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ABSTRACT
In this paper, we present a novel interdomain network ar-
chitecture that is based on the application of the principle
of least privilege. By applying this design principle from
the ground up, we can reduce the scope for a large range
of misbehaviors (both unintentional and intentional), includ-
ing configuration errors, DoS attacks, malicious behavior by
ISPs, traffic discrimination, and censorship.

We present a complete architecture that considers the con-
trol plane, name translation mechanisms and even business
models. Our objective in this paper is to show that such a sys-
tem is possible and what it takes to make it work. We show
that in our system, users can trade off performance and pri-
vacy, with very little performance penalty for users who do
not need additional security.

1. INTRODUCTION
Despite the Internet’s critical importance, portions of its

architecture are surprisingly fragile, and the network as a
whole suffers under the weight of incessant attacks ranging
from software exploits to denial-of-service (DoS). One of
the main reasons for this state of affairs is that the Internet
was designed for a benign and trustworthy environment, in
which little consideration was given to security issues. This
assumption is clearly no longer valid for today’s Internet.
Operational experience has uncovered numerous issues, and
the list of known vulnerabilities includes:
• Enterprises, ISPs, and governments monitoring or discrim-

inating against certain types of traffic.
• Prefix hijacks and malicious alteration or deletion of rout-

ing information from upstream networks.
• Byzantine errors by neighboring ISPs disrupting unrelated

traffic (e.g., prefix disaggregation causing router crashes).
• Disruption of service by resource exhaustion attacks against

network links and end hosts.
• Silent re-routing without source approval of route choices

(e.g., rerouting of DARPA traffic to China).
• Divergence between the control and data plane, wherein

ISPs claim that they have a route, but do not forward.
• ISPs disrupting traffic between other ISPs or endpoints

(e.g., to gain commercial advantage),
• Compromised routers and router software bugs affecting

other ISPs beyond the misbehaving one.
Industry and researchers alike have moved to counter these

threats, yet there have been only modest gains to date, as the
Internet’s key vulnerabilities are deeply rooted in its archi-

tecture. For example, secure routing protocols such as Se-
cure BGP can be used to verify the authenticity of BGP
control traffic, but they do not limit the impact of compro-
mised or faulty routers. Encrypting traffic can hide packet
contents, but the Internet still discloses the packet header
to every ISP along the path, enabling traffic discrimination
and censorship. Laundering packets through an anonymiz-
ing overlay, such as Tor, is fundamentally limited as govern-
ments can blacklist Tor nodes or monitor Tor entry/exit traf-
fic. Equally problematic is that router implementations have
become complex, leaving much room for zero-day attacks.

Our goal is to provide high-performance, private, reliable,
uncensorable communication as long as a working path ex-
ists. We take a radical approach: expose to network elements
the minimum information and control necessary for the cor-
rect functioning of the network. By limiting the informa-
tion and power granted to network elements, we reduce their
scope for misbehavior. We also reduce the complexity of
their implementations, making them less vulnerable to unex-
pected failure. For instance, transit ISPs only need to know
the next/previous hop on the path and nothing else. Simi-
larly, end hosts do not need the location of other end hosts or
even the ability to directly contact them. Instead, all traffic
in our system goes through ephemeral rendezvous nodes so
that only explicitly requested traffic is delivered.

For packet forwarding, our system takes inspiration from
work on robust routing [34], onion routing [10,38], and capab-
ility-based DoS resilience [11, 41]. Our contribution is to
show that by strictly adhering to minimum information/control
exposure, we can create a forwarding layer that covers a
larger class of attacks, performs well, and is as simple or
simpler than the above proposals.

However, packet forwarding is just a small part of what we
consider to be the Internet. To fully realize an Internet archi-
tecture that is resilient to Byzantine behavior by both ISPs
and users, we need to answer several additional questions:
How do we disseminate routes? How do we retain economic
incentives for forwarding? How do we design a name ser-
vice that preserves anonymity and enhances DoS resilience?
Is it possible to get similar performance as today’s Internet?
The rest of this paper addresses these issues.

Although radical, our architecture preserves the structure,
flexibility, and efficiency of the Internet. We preserve the
principle of the thin waist: transport and application proto-
cols are layered over our protocol just as they operate atop
IP today. Further, while ISPs no longer control global rout-
ing, they retain their business incentives and their ability to
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define the terms of transit—which customers and peers they
connect, and at what price. Instead, we put control over rout-
ing decisions in the hands of end hosts so that each can trade
off performance and security according to their own needs.

In summary, we make the following contributions:
• Architecture based on the principle of least privilege: We

introduce the first network architecture that minimizes the
amount of information/control given to ISPs and other
users. As a result, our architecture is resilient to faulty
or Byzantine behavior while simultaneously simplifying
ISPs, maintaining economic incentives, and providing per-
formance/features similar to those of the current Internet.

• Novel mechanisms for privacy-preserving payment and
name translation: Aside from delivering packets, we need
additional mechanisms for payment and naming. We in-
troduce two novel, Byzantine-resilient, and privacy-preserving
mechanisms: one to maintain economic incentives for ISPs,
and one to provide human-readable name translation.

• Prototype and performance analysis: To demonstrate that
our approach is practical, we implement the proposed sys-
tem and show that we can forward 38 Gbps using inex-
pensive hardware. We also show that routes in our sys-
tem have similar latency compared to the current Internet
while still preserving privacy.

2. MOTIVATION AND OVERVIEW
The high-level goal of our architecture is simple to state,

yet challenging to realize: private, reliable, and uncensorable
communication as long as a valid path exists. Specifically, if
a path exists between two end hosts such that (i) every ISP on
the path is willing to deliver traffic for their physical neigh-
bors and (ii) not all of them are colluding, then their commu-
nication should be resilient to even Byzantine ISPs/users.

2.1 Least Privilege in the Internet
Our key observation is that each of the attacks listed above

is because an ISP or user is able to access information or re-
sources that are unrelated to their core purpose. For instance,
censorship and traffic discrimination occur because ISPs can
determine when packets are destined for a particular website
or make use of a particular protocol—without this informa-
tion, there is no basis upon which to discriminate. Similarly,
routing problems occur because misconfigured or compro-
mised routers can exert significant influence on the routing
behavior of remote ISPs and users.

Our approach is to adhere to the principle of least privilege
along with the following additional design principles:
• Each network entity is given the minimum information

and control required to do its job. Minimal information re-
moves any basis upon which to discriminate against traf-
fic, thus limiting the failure model to uniform degradation
of service. Minimal control reduces their scope for misbe-
havior and reduces their implementation complexity.

• End hosts must be able to tune performance and secu-
rity: As a corollary to the above, information and control

Rendezvous Router

Onion Router

End host

ISP

Non-Onion Router

Figure 1: Overview of the entities involved in a single
end-to-end connection.

Mechanism Purpose Section
Source routing Minimizing ISP control, Defending

against routing attacks
3.1

Onion routing Preventing traffic discrimination, DoS
resilience

3.1

RdV routing Preventing traffic discrimination, DoS
resilience

3.1

Credits Economic model, Localizing failures,
DoS resilience

3.2

Authorities Trusted computing base for name reso-
lution, Integrity of information

3.3

Single-Use
Name Resolution

Network neutrality, DoS resilience 3.3

PoP-level
Routing Vectors

Performance tuning 3.4

Table 1: Mechanisms used in our proposed architecture
along with the section in which they are explained. Sec-
tion 4.2 details their use in defending against attacks.

should stay with the hosts to whom the traffic belongs.
Users can use this control to suit their particular needs,
e.g., achieving performance similar to or better than that
of today’s Internet, or obtaining stronger security.

