consisting of a number of spheres
of different sizes. The ray tracing phase then generates an
image by sending a series of rays at the scene.

We started by approximating both phases of the compu-
tation. To approximate scene creation, we simply added a
call to approximate around a thunk containing the call to
create:

let app_scene = approximate(fun () ->
create level {x=0.; y= -1.; z=4.} 1.);;

To approximate the ray tracing phase, we wrapped the calls to
ray trace (which traces an individual ray) inside another
thunk and passed it to approximate:

let approx_g = approximate(fun () ->
ray_trace dir scene) in

We used the default EnerCaml approximation routines, with
an error rate set to 0.5%3 (i.e., one out of every 200 ap-
proximable operations returns an incorrect result). Figure 3a
shows an image generated by this approximation of the the
ray tracer.

We next instrumented the program for profiling and auto-
tuning so that we could search for ways to improve the qual-
ity of the initial image (Figure 3a). Recall that profiling in

3Lower error rates did not add enough error to make the investigation
interesting.

EnerCaml involves specifying a quality of service evaluation
function and adding calls to collect the data required for the
evaluation. We chose peak signal-to-noise ratio (PSNR) for
our quality of service. We pass the quality of service function
to the eval qos routine, which in turn passes it lists of data
from precise and approximate runs:

let rec se_sum prec_l app_l =
match prec_l, app_l with
prc_hd::prc_tl, app_hd::app_tl ->
(app_hd -. prc_hd) *.
(app_hd -. prc_hd) +.
(se_sum prc_tl app_tl)

| _ -> 0.
in
let mse prec app = (se_sum prec app) /.
(float_of_int (List.length prec)) in

let psnr prec_l app_l = 10. *. (log10
((255. *. 255.)/.(mse prec_l app_l))) in

EnerCaml.eval_qos psnr

The data points for our PSNR calculation are the pixels of the
output image. We collect the data as it is written to the image
file:

let () = EnerCaml.record_profile_output g in
Printf.fprintf file "%c" (char_of_int

(int_of_float g))

After instrumenting the code, we ran it through the simple
profiler to determine the quality of service and efficiency of
our initial attempt at approximation. Our initial PSNR was
26.9, with 94.8% approximation. We next ran our autotuner
to see if we could improve on these results. Figure 2 shows
a plot of the best results (i.e., the quality of service/efficiency
frontier curve), as well as the textual output for a selection of
these results. The first thing that jumps out of these results is
that we can obtain better quality (PSNR of 28.4), while only
giving up a very small amount of approximation by making
the scene creation precise. Intuitively, small changes in the
positions of spheres can have significant impacts on the errors
of some pixels because they can move the boundary between
shadowed (dark) and non-shadowed (bright) pixels. These
errors may not be as noticeable to a human viewer as the ran-
dom errors generated by approximating rays, but they have a
significant impact on our chosen metric, PSNR. These types
of errors would also be more noticeable to humans in a video
setting, where small shifts in the positions of objects could
create inter-frame jitter. Since approximating scene creation
also had a negligible impact on efficiency (most of the energy
is spent on tracing the scene, not creating it), we removed it
and reran the autotuner.

On our second autotuning run, the most interesting results
consisted of a PSNR of 29.9 with 86.3% of approximable op-
erations approximated, and of a PSNR of 36.9 with 22.3%
of approximable operations approximated (Figure 3b). The
29.9 PSNR result was obtained by narrowing the approxi-
mation to just the call to the ray sphere function (which

7

Narrowing approximation to trace.ml, line 16,
character 10:
QOS: 37.644753, Approximation score: 22.282223
...
Narrowing approximation to trace.ml, line 36,
character 13:
QOS: 32.663749, Approximation score: 63.438417
...
Making precise trace.ml, line 55, character 47:
QOS: 28.351986, Approximation score: 94.797524

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 25 30 35 40 45 50 55 60 65 70 75

ap
pr

ox
im

at
io

n

quality

E ray_trace_orig.ml:47,39 & ray_trace_orig.ml:46,20

N ray_trace_orig.ml:31,41

N ray_trace_orig.ml:31,21

N ray_trace_orig.ml:36,13

N ray_trace_orig.ml:40,11

N ray_trace_orig.ml:16,10

N ray_trace_orig.ml:15,10

Figure 2: Our autotuner produces a textual and graphical depiction of the best results among the profiled executions.

