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This work integrates recent mathematical developments on Path Integral (PI) and Kullback

Leibler (KL) divergence stochastic optimal control theory with earlier work on risk sensitivity

and the fundamental dualities between free energy and relative entropy. Our analysis suggests

an information theoretic view of nonlinear stochastic optimal control theory that does not rely

on the Bellman principle of optimality and is applicable to general models of stochasticity.

We derive path integral optimal control and its iterative version by using the relationship

between free energy and relative entropy for the special class of Markov diffusion processes.

In contrast to previous work, the resulting formulation is valid for feedback policies without
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pre-specified policy parameterizations. The mathematical analysis is based on successive ap-

plications of Girsanov’s theorem and the use of the Radon-Nikodým derivative for the case of

markov diffusion processes. We compare optimal control policies derived based on the Dy-

namic Programming with control policies based on the duality between free energy and relative

entropy. We extend our analysis on the applicability of the relationship between free energy

and relative entropy to optimal control of markov jump diffusions processes. Furthermore, we

present the links between KL stochastic optimal control and the aforementioned dualities and

discuss its generalizability. We complete our analysis with an application to control of tendon

driven robotic systems.

Index Terms

Stochastic Optimal Control, Information Theory, Path Integrals, Tendon Driven Robots

I. INTRODUCTION

Steering a dynamical system from an initial state to a target state under the mini-

mization of a performance criterion is the topic of stochastic optimal control theory.

Among the different fields of science and engineering control theory, machine learning

and robotics played key role for the mathematical development of optimal control theory

and its applicability to robotic systems. The challenges in applying stochastic optimal

control to robotic systems are due to the nonlinear nature of dynamics, the dimensionality

of the state space and very often the lack of accurate models for the dynamics and the

environment. Recent developments on stochastic optimal control for nonlinear markov

diffusions processes based on path integrals demonstrated remarkable applicability to

robotic control and planning problems.

The framework of path integral (PI) stochastic optimal control was introduced in

[14], [15]. In this work new insights regarding symmetry breaking phenomena and their

connection to optimal control is presented. In [1], PI control framework was extended

to stochastic optimal control problems for multi-agents systems. With the goal to build
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scalable algorithms applicable to robotic systems, the work [22], [23] derives PI control

for the case of markov diffusions processes with state dependent control and diffusions

matrices. Additionally, an iterative algorithm was provided for the cases in which desired

trajectories and/or control gains are parameterized with the use of Dynamic Movement

Primitives (DMPs). DMPs are nonlinear point attractors with adjustable landscape and

they have been used in robotics for the purposes of desired trajectory and/or control

gain representation. The resulting algorithm, Policy Improvement with Path Integrals

(PI2), has been applied to a variety of robotic systems for tasks such as planning, gain

scheduling and variable stiffness control [2], [3], [18], [21].

Parallel to the mathematical developments in continuous time, in [24], [26] the Bell-

man principle of optimality was applied for discrete time optimal control problems in

which the control cost is formulated as the Kullback Leibler (KL) divergence between the

controlled and uncontrolled dynamics. The resulting framework of KL control is general

due to its applicability to a large class of stochastic optimal control problems such as

finite, infinite horizon, exponentially discounted and first exit (see the supplementary

material of [26]). In this work we present the connection of nonlinear stochastic optimal

control theory with the duality between free energy and relative entropy [4] while

demonstrating its applicability to robotics. More precisely the contributions of this work

are summarized as follows:

• We derive the mathematical links of PI and KL control as presented in machine

learning and robotics communities [14], [15], [24], [26] with earlier work in con-

trols theory, by using the fundamental dualities between relative entropy and free

energy and the logarithmic transformations of diffusions processes [4], [7]–[10].

The aforementioned connections provide an alternative view of stochastic optimal

control theory that does not rely on the Bellman principle of optimality. We shown

that it takes only the application of Girsanov’s theorem and Jensen’s inequality to
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derive a mathematical expression which results in computing the optimal cost-to-

go. This computation involves the forward sampling of the uncontrolled dynamics

and the evaluation of a risk seeking state dependent cost function on the resulting

trajectories.

• We present PI control and its iterative version based on the fundamental dualities

between free energy and relative entropy as applied to nonlinear markov diffusion

processes. In contrast to previous work [23], the derivation and the resulting for-

mulation of iterative path integral control holds for general feedback policies and

it does not rely on specific policy parameterizations. The derivation is based on

successive applications of Girsanov’s theorem due to the change of measure in the

stochastic dynamics. These change of measure is the outcome of the change in the

drift of the stochastic dynamics which, in turn, results from the updates in controls

that take place at every iteration.

• We compare the proposed PI optimal control formulation derived based on the

application of Girsanov’s theorem and Jensen’s inequality with the one derived

based on the Bellman principle of optimality. We specify the conditions under

which the two approaches lead to the same results and discuss their generizability

in terms of types of assumptions, cost functions and forms of stochastic dynamics.

• We extend our analysis to stochastic optimal control for markov jump diffusion

processes of one dimension based on the fundamental relationship between free

energy and relative entropy and derive the corresponding bound on the cost function.

The analysis relies again on Girsanov’s theorem and the use of Radon-Nikodym

derivative when jump and diffusion terms appear in the stochastic dynamics.

• We apply the iterative path integral control to a tendon driven robotic finger. The

robotic finger is an anatomical correct testbed of the human finger that mimics

its active and passive dynamics. We are inspired by biological motor control that
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is capable of learning even movements containing contact transitions and unknown

force requirements while adapting the impedance of the system. We seek to achieve

robotic mimicry of this compliance, employing stiffness only when it is necessary

for task completion. We demonstrate the simultaneous learning of feedback gains

and desired tendon trajectories with iterative path integral control in a dynamically

complex sliding-switch task for a tendon-driven robot hand. The learned controls

look noisy but nonetheless result in smooth and expert task performance.

The paper is organized as follows: in Section III we provide the basic dualities between

free energy and relative entropy. In Section IV we discuss how these dualities are

linked to maximizing or minimizing stochastic optimal control problems for the case

of diffusions processes. In Section V we derive the iterative case based on successive

applications of Girsanov’s theorem. In section VI we show how the path integral control

framework is derived based on the Bellman principle of optimality and contrast this

approach with the one in Section IV. In VI-A we derive the iterative path integral control

based on the bellman principle. We expand our analysis on path integral control for the

case of markov jump diffusions in Section VII. In section VIII we apply the iterative path

integral control to control of a biomimetic tendon driven robotic finger. Finally in section

IX we conclude by discussing the generalizability of the aforementioned approaches in

terms of application to types of dynamical systems and cost functions.

II. BASIC DUALITY RELATIONSHIPS OF FREE ENERGY AND RELATIVE ENTROPY

In this section we derive the fundamental duality relationships between free energy

and relative entropy [4]. This relationship is important for the derivation of stochastic

optimal control. Let (Z,Z) measurable space and P(Z) the corresponding probability

measure defined on the measurable space. For our analysis we consider the following

definitions.
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Definition 1: Let P ∈ P(Z) and the function J (x) : Z → < be a measurable

function. Then the term:

E
(
J (x)

)
= log

∫
exp (ρJ (x))dP (1)

is call free energy of J (x) with respect to P.

Definition 2: Let P ∈ P(Z) and Q ∈ P(Z), the relative entropy of P with respect

to Q is defined as:

H (Q||P) =


∫

log dQ
dP dQ if Q << P and log dQ

dP dQ ∈ L
1

+∞ otherwise

We will also consider the objective function:

ξ(x) =
1

ρ
E
(
J (x)

)
=

1

ρ
log E (0)

τ i

[
exp (ρJ (x))

]
(2)

with J (x) = φ(xtN ) +
∫ tN
ti
q(x)dt is the state depended cost. The objective function

above takes the form ξ(x) = E (0)
τ i

(J ) + ρ
2
V ar (J ) as ρ→ 0. This form allows us to get

the basic intuition for constructing such objective functions. Essentially for small ρ the

cost is a function of the mean and the variance of J (x). When ρ > 0 the cost function

is risk sensitive while for ρ < 0 is risk seeking.

