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Abstract
The data center network is increasingly a cost, reliabil-
ity and performance bottleneck for cloud computing. Al-
though multi-tree topologies can provide scalable band-
width and traditional routing algorithms can provide even-
tual fault tolerance, we argue that recovery speed can be
dramatically improved through the co-design of the net-
work topology, routing algorithm and failure detector. We
create an engineered network and routing protocol that di-
rectly address the failure characteristics observed in data
centers. At the core of our proposal is a novel network
topology that has many of the same desirable properties
as FatTrees, but with much better fault recovery prop-
erties. We then create a series of failover protocols that
benefit from this topology and are designed to cascade
and complement each other. The resulting system, F10,
can almost instantaneously reestablish connectivity and
load balance, even in the presence of multiple failures.
Our results show that following network link and switch
failures, F10 has less than 1/7th the packet loss of cur-
rent schemes. A trace-driven evaluation of MapReduce
performance shows that F10’s lower packet loss yields a
median application-level 30% speedup.

1 Introduction

Data center networks are an increasingly important com-
ponent to the cost, reliability and performance of cloud
services. This has led to recent efforts by the network re-
search community to explore new topologies [10, 11, 12],
new routing protocols [10] and new network manage-
ment layers [3, 4, 19], with a goal of improving network
cost-effectiveness, fault tolerance and scalability.

A state of the art approach is taken by Al-Fares et al. [3]
and its followup project PortLand [19]. In these systems,
the data center network is constructed in a multi-rooted
tree structure called a FatTree (inspired by fat-trees [17])
of inexpensive, commodity switches. These proposals
provide scalability, both in terms of port count and the
overall bisection bandwidth of the network. They also
deliver better performance at low costs, primarily due to
their use of commodity switches.

The use of a large number of commodity switches, how-
ever, opens up questions regarding what happens when
links and switches fail. A FatTree has redundant paths
between any pair of hosts. If end host operating system
changes are possible between these end hosts, the network

can be set up to provide multiple paths. The end host man-
ages packet loss and congestion across the paths using
MPTCP [21]. In many cases, the data center operator is
not in control of the OS, requiring a network-level solu-
tion to fault tolerance. A consequence of our work is to
show that entirely network-level failure recovery can be
practical and nearly instantaneous in a data center setting.

Addressing this need for network-layer recovery, Fat-
Tree architectures have proposed using a centralized man-
ager that collects topology and failure information from
the switches. It then periodically generates and dissemi-
nates back to the switches and end-hosts alternate sets of
routes to avoid failures. Centralized route management
is both simple and flexible—a reasonable design choice
provided that failures do not occur very often.

Recent measurements of network-layer failures in data
centers, however, have shown that failures are frequent
and disruptive [9]. Network-layer failures can reduce the
volume of traffic delivered by more than 40%, even when
the underlying network is designed for failure resilience.
As data centers grow, the probability of network failures
and the consequent disruptions on the system as a whole
will likely increase, further exacerbating the problem.

Our goal is to co-design a topology and set of proto-
cols that admit near-instantaneous, fine-grained, localized,
network-level recovery and rebalancing for common-case
network failures. Because the network is already a signifi-
cant part of the cost of the data center, we limit ourselves
to not introducing any additional hardware relative to Port-
Land’s FatTree. Other work has shown that local repair
is possible at the cost of significant added hardware rel-
ative to a standard FatTree [8, 11, 12], so our work can
be seen as either improving the speed of repair in FatTree
networks or in reducing the hardware cost of fast repair
in more general networks. A limitation of our work is that
we assume that we can change both the network topology
and the protocols used between network switches.

Our system is called F10 (the Fault-Tolerant Engi-
neered Network), a network topology and a set of proto-
cols that can recover rapidly from almost all data center
network failures. We design a novel variant of a FatTree
topology to make it easier to do localized repair and re-
balancing after failures. We then redesign the routing
protocols to take advantage of the modified topology. To
satisfy the need for extremely fast failover, we use a local
recovery mechanism that reacts almost instantaneously at
the cost of additional latency and increased congestion.
Some failures are not short-term, so local rerouting even-
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tually triggers a slightly slower pushback mechanism that
redirects traffic flows before they reach the faulty com-
ponents. To address longer-term failures, a centralized
scheduler rearranges traffic on a much slower time scale
in order to create as close to a optimally rerouted configu-
ration as possible. We also introduce a failure detector that
benefits from (and contributes to) the speed of our failover
protocols while providing fine-grained information not
available to traditional failure detection methods.

We have implemented a Click-based prototype of F10
and its failure detector and have performed a simulation-
based evaluation, based on measurements of real-world
data center traffic from [5] and measurements of data
center network failures from [9]. Our results show that
our system dramatically improves packet loss relative to
PortLand with no added hardware cost. Our localized re-
routes do incur some path inflation and network state, but
these effects are small because of our novel topology.

