
Automatic Discovery of Performance and Energy
Pitfalls in HTML and CSS

Extended Technical Report

Adrian Sampson
University of Washington
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Abstract—Web browsers pose a unique challenge to per-
formance and energy analysis tools: the complexity, variety,
and volatility of implementations make it difficult to identify
expensive aspects of Web content. WebChar is a tool for analyzing
browsers holistically to discover properties of HTML and CSS
that lead to poor performance and high energy consumption.
WebChar analyzes a large collection of Web pages and builds
a model for their performance based on static attributes of
the content. It then mines this model for correlations between
page properties and browser behavior. These correlations serve
to suggest optimization opportunities for browser developers
or design guidelines for content developers when targeting
performance- and energy-constrained devices such as smart-
phones. An evaluation of WebChar on two platforms, a netbook
and a smartphone, demonstrates that it can yield actionable
yet unintuitive conclusions about the performance and energy
consumption of Web browsers.

I. INTRODUCTION

Web browsing is an increasingly important part of the end-
user computing experience. The Web has begun to supplant
the use of traditional desktop and mobile applications as
the core technologies of HTML, CSS, and JavaScript gain
similar capabilities to traditional toolkits but offer the advan-
tages of a networked, cross-platform environment. Even in
the performance- and energy-constrained mobile setting, the
browser is important: a recent study suggested that smartphone
users spend 33% of their time on their devices browsing the
Web [1].

However, the performance and energy consumption of Web
technologies limits their growth in the mobile space where
these factors are most crucial. As a runtime system for mo-
bile content and applications, the browser proves insufficient
for many purposes: “native app” alternatives to mobile Web
content still enjoy performance and battery-life advantages. To
manage this gap, tools for understanding browsers’ energy and
performance characteristics are essential to creators of efficient
Web content and to developers of mobile browsers.

Many recent studies and tools have focused on measuring
and improving specific parts of the browser that are known to
be bottlenecks, such as JavaScript execution [2]–[4] and the
algorithms used for layout, font rendering, and CSS match-
ing [5]. However, Web technologies are complex, browsers
change rapidly, and real Web content often uses the technolo-
gies in unexpected ways [2], [3]. Moreover, while JavaScript is
amenable to traditional tools like performance profilers, fewer

NoteNote

Browser

WebChar 
Analysis

Performance and 
Energy Model

Hypotheses

• ———
• ——
• ————
• …

Web Pages

Fig. 1. WebChar analyzes a browser’s performance and energy consumption
when rendering a large set of Web pages to produce a model that describes
the browser’s behavior. It then mines this model to generate hypotheses
concerning the browser’s performance and energy pitfalls.

tools exist to analyze the declarative languages HTML and
CSS—even though they represent a large portion of browsers’
execution time [5]. For this reason, developers currently
depend on best practices and expert advice for information
about browser bottlenecks [6]–[9]. A complete understanding
of performance and energy on the Web requires empirical
analysis of specific HTML and CSS implementations and
constant adaptation to evolving standards and browsers, all in
the context of real-world usage. Web optimization tools should
give broad, up-to-date answers to these central questions: What
makes some Web pages slower than others? Why do some sites
seem to guzzle battery life while others sip it?

This paper describes WebChar (for Web characterization),
a model-mining system for holistically analyzing browsers in
the context of real-world HTML and CSS content. WebChar
automatically identifies factors of popular Web pages that
negatively impact performance and energy consumption. As
Figure 1 depicts, WebChar analyzes a large body of HTML
and CSS content to build a model that relates static page
features to browser performance and energy consumption.
WebChar then mines this model to discover detailed, non-
intuitive potential browser performance and energy problems
reflective of common usage. Web content developers can use
WebChar results as recommendations to avoid certain content-
authoring pitfalls; to browser developers, WebChar is a tool
for discovering new high-level optimization opportunities.

In contrast to lower-level performance tuning tools like
profilers, WebChar generates new high-level hypotheses about
bottlenecks in browser performance and energy. These hy-
potheses reflect common trends among a diverse set of popular
Web pages rather than for a single test input. Analysts can



then test these hypotheses using traditional benchmarking
and profiling techniques to compose new recommendations
to browser and content developers. WebChar addresses the
problem of automatically generating best practices for both
Web designers and browser developers, a process that has
previously relied on the expert experience and guesswork.