To derive the basic relationship between free energy and relative entropy we express

the expectation E (0)
τ i

taken under the measure P as a function of the expectation E (1)
τ i

taken under the probability measure dQ. More precisely will have:

E (0)
τ i

[
exp (ρJ (x))

]
=

∫
exp (ρJ (x))dP =

∫
exp (ρJ (x))

dP
dQ

dQ

By taking the logarithm of both sides of the equations above and making use of the

Jensen’s inequality we will have:

log E (0)
τ i

[
exp (ρJ (x))

]
= log

∫
exp (ρJ (x))

dP
dQ

dQ ≥
∫

log

(
exp (ρJ (x))

dP
dQ

)
dQ

=

∫ (
ρJ (x) + log

dP
dQ

)
dQ =

∫
ρJ (x)dQ−H (Q||P)
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We multiply the inequality above with 1
ρ

for case of ρ < 0 or ρ = −|ρ| and thus we

have:
ξ(x) = − 1

|ρ|
E (J (x)) ≤ E (1) (J (x)) +

1

|ρ|
H (Q||P) (3)

where E (1) (J (x)) =
∫
J (x)dQ. The inequality above gives us the duality relationship

between relative entropy and free energy. Essentially one could define the following two

minimization problems:

− 1

|ρ|
E (J (x)) = inf

[
E (1) (J (x)) +

1

|ρ|
H (Q||P)

]
(4)

and the dual minimization:

− 1

|ρ|
H (Q||P) = inf

[
E (1) (J (x)) +

1

ρ
E (J (x))

]
(5)

The infimum in (10) is attained at Q∗ given by:

dQ∗ =
exp (−|ρ|J (x))dP∫
exp (−|ρ|J (x))dP

(6)

When ρ > 0 the inequality in (9) becomes from ≤ to ≥ and the inf in (10) and

(11) becomes sup. In the next section we show how inequality (10) is transformed to a

stochastic optimal control problem for the case of markov diffusion processes.

III. BASIC DUALITY RELATIONSHIPS OF FREE ENERGY AND RELATIVE ENTROPY

In this section we derive the fundamental duality relationships between free energy

and relative entropy [4]. This relationship is important for the derivation of stochastic

optimal control. Let (Z,Z) denote a measurable space and P(Z) the corresponding

probability measure defined on the measurable space. For our analysis we consider the

following definitions.

Definition 1: Let P ∈ P(Z) and the function J (x) : Z → < be a measurable

function. Then the term:

E
(
J (x)

)
= log

∫
exp (ρJ (x))dP (7)
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is called free energy of J (x) with respect to P.

Definition 2: Let P ∈ P(Z) and Q ∈ P(Z), the relative entropy of P with respect

to Q is defined as:

H (Q||P) =


∫

log dQ
dP dQ if Q << P and log dQ

dP dQ ∈ L
1

+∞ otherwise

We will also consider the objective function:

ξ(x) =
1

ρ
E
(
J (x)

)
=

1

ρ
log E (0)

τ i

[
exp (ρJ (x))

]
(8)

with J (x) = φ(xtN ) +
∫ tN
ti
q(x)dt is the state dependent cost. The objective function

above takes the form ξ(x) = E (0)
τ i

(J ) + ρ
2
V ar (J ) as ρ → 0. This form allows us to

get the basic intuition for constructing such objective functions. Essentially for small ρ

the cost is a function of the mean the variance. When ρ > 0 the cost function is risk

sensitive while for ρ < 0 is risk seeking. To derive the basic relationship between free

energy and relative entropy we express the expectation E (0)
τ i

taken under the measure

P as a function of the expectation E (1)
τ i

taken under the probability measure dQ. More

precisely will have:

E (0)
τ i

[
exp (ρJ (x))

]
=

∫
exp (ρJ (x))dP =

∫
exp (ρJ (x))

dP
dQ

dQ

By taking the logarithm of both sides of the equations above and making use of the

Jensen’s inequality we will have:

log E (0)
τ i

[
exp (ρJ (x))

]
= log

∫
exp (ρJ (x))

dP
dQ

dQ ≥
∫

log

(
exp (ρJ (x))

dP
dQ

)
dQ

=

∫ (
ρJ (x) + log

dP
dQ

)
dQ =

∫
ρJ (x)dQ−H (Q||P)

We multiply the inequality above with 1
ρ

for case of ρ < 0 or ρ = −|ρ| and thus we

have:

ξ(x) = − 1

|ρ|
E (J (x)) ≤ E (1) (J (x)) +

1

|ρ|
H (Q||P) (9)
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where E (1) (J (x)) =
∫
J (x)dQ. The inequality above gives us the duality relationship

between relative entropy and free energy. Essentially one could define the following two

minimization problems:

− 1

|ρ|
E (J (x)) = inf

[
E (1) (J (x)) +

1

|ρ|
H (Q||P)

]
(10)

and the dual minimization:

− 1

|ρ|
H (Q||P) = inf

[
E (1) (J (x)) +

1

|ρ|
E (J (x))

]
(11)

The infimum in (10) is attained at Q∗ given by:

dQ∗ =
exp (−|ρ|J (x))dP∫
exp (−|ρ|J (x))dP

(12)

When ρ > 0 the inequality in (9) becomes from ≤ to ≥ and the inf in (10) and

(11) becomes sup. In the next section we show how inequality (10) is transformed to a

stochastic optimal control problem for the case of markov diffusion processes.

IV. STOCHASTIC OPTIMAL CONTROL FOR MARKOV DIFFUSIONS PROCESSES BASED

ON THE FUNDAMENTAL DUALITIES

For our analysis in this section we use the same notation as in [4], [8]. We consider

the uncontrolled and controlled stochastic dynamics of the form:

dx = f(x)dt+
1√
|ρ|

B(x)Ldw(0)(t) (13)

dx = f(x)dt+ B(x)

(
udt+

1√
|ρ|

Ldw(1)(t)

)
(14)

with xt ∈ <n×1 denoting the state of the system, B(x, t) : <n×< → <n×n is the control

and diffusions matrix, f(x, t) : <n × < → <n×1 the passive dynamics, ut ∈ <n×1 the

control vector and dw ∈ <p×1 brownian noise. Notice that the difference between the

two diffusions above is on the controls that appear in (14). These controls together with
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the passive dynamics define a new drift term. For our analysis here we assume B−1

exists. Expectations evaluated on trajectories generated by the controlled dynamics and

uncontrolled dynamics are represented as E (0)
τ i

and E (1)
τ i

respectively. The corresponding

probability measures of the aforementioned expectations are P and Q. We continue our

analysis with the main result in (9) and the definition of the Radon-Nikodým derivative:

dQ
dP

= exp (ζ(u)) and
dP
dQ

= exp (−ζ(u)) (15)

where according to Girsanov’s theorem [16] (see also section X) adapted to the

diffusion processes (13) and (14) the term ζ(u) is expressed as follows:

ζ(u) =
1

2
|ρ|
∫ tN

ti

uTudt+
√
|ρ|
∫ tN

ti

uTdw(1)(t) (16)

An informal explanation for the applicability of Girsanov’s theorem is that it provides

the link between expectations evaluated on trajectories generated from diffusions with

different drift terms. Substitution of (15) and (27) into inequality (9) gives the following

result:

ξ(x) = − 1
|ρ|

log E(0)
τ i

[
exp (−|ρ|J (x))

]
≤ E(1)

τ i

[
J (x) +

1
|ρ|
ζ(u)

]
(17)

The expectation on the right side of the inequality in (17) is further simplified as

follows:

ξ(x) ≤ E(1)
τ i

[
J (x) +

1
2

∫ tN

ti

uTudt
]

(18)

The right term of the inequality above corresponds to the cost function of a stochas-

tic optimal control problem that is bounded from below by the free energy. Besides

providing a lower bound on the objective function of the stochastic optimal control

problem inequality (18) expresses also how this lower bound should be computed.

This computation involves forward sampling of the uncontrolled dynamics, evaluation

of the expectation of the exponentiated state depended part φ(xtN ) and q(xt) and the

logarithmic transformation of this expectation. Surprisingly, inequality (18) was derived
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without relying on any principle of optimality. It only takes the application of Girsanov

theorem between controlled and uncontrolled stochastic dynamics and the use of dual

relationship between free energy and relative entropy to find the lower bound in (18).