computes the first intersection of a ray and a sphere). The
36.9 PSNR result was obtained by narrowing the approxi-
mation to a particular dot product computation inside of the
ray sphere function. These results led us to focus our ap-
proximation efforts on the ray-sphere intersection code. We
moved the approximation primitive in the ray tracer code to
just the ray sphere call site, and reran the profiler. This
gave us a number of new interesting points along our fron-
tier curve, including a PSNR of 33.6 with 41.8% approxima-
tion, a PSNR of 32.9 with 50.7% approximation, and a PSNR
of 31.5 with 64.1% approximation. All three of these re-
sults were obtained by making either individual calculations
or pairs of calculations inside ray sphere precise. Our fa-
vorite result, with PSNR 33.6 and 41.8% approximation, is
shown in Figure 3c. It has slightly lower quality than the
PSNR 36.9 result in Figure 3b, but nearly twice the number
of approximated operations.

It would have required significantly more effort to charac-
terize the effects of approximation without the assistance of
our profiling and autotuning tool. The autotuner allowed us to
quickly remove scene creation from consideration due to its
poor tradeoff between quality and efficiency. It then pointed
us to the importance of the ray sphere function and al-
lowed us to focus our efforts there.

5.2 N-Body Simulation

The next application that we looked at was an N-body simula-
tion (downloaded from the Computer Language Benchmarks
Game website [20]). We started by adding a simple quality of
service metric that calculates the inverse of the average error:

let inv_err pl al =
(* Calculate inverse of average difference

between elements of pl and al lists *)
...

in
EnerCaml.eval_qos inv_err

The simulation first initializes the N-body system with a call
to offset momentum and then calls advance in a loop
to advance the state of the simulation one step at a time. We
wrapped both calls in approximate thunks:

EnerCaml.approximate
(fun () -> offset_momentum bodies);

...
for i = 1 to n do
EnerCaml.approximate

(fun () -> advance bodies 0.01)
done;

When we first ran our approximated N-body simulation, it
threw an index out of bounds exception. The offending array
indices were calculated by integer arithmetic that was approx-
imated. We could have chosen to wrap the relevant calcula-
tions in a precise thunk, but we instead decided to see if our
autotuner could help us. When the autotuner encounters an
uncaught exception on one run, it simply terminates that run
(without recording it as a potential best result) and continues
to explore alternate approximations of the code. Another pos-
sibility that we intend to explore further is to modify future
versions of the EnerCaml runtime to convert out-of-bounds
array references in approximate code to in-bounds references.

Initially, our autotuner was not able to tell us very much
because the only function applications it identified were the
two outer-level calls to offset momentum and advance
that we had wrapped in approximate thunks. We looked at
the code and discovered that the simulation code was writ-
ten in a very imperative style, whereas EnerCaml’s autotuner
is designed for the functional style more commonly used in
OCaml applications. A doubly-nested loop over the bodies
calculates the effect of each body on every other body. We
were quickly able to identify various subcomponents of the
calculation, and wrap them in function calls. When we reran
the autotuner, we found that two of the subcomponents of the
calculation could be profitably approximated with very low
impact on the quality of service:

8

(a) (b) (c)

Figure 3: The images generated by our ray tracer with various mixtures of approximate and precise execution. Image a (PSNR
26.9) represents the result of approximating the entire ray tracing and scene creation computations. Image b (PSNR 36.9)
limits the approximation to a single dot product inside the ray sphere function. Image c (PSNR 33.6) approximates the
ray sphere function, but executes two of its dot products precisely. It has slightly lower quality than image c, but almost
twice as much approximation.

QOS = 5562.919330
Approximation score: 24.456460
...
QOS = 7436.822960
Approximation score: 24.456460

Both of these are significantly better than the original approx-
imation. With integer approximation temporarily turned off
(via setting its probability to 0) to avoid the exceptions, the
original approximation had a QOS of 0.009556—so low as to
be unusable (although it did achieve 94.3% approximation).
We also tried approximating both of the identified computa-
tions to see if we could still get good quality of service with a
larger fraction of operations approximated. Our results were
promising:

QOS = 3821.292285
Approximation score: 48.912917

In the case of the N-body simulation code, the autotuner al-
lowed us to work around the initial errors that were caused by
attempting to approximate calculations that needed to be per-
formed precisely. It then allowed us to identify (after straight-
forward code modifications) portions of the simulation cal-
culation that could be profitably approximated without sig-
nificantly impacting the quality of service. The whole pro-
cess took roughly one hour for one author unfamiliar with the
code.