This paper presents the general design of WebChar and
details its specific implementation. We use it to analyze the
performance and energy consumption of in vitro unmodified
browsers running on two mobile systems, a netbook and
a mobile phone. We distill a number of hypotheses from
WebChar’s output, some of which are familiar and some of
which are nonintuitive. We use a series of microbenchmarks to
test these hypotheses and demonstrate that WebChar’s output
yields new insight into browser performance. We detail a list
of recommendations to Web browser and content developers
that constitute new opportunities for browser optimization and
best practices for efficient Web development.

II. APPROACH

Figure 2 summarizes WebChar’s architecture. The WebChar
system consists of two main components. First, a data collec-
tion module takes snapshots of a large set of popular Web
sites, extracts data from the sites’ code, and measures the
page load time and energy for each site on a target browser.
Next, an analysis step summarizes the page data into a set
of numerical features and then builds a model that predicts
browser performance (or energy) based on these features.
Finally, WebChar mines this model to produce a ranked list
of likely expensive features. The output of the workflow is a
set of hypotheses reflecting potential best practices for Web
designers and browser developers.

A. Data Collection
The data collection tool has three responsibilities: it down-

loads raw data from popular Web sites for analysis; it produces
a simplified representation of each site’s HTML and CSS con-
tent; and it measures the performance and power consumption
of Web browsers while loading each page.

1) Snapshotting: To build a model, WebChar relies on a
large body of real-world Web content. To obtain this input
data, it would not suffice to download individual HTML
documents from popular Web sites; instead, we need full
snapshots of Web pages along with all linked linked content
including embedded images and scripts. A page snapshot must
include all information necessary to accurately replicate the
experience of loading the page.

To capture a snapshot, we record an entire page-load session
from the perspective of the network so that the process can be
“replayed” later without involving remote hosts. Specifically,
we instrument a full-featured, WebKit-based browser to load
each page while recording every HTTP request and corre-
sponding response. The responses are stored in an indexed
database for efficient replay. This network-recording approach
ensures that we can fully reproduce each page load process
without accessing the network in order to study the browser
in isolation.

COLLECTION

Snapshot Downloader
(instrumented WebKit)

Site Summarization Performance Collection
(replay HTTP server)

Feature Calculation

Correlation

HTML
CSS

ASTs Timing
Numbers

Feature 
Vectors

Hypotheses

ANALYSIS

Fig. 2. Overview of WebChar’s architecture.

2) Site Summarization: Given the raw network data for a
page load, the summarization stage extracts relevant structures
for each page that will be examined for performance and
energy pitfalls. Specifically, WebChar examines each HTTP
response to find those that contain HTML or CSS content.
Then, using existing standards-based parsers for the two
languages, the tool produces abstract syntax trees (ASTs) for
later analysis. While raw HTTP responses are necessary for
realistic performance measurement, parsed HTML and CSS
ASTs facilitate meaningful analysis of each page’s use of
browser features.

3) Performance Collection: Finally, the system collects
performance or energy metrics for a particular browser, OS,
and hardware setup. The goal is to measure the amount of
time or energy that the browser takes to display a page. In
order to measure the behavior of the browser in isolation, we
must eliminate the time and energy spent on network commu-
nication. Additionally, the measurement technique must work
with any unmodified browser. This way, we can treat browsers
as black boxes and observe them as they behave “in the wild”
even when their source code is unavailable.

The performance measurement component consists of an
HTTP server capable of replaying the snapshots collected
earlier. The server receives a request, searches the snapshot
database for a matching request observed during the record
stage, and sends the corresponding HTTP response to the
client. From the browser’s perspective, the replay server is
indistinguishable from a “real” remote server; the HTTP
responses are identical to those of the original host.

To avoid network access, the server runs on the same ma-
chine as the browser under evaluation. The host system’s DNS
client configuration is modified to resolve all names to the



local host on the machine’s loopback virtual network interface.
In this way, we eliminate most of the effects of network
latency from our performance measurement. Even without
network access, some random error in the measurements is
unavoidable; however, Section III-C quantifies the variance in
measured page load times and shows that it is minimal when
using this approach. That section also measures the overhead
of the local HTTP server and finds it to be small.

To obtain accurate page load times without modifying the
browser, the server must be notified when the load completes.
To accomplish this, we modify each HTML snapshot to
include callbacks to the server that fire when the page load
completes (i.e., using the onload event handler). The server
measures the page load time as the interval between receipt of
the browser’s first request and receipt of the callback. During
the same interval, voltage and current readings are taken to
calculate the page load energy (see Section III-B).