Essentially inequality (18) defines a minimization process in which the right part of the

inequality is minimized with respect ζ(u) and therefore with respect to control u. At the

minimum, when u = u∗ then the right part of the inequality in (18) reaches its optimal

ξ(x). Under the optimal control u∗ and according to (19) the optimal distribution takes

the from:

dQ∗(x) =

exp

(
− |ρ|

∫
q(x)dt

)
dP(x)

∫
exp

(
− |ρ|

∫
q(x)dt

)
dP(x)

(19)

An important question to ask is what is the link between (18) and the dynamic

programming principle. To find this link the next step is to show that ξ(x) satisfies the

HJB equations and therefore it is the corresponding value function. More precisely, we

introduce a new variable Φ(x, t) defined as Φ(x, t) = E (0)
τ i

(exp (ρJ (x))). The Feynman-

Kac lemma [11] tells us that this function satisfies the backward Chapman Kolmogorov

PDE. Therefore the following equation holds:

−∂tΦ = ρq0Φ + fT (∇xΦ) +
1

2|ρ|
tr
(
(∇xxΦ)BBT

)
(20)

For ρ = −|ρ| < 0 and since ξ(x) = 1
ρ

log Φ(x, t) = − 1
|ρ| log Φ(x, t) we will have that

∂tΦ = −|ρ|Φ∂tξ, ∇xΦ = −|ρ|Φ∇xξ and ∇xxΦ = −|ρ|Φ∇xxξ + |ρ|2Φ∇xξ∇xξ
T it can

be shown that ξ(x) satisfies the nonlinear PDE:

−∂tξ = q0 + (∇xξ)
T f − 1

2
(∇xξ)

TBBT (∇xξ) +
1

2|ρ|
tr
(
(∇xxξ)BBT

)
(21)

Similarly, for the case of ρ = |ρ| > 0 the resulting PDE will be:

−∂tξ = q0 + (∇xξ)
T f +

1

2
(∇xξ)

TBBT (∇xξ) +
1

2|ρ|
tr
(
(∇xxξ)BBT

)
(22)

The nonlinear PDEs above corresponds to the HJB equation [20] for the case of the

minimizing and maximizing optimal control problem with control weight R = I and
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therefore, ξ(x) is the corresponding minimizing or maximizing value function. Note

that in order to derive the PDEs above we did not use any principle of optimality. The

analysis so far is summarized by the following corollary in which we use the function

sign(x) = −1 ∀x < 0 and sign(x) = 1 ∀x > 0. More precisely we will have:

Corollary 1: Consider the expectation operators E (0), E (1) evaluated on state trajec-

tories sampled according to (13) and (14) respectively. The function ξ(x, t) specified

as:

ξ(x, t) =
sign(ρ)

|ρ|
log E (0)

[
exp (sign(ρ)|ρ|J (x))

]
(23)

is the value function of the stochastic optimal control problems:

ξ(x, ti) = min
u
E (1)

[ ∫ tN

ti

(
q(x)− 1

2
uTu

)
dt

]
, ∀ρ > 0

ξ(x, ti) = max
u
E (1)

[ ∫ tN

ti

(
q(x) +

1

2
uTu

)
dt

]
, ∀ρ < 0

subject to the stochastic dynamics in (14).

Corollary 1 shows how to compute the value function ξ(x, t). More precisely, the

computation involves sampling of state trajectories based on the uncontrolled dynamics

(13) and evaluation of the expectation in (23) on the resulting state trajectories. To derive

(23) it takes only the application of Girsanov’s theorem and Jensen’s inequality.

V. FEEDBACK CONTROL FOR MARKOV DIFFUSION PROCESSES

There are different ways to make use of the fundamental inequality in (18) and derive

controllers. For lower dimensional stochastic control problems evaluation of the free

energy under the uncontrolled dynamics provides a good estimate of the value function.

For planning and control problems of dynamical systems in high dimensional state

spaces, the evaluation of the expectation may become numerical intractable. Here we

show the derivation of the iterative case based on successive application of Girsanov’s

theorem for the change of measure at iteration k of the iterative algorithm.
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Lemma 1: Consider the stochastic dynamics dx = f(x)dt+B(x)

(
ukdt+ 1√

|ρ|
dw(1)(t)

)
with the control policy uk(x, t) at iteration k. When sampling from these dynamics, the

risk seeking function ξ(x, t) in (23) takes the form:

ξ(x, t) = − 1

|ρ|
log

∫
exp

[
− |ρ|S(x,uk(x, t))

]
dx

with the path cost S(x,uk) defined as:

S(x,uk) = J (x) +
1
2

(
η(u) +

∫ tN

ti

||µ(x)||2Σ−1δt

)
(24)

The term η(u) in the path cost above is defined as η(u) =
∫ tN
ti

uTkukdt+
∫ tN
ti

2uTkB−Tµ(x)dt

and terms µ(x) =
(
δx
δt
− f(x)−Buk

)
, Σ = BBT .

Proof: The proof relies on the change of measure and use of the Radon Nikodym

derivative for markov diffusion processes. More precisely we will have that:

ξ(x)= − 1

|ρ|
log

∫
exp (−|ρ|J (x))dP = − 1

|ρ|
log

∫
exp (−|ρ|J (x))

dP
dQ

dQ

= − 1

|ρ|
log

∫
exp (−|ρ|J (x)− ζ(u))dQ (25)

The measure dQ takes the form of a path integral [19] and thus it is expressed as:

Q
(

xN , tN |xi, ti
)

=
exp

(
− |ρ|

2

(∫ tN
ti
µ(x)TΣ−1µ(x)dt

))
(2πdt)n/2|Σ|1/2

(26)

where we use the fact that Bdwk =
√
ρµ(x)δt and µ(x) =

(
δx
δt
− f(x)−Buk

)
. Based

on the aforementioned inequalities the term ζ(u) in the Girsanov’s theorem [12], [17]

will become equal to:

ζ(u) =
1
2
|ρ|
∫ tN

ti

uTudt+
√
|ρ|
∫ tN

ti

uT dw(1)(t) =
1
2
|ρ|
∫ tN

ti

uTk ukdt+ |ρ|
∫ tN

ti

uTkB−Tµ(x)dt =
1
2
|ρ| η(u)

with η(u) defined as:

η(u) =
∫ tN

ti

uTk ukdt+
∫ tN

ti

2uTkB−Tµ(x)dt =
∫ tN

ti

uTudt+
1√
|ρ|

∫ tN

ti

2uT dw(1)(t) (27)
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Substitution of the function above ζ(u) and the path integral into (41) results in the

expression:

ξ(x) = − 1
|ρ|

log
∫

exp (−|ρ|J (x)− ζ(uk))dQ = − 1
|ρ|

log
∫

exp

[
− |ρ|

(
J (x) +

η(u) +
∫ tN
ti
||µ(x)||2Σ−1dt

2

]]
dx

with dx defined as dx = dxti+1
, ..., dxtN . Thus in a more compact form we will have

that:

ξ(x) = − 1

|ρ|
log

∫
exp

[
− |ρ|S(x,uk)

]
dx

with the term S(x,uk) defined as S(x,uk) = J (x) + 1
2

(
η(u) +

∫ tN
ti
||µ(x)||2

Σ−1dt
)

.

After deriving lemma 1 we proceed wit the final result given in the form of the

theorem that follows:

Theorem 1: Consider the stochastic optimal control problem:

ξ(x) = min
u
E(1)

[ ∫ tN

to

(
q(x) +

1

2
uTu

)
dt

]
subject to the stochastic constraints:

dx = f(x)dt+ B(x)

(
udt+

1√
|ρ|
dw(1)(t)

)
The iterative optimal control solution has the form:

uk+1(x, t)dt = uk(x, t)dt+
1
√
ρ
Epk
(
dwk(t)

)
(28)

with Pk having the form of a path integral expressed as: Pk = e−|ρ|S(x,uk(x,t))R
e−|ρ|S(x,uk(x,t)dx

and the

path cost term S(x,uk(x, t) defined as in (40).