2 Motivation

Our goal is to design a data center network architecture
that can gracefully and quickly recover and rebalance after
failures, without any additional hardware relative to a stan-
dard FatTree. To motivate our approach, we outline the
results of previous measurements of data center network
failures and then discuss the implications of these results
on the design of fault-tolerant data center networks.

2.1 Failures in Data Centers
A recent study by Gill et al. provides insight into the char-
acteristics of data center network failures [9]. The authors
found that a large majority of devices are failure-free over
the course of a year; commodity switches are mostly re-
liable. Their data also shows, however, that there are a
large number of short-term failures, that link failures are
common and that the network responsiveness to failures
is limited. We emphasize a few results from their study:

• Many failures are short-term. Devices and links ex-
hibit a large number of short-term failures. In fact, the
authors observed that the most failure-prone devices have
a median time-to-failure of 8.6 minutes.
• Multiple failures are common. Devices often fail in

groups. 41% of link failure events affect multiple devices—
often, just a few (2–4) links, but in 10% of cases, they do
affect more than 4 devices. There are also often multiple
independent ongoing failures.
• Some failures have long downtimes. Though most

failures are short-term, failure durations exhibit a long tail.
Gill et al. attribute this to issues such as firmware bugs and
device unreliability. Hardware that fails often stays down
and contributes heavily to network-level unavailability.

• Network faults impact network efficiency. The data
centers studied by Gill et al. have 1:1 redundancy dedi-
cated to failure recovery, yet the network delivered only
about 90% of the traffic in the median failure case. Per-
formance is worse in the tail, with only 60% of traffic
delivered during 20% of failures. This suggests better
methods are needed for exploiting existing redundancy.

The authors assume a model where hardware is either
up or down and transitions between those two states, but
certain parts of their data—along with anecdotal evidence
of gray failures from industry—conforms to a stochastic
model of failures in which hardware loses a certain per-
centage of packets. There is thus an additional concern:

• Existing failure detection mechanisms are too
coarse-grained. Links are marked as down after losing
a certain number of heartbeats and marked as up after a
brief handshake. Within a short time frame, it is difficult
to distinguish between a complete failure, where no pack-
ets are getting through, and a situation where the link is
congested, and had gotten unlucky with the heartbeats.
Conversely, a flaky link that just happened to allow a
handshake would appear to be reliable.

2.2 Next-Generation Data Center Net-
works

Today’s data center networks are multi-level, multi-rooted
trees of switches. The leaves of the tree are Top-of-Rack
(ToR) switches that connect down to many machines in
a rack, and up to the network core which aggregates and
transfers traffic between racks. A modern data center
might have racks that contain 40 servers connected with
1 Gbps access links, and one or two 10 Gbps uplinks that
connect the ToR switch to the core, which contains a small
number of significantly more expensive switches with an
even faster interconnect. The primary challenges with
these networks are that they do not scale—port counts
and internal backplane bandwidth of core switches are
limited and expensive—and that they are dramatically
oversubscribed, with reported factors of 1:240 [10].

Recent proposals for the next generation of data center
networks [3, 10, 11] overcome these limitations. In this
paper, we focus on a class of these networks based on
the FatTree [3] proposal and its subsequent extensions.
Inspired by the concept of a fat-tree [17], these FatTrees
use a multi-rooted, multi-stage tree structure identical to
a folded Clos network [15].1

1Since there are a few key distinctions between their instantiations,
we clarify them here. We use fat-tree to denote the classical concept
where links increase in capacity as you travel up toward the root. We
use FatTree to denote the proposal of Al-Fares et al. [3], which uses
multiple rooted trees to approximate a fat-tree. A similar caveat applies
to the research literature’s use of the terminology for Clos networks,
which route messages along equal-length paths between distinct input
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The benefit of these networks is that they are made
of cheaper, commodity switches and provide much more
path diversity within the network. PortLand takes advan-
tage of this path diversity by using ECMP, which ran-
domly places flows across physical paths. While ECMP
lets us take advantage of the increased bandwidth pro-
vided by multiple paths, placing a flow on a single physi-
cal path means that failures will disrupt entire flows. An
alternative is to upgrade the OS and let the end host use a
protocol like MPTCP; however, it is not always the case
that network operators have the ability to change end host
OSes. In this paper, we explore whether we can make
network failures lightweight from the perspective of the
end host so that data center operators can run any end
host system and not what is needed for the network.

To ease exposition, we will focus on a non-
oversubscribed FatTree, in which half of the ports are
used as downlinks to connect nodes within the same sub-
tree, and half used as uplinks to access other parts of the
tree. However, our system handles both oversubscribed
(which allocate more ports to downlinks and can scale
to more nodes or use few layers) and overprovisioned
(which allocate more ports to uplinks for reliability and
bisection bandwidth) variants, discussed further in Sec-
tion 8. The root nodes, which do not have uplink edges,
use all ports for downlinks. Figure 1a depicts a 3-level
FatTree built from 4-port switches.