B. Analysis

Using the collected page data and performance measure-
ments, WebChar’s analysis component generates hypotheses
about the performance and energy behavior of the Web
browser under examination. First, WebChar summarizes the
page data into a set of numerical features. It then correlates
these feature values with the power and performance measure-
ments to produce recommendations.

1) Feature Vector Calculation: Features are Web page
metrics that could potentially correlate with performance or
energy usage. In other words, each feature is a candidate
for identification as an “expensive” aspect of Web content.
WebChar’s feature calculation stage produces a large number
of static features from each page’s HTML and CSS abstract
syntax trees. We focus on static features in this work because
they are entirely independent of the browser implementation;
dynamic features, such as reflow events during rendering,
are implementation-specific and an avenue for future work.
Furthermore, WebChar recommendations that reflect static
features are most useful during content development because
they describe aspects of the code that content developers write.
Recommendations based on white-box aspects of the browser’s
internal behavior are less likely to be helpful during content
development.

The feature computation stage generates a large number
of features indiscriminately; the correlation stage will pick
out a small, human-analyzable subset that seem to cause
performance or energy problems. Namely, the feature set
consists of the relative frequencies of various AST elements:

• HTML tag types.
• CSS properties.
• Broad categories of CSS properties (borders, back-

grounds, effects, etc.).
• Basic CSS selector types.
• CSS selector relationships (composition types).

Each of these counts is normalized to avoid giving undue
weight to larger pages. For example, one feature is the fraction
of HTML tags in the document that are <A> tags; another is

the fraction of CSS property declarations that fall under the
“border” category. In all, the present implementation calculates
253 features per page. While future implementations could
consider more types of features, we find that this set of feature
types leads to useful conclusions.

After this summarization, each page is represented as a
vector of real numbers between 0.0 and 1.0. Each coordinate
corresponds to a single feature.

2) Correlation: The correlation step is responsible for
learning the relationship between each page’s feature vector
and its performance or energy consumption. Each page’s
feature vector and performance/energy data together constitute
an example that WebChar uses to train its model. Any function
estimation technique may be used to produce this model;
WebChar uses support vector regression (SVR). SVR uses
support vector machines to efficiently learn a high-dimensional
hyperplane that reflects the relationship between inputs and
outputs in the training data. For WebChar, the training data
consists of the feature vectors (inputs) and the page load time
or energy consumption (output). The SVR algorithm produces
a function that interpolates and generalizes from these samples
to predict the page load time or energy given a feature vector.
This trained function is a model of Web browser performance:
it captures the relationship between page features and their
runtime cost.

Once the model is trained, we apply an optimization heuris-
tic to find a maximum of the trained function—a feature
vector that leads to maximally poor performance or high
energy consumption. WebChar uses simulated annealing, a
probabilistically robust global optimizer, as the optimization
heuristic. The resulting optimized feature vector represents a
set of feature values that, according to the trained model, result
in bad browser behavior. In other words, the model predicts
that a Web page exhibiting these features would perform worse
than any real page in the training set.

The tool outputs the highest-weighted features in this patho-
logical feature vector as hypothetical “expensive” features—
candidates for optimization (by browser developers) or avoid-
ance (by content developers). This ranked list constitutes
WebChar’s final output.

III. EVALUATION

This section presents experiments we performed with Web-
Char to validate its utility in discovering new power and per-
formance pitfalls in some sample Web browsers. The end-to-
end system described in Section II, including data collection,
analysis, correlation, and reporting, has been prototyped. The
implementation used in this evaluation is available online at:
http://sampa.cs.washington.edu/sampa/WebChar

The purpose of the evaluation is to demonstrate that Web-
Char can produce new, testable hypotheses that reflect power
and performance properties that were previously not widely
known; furthermore, we wish to show that many of these
hypotheses can be verified experimentally. We begin by run-
ning the WebChar prototype with two browsing platforms to
produce correlation results. We then distill these results into

http://sampa.cs.washington.edu/sampa/WebChar


hypotheses, some of which reflect known browser character-
istics and many of which are new. We test each of the new
hypotheses by measuring the resource consumption of a series
of microbenchmarks. Using the hypotheses that are supported
by experimental evidence, we make a set of recommendations
to Web browser and content developers.

A. Tool Implementation

The snapshot collection tool described in Section II-A1 is
based on the mirror tool developed as part of the QtWebKit
open-source project.1 The tool loads pages in a real WebKit-
based browser and records the resulting HTTP traffic in an
indexed database for later replay.