Proof: To get the control we take the derivative of S(x,uk(x, t)) with respect to

xti . More precisely we will have that:

∇xti
ξ(xti) = − 1

|ρ|
∇xti

(
log

∫
exp

[
− |ρ|S(x,uk)

]
dx

)
= − 1

|ρ|
∇xti

∫
e−|ρ|S(x,uk(x,t))dx∫

e−|ρ|S(x,uk(x,t)dx

September 10, 2012 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

The support space of the integral is dx with dx = dxti+1
, ..., dxtN . Under the assumption

that the quantities e−|ρ|S(x,uk(x,t)) and ∇xe
−|ρ|S(x,uk(x,t)) are jointly continuous we will

have that:

∇xti
ξ(x) =

∫
e−|ρ|S(x,uk(x,t))∇xti

S(x,uk(x, t))dx∫
e−|ρ|S(x,uk(x,t)dx

= EPk
(
∇xti

S(x,uk(x, t))

)
= EPk

(
∇xti

q(x)δt+∇xti
µ(x)TΣ−1(µ(x) + Buk(x, t))dt

)
The probability Pk is defined as follows: Pk = e−|ρ|S(x,uk(x,t))R

e−|ρ|S(x,uk(x,t)dx
. The quantity∇xti

µ(x)

is equal to ∇xti
µ(x) = 1

δt
I+∇xti

f(x)+B∇xti
u(x) after substituting back we will have:

∇xti
ξ(x) = EPk

(
∇xq(x)dt

)
+ EPk

((
−I +∇xti

f(x)dt+ B∇xti
u(x)dt

)
Σ−1µ(x)

)
+ EPk

((
−I +∇xti

f(x)dt+ B∇xti
u(x)dt

)
Σ−1Buk(x, t)

)
The optimal controls are given by:

uk+1(x, t)dt = −R−1BT∇xti
ξ(x)dt = R−1BTEPk

(
Σ−1Buk(x, t)dt+ Σ−1µ(x)dt

)
+O(dt2)

= R−1BTΣ−1BEPk
(

uk(x, t)dt+
1
√
ρ
dwk(t)

)
= EPk

(
uk(x, t)dt+

1
√
ρ
dwk(t)

)
For the last two lines we make use of the fact that limdt→0O(dt2) = 0, Σ = BBT .

In addition from section (IV) we know that R = I and B is invertible. The feedback

policy uk(x, t) is evaluated at the current state xti and so we have (28).

There are stochastic dynamical systems in which the control and diffusion matri-

ces are partitioned such that B = [0T , BT
c ]T with Bc invertible, while the drift

term can also be partitioned accordingly f = [fTm, fTc ]T . In [22] it has been shown

that the path integral formulation is expressed as in (26) with Bcdwk =
√
ρµ(x)dt,

µ(x) =
(
δxc
δt
− fc(x)−Bcuk

)
and Σ = BcBT

c . Our analysis in theorem 1 holds for the

aforementioned types of systems as well

September 10, 2012 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 16

1) Initially the controls uk+1(x, t) are computed for any state x and time t and

therefore the iterative path integral control policy is closed loop. The closed loop

formulation requires 1) full observability of the state x at every time of the time

horizon and 2) the necessary actuation capabilities to steer the dynamics towards

each state x and time t so that the state space is fully sampled and the feedback

policy is computed as a lookup table.

2) In many control and robotic applications there is no direct access to the full state

vector due to sensing limitations. Moreover, measurements which are functions of

the state are available and they can be used for building a cost function. In these

cases (28) could be used in an open loop form in which the the dependence of

u with respect to the state is dropped and u is only a function of time. More

precisely, state trajectories are sampled from a starting state xt0 towards the target

state x∗tN and (28) is applied for every time ti ∈ [t0, tN ] from t0 < t1 < ... < tN .

Table (I) illustrates the iterative path integral control algorithm derived based on the

relationship between free energy and relative entropy in its open loop formulation.

3) The path integral control policy (28) only partially depends on the stochastic

dynamics in (14). In particular, the optimal policy depends only on the con-

trol(=diffusion) matrices of the initial dynamics and not on the drift. This charac-

teristic of the path integral control is important for robotic applications in which

an accurate state space representation of the stochastic dynamics is not available.

The algorithm becomes completely model free by augmenting the dynamics and

instead of controlling the u, the control variable is the change δu of the initial

controls per time unit.

4) In many stochastic dynamical systems the control and diffusion matrices are

partitioned such that B = [0, Bc] while the drift term can also be partitioned

accordingly f = [fm, fc]. In [22] it has been show that the path integral formulation
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is expressed as in (26) with Bcdwk =
√
ρµ(x)δt, µ(x) =

(
δxc
δt
− fc(x)−Bcuk

)
and Σc = BcBT

c . This change results in substituting B with Bc in table I.

Overall the iterative path integral control is easy to implement while it provides the

practitioner with the flexibility not to rely on models when these are not available.

In the next section we derive the iterative path integral control based on the dynamic

programming principle.

TABLE I: Iterative Path Integral Control Based on the Duality Between Free Energy

and Relative Entropy.

• Given:

– The cost term q(xt), variance ρ > 0, initials controls u0

• Repeat until convergence of the trajectory cost R:

– Create M roll-outs of the system by forward sampling of the diffusion dx = f(x)dt +

B(x)
“
ukdt+ 1√

ρ
dw(k)(t)

”
.

– For k = 1...M , compute:

∗ η(u, ti, tN ) as in (27).

∗ S(~xi,k) = φtN +
PN−1
j=i (q(tj)dt+ η(u, ti, tN ))

∗ P (~xi,k) = e
− 1
λ
S(~xi,k)PK

k=1[e
− 1
λ
S(~xi,k)

]

– For i = 1...(N − 1), compute:

∗ δuP̃ = EP
“
dw(k)(ti)

”
∗ uk+1(ti)dt = uk(ti)dt+ 1√

ρ
δuP̃

VI. DERIVATION BASED ON BELLMAN PRINCIPLE

We consider stochastic optimal control in the classical sense, as a constrained opti-

mization problem, with the cost function under minimization given by the mathematical

expression: V (x) = min
u
E

[
J(x,u)

]
= min

u
E

[ ∫ tN

to

L(x,u, t)dt

]
(29)
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subject to nonlinear stochastic dynamics as specified by the markov diffusion process:

dx = F(x,u)dt+ B(x)dw (30)

with x ∈ <n×1 denoting the state of the system, u ∈ <p×1 the control vector and

dw ∈ <p×1 brownian noise. The function F(x,u) is a nonlinear function of the state

x and affine in controls u and therefore is defined as F(x,u) = f(x) + G(x)u . The

matrix G(x) ∈ <n×p is the control matrix, B(x) ∈ <n×p is the diffusion matrix and

f(x) ∈ <n×1 are the passive dynamics. The cost function J(x,u) is a function of states

and controls. Under the optimal controls u∗ the cost function is equal to the value

function V (x). The term L(x,u,t) is the immediate cost and it is expressed as:

L(x,u, t) = q0(x, t) + q1(x, t)u +
1

2
uTRu (31)

Essentially, the immediate cost has three terms, the first q0(xt, t) is an arbitrary state-

dependent cost, the second term depends on states and controls and the third is the

control cost with R > 0 the corresponding weight. The stochastic HJB equation [9],

[20] associated with this stochastic optimal control problem is expressed as follows:

−∂tV = min
u

(
L + (∇xV )TF +

1

2
tr
(
(∇xxV )GGT

))
(32)

To find the minimum, the cost function (31) is inserted into (32) and the gradient of

the expression inside the parenthesis is taken with respect to controls u and set to zero.

The corresponding optimal control is given by the equation:

u(xt) = −R−1

(
q1(x, t) + G(x)T∇xV (x, t)

)
(33)

These optimal controls will push the system dynamics in the direction opposite that

of the gradient of the value function ∇xV (x, t). The value function satisfies nonlinear,

second-order PDE:

−∂tV = q̃ + (∇xV )T f̃ − 1

2
(∇xV )TGR−1GT (∇xV ) +

1

2
tr
(
(∇xxV )BBT

)
(34)
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with q̃(x, t) and f̃(x, t) defined as q̃(x, t) = q0(x, t) − 1
2
q1(x, t)

TR−1q1(x, t) and

f̃(x, t) = f(x, t) − G(x, t)R−1q1(x, t) and the boundary condition V (xtN ) = φ(xtN ).