5.3 Collision Detector
Our final example is a simple collision detection kernel
(downloaded from [17]) that checks whether or not two tri-
angles in 3D space intersect each other. Our quality of ser-
vice metric calculates the percentage of the intersection tests

where we correctly detect whether or not the triangles inter-
sect. Based on our experiences with the previous examples,
we did not attempt to approximate the initialization. Instead,
we just surrounded the call to the intersection routine with an
approximate thunk. We then passed the result of the intersec-
tion routine to a function that parses the result and records it
for the profiler:

let intersects =
EnerCaml.endorse(

EnerCaml.approximate(
fun () -> tri_tri_intersect tri1 tri2))

in
record_output_coll intersects

As usual, we started by running the simple profiler to get a
baseline:

Percent correct = 97.810000
Approximation score: 93.960868

Our initial results were reasonable—97.81% of collisions
were correctly detected and almost 94% of approximable op-
erations were approximated. We then ran the autotuner to see
if we could do even better. Most of the interesting results
along the frontier curve involved making some combination
of the function applications from four different source lines
approximate. These four lines can be split into two pairs.
The first pair test whether all three points of one triangle lie
on the same side of the plane of the other triangle (indicating
no intersection):

if ((sign da1) = (sign da2) &&
(sign da2) = (sign da3)) then

NoIntersection

9

...
if ((sign db1) = (sign db2) &&

(sign db2) = (sign db3)) then
NoIntersection

...

The other pair compute the normals of the planes containing
the two triangles, which is an essential input to the computa-
tion we just described:

let na = vnormal a.(0) a.(1) a.(2)
and nb = vnormal b.(0) b.(1) b.(2) in

We experimented with making these computations precise.
When we made both of the plane normal calculations pre-
cise, our quality of service increased to 98.88% correct, but
our approximation percentage dropped a bit, to 67.1%. When
we instead made the no-intersection checks precise, our qual-
ity of service did not increase by as much, only rising to
97.94%. However, our approximation was almost unchanged
at 93.0%. When we combined both changes we were able
detect 98.93% of collisions correctly and still approximate
66.1% of the approximable operations. Compared to the orig-
inal annotation, we were able to eliminate over 51% of the
errors while losing less than 30% of the approximation. This
whole process took under an hour for one author unfamiliar
with the code.

6 Related Work
Many systems have proposed trading off quality to improve
performance or save energy using both software [1, 19, 22,
10] and hardware [4, 13, 8, 11, 16, 3] techniques. Sev-
eral studies have shown that a wide variety of applications
can tolerate the resulting imprecision with acceptable re-
sults [12, 5, 21]. This work on approximate computing forms
the context for tools for managing approximation like the one
proposed here.

Some language-level techniques seek to help developers
mitigate the effects of approximate semantics. Carbin et
al. [2] propose a proof system for verifying user-specified cor-
rectness properties in relaxed programs. Misailovic et al. [14]
use probabilistic reasoning to prove accuracy bounds on re-
laxed transformations. EnerJ [18] provides a simple noninter-
ference guarantee. These techniques are static and conserva-
tively bound imprecision. Programmers writing to a relaxed
programming model can use them in tandem with dynamic
tools like EnerCaml to obtain an empirical picture of quality
loss.

Quality-of-service profiling [15] identifies code that has lit-
tle influence on output quality. Programmers can consider re-
laxing this code to improve performance. In contrast, our tool
uses a priori programmer annotations to identify approximate
portions of programs that should be made more accurate to
achieve a desired QoS level. EnerCaml is a closed-loop sys-
tem that suggests specific code modifications to achieve better
energy–quality tradeoffs.

7 Conclusion
This paper proposes an architecture for prototyping, profiling,
and autotuning approximate computations. We believe that
approximate computing will be a significant factor in improv-
ing the energy efficiency of computations in the future. Until
now, however, there was a lack of tools to help researchers
and developers understand the QoS–efficiency tradeoffs that
are inherent in approximate computing. This work addresses
that pressing need.