To measure page load times and control power consumption
readings, a browser-based callback is used to inform the
server when a page finishes rendering (see Section II-A3). To
implement this callback, all HTML responses are augmented
with code that adds a JavaScript handler for the <BODY>
element’s onload event. This handler redirects the browser
to a known “dummy” URL, which causes a request to the
replay server; the server stops its timer when this request
is received. A more natural design might load pages in an
<IFRAME> element and measure the load time in JavaScript,
but many popular sites detect whether they are being loaded
in an <IFRAME> and block access as a security measure.
Relatedly, emerging Web standards describe an API for mea-
suring browser performance directly [10], but implementations
are not yet widely available.

In the correlation step, support vector regression (SVR)
is used as the function approximation technique. The im-
plementation comes from the PyML package.2 Similarly, the
simulated annealing implementation comes from the SciPy
package.3

B. Methodology

We analyze data from a collection of pages from the 200
most popular sites as ranked by Alexa [11]. The data used in
this evaluation comes from snapshots of the Web pages taken
on June 13, 2011. We used an instrumented Web browser
to record a snapshot of the pages and all their associated
resources. For the present evaluation, each page in the dataset
was loaded 10 times; we then took the mean load time and
energy over these replications.

Figure 3 depicts the evaluation setup for the mobile phone.
To avoid the overhead of off-device data transfer, we use a
local HTTP server to “replay” the recorded content snapshot.
Browser requests are redirected locally and avoid measuring
network data transfer time. (While running a local HTTP
server does introduce some overhead, we quantify this cost in
the next section, III-C, and find it to be small.) The device
communicates with a monitor system over USB to record
timing events.

1QtWebKit mirror: http://trac.webkit.org/wiki/QtWebKitMirrorGuide
2PyML: http://pyml.sourceforge.net/
3SciPy: http://scipy.org/
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Fig. 3. Schematic of the mobile phone measurement setup for WebChar’s
evaluation. When measuring the desktop browser, the browser and server run
on the monitor system and no power supply is used.

The monitor system also collects the mobile phone’s energy
consumption during page loads on the mobile phone. The
device’s battery was removed and replaced with leads to a
DC power supply unit.4 The phone’s wireless communica-
tion hardware and display backlight were disabled to avoid
measuring their power draw. While a page was loading, the
instantaneous power consumption was measured repeatedly
at approximately 26 Hz; this time series was integrated to
compute a total energy for the page load. We also consider
the average power, which is the total energy divided by the
page load time.

Test Hardware: We measured two systems: one Android
mobile phone and one Atom-based netbook. The mobile phone
was a Motorola Droid handset running Android 2.3.2. The
Droid had a Texas Instruments OMAP 3430 system-on-a-chip
including a 550 MHz ARM Cortex A8 CPU and 256 MB
of memory. We evaluated the Web browser included with
the Android operating system, which is based on the WebKit
browser library. The netbook was an Asus Aspire One D250
running Linux 2.6.39 with a 1.6 GHz Intel Atom N270 CPU
(SMT enabled) and 1 GB of memory. On that platform, we
evaluated Chromium 12.0.742.100, which is also based on
WebKit. We measured the page load performance of both
systems and the page load energy on the mobile phone, where
whole-system power is most relevant.

C. Characterization

This section briefly details some findings from the per-
formance and energy data collected for page loads. Table I
summarizes some overall statistics.

Differences Between Machines: Even when compared to a
low-power Atom-based system, the mobile phone used in our
evaluation is at a significant performance disadvantage. The
mean page load time for the phone was 2.7 seconds, about 3.5
times that of the netbook. These nontrivial page load times,
which do not include network latency, suggest that browser

4BK Precision 1696: http://bkprecision.com/
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Minimum Maximum Mean

Netbook Time 30± 1 ms 4690± 80 ms
780± 30 msitem.rakuten.co.jp mail.ru

Phone Time 450± 30 ms 26800± 300 ms
2700± 100 mses.youtube.com auctions.yahoo.co.jp

Phone Energy 0.49± 0.01 J 16.3± 0.6 J
2.3± 0.1 Jviewmorepics.myspace.com auctions.yahoo.co.jp

Phone Power 0.51± 0.02 W 1.39± 0.03 W
1.07± 0.01 Wtwitter.com es.youtube.com

TABLE I. Overall statistics characterizing the performance and power of the page loads measured. Each page load was replicated 10 times; we report the
mean and standard error over the trials. Power refers to the average power during the page load interval (energy over time).

performance still represents a substantial portion of browsing
latency in mobile devices.