To transform the PDE above into a linear one, we use a exponential transformation

of the value function V (x, t) = −λ log Ψ(x, t). Given this exponential transformation

and by considering the assumption λG(x)R−1G(x)T = B(x)B(x)T = Σ(xt) = Σ the

resulting PDE is formulated as follows:

−∂tΨ = −1

λ
q̃Ψ + f̃T (∇xΨ) +

1

2
tr ((∇xxΨ)Σ) (35)

with boundary condition: Ψ(x(tN)) = exp
(
− 1
λ
φ(x(tN))

)
. By applying the Feynman-

Kac lemma to the Chapman-Kolmogorov PDE (35) yields its solution in form of an

expectation over system trajectories. This solution is mathematically expressed as:

Ψ (xti) = E(0)

[
exp

(
−
∫ tN

ti

1

λ
q̃(x)dt

)
Ψ(xtN )

]
(36)

The expectation E(0) is taken on sample paths τ i = (xi, ...,xtN ) generated with the

forward sampling of the uncontrolled diffusion equation dx = f̃(xt)δt+ B(x)dw. The

expectation E(1) above, is evaluated on trajectories generated with forward sampling of

the controlled diffusion in (30). The optimal controls are specified as:

uPI(x) = −R−1

(
q1(x, t)− λG(x)T

∇xΨ(x, t)

Ψ(x, t)

)
(37)

Since, the initial value the function V (x, t) is the minimum of the expectation of the

objective function J(x,u) subject to controlled stochastic dynamics in (30), it can be

trivially shown that:

V (x, ti) = −λ logE
(0)
τ i

[
exp

(
−
∫ tN

ti

1

λ
q̃(x)dt

)
Ψ(xtN )

]
≤ E

(1)
τ i

(
J(x,u)

)
(38)

Note that the inequality above in similar to (18).

q1(x) = 0, R = I, λ =
1

|ρ|
, G(x, t) = B(x, t) and B(x, t) =

1√
|ρ|

B(x, t) (39)
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The first three equalities guarantee that J(x,u) = J (x) − |ρ|
ρ

∫ tN
ti

uTudt are identical,

and the last two equalities make sure that the expectations are evaluated under the same

diffusions and therefore E (0)
τ i
≡ E(0) and E (1) ≡ E(1). Under the conditions above the

Kolmogorov PDEs (20) and (35) and the HJB equations (34) and (21) are identical. All

of the analysis in this section is summarized by the corollary that follows:

Corollary 2: The path integral stochastic optimal control derived based on dynamic

programming results in the same value function with the one derived based on the

fundamental relationship between free energy and relative entropy under the conditions

(39). Under the conditions in (39) V (x, t) = ξ(x, t) and Ψ(x, t) = Φ(x, t).

A. Optimal Control Derivation

We will follow the same arguments of the analysis in section V and derive the new

versions of lemma 1 and theorem 1. We show that with respect to iterative path integral

update rule given in (1) the resulting algorithm incorporates more general costs functions

but also has additional assumptions between noise and control cost. For simplicity in

our analysis we will assume that G(x) = G and B(x) = B. More precisely we will

have:

Lemma 2: Consider the stochastic dynamics dx = f(x)dt+G(x)ukdt+B(x)dw(1)(t)

with the control policy uk(x, t) at iteration k. When sampling from these dynamics, the

value function V (x, t) in (38) takes the form:

V (x, t) = −λ log

∫
exp

[
− 1

λ
S(x,uk(x, t))

]
dx

with the path cost S(x,uk) defined as:

S(x,uk) = J (x) +
1
2

(
$(u) +

∫ tN

ti

||µ(x)||2Σ−1δt

)
(40)

The term ζ(u) in the path cost above is defined as $(u) =
∫ tN
ti

uTGT
(
GR−1GT

)−1
Guδt+∫ tN

ti
2uTGT

(
GR−1GT

)−1
Bdw(1)(t) and terms µ(x) =

(
δx
δt
− f(x)−Buk

)
.
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Proof: The proof relies on the change of measure and use of the Radon Nikodym

derivative for markov diffusion processes. More precisely we will have that:

V (x, t)= − 1

|ρ|
log

∫
exp (−|ρ|J (x))dP= − 1

|ρ|
log

∫
exp (−|ρ|J (x))

dP
dQ

dQ

= − 1

|ρ|
log

∫
exp (−|ρ|J (x)− ζ(u))dQ (41)

The measure dQ takes the form of a path integral [19] and thus it is expressed as:

Q
(

xN , tN |xi, ti
)

=
exp

“
− |ρ|

2

“R tN
ti

µ(x)TΣ−1
µ(x)δt

””
(2πδt)m/2|Σ|1/2 where we use the fact that Bdwk =

√
ρµ(x)δt and µ(x) =

(
δx
δt
− f(x)−Guk

)
and Σ = BB−1. Based on the aforemen-

tioned inequalities the term ζ(u) in the Girsanov’s theorem [12], [17] will become equal

to: ζ(u, ti, tN) =
1

2

∫ tN

ti

uTGTΣ−1Guδt+

∫ tN

ti

uTGTΣ−1Bdw(1)(t)

Since λGR−1GT = BBT = Σ we will have that

ζ(u, ti, tN) =
1

2λ

∫ tN

ti

uTkGT
(
GR−1GT

)−1
Gukδt+

1

λ

∫ tN

ti

uTkGT
(
GR−1GT

)−1
µ(x)δt

=
1

2λ
$(u, ti, tN)

with $(u, ti, tN) defined as follows:

$(u, ti, tN) =

∫ tN

ti

uTkGT
(
GR−1GT

)−1
Gukδt+

1

λ

∫ tN

ti

uTkGT
(
GR−1GT

)−1
µ(x)δt

=

∫ tN

ti

uTkGT
(
GR−1GT

)−1
Gukδt+

∫ tN

ti

uTkGT
(
GR−1GT

)−1
Bdw(1)(t)δt

(42)

Substitution of the function above ζ(u) and the path integral into 41 results in the

expression:

V (x) = −λ log
∫

exp
(
− 1
λ
J (x)− ζ(uk)

)
dQ = −λ log

∫
exp

[
− 1
λ

(
J (x) +

$(u) +
∫ tN
ti
||µ(x)||2Σ−1δt

2

]]
dx

with dx defined as dx = dxti+1
, ..., dxtN .
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Having derived lemma 2 we can now provide the optimal control. More precisely we

have that:

Theorem 2: Consider the stochastic optimal control problem:

V (x) = min
u
E(1)

[∫ tN

to

q(x) +
1
2
uTRudt

]
(43)

subject to the stochastic constraints: dx = f(x)dt+ B(x)
(

udt+ 1√
|ρ|
dw(1)(t)

)
. The iterative

optimal control solution has the form:

uk+1dt = −R−1q1dt+ ΩEPk
(

Gukdt+ Bdw(t)

)
(44)

with Ω = R−1GT
(
GR−1GT

)−1 and the termPk having the form of a path integral

expressed as: Pk = e−|ρ|S(x,uk(x,t))R
e−|ρ|S(x,uk(x,t)dx

and the path cost term S(x,uk(x, t) defined as in

(40).

Proof: To get the control we take the derivative of S(x,uk(x, t)) with respect to

xti . More precisely we will have that:

∇xti
V (xti) = −λ∇xti

(
log

∫
exp

[
− 1

λ
S(x,uk)

]
dx

)
= −λ

∇xti

∫
e−

1
λ
S(x,uk(x,t))dx∫

e−|ρ|S(x,uk(x,t)dx

The support space of the integral is dx with dx = dxti+1
, ..., dxtN . Under the assumption

that the quantities e−
1
λ
S(x,uk(x,t)) and∇xe

− 1
λ
S(x,uk(x,t)) are jointly continuous we will have

that:

∇xti
V (x) = EPk

(
∇xq(x)δt+ λ∇xµ(x)TΣ−1(µ(x) + Guk(x, t))δt

)
The probability Pk is defined as Pk = e−|ρ|S(x,uk(x,t))R

e−|ρ|S(x,uk(x,t)dx
. The quantity ∇xµ(x) is equal

to ∇xµ(x) = 1
δt
I +∇xf(x) + G∇xu(x) after substituting back we will have:

∇xV (x) = EPk
(
∇xq(x)δt

)
+ λEPk

(
(−I +∇xf(x)δt+ G∇xu(x)δt) Σ−1µ(x)

)
+ λEPk

(
(−I +∇xf(x)δt+ G∇xu(x)δt) Σ−1Guk(x, t)

)
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The optimal controls are given by:

uk+1(x, t)dt = −R−1q1dt−R−1GT∇xV (x)δt = −R−1q1dt+ λR−1GTΣ−1EPk
(

Guk(x, t) + µ(x)δt

)
= −R−1q1dt+ ΩEPk

(
Guk(x, t) + Bdw(t)δt

)
where the term Ω = R−1GT

(
GR−1GT

)−1. Since the feedback policy uk(x, t) is

evaluated at the current state x we will have the final result of this theorem.