• The architecture must preserve the structure and features
of the Internet. We owe the success of the Internet to more
than just IP/BGP. For an Internet architecture to be prac-
tical, ISPs need incentives to carry traffic and end-users
must be able to locate services using human-readable names.

2.2 Baseline Design
We started our work by asking: what if the Internet used

Tor at the network layer? Is such a system feasible, would it
eliminate all of the mentioned attacks, and could it produce
functionality/performance close to that of the current Inter-
net? To be precise, we take Tor to mean the following:
• Source Routing, the ability for end hosts to choose routes.
• Onion Routing, the source host encrypting a packet with

the key of each hop and having each hop iteratively un-
wrap the layers of encryption in order to hide the source,
destination, and packet contents from intermediate hops.

• Circuits, an optimization that uses symmetric-key encryp-
tion over pre-established routes, rather than public-keys.

• Rendezvous (RdV) Routers, intermediaries to which both
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endpoints establish a circuit in order to hide the source
from the destination and vice versa, as in hidden services [1].
In such a system, ISPs would still be separate trust do-

mains with their own equipment and internal structure, and
would still develop their own business relationships and con-
nections with adjacent ISPs. However, unlike the Internet,
each ISP would also act as a single, logical onion router. End
hosts would then incrementally build a circuit by negotiating
a symmetric key and next hop with each ISP on the path.

ISPs would also optionally host RdV routers, which stitch
together two circuits and forward packets from one circuit
to another (i.e., source-RdV and RdV-destination). All end-
to-end connections are then built by having both sides incre-
mentally extend circuits through a sequence of ISPs to an
ISP hosting a RdV router. Figure 1 depicts this process.

Strengths: The above proposal is attractive as it adheres to
the principle of least privilege. For instance, ISPs are only
aware of the previous and next hop, nothing else. In fact,
this proposal already protects against a multitude of attacks
including many types of traffic discrimination (as source,
destination, and content are always hidden) and prefix hi-
jacking attacks (as the source and destination jointly have
full control over their routes). The principle of least privilege
even provides some protection against DoS attacks. In par-
ticular, the indirection provided by RdV routers gives us the
ability to use capability-based DoS protection as in i3 and
Phalanx [11, 41]. In other words, end hosts are not given the
privilege to send directly to one another. Instead, the destina-
tion must explicitly reveal the location of a disposable RdV
to the sender to grant it the capability to send.

What we have described is Tor at the network layer, which
is an interesting idea in and of itself and the basis of a recent
workshop paper [42]. Moving Tor into the network layer
gives us the opportunity to address the issues of path dila-
tion and the conspicuous nature of Tor overlay traffic.

Deficiencies: While this core idea forms the basis of our de-
sign, just using Tor at the network layer raises many issues.
• How do we compensate ISPs for transit? The consumer-

provider/peering model of today’s Internet does not apply
to a source-routed architecture.

• Can we enable routing at the granularity of PoPs? Unlike
the onion routers of Tor, ISPs that can potentially span
entire countries. It is important for performance to be able
to specify routes at a fine granularity.

• More generally, what does the control plane look like? Tor
is an overlay protocol and was designed as such. To oper-
ate at the network layer, we need a completely different
set of mechanisms for bootstrapping, routing advertise-
ment and path computation, among other things.

• How do we provide human-readable names? This feature
is essential to the Internet and has no counterpart in Tor.

• Are we actually able to provide performance similar to
that of the Internet?

Transit packet, maintain credits
Extend circuit
Advertisement dissemination

Rendezvous
Router

Onion
Router/ISP

Name Resolution
Advertisement disseminationAuthorityEnd Host

Associate two circuits
Relay packet

Figure 2: Key actors in our system and the functionalities
they provide for end hosts.

• How do we do all of the above while continuing to adhere
to the principle of least privilege?

2.3 Design Overview
In addition to the baseline design, we introduce additional

mechanisms to address the above questions.
Credits: A novel form of digital currency whose trans-

fer from one entity to another is a promise of payment. End
hosts deposit them at each ISP on a circuit and use them to
pay for circuit state and transfer of packets.

Authorities: Entities that provide name resolution and as-
sist in routing advertisements. They control a distinct portion
of the name space, based upon a hierarchical system of trust.

Single-Use Name Resolution: Name resolution maps a
service name to a single-use RdV router.

Performance Annotated, PoP-level Routing Vectors: Rout-
ing vectors advertise, at a PoP-level, that a given ISP is will-
ing to provide transit from an ingress ISP at a particular PoP
to an egress ISP at a particular PoP.

Table 1 contains a slightly expanded list of the myriad mech-
anisms in our architecture, along with a brief description of
what they contribute to security and fault tolerance.

3. ARCHITECTURE
There are four roles in our system: onion routers, ren-

dezvous routers, authorities, and end hosts. The first three
replace DNS, BGP, and the IP forwarding of today with a
relatively simple interface (see Figure 2 for the functionali-
ties provided). In this section, we describe our network ar-
chitecture and how the first three roles combine to provide
the desired interfaces. Later in Section 4, we provide exam-
ples of how end hosts and services can use these interfaces
to defend against attacks while preserving flexibility and ef-
ficiency. In this section, we make use of the identifiers listed
in Table 2 and the packet formats illustrated in Figure 3.

3.1 Forwarding
We begin the description of our architecture by outlining

how packets are forwarded. At a high level, this follows the
design illustrated in Section 2.2, with ISPs acting as onion
routers, and end hosts setting up onion circuits to a target
RdV router. The requirements for forwarding are as follows:

R1 Minimal information for ISPs: ISPs, including the one
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Type Bytes1 Scope Usage Generation
ISP ≥ 128 global Self-certifying address, digital signatures, and encryp-

tion.
Every ISP generates a public/private key and uses the
public key as an address.2

PoP 2 ISPs at PoP Specifying routes, rendezvous addresses. ISPs connected at the PoP negotiate an ID unique to
each ISP. A single physical PoP can have many IDs to
facilitate this.

Rendezvous 4 ISP-PoP pair Ephemeral address that replaces IPs. Identifies a meet-
ing point for 2 circuits.

For a new allocation, the ISP can assign an address in
whatever manner they wish.

Hop ID 6 ISP-PoP pair Identifies a circuit. Used to index into circuit state. Chosen randomly by the extending ISP.

Table 2: Description of the types of identifiers found in packets.

Type HopID Digest

0x01 HopID Credits Digest1 Block1 ... DigestN BlockN

Data

0x00 Len Vector List

Cell

Credit Push

Vector Advertisement

Figure 3: Packet formats used in our system.

hosting the RdV router, should know nothing more than
the previous hop and the next hop. Giving minimal in-
formation to ISPs prevents traffic discrimination by re-
moving any basis for it.

R2 Minimal control for ISPs: Similarly, ISPs should only
have control over packets flowing though their own net-
work. Limiting ISPs to this local scope prevents them
from interfering with other ISPs and also reduces the
complexity of their implementations.

R3 Minimal information/control for end hosts: The least priv-
ilege principle should also extend to end hosts. In partic-
ular, the two endpoints should be hidden from each other
and should both have a say in their part of the path.

R4 DoS resilience: Finally, end hosts should be protected
from DoS attacks from remote end hosts and ISPs. In
fact, we argue that they should only receive packets when
they explicitly request them.

We argue that a system with both source-routed onion cir-
cuits at the ISP-level and RdV routers satisfies all of these re-
quirements. For instance, the primary purpose of both onion
routing and RdV routers is to limit information exposure
across the path. Thus these two mechanisms directly satisfy
R1 and R3. Similarly, source routing takes all routing deci-
sions out of the hands of the ISPs and thus provides R2. R4
is then provided by the fact that circuits need to be explicitly
set up by an end host before packets can be forwarded to it.
We elaborate on this proposal below. We omit detailed dis-
cussions of the mechanisms that are duplicated in Tor [10].