Power Variation: Before power measurements were taken,
it was not clear whether the mobile phone’s power consump-
tion would be significantly affected by Web page content.
If this were the case, measuring and analyzing energy for
WebChar’s correlation would be unnecessary—energy would
be perfectly correlated with time (E = P × T ). However,
we find that different pages can exhibit vastly different power
consumption. The average power during a page load varied
from 0.51 W to 1.39 W, more than a factor of two. This vari-
ation is not a result of random or unpredictable fluctuation; the
standard error over 10 replicated page loads is typically within
a few hundredths of a watt. As a result, we conclude that page
load energy does not correlate perfectly with time; different
factors influence the two resources differently. Section III-D
explores the causes of this discrepancy.

Display and Radio Power: The energy measurements
presented here exclude power spent on the mobile phone’s
display and network communication in order to focus on
power consumed by the browser code itself. (As described in
Section III-B, the radio and display backlight were disabled
during measurement.) However, it is important to examine the
importance of the browser in the context of these other power
draws.

We measured the backlight’s power consumption by vary-
ing its brightness—from completely disabled to maximum
power—while measuring the full-system power. At full bright-
ness, the LCD backlight on the phone draws about 0.13 W; the
power draw scales approximately linearly with the brightness
setting, so the backlight consumes about 0.06 W at medium
brightness.

Similarly, we measured the impact of the device’s wireless
communication hardware by comparing the idle-state power
(with all radios disabled) to the power consumed while trans-
ferring remote Web pages over Wi-Fi. Radio communication
yielded an approximately 0.09 W difference in power con-
sumption. (Longer-range wireless technologies, such as 3G
data, are likely to be somewhat higher-power.)

The backlight and radio communication hardware each
consume approximately 0.1 W. While these two components
do make up a substantial portion of the whole-system Web
browsing power, the CPU power consumption during browser
execution can be significantly larger. As depicted in Table I,

browser execution causes a power draw difference up to about
0.8 W. Browser software is, we conclude, just as important an
avenue for power optimization as are hardware components
such as display and radio devices.

HTTP Server Overhead: Our measurement technique uses
a local Web server to avoid including network transfer in
energy and time measurements. This technique does not elim-
inate data-loading costs entirely: namely, pages still need to
be read from the device’s internal flash memory. These flash
accesses cost power that we then necessarily conflate with
browser execution power. (An ideal measurement technique
would use hypothetical fine-grained on-SoC power sensors to
eliminate this factor.) However, some simple experiments show
that loading data via our local HTTP server costs only up
to about 0.1 W. This suggests that, while data loading does
cost energy, it does not overwhelm the energy of computation.
Furthermore, we find that the size (in bytes) of each Web page
and its associated resources is not significantly correlated with
energy or power, indicating that raw data volume is unlikely
to be a confounding factor.

D. Correlation Results
Figure 4 depicts the output of WebChar’s correlation and

ranking. The lists represent page features that correlate with
poor performance or energy on each system. The rankings
contain features from the set of 253 features we collected for
each page in the dataset (see Section II-B1); including more
features could reveal more correlations.

From these raw rankings, we can distill a handful of testable
hypotheses regarding the discovered page features:

1) The prominence of the <TABLE>, <TR>, <TD>,
and <TBODY> elements, all components of HTML
tables, suggests that heavy use of tables can cause poor
performance.

2) Heavy use of images (reflected by the <IMG> HTML
tag) can cause poor performance.

3) CSS selectors that match on classes and IDs are slower
and cost more energy than matching by tag type.

4) The “descendant” CSS selector construction performs
poorly on both platforms.

5) CSS effect properties (including shadows, rounded cor-
ners, and opacity) can cause performance problems,
possibly due to added complexity in rendering.

6) Floating elements are slow, especially on the mobile
phone.



Netbook performance:
1) CSS descendant selectors
2) <IMG> HTML tag
3) CSS border properties
4) <TR>

5) <DIV>
6) CSS ID selectors
7) CSS backgrounds
8) CSS effects
9) <TBODY>

10) CSS class selectors
11) <TD>

12) CSS text-align property
13) <BR>

14) <TABLE>

Mobile phone performance:
1) CSS class selectors
2) <DIV> HTML tag
3) <IMG>

4) <SPAN>

5) CSS padding attributes
6) CSS positioning
7) CSS float property
8) CSS effects
9) <TR>

10) <TD>

11) <P>
12) CSS descendant selectors
13) CSS display property
14) CSS padding-left property

Mobile phone energy:
1) CSS background properties
2) <IMG> HTML tag
3) CSS border properties
4) CSS ID selectors
5) <SPAN>

6) <OPTION>

7) <P>
8) <EM>

9) CSS background-position-x
10) CSS border-right-color
11) CSS background-origin
12) CSS background-position-y
13) CSS background-attachment
14) <STRONG>

Fig. 4. Correlation results for the two systems measured in our evaluation. Each list is a ranking of the most “expensive” page features inferred by
WebChar—those features that the slowest-loading or most energy-intensive pages have in common.