References
[1] BAEK, W., AND CHILIMBI, T. M. Green: a framework for support-

ing energy-conscious programming using controlled approximation. In
PLDI (2010).

[2] CARBIN, M., KIM, D., MISAILOVIC, S., AND RINARD, M. C. Rea-
soning about relaxed programs. In PLDI (June 2012).

[3] CHAKRAPANI, L. N., AKGUL, B. E. S., CHEEMALAVAGU, S., KO-
RKMAZ, P., PALEM, K. V., AND SESHASAYEE, B. Ultra-efficient
(embedded) SOC architectures based on probabilistic CMOS (PC-
MOS) technology. In DATE (2006).

[4] DE KRUIJF, M., NOMURA, S., AND SANKARALINGAM, K. Relax:
an architectural framework for software recovery of hardware faults. In
ISCA (2010).

[5] DE KRUIJF, M., AND SANKARALINGAM, K. Exploring the synergy
of emerging workloads and silicon reliability trends. In Silicon Errors
in Logic—System Effects (2009).

[6] http://www.cs.washington.edu/homes/miker/
enercaml, Mar. 2012.

[7] ESMAEILZADEH, H., BLEM, E., ST. AMANT, R., SANKAR-
ALINGAM, K., AND BURGER, D. Dark silicon and the end of mul-
ticore scaling. In ISCA (2011).

[8] ESMAEILZADEH, H., SAMPSON, A., CEZE, L., AND BURGER, D.
Architecture support for disciplined approximate programming. In AS-
PLOS (2012).

[9] http://www.ffconsultancy.com/languages/ray_
tracer/comparison.html, 2007.

[10] HOFFMANN, H., SIDIROGLOU, S., CARBIN, M., MISAILOVIC, S.,
AGARWAL, A., AND RINARD, M. Dynamic knobs for responsive
power-aware computing. In ASPLOS (2011).

[11] LEEM, L., CHO, H., BAU, J., JACOBSON, Q. A., AND MITRA,
S. ERSA: Error resilient system architecture for probabilistic appli-
cations. In DATE (2010).

[12] LI, X., AND YEUNG, D. Exploiting soft computing for increased fault
tolerance. In Workshop on Architectural Support for Gigascale Inte-
gration (2006).

[13] LIU, S., PATTABIRAMAN, K., MOSCIBRODA, T., AND ZORN, B. G.
Flikker: Saving refresh-power in mobile devices through critical data
partitioning. In ASPLOS (2011).

[14] MISAILOVIC, S., ROY, D. M., AND RINARD, M. C. Probabilistically
accurate program transformations. In SAS (2011).

[15] MISAILOVIC, S., SIDIROGLOU, S., HOFFMAN, H., AND RINARD,
M. Quality of service profiling. In ICSE (2010).

[16] NARAYANAN, S., SARTORI, J., KUMAR, R., AND JONES, D. L. Scal-
able stochastic processors. In DATE (2010).

[17] OTI, E. Collision detection: triangle-triangle intersection. http:
//www.elliottoti.com/index.php?p=28.

[18] SAMPSON, A., DIETL, W., FORTUNA, E., GNANAPRAGASAM, D.,
CEZE, L., AND GROSSMAN, D. EnerJ: Approximate data types for
safe and general low-power computation. In PLDI (2011).

10

[19] SIDIROGLOU, S., MISAILOVIC, S., HOFFMAN, H., AND RINARD,
M. Managing performance vs. accuracy trade-offs with loop perfora-
tion. In FSE (2011).

[20] TROESTLER, C. n-body OCaml program: Computer Language Bench-
marks Game. http://shootout.alioth.debian.org/
u32/program.php?test=nbody&lang=ocaml%&id=1, Jan.
2012.

[21] WONG, V., AND HOROWITZ, M. Soft error resilience of probabilis-
tic inference applications. In Silicon Errors in Logic—System Effects
(2006).

[22] ZHU, Z. A., MISAILOVIC, S., KELNER, J. A., AND RINARD, M.
Randomized accuracy-aware program transformations for efficient ap-
proximate computations. In POPL (2012).

11