Packet Format. The primary packet type in our architecture
is a fixed-length, onion-encrypted cell. This cell is one of
three types of packets and is diagrammed in Figure 3.

1The number of bytes listed are just preliminary values used in our
prototype. In particular, the ISP key can be variable size and use
different techniques like elliptic curve crypto.
2An ISP is defined by its public key. Changing keys requires the
ISP and its neighbors to rebroadcast all relevant advertisements.

They are used for both data and commands. In the case
of data, the payload is always end-to-end encrypted so as
to hide the contents even from RdVs. In the case of com-
mands, onion routers know a cell is decrypted when the di-
gest matches the data.

ISP Layout. ISPs store the following state for each circuit:
• prev = (HopID, PoP, ISP) tuple of downstream ISP or

(HopID, EndHostID) if this is the first hop.
• next = (HopID, PoP, ISP) tuple of upstream ISP or (HopID,

otherHopID) if this is the last hop.
• symKey established with the end host.
• credits available.

On top of storing this state, each ISP also exposes two
forwarding-related interfaces to end hosts: circuit extension
and packet transit. They also optionally provide an addi-
tional interface: connection to a RdV router.

Although we treat an ISP as a single logical onion router,
this functionality can be distributed across multiple physical
machines. For example, we could partition circuits across
multiple routers inside a PoP using consistent hashing of
hopIDs. In the same way, if an ISP hosts or contracts out
a set of RdVs in a given PoP, this functionality can also be
distributed across multiple physical machines.

The low-level implementation of an ISP is out of the scope
of this paper, but scalable circuit management is a well-proven
technology widely used in the frontends of popular web sites.

Building a Circuit. Before data can be forwarded, an end
host needs to first build a circuit. This happens through cir-
cuit extension, in which ISPs are iteratively appended to an
end host’s circuit until the circuit is finally attached to a RdV.

Circuit Extension: At a high level, end hosts initiate this
process by sending an EXTEND CIRCUIT command to the
last ISP on the circuit (for a new circuit, this step is omitted).
This message includes (a) the first half of a Diffie-Hellman
key exchange, (b) the new ISP, T , and PoP to which the cir-
cuit should be extended and (c), the number of credits that
the last hop should push to T .

The last ISP (or the end host for a new circuit) then sends a
CREATE CIRCUIT message to T . This message includes (a)
and (c) from the extension request as well as a new, random
HopID. At the end of this process, the end host will have
negotiated a symmetric key with T , the last ISP on the circuit
will have transferred (c) credits to T , and both ISPs will have
updated their previous and next hop fields appropriately.

Attaching to a RdV router: After a circuit has been estab-
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Figure 4: The encryption/decription at each hop of onion
routing

lished to a target PoP, users can allocate a new RdV or con-
nect to an existing RdV on-demand. Note that a final intra-
ISP extension can be made if the RdV router is not in the
ingress PoP (this does not incur another layer of onion en-
cryption, but may require extra state). To allocate a new RdV
router, an end host, Bob, sends a RENDEZVOUS REQUEST
command to the target ISP. This prompts the PoP to allocate
a new, random RdV address and send it back to Bob.

Alice connects to Bob by building a circuit to the same
target PoP, and sending a RENDEZVOUS CONNECT request
for Bob’s RdV address. Alice can obtain the address either
through a name resolution service (see Section 3.3) or out-
of-band in the case of a P2P connection. The ISP then “grafts”
the two circuits together such that the RdV forwards traffic
between the two circuits bidirectionally.

Cell Forwarding. A connection is composed of two circuits
grafted together by a RdV router. As a result, each packet
goes through two phases: an upstream phase (toward the
RdV router), and a downstream phase (away from the RdV
router). The RdV router immediately and automatically for-
wards packets from either circuit to the other circuit.

After looking up the relevant circuit state with the cell’s
locally-unique HopID, the ISP strips one layer of onion en-
cryption from each packet on the way upstream and adds a
layer of encryption for each packet on the way downstream;
however, as this is a symmetric key operation, both are oper-
ationally equivalent. Figure 4 shows an example of changes
to a packet’s layers of encryption. Note that in onion routing,
when a packet reaches the RdV there will be no remaining
onion-encryption, only the layer of end-to-end encryption.

This process terminates either when the packet reaches
an end host or when the digest is correct, in which case the
packet contains a command for the current hop. Data packets
that reach the end of a circuit with no next hop are dropped.

3.2 Payment
Today’s Internet is paid for with cascading payments from

one ISP to another. End users pay their first-hop ISP for
service, often for a maximum data rate or total amount of
data. Each ISP will then, in turn, pay its provider for tran-
sit in both directions—normally on the basis of 95th per-
centile usage. This chain of payment proceeds from both

ends of the connection until the path flows through a peering
or provider→customer link.

Unfortunately, this economic model relies heavily on In-
ternet’s current structure and policies, and it is not compati-
ble with source routing. Thus, we need a way for end hosts
to send ISPs payment for packet transit and circuit state. Fur-
thermore, the mechanism must satisfy the following:
R1 Arbitrary Routes: It must be possible for end hosts to as-

semble an arbitrary route and funnel some form of pay-
ment to each and every ISP on the path.

R2 Privacy-preserving: Payments should not leak any infor-
mation about the end host or the path to remote ISPs.

R3 Local transactions: ISPs should not need to take pay-
ment directly from remote ISPs or users. In the cur-
rent Internet, money only changes hands between direct
neighbors, to whom ISPs have business relationships.

R4 Verifiable: End hosts should be able to verify that pay-
ments were made correctly. In the case of a faulty/malicious
ISP, the end host should be able to pinpoint the point of
failure so as to avoid that ISP in the future.

R5 Expressive Pricing: First-hop ISPs must be able to pro-
vide a variety of different types of pricing plans. At a
minimum, they should be able to approximate today’s
myriad pricing plans with credits.

To enable privacy-preserving payment for transit, we in-
troduce a form of digital currency called credits, whose trans-
fer from one entity to another is a promise of payment. By
pushing credits from neighboring ISP to neighboring ISP, we
can handle arbitrary paths as required by R1.

3.2.1 Economic Model
In the current Internet, payment is hierarchical. Tier 1 ISPs

peer with each other, have no providers and therefore pay
no one for transit. Instead, they are paid by others for use
of their network. The cost is propagated downward to ISPs
and users further down the hierarchy. Thus, the current In-
ternet’s payment schemes are opaque, implicit and assume
much about policy and routing.

In our architecture, on the other hand, our goal is to make
pricing transparent and explicit. Rather than implicitly in-
cluding transit costs of remote ISPs in pricing, end hosts in
our system pay ISPs for operation of their own network and
no one else’s. At the same time, we try to maintain the key
features of the current Internet’s economic model.

One example of an important feature we maintain is R3:
the notion that connection between two ISPs is a result of
a direct business relationship. Toward this end, ISPs in our
system only ever promise payment to direct business part-
ners. The exact conversion between credits and money is on
a per-contract basis. In fact, they may still choose to engage
in a peering agreement, where both ISPs agree to exchange
traffic settlement free.

Credits are also flexible enough to satisfy R5. For instance,
a first-hop ISP can implement per-month data caps by limit-
ing the total number of credits that end hosts can push into
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... 100 EA(EB(H(50) | 50)) EA(H(80) | 80)) Filler

End host 

ISP A Deposit into A: 100 - 80 = 20

Deposit into B: 80 - 50 = 30
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-1(Filler))...

Credit Digest | Block1 Digest | Block2 Digest | Block3

ISP B 

ISP C 

Figure 5: The journey of an example credit push packet.
Shaded blocks indicate a block is relevant to the next hop.
the network. Similarly, bandwidth caps can be implemented
by bounding the number of credits and packets an end host
can push per time period.