7) Element backgrounds cost energy to draw on the mobile
phone but may be less significant for performance.

8) The <SPAN> element costs energy and performance
on the mobile phone.

There are also a number of ranked features that are harder to
explain. For example, the unstyled <P> and <DIV> tags are
highly ranked across the three metrics. Recall that WebChar
discovers correlations and not causations—while these seem-
ingly benign tags may be correlated with poor performance
or high energy consumption, this could be because their use
is correlated with a third factor. In our example, the predom-
inance of these simple, unstyled tags may be accompanied
with heavy use of CSS rules to customize their appearance
and layout: the tags themselves may not themselves cause
performance problems, but they may be correlated with other
patterns that do.

The next section considers these hypotheses and tests empir-
ically whether some of the more nonintuitive ones correspond
to real performance and energy pitfalls.

E. Validation

In this section, we validate WebChar’s effectiveness by
determining the utility of the hypotheses listed in the previous
section. Because WebChar reports correlations rather than
proofs of causation, it is expected that some rankings it
makes will not correspond to real performance bottlenecks.
(For example, it is likely that the <DIV> tag is itself not
responsible for poor performance; instead, sites with complex
layouts may tend to use more of these tags.) WebChar is only
useful if many of its recommendations are actually useful as
evidence of performance and energy pitfalls.

We discuss each of the hypotheses listed in the previous
section in turn, identifying the correlation results that are
evidence of real performance and energy problems.

Some of the hypotheses correspond to known performance
problems. The use of inline images (hypothesis #2) has a clear

performance cost. CSS descendant selectors (hypothesis #4)
are also known to be more costly than other selector styles [6].
These previously-documented pitfalls confirm WebChar’s hy-
potheses; we now focus on those hypotheses that suggest new,
unintuitive results.

These hypotheses—for example, the use of tables (hypoth-
esis #1) and the application of CSS effects (hypothesis #5)—
are not pervasively discussed as performance problems. To
examine these hypotheses, we use a series of microbenchmarks
constructed to test them. In each case, we construct a synthetic
Web page meant to exercise a certain browser feature repeat-
edly. A “control” page is also constructed that uses the same
structure but does not exercise the functionality in question.
We measure the page load time and energy for each synthetic
page and compare them.

For each microbenchmark, we load each synthetic document
N = 20 times and take the mean page load time and energy.
We perform independent two-sample t-tests of the statistical
significance of the difference between these sample means.

Tables (Hypothesis #1): One HTML document contains 10
<TABLE> elements, each containing 100 <TR> (table row)
elements with 5 <TD> (cell) elements each. A corresponding
document is produced that uses <DIV> elements to replace
the tables and rows and <SPAN> elements to replace the
cells—the total number of elements and their nesting structure
are kept constant.

The netbook’s mean page load time was 14% slower when
rendering tables than for the document without tables. This
difference is statistically significant (P < 0.01). We failed to
find a significant difference for either performance or energy
on the mobile phone.

CSS Selectors (#3): Three documents were used, each
containing 10,000 HTML elements and an equal number of
CSS style rules; each rule matches exactly one element. Each
document uses a different CSS selector type for the rules: one
selects by tag name, another by ID, and a third selects by class



name.
Even with the large number of style rules, no significant

differences were found.
Opacity (#5): Both HTML documents contain 500

<DIV> elements with a single style rule applied to all such
elements. In one, the opacity attribute is set to 50% (opacity:
0.5;). In the other, the text color is set to black as a control
(color: black;).

The document with the opacity effect applied was 8%
slower on the netbook than the control document; on the
mobile phone, it was 28% slower and cost 25% more energy.
All three of these differences are significant at the 0.01 level.

Float (#6): Again, both documents contain 500 <DIV>s.
In one page, the elements are all given the float: left CSS
property. The other page applies a null style rule as above.