Table II illustrates the iterative path integral optimal control derived based on the

dynamic programming principle. All the points made regarding the iterative path integral

control in table I regarding the different ways of using this approach are valid also for the

algorithm in II. However there are few differences since algorithm in table II provides the

optimal control for cost functions with cross terms of the form q1(x, t)
Tu. Note also that

the addition of the aforementioned cross terms results in sampling with a diffusion that

is different from the initial diffusion in (30). Furthermore, in case of II the assumption

λGR−1GT = BBT should always be valid. The algorithm in I is simpler to implement

and it has less parameters to consider.

VII. STOCHASTIC OPTIMAL CONTROL FOR MARKOV JUMP DIFFUSIONS PROCESSES

BASED ON THE BASIC INEQUALITIES

In this section we consider Markov jump diffusion processes to show the generizabilty

of the information theoretic approach to stochastic optimal control. In particular we

derive the lower bound on cost functions that typically appear in the cases of stochastic

optimal control of markov jump diffusion processes. The analysis relies again on Gir-

sanov’s theorem the use of Radon-Nikodym derivative when poisson-jump and diffusion

terms appear in the stochastic dynamics. To keep the analysis simple we consider Markov

Jump Diffusions in 1D, the analysis for multidimensional case is similar. More precisely

we have the controlled dx = f(x)δt + B(x)

(
uδt+ 1√

|ρ|
dw(1)(t)

)
+ h(x)dP(1)(t) as
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TABLE II: Iterative Path Integral Control Based on the Dynamic Programming Principle.

• Given:

– The time horizon tN . The cost terms q0(xt), q1(xt),R, λ, G,B and the total state depended cost

q̃(x, t) = q0(x, t)− 1
2
q1(x, t)

TR−1q1(x, t)

– The quantities Ω = R−1GTΣ−1 and Σ = BBT , initials controls u0 and λGR−1GT = BBT

• Repeat until convergence of the trajectory cost R:

– Create M roll-outs of the system by forward sampling of the diffusion dx =

„
f(x) −

G(x)R−1q1(x)

«
dt+ G(x)ukdt+ B(x)dw(t).

– For k = 1...M , compute:

∗ ζ(u, ti, tN ) as in (42).

∗ S(~xi,k) = φtN +
PN−1
j=i (q(tj)dt+ ζ(u, ti, tN ))

∗ P (~xi,k) = e
− 1
λ
S(~xi,k)PK

k=1[e
− 1
λ
S(~xi,k)

]

– For i = 1...(N − 1), compute:

∗ δuP̃ = EP
“
dw(k)(ti)

”
∗ uk+1(ti)dt =

„
−R−1q1(ti) + ΩGuk(ti)

«
dt+ ΩBδuP̃

well as its uncontrolled versions for u = 0 with xt ∈ <1×1 denoting the state of

the system, B(x, t) ∈ <1×1 the diffusion-control transition matrix, f(x, t) ∈ <1×1 the

passive dynamics, ut ∈ <1×1 the control vector and dw ∈ <1×1 brownian noise. The

term P (t) ∈ <1×1 is Poisson distributed and h(x, t) ∈ <1×1 is the jump-amplitude

or the Poisson process coefficient with E
(
dP(t)(i)

)
= νiδt and Var

(
dP(t)(i)

)
= νiδt,

for i = 1, ...,m. The term ν(t) > 0 is the ith jump rate or jump density and νδt is

the mean count of the Poisson process in the time interval (t, t + dt]. Poisson pro-

cesses obey the Markov property while they also have independent increments. Thus:

Cov [dP(tj)dP(tk)] = Var [dP (tj] δk,j = ν(tj)dtδk,j Based on Girsanov’s theorem [13]

for markov jump diffusion processes, the Radon-Nikodým derivative is now specified as
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dP
dQ = exp (−ζ(u)) with ζ(u) defined as follows:

ζ(u) =

∫ tN

ti

1

2
|ρ|u(t)2δt+

√
|ρ|
∫ tN

ti

u(t)dw(1)(t) +

∫ tN

ti

((
1− γ(J)(t)

)
ν0(t)

)
dt+

P(1)(t)∑
j=1

log γ(J)(t)

with γ(J)(t) = ν(1)(t)

ν(0)(t)
. The lower bound on the value function is now derived by

incorporating the Radon-Nikodým derivative into (18).

ξ(x) =
1
ρ

log E(0)
τ i

[
exp (ρJ (x))

]
≤ E(1)

τ i

[
J (x)− 1

ρ
ζ(u)

]
≤ E(1)

τ i

[
J (x) +

1
2

∫ tN

ti

u(t)2δt
]

+ V(γ(J)(t))

where V(γ(J)(t)) = ρ
∫ tN
ti

((
γ(J)(t)− 1

)
ν0(t)

)
δt+E (1)

τ i

(∑P(1)(t)
j=1 log γ(J)(t)ρ

)
Thus we

will have:

ξJ(x) ≤ E (1)
τ i

[
J (x) +

1

2

∫ tN

ti

u(t)2δt

]
The new bound under sampling based on markov jump diffusion processes is defined

as: ξJ(x) = ξ(x) − V(γ(J)(t)). For the cases where the change of measure between

the control and uncontrolled markov jump diffusion includes only changes in the drift

γ(J)(t) = 1, the bound above simplifies to: ξ(x) = ξJ(x) ≤ E (1)
τ i

[
J (x)+ 1

2

∫ tN
ti

u(t)2δt

]
.

Thus when the change of measure in the markov jump diffusion process is only due

to the change in the drift, the corresponding bound of the cost function has the same

formulation with the one derived for diffusion processes.

VIII. APPLICATION OF ITERATIVE PATH INTEGRAL CONTROL TO TENDON DRIVEN

ROBOTIC FINGER.

Tendon driven robotic systems are difficult to control because of the nonlinearities

of their dynamics. The aforementioned nonlinearities are due to 1) the antagonistic

relationship between the tendons. A rather naive control policy of just pulling all tendons

simultaneously does not result in a desired movement or force production. Thus, tendons

have to work together and synchronize their tensions such that the desired movement
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is achieved. 2) Tendons can only pull and not push. This idiosyncrasy of the reduced

actuation per tendon is one of the reasons why tendon driven system require a large

number of tendons to generate movement and force control 3) Tasks that involve contact

with objects and surfaces impose further nonlinear phenomena. Besides the nonlineari-

ties, tendon driven systems are hard to model. System identification is usually the step

towards building dynamical models. However for the case of tendon driven systems

system id is difficult because of the large dimensionality of the state as well as the

requirement for expensive sensors for force, joint position and velocity measurements.

The experiments presented here use the Anatomically Correct Testbed (ACT) index

finger [5]. The ACT index finger has the full 4 degree-of-freedom joint mobility and is

controlled by six motor-driven tendons acting through a crocheted tendon-hood. Two

tendons, the Flexor Digitorum Profundus (FDP) and Flexor Digitorum Superficialis

(FDS) act as flexors; the EI(Extensor Indicis) , Radial Interosseous(RI) , and Proximal

Interesseous (PI) act as extensors and ab/aductors; the Lumbrical (LUM) is an abductor

but switches from extensor to flexor depending on finger posture. There are also 3 joints

starting from the Metacarpophalangeal joint (MCP), the Proximal Interphalangeal (PIP)

and the Distal Interhalangeal (DIP). By sharing the redundancies and nonlinearities of

human hands [6], the system constitutes a challenging testbed for model identification,

control, and task learning, while also providing a unique perspective for the study of

biomechanics and human motor control. The 6 tendons are torque-controlled by 6 DC

motors at 200 Hz and measure tendon displacements at a resolution 2.30 µm; the tendon

displacements alone are used for feedback control as there is no direct measurement of

joint kinematics. Successfully performing manipulation tasks requires a control policy

that can handle the nonlinear dynamics and high dimensionality of the robot as well as

the dynamics of the task itself.
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A. Sliding Switch Task

We examine the task of contacting a sliding switch and pushing it down (see fig. 1(a)).