3.2.2 Credit Push
Besides the ability to drop off credits along the circuit, the

main requirement of our credit push mechanism is to main-
tain the privacy afforded by the rest of the architecture. For
instance, Tor expends much effort to ensure packets look dif-
ferent at each hop and to keep intermediate nodes from dis-
covering the length of the circuit. We take care to maintain
the same guarantees here.

Packet Format. Credit push packets iteratively transfer batches
of credits along a circuit. A single credit push message can
deposit multiple credits to multiple hops along the circuit.

Toward this end, credit push packets contain a fixed num-
ber of credit blocks (as depicted in Figure 3). Each of these
blocks is intended for at most one ISP, and includes the num-
ber of credits to push to the next hop, plus a digest of the
value. The current number of credits being pushed from the
previous hop is kept in the Credits field of the packet.

As an example, a block intended for ISP A with a value of
10 instructs A to transfer 10 of its credits to the next hop.

Preventing Correlation. At a high level, we treat each in-
dividual block as a mini, onion-encrypted cell. When an end
host prepares a credit push packet, it encrypts each block
with the chain of symmetric keys starting from the target
ISP and ending with the first-hop ISP, as if the end host were
individually onion routing each block to each target ISP.

Per-hop encryption gives us the property that the packet
looks different at each hop. Without this property, two col-
luding ISPs on the path could see that they are handling the
same circuit, thereby violating R2.

Hiding Length/Position in the Circuit. Furthermore, we
prevent an ISP from knowing where it is located in the cir-
cuit by fixing the number of blocks in a packet and shuffling
their order before sending. If there are fewer target ISPs on
the path than blocks in the push message, the remainder are
filled with random bits. If there are more, the end host must
send multiple messages.

Protocol. An end host begins by crafting a packet, setting
Credits to the number of credits to push to the first-hop
ISP and generating a set of credit blocks as explained above.

Each ISP, upon receiving a credit push packet, deposits
any credits from the previous hop. It then decrypts all the
blocks with the symKey of the circuit and looks for a block
whose digest matches its value. If it exists, the ISP simply
changes the Credits field to the amount specified, deducts
the same amount from the circuit and forwards the entire
message to the next ISP in the circuit. After this process,
every credit push block has one less layer of encryption, even
if it was a filler block or already reached its destination.

As a simple example, consider the network in Figure 4. If
A, B and C require 2, 3 and 5 credits per packet, the sender
would need to craft a credit push cell containing two valid
blocks, with 80 and 50 credits for A and B, respectively. The
sender would then send the packet to A along with a promise
for 100 credits. Upon receipt, A decrypts all N blocks and
transfers the packet along with a promise for 80 credits to B.
B decrypts all N blocks as well, and transfers 50 to C, who
drops the packet because she is the last hop on the circuit. At
the end of this process, A has 20 credits, B has 30, and C has
50, enough for 10 packets. Figure 5 illustrates this process.

Verification. End hosts can query the credit balance at any
ISP in a circuit to verify deposits and deductions. If an ISP
fails to forward credits or overcharges for service, end hosts
can detect this misbehavior. They can even diagnose where
packets are being dropped, as the first correct ISP will have
a higher credit count than the upstream ISPs.

This verification technique is very powerful, but can only
pinpoint to the granularity of a link. For instance, in the case
where ISP A was supposed to forward 20 credits to ISP B: if
A deducted the 20 credits and B did not add them, it is un-
clear who is lying. In this case, the end host either continues
to use one of them until it misbehaves (if it does, we know
the other one told the truth) or alternatively, stop using both.

3.2.3 Paying for Services
Both ends of every connection are responsible for push-

ing credits along their side of the connection. Two actions
require payment: packet transit and circuit state. The price
for both of these are advertised along with the routing adver-
tisements described in Section 3.4.

In the case of packet transit, ISPs deduct the advertised
amount credits as part of packet processing. In addition, the
ISP periodically deducts credits for circuit state. As men-
tioned above, packet forwarding is best effort, so ISPs con-
tinue to forward packets and store the circuit state only as
long as there are enough credits available.

Note that the RdV router does not need to deduct credits
per packet, as the ISP is already getting paid for the state
required and for every packet. Thus, the incentive for de-
ploying RdVs is as a traffic attractor.

3.3 Name Resolution
Human-readable names are another essential service for

the usability of the Internet. In the context of our architec-
ture, we need to be able to map a service name to a RdV
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address. Similar to the current Internet, we assume the exis-
tence of separate, hierarchical namespaces, each managed by
an authority that is responsible for name resolution requests.

Sadly, a direct transplant of DNS is not sufficient. DNS es-
sentially provides static mappings that, in our system, would
allow ISPs to target specific services. For example, if a large
ISP wished to target a service S, it could simply query for
each of the RdV routers of S. It could then either DoS all
known RdV routers or, if any of the RdV routers are within
the ISP’s own network, it could selectively block them.

Single-Use Records. We prevent adversaries from discover-
ing the service associated with a given RdV router by mak-
ing the mappings single-use and unpredictable. Every time
a hostname is resolved, we return a new RdV address.

Compliant to the principle of least privilege, only the cur-
rent client, target server, and the responsible authority know
which service is using any particular rendezvous address. In
this way, we guarantee that any RdV addresses that are com-
promised by adversaries are never used for real connections.

Hierarchy of Authorities. The authorities that provide these
records are organized in a hierarchy where each is responsi-
ble for a disjoint subset of the namespace (e.g., foo.com is
signed from a different authority than foo.bar.com or foo.ch).
In many ways, authorities are like any other service—users
connect to them through rendezvous routers, their network
location is hidden, they are DoS-resilient, and users can find
their rendezvous routers through other authorities.

In our system, there is a single root authority with a well-
known public key.3 Like in the current Internet, each ISP is
responsible for obtaining RdV addresses for the root author-
ity and providing them to users.

The root authority signs public keys and provides RdV
address mappings for its child authorities. This process hap-
pens recursively to create a tree of authorities, each with a
public key that can be traced back to the root.

Though there is a single root, sub-authorities are independ-
ently-managed. Therefore, embattled services can embed them-
selves within the hierarchy such that it would be impossible
for the root authority to block them without blocking a large
subset of the Internet.4

Protocol. Authorities provide mappings of the following for-
mat: 〈name〉 → 〈PKS, ISP:PoP:R〉, where PKS is the public
key of the service in question and 〈ISP:PoP:R〉 is the address
of one of many rendezvous routers for that service.

An end host requests name resolution by sending its pub-
lic key, PKEH , along with the name of the target service.5

The response is of the form EPKEH (〈PKS, ISP:PoP:R〉). Note
that both the request and response are public-key encrypted.
3We use a single authority for simplicity. Extension to multiple
such root authorities is straightforward.
4To take the example of Wikileaks in 2010, the only TLD willing to
host their domain name was .ch, Switzerland. To block Wikileaks,
the root DNS server would need to block all Swiss websites.
5They may also provide a target location to ensure locality as de-
scribed in Section 4.3

Services that wish to have a human-readable name con-
tract with an authority they trust to reserve a domain name
and exchange public keys with them out-of-band. The ser-
vice is then responsible for allocating rendezvous routers and
sending them to the authority periodically.

Under high-load, an authority can request that users solve
a computational challenge (as in [33]) before receiving a
mapping. Users who solve more difficult puzzles receive ser-
vice priority over others. However, this mechanism only ac-
tivates during a DoS attack/high utilization so the common
case will only require one round-trip latency.

3.4 Route Advertisements
In order for end hosts to be able to choose routes, they

need to know which ISPs are providing transit as well as
latency/cost of the routes. In this section, we describe route
advertisements and how they are propagated.