On the netbook, the page with floating elements took 5%
more time to load. On the mobile phone, the page with floating
elements took 16% more time and 17% more energy. Again,
all three differences are significant (P < 0.01).

Background (#7): Elements in one page are given a
colored background; elements in the other are not.

We failed to find a significant difference in page load time
on the netbook or the phone. However, the energy consumption
on the mobile phone yielded a significant difference (P <
0.05): the page with backgrounds cost 11% more energy than
the page without.

SPAN Tag (#8): Three pages with 500 elements each
were used. One page used <EM> elements, another used
<STRONG> elements, and a third used style-neutral
<SPAN> elements.

We found that <STRONG> elements are cheaper than
unstyled <SPAN> tags on the mobile device: the former used
about 14% less time and energy in our experiment (P < 0.05).
No significant difference was observed on the netbook. We
conclude that <SPAN> tags are particularly inefficient in the
mobile browser implementation.

With the exception of the CSS selector benchmark, each exper-
iment yielded at least one significant difference. This confirms
that WebChar’s generated hypotheses, which represent corre-
lation but not causation, can lead to useful conclusions about
energy and performance that do reflect causation.

The CSS selector hypothesis (#3) led to no useful empirical
conclusions, suggesting that the correlation observed here
was not a result of causation. One possible explanation for
the observed correlation between class/ID selectors and poor
performance is that these selectors are frequently used on
pages with complex style structures that themselves incur per-
formance costs. The presence of such “third factors” limits the
viability of hypotheses produced by WebChar, underscoring
the need for empirical validation.

F. Recommendations
The WebChar deployment detailed in this evaluation re-

vealed some surprising conclusions. In this section, we de-
tail these conclusions as they apply to browser and content
development.

• Laying out tables can be expensive on the Chrome
desktop browser. Unless tabular data must be displayed,
content developers should avoid placing content into
tables.

• The recently-introduced CSS opacity controls carry a
significant performance impact, especially on the mo-
bile browser we measured: translucent elements rendered
28% more slowly than opaque elements in our mobile
phone tests. Web developers should avoid opacity effects;
meanwhile, mobile browser developers should investigate
using hardware-accelerated compositing for this feature.

• Across both platforms we measured, “floating” layout is
expensive. Content developers should avoid it where pos-
sible; however, since modern Web page layouts frequently
depend on these elements for their structure, browser
implementors should optimize for this common pattern.

• Background fills cost significant energy on Android. Even
when pages do not seem to load slowly on that platform,
they may spend a large amount of energy drawing back-
grounds. Mobile content developers should avoid using
backgrounds where possible in order to conserve battery
life.

• The Android browser exhibits a performance and energy
penalty when using <SPAN> HTML elements. The
developers should investigate the element’s unnecessary
inefficiency as its presence does not affect the page’s
appearance.

These recommendations represent examples of the possible
advice that WebChar can help generate. Future deployments—
using different browsers, new versions of the WebKit browsers
considered here, new Web usage patterns, and broader feature
sets—can continue to reveal new performance and energy
problems.

Several of these findings are surprising and nonintuitive. The
energy (but not performance) cost of element backgrounds,
for instance, represents an unexpected discrepancy between
performance and energy that can be exploited to conserve
battery life on mobile devices. The cost of <SPAN> elements
in the Android browser is also counterintuitive and is likely the
result of a performance bug in the platform’s implementation.
These unexpected results are where WebChar is most useful:
the technique can identify costly factors without relying on
human intuition.

These recommendations do not suggest reasons for the
performance and energy problems; traditional profiling tools
should be used to carry out the browser optimization. A system
like WebChar could also help narrow down the causes of per-
formance pitfalls if its model were trained on components of
the browser’s runtime and energy consumption. For example,
a specific correlation could be produced for the time spent in
the browser’s layout stage if this detailed performance data
were collected. Such an extension would, however, require
instrumentation of the browser; the present technique treats
the browser as a black box and requires no modification.

From the perspective of browser implementors, the Web-
Char’s feature data can itself be used to guide performance



tuning. One such optimization concerns the filtering of CSS
traversal based on the number of distinct element IDs and
classes in typical Web pages. CSS selector matching requires
checking the entire path to the root of the DOM tree and is
a performance bottleneck [12]. WebKit implements a Bloom
filter to keep track of classes and IDs in order to avoid
traversing the DOM tree when it can be proven that there
cannot be any ancestor matching the selector of a given rule.
According to WebChar’s feature data, the median number of
IDs and classes per page are 51 and 59 respectively and most
pages define fewer than 200. Therefore one can optimize the
size of the filter to capture the common case and trade off
computation for memory savings when there is a page that
exceeds this number.