The switch in our apparatus is coupled to a belt and motor which allow the imposition

of synthetic dynamics. In particular the switch is made springy such that it can return

back to resting position if contact is lost. The position of the switch x is measured with a

linear potentiometer. Importantly, the finger may loose contact with the switch at xreach

before reaching the bottom of the possible range, denoted xmin.

We begin with a single demonstration of the desired task in which a human holds the

finger and moves it through a motion of pushing the switch down. The tendon excursions

produced by this externally-powered example grossly resemble those required for the

robot to complete the task, but simply replaying them using a general-purpose PID

controller would not result in successful task completion for two main reasons (see

figures 3(a) and 3(b)). Firstly, during demonstration the tendons are not loaded, which

changes the configuration of the tendon network in comparison to when it is actively

moving. Secondly, and more importantly, the tendon trajectories encountered during a

demonstration do not impart any information about the necessary forces required to

accommodate the dynamics of the task. For instance, at the beginning of the task, the

finger must transition from moving through air freely, to contacting and pushing the

switch. A feedback controller following a reference trajectory has no way of anticipating

this contact transition, and therefore will fail to initially strike the switch with enough

force to produce the desired motion.

B. Application of iterative path integral control.

We apply Iterative path integral control as table I in its open loop formulation. The

torque sent to every motor is specified as a P controller:τi = Kpi(t)
(
l
(i)
actual(t)− l

(i)
desired(t)

)
, ∀i =

1, ..., 6 where l(i)actual(t) is the actual tendon excursion and l
(i)
desired(t) is the desired one.

The gain Kpi(t) is time varying. To perform simultaneous control of trajectories and

September 10, 2012 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 28

gains, we augment the dynamics with stochastic differential equations. The state of these

stochastic differential equations correspond to the 6 tendon excursions and 6 control

gains. Thus we have: dl(i)desired(t) = al
(i)
desired(t)dt+uli(t)dt+σdw(t), ∀i = 1, ..., 6, and

dKpi(t) = aKpi(t)dt+ uKi(t)dt+ σdw(t), ∀i = 1, ..., 6 with a < 0.

The new control variables are uKi and uli which correspond to the change in control

gain and the change in tendon excursion per time unit. Therefore the dimensionality

of the control space is u ∈ <12×1. Note also that the state space formulation of the

augmented stochastic dynamics has the form which allows iterative path integral control

to be applied. More precisely the control and diffusion matrices are partitioned as follows

[0, Bc] and [0, σBc] with Bc = I12×12. Additionally, the fact that that path integral

control does not rely on the drift of the stochastic dynamics is very important for this

application as no dynamical model of the tendon driven finger has been available so far.

For the experiment the cost function has the form of L = q(xtN )+
∑(

q(xti) + uTtiuti
)
dt.

In this cost the xt is the position in the switch at time t, while q(xt) is the state dependent

cost. In the experiment presented here we use q(xt) = 2×104xt and q(xtN ) = 300×q(xt).

The position xt is measured by the potentiometer and it is positive.

Figure 1(b) illustrates the normalized cost during learning for the task of sliding

and holding the slider switch, together with the one sigma standard deviations. The

number of learning iterations is 201. However, in order to speedup learning we store

the cost at every 3rd iteration which correspond to 67 cost-checking iterations from

the total of 201 as shown in 1(b). Note that the cost drops to 50% of its initial value.

At this level of performance, the finger has learned to push the slider until the point

which it does not looses contact. Figure 2 illustrates the torque(=force) in mA applied

to the tendons after learning. We have split the tendons activations into 3 subplots to

emphasize the role they play during the task. The task starts with an initial burst of

activity in the main extensor EC, the abductor-adductor tendons PI and RI as well as

the Lumbrical. We speculate that this initial burst of activity is for the purposes of
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(a) Slider with spring dynamics.
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Fig. 1

stabilizing the finger by rejecting abduction-adduction movements. The movement is

initiated with a burst of activity in the PI and RI which generate the rotation around

the MCP joint. This rotation, in turn, generates the downward movement. During the

phases of contact and moving in contact, the tendons FDS, FDP and LUM are activated

to generate the torque such that the finger overcomes the force applied by the slider.

At the end of the moving in contact-phase (see the blue arrow in figure 2) Lumbrical

acts in a opposite fashion than FDP and FDS. In particular, its activation increases when

FDS and FDP activation decreases and vice versa until there is no movement. This

observation is in contrast to activation profiles during the contact phase. During this

phase Lumbrical and FDS are simultaneously activated and therefore it Lumbrical plays

the role of flexor. This experiments demonstrate that Lumbrical can act either as a flexor

or as an extensor depending on the task under consideration as well as phase of the

task. The videos from the initial and learned behaviors can be found on the website:

http://www.cs.washington.edu/homes/etheodor/videos.html.
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Fig. 2: Forces applied to tendons after learning.

IX. DISCUSSION

Our work in this paper demonstrates the connection of path integral control framework

as presented in the machine learning and robotic communities [3], [14], [15], [22],

[23], [26] with work in the control theoretic community on risk sensitivity [4], [7]–

[9]. Essentially there are two methodological approaches to derive the path integral

framework. In the first, stochastic optimal control is specified as minimization of the

objective E(1)(J(x,u)) subject to the controlled dynamics. The HJB PDE is derived

based on the Bellman principle of optimality. The exponential transformation of the

value function V (x) and the connection between control cost and variance result in the
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Fig. 3

transformation of the HJB in to the backward Chapman Kolmogorov. The Feynman-

Kac lemma is applied and the solution of the Chapman Kolmogorov PDE together

with the lower bound on the objective function are provided. The second approach is

developed in the opposite direction. The approach starts with the risk sensitive version of

the state dependent part J (x)of the cost function E(1)(J(x,u)). With the application of

Girsanov’s theorem between controlled and uncontrolled dynamics and the use of Jensen

inequality the upper bound ξ(x) of the objective function E (1)(J(x,u)) is derived. As

a last step, the link to Bellman optimality is established by showing that ξ(x) satisfies

the HJB equation and therefore it is a value function.

Risk sensitivity and the relationship between free energy and relative entropy offers an

alternative formalism of optimality which, for the case of diffusions processes, and under

the conditions specified in this work, turns out to be identical to the bellman principle of

optimality. In this work we have derived the iterative version of path integral control with
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the use of successive application of Girsanov’s theorem as applied to markov diffusion

processes. Previous work in the area of policy improvement with path integrals [23],

derived iterative versions of path integral control but for a restricting class of policies

parameterized as Dynamic Movement Primitives. Here, the derivation and formulation of

iterative path integral control is general and therefore it is valid for generalized feedback

policies with no pre-specified parameterization.

Inside the class of the stochastic dynamics described by markov diffusion processes,

the path integral control approach derived based on Dynamic Programming may be more

general since based on the conditions (39) it can incorporate general cost functions and

stochastic dynamics. In particular, it incorporates cost functions which besides the state-

only and control-only depended terms they can include terms as functions of both state

and control. Another level of generalization is that the control transition and diffusion

matrices may be different. This generalization however, is reduced by the assumption

regarding control cost and the variance of the noise λG(x)R−1G(x)T = B(x)B(x)T .

The aforementioned assumption holds by construction in the second approach as the

control transition and diffusion matrices are almost identical. In addition, in the second

approach the lower bound of the accumulated trajectory cost is derived without relying

on the Bellman Principle. In fact, this lower bound defines a new form of optimality

which, as it is shown in [8], [9] as well as in this work, for the case of diffusion processes

turns out to be equivalent to the Bellman principle of optimality. Here we have done

on step forward by deriving the lower bound of the cost of stochastic optimal control

problem for a special class of nonlinear markov jump diffusion processes. As it turns

out the form of the lower bound remains similar with the case of diffusion processes

for as long the change in the probability measure of the markov jump diffusion is only

due to the changes in the in the drift of the stochastic dynamics.