PoP-level Routing. ISPs advertise routing vectors, which in-
dicate that they are willing to provide transit from an ingress
ISP at a particular PoP to an egress ISP at a particular PoP.
Following the principle of least privilege, we grant ISPs no
control over the segments chosen for a path, only over the
segments from which an end host may choose. As in today’s
Internet, PoP-level routing enables better path choice based
on geographical and topological properties.

Advertisement Format. Each routing vector consists of three
ISPs (i.e., previous-hop ISP, advertising ISP and next-hop
ISP), the two PoPs in the advertising ISP that connect them,
and path information: 〈ISP〉:〈PoP〉:〈ISP〉:〈PoP〉:〈ISP〉:info.
The last element may include information such as latency,
cost, etc. that end hosts use to compose paths.

Advertisement packets are simply a signed list of these
PoP-level routing vectors as illustrated in Figure 3. These
packets need not be encrypted.

Advertisement Propagation. ISPs must disseminate and col-
lect routing vectors as they expire and change. Whenever an
ISP wishes to advertise a new route, it broadcasts routing
vectors to all of its neighbors. Propagation is then straight-
forward – ISPs store and rebroadcast to their neighbors any
new advertisements they receive from their other neighbors.

Note that we require authorities to collect route advertise-
ments in addition to ISPs. By requiring that all ISPs and au-
thorities be able to provide this information, we ensure that
if an end host can reach any non-colluding ISP or authority,
it can bootstrap the entire system.

End hosts obtain vectors by sending a GET VECTORS com-
mand through an onion circuit to any ISP or authority, who
then responds with the requested information. While end
hosts get their first set from their first-hop ISP, they can later
query any other ISP or any authority to cross-validate the set.

Note that routing vectors should change slowly and thus
can be cached for long periods. They can also be compressed
to reduce overheads (e.g., group similar advertisements). See
Section 5.2 for an analysis of the size/churn of this set.
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Figure 6: Network used in our end-to-end example. Dot-
ted lines indicate pre-established circuits.

4. END-TO-END SYSTEM INTEGRATION
Unlike the current Internet, where a local problem (e.g.,

a misconfigured router) can cause a global outage, the rout-
ing functionalities described above are limited in scope and
therefore limit the scope for misbehavior. we allow end hosts
(both users and services) to maintain control over their own
traffic and to customize behavior for their own particular
needs. This flexibility allows many potential policies, but in
this section, we provide several representative examples of
how our architecture can be used to defend against the at-
tacks listed in the introduction while preserving the flexibil-
ity and efficiency we have come to expect from the Internet.

4.1 End Host Operation
To tie our architecture together, we show a very simple

case. An end host, Alice, wishes to connect to the network
and send a cell to some service bob.smith. We assume ser-
vices and authorities have already allocated RdV routers and
given the relevant authorities their addresses. We also as-
sume ISPs have collected the root’s RdV addresses and all
routing advertisements. Figure 6 depicts our simple example
network and the following steps taken by Alice:

1. When Alice first connects to the network, her first-hop
router sends a root authority rendezvous address and all
of the routing advertisements it knows about.

2. Alice composes the routing advertisements to form a path
to the root authority’s rendezvous router, under the con-
straint that the path passes through more than one trust
domain, but is otherwise the cheapest path.

3. She creates the circuit with a CREATE CIRCUIT message
followed by several EXTEND CIRCUIT commands (one
for each additional ISP on the path) and also pushes a
batch of credits to each hop on the path.

4. Alice sends RENDEZVOUS CONNECT command to con-
nect to the authority and a GET MAPPING command for
the smith authority.

5. She receives both an address and public key for the smith
authority and repeats the same process to find an address
and public key for bob.smith.

6. She builds one final circuit to bob.smith’s rendezvous router,
and sends it a RENDEZVOUS CONNECT.

7. Finally, Alice tunnels half of a Diffie-Hellman handshake
across the circuit to bob.smith, who returns the favor to
complete connection setup.

4.2 Defending Against Attacks
In Section 1, we list the vulnerabilities that are inherent to

the Internet’s architecture and that have plagued the system
in recent years. Here we show how our architecture negates
each of those threats and others, either implicitly or with
slight modifications to the above base case.

Compromised routers, software bugs, etc. in byzantine
remote ISPs. Our architecture stems from a few key ideas,
foremost being the principle of least privilege. Functions of
ISPs in our system operate independently of other network
entities, and therefore failures are self-contained. The only
malicious behavior available to ISPs is to either send too
many (resource exhaustion) or too few (dropping) packets.
Defense against the first is described below, and the second
is easily detectable (via credits) and repaired.

Deletion or alteration of routing information. By design,
every ISP and authority has a full set of routing informa-
tion. Thus, end hosts can detect and recover from omissions
by cross-validating information from multiple sources—if it
can reach an ISP or authority that is not colluding with the
attacker, it can fill in any missing information. Furthermore,
alteration (e.g., prefix hijacking) is impossible since all ad-
vertisements are signed by self-certifying addresses.

Traffic monitoring and discrimination. Single-use ren-
dezvous routers and onion routing ensures that ISPs are not
aware of what rendezvous routers are used for or what type
of information circuits/packets carry. Assuming the cryptog-
raphy is strong enough, they have no way of monitoring
traffic and no basis upon which to censor and discriminate
against data or commands.

Resource exhaustion attacks. Large ISPs should be able
to handle high traffic and are paid for every packet regard-
less. Small ISPs need not advertise any transit vectors, thus
choosing to only serve direct customers and gaining the same
protection given to end hosts in our system (i.e., adversaries
cannot direct packets into the ISPs unless end hosts pay cred-
its to receive the traffic).

For services, two properties protect them against resource
exhaustion: anonymity and the requirement that all traffic
be explicitly requested. Adversaries therefore do not know
where to attack and cannot execute those attacks at a large
scale. Attacks at the name resolution level are also difficult
as adversaries only ever receive their fair share of addresses.

Censorship of a service. Resistance to traffic monitor-
ing/discrimination and resource exhaustion attacks directly
protect against censorship. They make it difficult to target
services, their traffic, or their name mappings directly. Part
of this is that adversaries do not know which packets/RdV
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routers to attack. The other part is that adversaries are lim-
ited to their fair share of resources by computational puzzles.
The service is even protected from higher-level authorities
by the fact that embedding the authority deep within the hi-
erarchy discourages blocking.

Silent rerouting. End hosts in our architecture perform
source routing, and therefore choose their own paths. In fact,
transit ISPs do not know where circuits are coming from nor
where they are going. Hence, there is no basis upon which to
selectively reroute certain types of traffic, and any attempted
rerouting will simply break the path.

Divergence between the control and data plane. Expected
behavior of an ISP in our system is relatively simple—deliver
packets through an advertised routing vector for the adver-
tised price. This simple contract gives our architecture a ro-
bust way to pinpoint failures and misbehavior.

End hosts can, at any time, ping an ISP on one of its
circuits to check the remaining credit balance. The credit
counts paired with ISP cost advertisements essentially pro-
vide a detailed, per-hop packet count that can be used to ver-
ify correct transfers and charges. This metric can be used to
pinpoint the link at which the failure occurred.

Deanonymization. The security of onion routing requires
the circuit to traverse multiple entities who are not all collud-
ing. In some cases, particularly when the rendezvous router
and end host are close, the shortest path may remain within
the jurisdiction of a single government. One solution is for
end hosts to use real-world information to construct paths,
e.g., require paths to pass through three different countries.