IV. FUTURE WORK

WebChar is designed to be browser- and platform-agnostic,
so future deployments of the tool using different browsers,
different devices, and different performance metrics will yield
more insights into Web performance.

The focus of this work is on externally visible, static page
features that can be collected while treating the browser as
a black box. By measuring internal, dynamic metrics of the
browser’s execution instead, we plan to use WebChar to gener-
ate detailed hypotheses that help browser developers diagnose
pathologies. Dynamic features in this extension will include
statistics collected during page layout and CSS matching in
an instrumented browser.

Future work will also address making WebChar’s analysis
and results available to developers. Specifically, by coupling
it with periodic collection of data from popular Web sites,
WebChar can be used to discover and present trends in browser
performance and energy consumption. A publicly-available
Web service will display up-to-date and historical performance
and energy analysis for a collection of browsers along with
full performance and energy data for popular Web pages.
The Web service will also expose WebChar’s measurement
infrastructure, allowing developers to measure the resource
consumption of their own sites on the mobile phone testbed.

V. RELATED WORK

Existing performance- and energy-related resources for con-
tent developers generally consist of best practices provided
by experts [6]–[9]. While this advice relates predominantly
to network optimization (advising HTTP compression, source
“minification,” and content delivery networks), some does
address the behavior of the browser itself. For example,
developers are advised against using CSS descendant selectors,
leaving image dimensions unspecified, and placing JavaScript
code in the document <HEAD>. These broad, experience-
based recommendations fail to capture detailed, unintuitive,
and implementation-specific performance and energy pitfalls
that are a fact of life in the rapidly-evolving landscape of Web
browsers. Tools like WebChar can make such best-practice
advice more complete and allow it to grow and change along
with the Web.

Some work has focused on new implementation techniques
for Web technologies [13]–[17], including parallelization [4],
[5], [12]. Even improved Web browsers, however, will likely
exhibit hard-to-predict performance and energy pitfalls. Web-
Char is an automated system for exposing these pitfalls and
guiding future research that repairs them.

Traditional performance and energy profiling tools are also
relevant to the task of improving browser implementations.
Profilers generally highlight “hotspots” in programs that are
likely to be fruitful targets for optimization. While perfor-
mance analysis at the level of individual functions is helpful
for finding localized performance bugs, Web browsers are
composed of many disparate components—a single perfor-
mance pathology could arise from the interaction of the
parsing, layout, and rendering components. For this reason,
WebChar seeks to answer questions at a higher level: which
aspects of the input—typical Web pages—can cause per-
formance pathologies? WebChar’s analysis is more directly
relevant to content developers than is profiling data; to browser
developers, it provides a high-level view of real-world perfor-
mance that is not captured by a profiler.

Detailed analyses of JavaScript behavior [2], [3] are another
source of advice for browser implementors. While this work
does catalog characteristics of real-world Web content, it does
not identify those characteristics that cause performance and
energy problems in existing implementations. In this paper’s
terminology, these studies focus on collecting features—Web-
Char seeks to correlate these features with performance and
energy usage to generate actionable recommendations.

Case studies [18] can also provide some insight into Web
application workloads but do not scale to capture large and
diverse portions of the Web. WebChar uses a data-mining
approach to help automate the process of drawing conclusions
from large collections of Web content.

WebChar’s approach is similar to analyses for distributed
systems that use data mining techniques to debug failures [19]
and pathologies [20]. WebChar treats browsers as complex
black-box systems and, like the prior work, analyzes externally
observable metrics to infer internal problems.

VI. CONCLUSION

WebChar is a new technique for developing understand-
ing of performance and energy in Web browsers, filling a
crucial role in the improvement of the browsing experience
on resource-constrained mobile devices. Using measurements
from a wide variety of real-world Web content, WebChar cor-
relates aspects of Web pages with their resource consumption
in order to automatically generate hypotheses for developer
analysis. WebChar seeks to help explain why some pages are
faster or more energy-efficient than others.

By evaluating WebChar on two browsing platforms, we
produced and validated a set of unintuitive findings that
serve as recommendations to browser and content developers.
WebChar eliminates the slow process of manually identify-
ing bottlenecks from among the thousands of features that
browsers implement. As the Web continues to grow as a



platform and as browser implementations continue to evolve,
automated analyses like WebChar will be necessary to help
identify new pitfalls when they appear.
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