On the application side we have applied iterative optimal control in its open loop

formulation for controlling the ACT tendon driven finger. Our experimental results
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demonstrate the efficiency of the method in terms of dealing with complex nonlinear

systems with unknown dynamics in a tasks that involves contact. Our analysis of the

biomechanical properties of the ACT index finger is not conclusive as more experiments

will be required in order to 1) further investigate the bio-mechanical properties of the

ACT 2) suggests new designs with better actuation and sensing capabilities that will

improve control and speedup learning of new tasks 3) scale the analysis to full ACT

hand which involves the control of 24 tendons.

X. APPENDIX

Girsanov’s theorem

We will consider Girsanov’s theorem for the case of stochastic diffusions: dx =

f(x)dt+ B(x)Ldw(0)(t) and dx = f(x)dt+ G(x)udt+ B(x)Ldw(1)(t), we also have

that Σ = LLT and B(x)ΣB(x)T = Σw. The corresponding probability measures:

dP =

exp

(
−1

2

(∫ tN
ti
||µk(x)||2

Σ−1

w

δt

))
(2πδt)m/2|Σw|1/2

dx and dQ =

exp

(
−1

2

(∫ tN
ti
||λk(x)||2

Σ−1

w

δt

))
(2πδt)m/2|Σw|1/2

dx

with µk(x) =
(
δx
δt
− f(x, t)

)
thus µk(x)δt = B(x)Ldw(0)(t) and λk(x) = δx

δt
−

f(x, t) − G(x)uk(t) = µk(x) − G(x)uk(t) thus λk(x)δt = B(x)Ldw(1)(t). From all

these equations we can also get a relationship between the noise terms dw(0)(t) and

dw(1)(t). More precisely λk(x)δt = B(x)Ldw(1)(t) = µk(x)δt − G(x)uk(t)δt and

thus B(x)Ldw(1)(t) = B(x)Ldw(0)(t) −G(x)uk(t)δt. Now we would like to find the

expression:

dP
dQ

=

exp

(
−1

2

(∫ tN
ti
||µk(x)||2

Σ−1

w

δt

))
exp

(
−1

2

(∫ tN
ti
||λk(x)||2

Σ−1

w

δt

)) = exp

[
− 1

2

∫ tN

ti

(
||µk(x)||2

Σ−1

w

− ||λk(x)||2
Σ−1

w

)
δt

]

= exp

[
− 1

2

∫ tN

ti

(
− uk(t)

TG(x)TΣ−1
w G(x)uk(t)δ −

∫ tN

ti

uk(t)
TG(x)TΣ−1

w B(x)Ldw(0)(t)

)]
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Since B(x)Ldw(1)(t) = B(x)Ldw(0)(t)−G(x)uk(t)δt then we will have that B(x)Ldw(0)(t) =

B(x)Ldw(1)(t)+G(x)uk(t)δt. We are going to substitute the expression B(x)Ldw(0)(t)

with B(x)Ldw(1)(t) + G(x)uk(t)δt. Thus the ratio of the probability measures is:
dP
dQ

= exp

[
− 1

2

∫ tN

ti

(
uk(t)

TG(x)TΣ−1
w G(x)uk(t)δt+ 2uk(t)

TG(x)TΣ−1
w B(x)Ldw(1)(t)

)]
REFERENCES

[1] B. van den Broek, W. Wiegerinck, and H. J. Kappen. Graphical model inference in optimal control of stochastic

multi-agent systems. Journal of Artificial Intelligence Research, 32(1):95–122, 2008.

[2] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal. Learning variable impedance control. nternational journal of

robotics research, pages 820–833, April 2011.

[3] Jonas Buchli, Evangelos Theodorou, Freek Stulp, and Stefan Schaal. Variable impedance control - a

reinforcement learning approach. In Robotics: Science and Systems Conference (RSS), 2010.

[4] Paolo Dai Pra, Lorenzo Meneghini, and Wolfgang Runggaldier. Connections between stochastic control and

dynamic games. Mathematics of Control, Signals, and Systems (MCSS), 9(4):303–326, 1996-12-08.

[5] A. D. Deshpande, Z. Xu, M. J. V. Weghe, L. Y. Chang, B. H. Brown, D. D. Wilkinson, S. M. Bidic, and

Y. Matsuoka. Mechanisms of anatomically correct testbed (ACT) hand. Trans. Mechatronics, 2011.

[6] A.D. Deshpande, J. Ko, D. Fox, and Y. Matsuoka. Anatomically correct testbed hand control: muscle and

joint control strategies. In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages

4416–4422. IEEE, 2009.

[7] W. H. Fleming and W. M. McEneaney. Risk-sensitive control on an infinite time horizon. SIAM J. Control

Optim., 33:1881–1915, November 1995.

[8] W. H. Fleming and H. Mete Soner. Controlled Markov processes and viscosity solutions. Applications of

mathematics. Springer, New York, 1nd edition, 1993.

[9] W. H. Fleming and H. Mete Soner. Controlled Markov processes and viscosity solutions. Applications of

mathematics. Springer, New York, 2nd edition, 2006.

[10] W.H. Fleming. Exit probabilities and optimal stochastic control. Applied Math. Optim, 9:329–346, 1971.

[11] A. Friedman. Stochastic Differential Equations And Applications. Academic Press, 1975.

[12] C. Gardiner. Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences. Spinger, 2004.

[13] Floyd B. Hanson. Applied Stochastic Processes and Control for Jump-Diffusions. SIAM, 2007.

[14] H. J. Kappen. Path integrals and symmetry breaking for optimal control theory. Journal of Statistical Mechanics:

Theory and Experiment, 11:P11011, 2005.

[15] H. J. Kappen. An introduction to stochastic control theory, path integrals and reinforcement learning. In

J. Marro, P. L. Garrido, and J. J. Torres, editors, Cooperative Behavior in Neural Systems, volume 887 of

American Institute of Physics Conference Series, pages 149–181, February 2007.

September 10, 2012 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 35

[16] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus (Graduate Texts in

Mathematics). Springer, 2nd edition, August 1991.

[17] B. K. Oksendal. Stochastic differential equations : an introduction with applications. Springer, Berlin ; New

York, 6th edition, 2003.

[18] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal. skill learning and task outcome prediction

for manipulation. In robotics and automation (icra), 2011 ieee international conference on, 2011.

[19] M. Schulz. Control Theory in Physics and other Fields of Science. Concepts, Tools and Applications. Spinger,

2006.

[20] Robert F. Stengel. Optimal control and estimation. Dover books on advanced mathematics. Dover Publications,

New York, 1994.

[21] Freek Stulp, Jonas Buchli, Evangelos Theodorou, and Stefan Schaal. Reinforcement learning of full-body

humanoid motor skills. In 10th IEEE-RAS International Conference on Humanoid Robots, 2010.

[22] E.. Theodorou. Iterative Path Integral Stochastic Optimal Control: Theory and Applications to Motor Control.

PhD thesis, university of southern California, May 2011.

[23] E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral approach to reinforcement learning. Journal

of Machine Learning Research, (11):3137–3181, 2010.

[24] E. Todorov. Linearly-solvable markov decision problems. In B. Scholkopf, J. Platt, and T. Hoffman, editors,

Advances in Neural Information Processing Systems 19 (NIPS 2007), Vancouver, BC, 2007. Cambridge, MA:

MIT Press.

[25] E. Todorov. Compositionality of optimal control laws. In Advances in Neural Information Processing Systems,

22:1856–1864, 2009.

[26] E. Todorov. Efficient computation of optimal actions. Proc Natl Acad Sci U S A, 106(28):11478–83, 2009.

[27] F.J. Valero-Cuevas, F.E. Zajac, C.G. Burgar, et al. Large index-fingertip forces are produced by subject-

independent patterns of muscle excitation. Journal of Biomechanics, 31(8):693–704, 1998.

[28] M Venkadesan and F.J. Valero-Cuevas. The journal of Neuroscience, 28(6):1366–1373, 2008.

September 10, 2012 DRAFT