Anonymity is preserved even in the extreme case where
an ISP prevents its customers from connecting to remote ren-
dezvous routers. Though users’ circuits stay within the ISP,
the other half of the circuit will continue to hide any action-
able information. Services can remain anonymous as well
by laundering packets through a proxy outside of the ISP.
Note that this attack disrupts approved usage as well since it
precludes interoperability between other ISPs with the same
restriction and prevents usage of smaller services that have
limited rendezvous router coverage.

State Correlation. Onion routing ensures that packets and
circuit state are different at each hop. We add to the circuit
state a record of the credits remaining, which if used naively,
can leak information about a circuit’s length or destination.
End hosts can defend against this attack by giving a random
number of extra credits to certain hops in the circuit to imi-
tate a longer path. Credits are worth a very small amount of
money so leaving them in the middle of the network is only
marginally more expensive than the common case.

4.3 Preserving Flexibility and Performance
As a side effect of granting more control to end hosts, we

are able to preserve (and in some cases improve) the flex-
ibility and efficiency we have come to expect from the In-
ternet. In this section, we describe how end hosts can trade

off performance and security according to their own needs.
Section 5 evaluates some of these techniques.

Latency. For end hosts that do not require additional anony-
mity, latencies in our system can often be less than they are
in the current Internet. Instead of relying on ISP policies and
BGP, end hosts in our system are free to chose the fastest
path because they have full control over paths as well as ac-
cess to latency information included in routing vector.

Further, services in large ISPs can choose RdV routers in
the their home ISP so that any shortest path from a user to
a RdV router is also part of a shortest end-to-end path. This
also has the benefit that allocating new RdV routers is fast
for the service as it does not require any circuit extensions.

Connection setup time. The latency penalty for setting up
a circuit can be minimized by prefetching partial paths. The
first few hops of each circuit are usually predictable since
we expect large tier 1 ISPs to host most RdV routers. In this
way, end hosts only need to set up the final hops on-demand.

Transport- and application-layer protocols. What we de-
scribe in this paper is a network layer that provides security
by construction. This network layer preserves the principle
of the thin waist and exposes to higher layers the abstraction
of reliable, privacy-preserving forwarding. Like IP, we can
layer higher-level protocols on top of our network layer.

Content delivery networks. Our architecture can also em-
ulate techniques like CDNs, where servers placed close to
users cache information to reduce latency and load on the
network while increasing availability.

In our system, servers can be placed in exactly the same
locations within ISPs. They would connect to a nearby RdV
(perhaps in the same room), which would enable end hosts
to use paths similar to today’s. End hosts can then optionally
provide a nearby PoP to the authority when requesting name
resolution, who will then determine an appropriate RdV. Of
course, end hosts can also choose to lie and use CDN servers
far away or take roundabout paths for privacy reasons.

End host policies for choosing routes. End hosts in our
system have full control over the route to the destination. To
increase usability, we can provide pre-defined policies that
automatically find the best route. These policies might in-
clude a preference for lowest latency within a cost limit or
lowest cost within a latency limit. In addition, they might
also specify the minimum number of ISPs to traverse to en-
sure security or even require that all paths pass through a
specific ISP. We can efficiently calculate all of the above
by varying the shortest path algorithm using the latency/cost
graph of the network.

Caching There is also a slight performance penalty re-
lated to the inability to cache single-use name resolution en-
tries at the ISP level. Caching can, however, occur at the end
host (in the OS for example). To make actual name reso-
lution accesses faster, we use the fact that each ISP has al-
ready set up a path to each root authority. An end host can
therefore utilize prefetching techniques to have some path to
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an arbitrary ISP, implying a prefetched path to any desired
root authority. If the name resolution request requires recur-
sive accesses to sub-authorities, we handle these in a similar
way to normal prefetching. Unless the sub-authority is used
enough to warrant a permanent prefetched path from either
the ISP or the end host, we assume that most sub-authority
rendezvous mailboxes are in the core and can therefore uti-
lize the prefetching method outlined in the previous para-
graph.

4.4 Example: Path Selection
We next explore a specific example of how end hosts might

tune our architecture in practice. In particular, we focus on
the problem of path selection, where an end host must effi-
ciently choose from a set of routing vector advertisements to
construct a path to a target location.

We consider three metrics when selecting paths:
• Security measured in terms of the number of distinct ISPs

traversed by the packet
• Performance measured in terms of latency of the path from

the source to the rendezvous router
• Cost in terms of the payments to be made to ISPs

In particular, we consider a constrained setting where the
payments for traversing routing vectors are discrete integral
values; in other words, costs are binned into different price
levels, each of which can be expressed as an integer value.
One example of this would be to attribute a zero cost to rout-
ing vectors that are policy compliant in today’s Internet and
to attribute a cost of one unit to those that are non-policy
compliant (e.g., packet is received from a peer and transited
to another peer).

Our candidate algorithm considers paths secure if they
pass through at least k separate ISPs and insecure if they
are shorter. A real path which used only ISPs governed by
a totalitarian government might not actually be secure, as
those ISPs would be likely to collude by government man-
date. In such a case, a security metric which incorporated
out-of-band information about legal and political jurisdic-
tions would be required. Lacking that jurisdictional infor-
mation, our path selection evaluation does not consider such
a metric.

An end host can have simple or complex preferences. It
might always prefer faster paths or always prefer cheaper
paths. It may even require secure paths in general, but allow
insecure routes in favor of performance when playing an on-
line game or in favor of cost while streaming non-interactive
media.

In Section 5, we consider an end host which always re-
quires security; however, among secure paths, our end host
always prefers cheaper paths, breaking ties between paths
with equal cost by taking the lower latency path. We ex-
press the path selection algorithm as a shortest path compu-
tation over a transformed PoP-level graph. In particular, we
develop an algorithm that has the following properties: (a)
the path from the source to the rendezvous router traverses

at least k different ASes, (b) the path is a minimum cost path
amongst all paths that traverse k ASes, and (c) it is the lowest
latency route amongst all minimum cost paths that traverse
k ASes.

Given an input graph G = (V,E), where V is the set of
PoPs in the Internet and E is the set of routing vectors. The
goal is to compute a path from source PoP s to rendezvous
PoP t. We construct a new graph G′ = (V ′,E ′) that is speci-
fied as follows. Let V ′= {[vcurr,vprev,k]|vcurr,vprev ∈V,(vprev,vcurr)∈
E}. In other words, the set of vertices in the new graph is ex-
pressed as three-tuples that correspond to a PoP in the input
graph, a neighbor of the PoP in the input graph, and a hop
count.

In addition, the edge set is expressed as follows. Let 〈v1,A,v2〉 ∈
E be a routing vector that connects an ingress PoP v1 to an
egress PoP v2 of the AS A.6 Similarly, let 〈v2,B,v3〉 ∈ E. We
add the following edge to E ′: 〈[v2,v1,k], [v3,v2,k+1]〉. Fur-
ther, we represent the weight of this edge with a two-tuple
cost value: (c, l), where c is the payment cost associated with
the routing vector and l is its traversal latency as advertised
by the ISP. A weight tuple (c1, l1) is greater than another
weight tuple (c2, l2) if either c1 > c2 or c1 = c2∧ l1 > l2. Note
that this formulation encodes the previous PoP traversed in
order to reach the current PoP, keeps track of the number of
ASes traversed, and expresses the edge traversal cost using
both a cost and a performance metric.

With the above graph, our goal is to determine the low-
est weight path from the source 〈s,−,0〉 to any of the target
nodes of the form 〈d,∗,k〉, where “*” is a wildcard and k
should be greater than the security parameter regarding the
number of ASes traversed (e.g., k≥ 3). To compute the low-
est weight path, we simply use Djikstra’s shortest path algo-
rithm, with the additional detail that we do not generate all
of the vertices in the graph G′ a priori, but rather do so on
demand. The algorithm terminates as soon as we reach any
one of the feasible target nodes.

The above example is just one of the many kinds of route
selection strategies that can be employed at the end host. We
study the performance of paths computed using this algo-
rithm in the evaluation section.

5. EVALUATION
In this section, we explore the feasibility and efficacy of

our proposal by answering the following questions:
• What is the hardware cost incurred by our system?
• Can the performance be similar to that of today’s Internet?
• What are the overheads associated with the mechanisms?
• What is the cost of varying levels of anonymity?

5.1 Implementation and Experimental Setup
We begin by describing our experimental setup, which in-

cludes a custom, line-speed, user-level packet processing en-
6For ease of exposition, we assume that the PoP numbering is
unique across all ASes, even though that is not required of the de-
sign presented earlier.
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gine; a Click prototype implementation; and simulations on
realistic Internet topologies.

Onion Router Prototype To prove the feasibility of ISP
onion routing, we have built a prototype onion router that can
encrypt and forward 1500 Byte packets at 38.3 Gbps using a
modestly equipped server. It is implemented as a Linux ap-
plication using DPDK,7 a framework that allows us to write
fast packet processing applications. We evaluate our imple-
mentation on a Dell PowerEdge T620 server with Dual Intel
Xeon E5-2670 processors and 4 Intel X520 SFP+ NICs.

When the onion router receives a cell, it looks up the hopID,
decrypts the data with the corresponding encryption key, and
forwards it if needed. Note that the lookup is simpler than it
for an IP router as we only need a hash-table lookup, rather
than longest-prefix matching. Processing multiple packets
in batches (currently 32), and processes the above tasks for
each individual packet. Encryption is with 128-bit AES us-
ing the symmetric cipher with OpenSSL 1.0.1.8

Click Implementation We also developed a prototype us-
ing Click in order to test end-to-end connection performance
in emulated cluster settings. The prototype implements all
aspects of the data plane functionality, including circuit es-
tablishment, cell forwarding/credits, and rendezvous routers
using Click [31]. We have written 23 Click elements, total-
ing over 4500 lines of code. These perform header valida-
tion/parsing, cryptographic actions, and routing table man-
agement. Cryptographic methods are implemented using
OpenSSL with 1024-bit RSA for the public key cipher and
128-bit AES with CTR mode for the symmetric cipher. We
deployed this prototype on the Emulab [45] testbed with
user-mode Click. These nodes were connected in a linear
topology of up to 8 nodes by links shaped to 100 Mbps band-
width and 10 ms latencies.

Simulation Dataset To test global or Internet-scale prop-
erties of our architecture, we rely on simulation results us-
ing realistic Internet topologies. Specifically, we use the net-
work topology and routing measurements collected by the
iPlane project. The iPlane network atlas is built using mea-
surements from over 300 PlanetLab sites to almost every
routable prefix. It is augmented with reverse path measure-
ments back from these prefixes in order to overcome bi-
ases introduced by the homogeneity of network paths seen
from PlanetLab nodes [21]. The resulting network topol-
ogy contains more AS-level links than other datasets such as
CAIDA’s AS level topology dataset [9] and the IXP mapping
projects [17]. We performed our measurements using an at-
las that comprised of 241,292 PoPs (where each PoP is a set
of routers from a single AS colocated at a given geographic
location) and 1,055,313 PoP-level links. We used PoPs at all
tier 1s and most large tier 2s as locations where rendezvous
routers can be hosted. This amounted to 387 PoPs spread
across 65 ASes. We also processed the iPlane dataset to de-

7http://dpdk.org/
8This version of OpenSSL utilizes AES-NI [25].
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Figure 7: Throughput of our onion router prototype vs.
cell size.

rive the set of routing vectors seen on actual routes through
the Internet. This characterizes the business relationships be-
tween the various ASes, and we use this in constructing valid
paths in our proposed architecture.

5.2 Feasibility
Though resistance to various faults come at the cost of

increased hardware and computation, these costs are small
compared to the potential benefits. In particular, we show:
• ISPs only need a small amount of extra hardware (which

would be offset by the complete removal of security-oriented
middleboxes and the simplification of routers).

• For end hosts that do not need extra anonymity, the per-
formance is similar to that of the current Internet.

Throughput: We first ask whether or not onion encryption
of each packet on the Internet is feasible and what ISPs would
need to do it at line rate. Recent research suggests a posi-
tive answer to this question, as [25] showed 10 Gbps using
DPDK, and [15] showed up to 20 GBps using GPUs.

In this paper, we test the throughput of a typical, relatively
inexpensive server. We used the onion router prototype and
measured its throughput with various packet sizes and with
10M concurrent onion circuits to index into. Figure 7 shows
that the onion router throughput gets up to 38.3 Gbps.

A back-of-the-envelope calculation of what this means for
a large ISP like AT&T tells us that the hardware cost is low.
Using the worst-case projected peak usage of the biggest
ISPs (15Tbps in 2011 with a growth rate of 45%/yr [26])
and AT&Ts PoP count [29] (around 120), we can estimate
that just one of these machines per PoP is sufficient.

Pkt size 3 Hops 4 Hops 5 Hops 6 Hops 7 Hops
64 63.6 84.9 106.1 127.5 148.2
128 63.7 85.1 106.4 127.6 148.7
256 64.1 85.5 106.9 128.5 149.6
512 64.7 86.4 108.1 129.7 151.0

Table 3: Round-trip latency (ms) over an N hop circuit

Latency: We measured the latency overhead of our onion
routing operations as a function of packet size and hop count.
Experiments were over pre-established circuits on our user-
mode Click implementation. Though our implementation was
unoptimized, there are still several takeaways we can glean
from these numbers. We varied path length between three to
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seven router hops (see Table 3) and measured the round-trip
time from the client to the final router on the circuit.

Note that network delay dominates these latencies, not
packet processing: at the worst, our system adds 8% over-
head, or about 1.6 ms per hop. Further, most of the increased
latency is not due to onion routing—a basic Click configu-
ration which forwards traffic across the same paths without
performing any processing produces similar latencies.

Circuit Establishment Latency: We next measure the cir-
cuit establishment costs incurred by our proposal. Recall that
the destination providing a service establishes both a ren-
dezvous router and a circuit to it before publishing the ren-
dezvous router. In the unoptimized case, an end host desir-
ing communication with the service would setup a circuit
by incrementally extending a partial circuit one AS hop at a
time until it reaches the AS holding the rendezvous router.
Figure 8 shows that this circuit establishment cost could be
substantial. As mentioned earlier, an end host could pre-
establish a partial circuit to some ISP and then extend it
appropriately to the ISP containing the rendezvous router
upon receiving the identity of the rendezvous router. Figure 8
illustrates that this optimization provides significant gains,
with the resulting circuit establishment latency comparable
to the typical end-to-end latency in our Internet atlas.

Routing Update Frequency: Finally, we look at the feasi-
bility of source routing using our routing vectors. To do so,
we tracked routes over a period of about 200 hours to mea-
sure the churn of routes. Every 15mins, a multitude of Plan-
etLab nodes would traceroute and reverse traceroute 1500
prefixes. We used iPlane data to map the router addresses to
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Figure 10: Comparison between latencies of end-to-end
paths in today’s Internet and a baseline user in our ar-
chitecture that just needs source anonymity.

ASes, and then inferred routing vectors from those traces.
By tracking these routing vectors over time, we are able to
approximate the rate of routing vector updates in our archi-
tecture. Note that our results are a loose upper bound, as we
do not compress/aggregate any of these vectors; additionally,
routing updates in our system only happen upon permanent
topology changes, not temporary changes in AS-level rout-
ing preferences like in the current Internet.

Figure 9 shows a CDF of the average rate of routing up-
dates. Our results show that even with uncompressed updates
that include headers and latency information, end hosts and
ISPs only need to expend 8.6Kbps in the 90th-percentile.

5.3 Cost of Anonymity
In the following experiments, we take the role of an end

host trying to access a given destination. We evaluate the per-
formance of different levels of anonymity and privacy, and
we consider them in contexts where paths are constrained to
consist of routing vectors used in today’s Internet.

Source Anonymity: As a baseline, we consider a user that
requires basic anonymity, i.e., source (and not necessarily
destination) anonymity. In particular, users can attempt to
achieve source anonymity by requiring each path to pass
through at least three ISPs, but otherwise choose the short-
est latency path that is also policy-compliant with the tran-
sit/peering policies in practice today. On the other hand, if
the destination does not care about its own privacy, then
the ideal course of action, from a performance perspective,
would be to co-locate rendezvous routers and servers in the
same ISP. While this would not provide anonymity for the
destinations and would require the destination’s ISP to be
capable of handling potential DoS attacks, it may be a feasi-
ble approach for a large service like Google.

Figure 10 shows a CDF of the latency for this use case
and compares it against latencies in today’s Internet, which
we estimate through iPlane path predictions for the same
source-destination pairs. Even though the source is constrain-
ing the path, we still outperform the current Internet’s BGP-
based path selection. This is due to two reasons: (a) the
ability to perform source routing enables greater path diver-
sity, and (b) by incorporating inter-PoP latency information,
one can have more fine-grained estimates of performance
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Figure 11: Path dilation when we need source/destination
anonymity and DoS resilience. We show both optimized
and unoptimized rendezvous router negotiation policies.
than using AS path lengths. Furthermore, we found that the
anonymity constraint did not negatively impact most paths.
Most of the shortest paths we observed already included 3
ASes—the restriction only affected 2.4% of paths. In other
words, the path dilation of our architecture is small even
compared to a pure source-routed scheme.

Censorship-resistant Web Services: We next evaluate what
might be a web service’s situation where the destination is
concerned with both anonymity, traffic discrimination, and
cost. Just like the source, the destination can ensure that its
path to the rendezvous router passes through at least three
ASes. It can also negotiate a set of rendezvous routers with
each source to provide path diversity for protection against
DoS attacks. Finally, we constrain routes to the rendezvous
routers to be policy-compliant given the inter-AS relation-
ships in place today. In other words, these routes would cor-
respond to paths that would require the lowest (zero) credit
payments from end-hosts to ISPs and would therefore make
less use of path diversity compared to using higher cost paths.
We consider two policies in which:
• (Unoptimized) the authority chooses a random rendezvous

router through which to route.
• (Optimized) the destination provides to the authority a set

of rendezvous routers that are acceptable—far enough away
to allow for 3-AS paths and close enough to not incur too
much path dilation—and the authority institutes a similar
policy to choose a RdV given the source’s nearest PoP.
Figure 11 compares the path dilation incurred by these

two policies when compared to source routing through to-
day’s Internet. In the first, unoptimized case, latencies are in-
creased by about 25 ms in the median case and about 100 ms
in the 90th percentile, when compared against the source-
anonymity-only case detailed above. In the second, optimized
version of path selection, wherein the destination provides
n rendezvous routers through which it is willing to receive
packets, and the source picks m out of those (for our pur-
poses, we set m:n to 1:6). We observe that the path dilation
in the 90th percentile for this policy is only 25 ms, which
could be viewed as an acceptable cost for defending against
censorship, traffic discrimination, and DoS.

6. RELATED WORK

Improving Internet security has been a long-standing goal
of the network research community. Our work benefits and
borrows ideas from many different sources.

An early and inspirational approach was Perlman’s Byzan-
tine Routing protocol [34, 35]. She observed that a network
with source routing and dedicated buffering for each source
in every router is resilient to the misbehavior of an arbitrary
number of routers. As long as some well-behaved path exists
between the source and destination, the source will eventu-
ally be able to deliver a packet. Subsequent work has con-
tinued to explore the reliability and security of routing and
forwarding [3, 6, 13, 19, 23, 32, 37, 48, 50].

These systems each solve different problems and take dif-
ferent approaches, but they all have a common vulnerability:
sources and destinations are still visible to intermediate ISPs.
This is fine if we can find a well-behaved path of ISPs, but
in cases where there is no such path, e.g., when a first-hop
ISP discriminates against traffic, there is no recourse.

The other attack to which the above proposals are vulner-
able is Denial-of-Service, which has received a lot of recent
attention [4, 11, 27, 41, 44, 47, 49]. Most similar to our work
is Phalanx and i3, in which packets are first sent to a “mail-
box” rather than directly to end hosts. In our work, rather
than buffer packets in mailboxes until they are picked up by
recipients with a put/get model, we provide the abstraction
of a seamless connection. Further, we simplify filtering of
extra packets—rather than provide a cryptographic token for
each packet, end hosts grant capabilities simply by establish-
ing an onion circuit to a RdV router.

Another rich field of research has been in source and des-
tination confidentiality for the purpose of preventing snoop-
ing and discrimination [7,8,16,18,24,36,38]. Unfortunately,
anonymity by itself is not enough to defend against attacks
observed in the wild. In particular, resource exhaustion be-
comes easier in a world with strong privacy, as anonymity
precludes a class of defenses against DoS attacks.

Recent research [33, 40, 43] has shown that there is a way
to reconcile DoS and the existence of Sybils [12]. This re-
search has used bandwidth and computation as resource proofs
to prevent a single machine from acting like many machines.
These solutions fundamentally have suboptimal performance.
Our solution introduces the concept of money as a resource
proof since it incurs no performance penalties and is perfectly-
suited to the economic model of the Internet.

Another common approach for reliability and privacy has
been to use an overlay network [2,10,39]. These systems are
often better than the alternative, but they are fundamentally
limited by relying on an unreliable and insecure substrate.
Tor in particular has gained much popularity, but faces great
challenges as a result of being an overlay. For instance, Tor
necessarily incurs large path dilation as a result of bounc-
ing through end hosts. Even distribution of source/binaries
to censored countries is a challenge in practice.

Our routing vectors are reminiscent of pathlets [14], par-
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ticularly their local transit policies. These are essentially a
specialized version that provides us with the greatest level
of privacy and end-host control, given an ISP’s willingness
to carry traffic from one neighbor to another. Though they
are similar in mechanism and spirit, our focus on privacy
and end host control require us to extend them to include
finer-grained control, performance annotations and cost.

Previous work has also looked at pricing for inter-domain
networks [22, 28]. However, they mostly focus on the mar-
ket effects of pricing on resource management, whereas our
main goal is a privacy-preserving way to pay for transit. One
example is re-feedback [5], which requires that packets carry
credits that are deducted at routers and cause drops when in
debt. However, the goal of their mechanism is to expose con-
gestion to the entire path—our goal is the exact opposite.

Finally, work has gone toward bypassing adversarial first-
hop ISPs using steganography [20, 30, 46]. This is comple-
mentary to our work, and may be useful in a partial deploy-
ment scenario, where only a subset of ISPs participate.

7. CONCLUSION
The Internet has become an essential piece of society’s

infrastructure; without a functioning, reliable network, most
modern systems would become nearly useless. Yet the Inter-
net’s architecture is not up to the task: it has numerous well-
known vulnerabilities, and there has been only very slow
progress to reducing its susceptibility to attack.

In this paper, we describe a new interdomain network ar-
chitecture to achieve robustness, attack resilience, and pri-
vacy. By carefully limiting the role of network participants,
we reduce the scope for misconfigured or malicious ISPs and
endpoints to disrupt and snoop third party traffic. We show
that our security architecture is consistent with ISP incen-
tives and with end-to-end path performance.
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