Our goal is near-instantaneous recovery from failures
and load spikes with no added hardware. The original
design of Clos networks was more concerned with non-
blocking behavior than fault tolerance. Similarly, the pa-
pers introducing FatTrees and related proposals [3, 4, 19]
discuss basic failover mechanisms, but are principally
focused on achieving good bisection bandwidth with com-
modity switches [3], scalability, resilience to (but not
rapid recovery from) faults [19], and centralized load-
balancing [4]. These proposals are inherently limited in
their ability to recover quickly and thoroughly from faults.

Limited local rerouting: While modern data centers
have a variety of failover mechanisms, few are truly local.
Data centers that use a link-state protocol such as OSPF
require updates sent across the entire network before con-
vergence. PortLand uses a centralized topology manager.
VL2 [10] suggested detouring around a fault on the up-
ward path, but it does not reroute around failures on the
downward path because (as we explain below) there is
only one path from any given root to a leaf switch.

Failure information must propagate to many and dis-
tant nodes: This deficiency goes beyond the lack of a suit-

and output terminals; folded Clos networks, which make no distinctions
between terminals; and FatTrees, which allow short-circuiting of paths
between nodes in a folded Clos network subtree.

able protocol. Consider Figure 1a.2 No parent or grand-
parent of the failed node has any downlink path to the
affected subtree. This property follows from the fat-tree-
style construction that there is only ever one downlink
path from the root of a subtree to any of its children.
Among the nodes whose routes could reach a failed node,
only those located lower in the tree than the failure have
a route that avoids the failure. In other words, no protocol
that informs only nodes in the top portion of the tree will
restore connectivity. In the case of a failure on the down-
ward portion of a path, any detour or pushback/broadcast
protocol will be forced to travel from the parent of the
failure all the way back to every node in the entire tree
lower than the failure.

Irregular tree structure because of long-term faults:
While data center operators aim to rapidly repair or re-
place failed equipment, as a practical matter, failures can
persist for long periods of time. This can leave the system
in a suboptimal state with poor load balancing. Multiple
failures make this problem even worse. In our view, it is
crucial that data center networks gracefully handle miss-
ing links and loss of symmetry. A negative example of this
is the simple application of ECMP, which spreads load
from a failed link to all remaining links at a local level,
but does not evenly shift load to the remaining paths.

3 Design Overview

Taking the above concerns into account, we create an en-
gineered network and routing protocol that can rapidly
restore network connectivity and performance. Our sys-
tem, F10, relies on the following ideas:

AB FatTree: We introduce a novel topology, the AB Fat-
Tree, that is essentially a reworked FatTree with better
fault tolerance properties. By skewing the symmetry of
a traditional FatTree, the AB FatTree allows for efficient
local rerouting. The benefits come at almost no cost. The
new topology requires no extra hardware, does not lose
bisection bandwidth, and has similar properties to stan-
dard FatTrees (e.g., unique paths from a root to leaf, non-
blocking behavior, etc.).

Local rerouting: To satisfy the need for fast failover, we
use a local recovery mechanism that is able to reroute
the very next packet after failure detection. Because we
fix the topology of the network, we can design a purely
local mechanism that is initiated and torn down at the
affected switch and does not cause any convergence issues
or broader disruptions.

Pushback notification: The reroute uses extra hops then
the global optimum. Our system adds a slightly slower

2For simplicity, we omit from several of our figures the doubled
subtrees generated by folding the root uplinks into downlinks.
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(a) (b)

Figure 1: Path alternatives in (a) a standard FatTree and (b) an AB FatTree. The X indicates a failure, and the hashed rectangles
represent switches that are affected by it when trying to send to its children. Bold borders indicate affected switches that have a path
around the failure. In the AB FatTree, more switches are affected, but more have alternatives, and they are closer to the failure.

Notation Definition or Value

k # of ports per switch, e.g., 24
L+1 # of levels in the network, e.g., 3
p k/2: # of up/downlinks per switch
N 2pL+1: # of end hosts in the data center
b dlog2(p)e: # of bits per level in a node location
prefix(a, i) a� (ib): relevant prefix of location a at level i
same prefix(a,a′, i) (prefix(a, i)≡ prefix(a′, i)): whether a and a′

share a prefix at level i

Table 1: A key to the notation used in this paper.

pushback mechanism that removes the additional latency,
reducing the impact on congestion of local recovery.

Global re-optimization: On a much slower time scale, a
centralized scheduler rearranges traffic to optimally bal-
ance load, despite failures.

Failure Detector: The lightweight and local nature of
our failover protocols means that we can be more aggres-
sive in marking links and switches as down, improving
network performance. Our failure detector also provides
and uses finer-grained information about the exact loss
characteristics of the connection.

To accomplish the above, we assume a few things about
the hardware. On the most basic level, we assume that
we can modify the control plane of switches to execute
our protocols locally and that switches can do local neigh-
bor failure detection. We also assume the presence of a
fault-tolerant centralized controller, as in PortLand. For
flow scheduling, we assume switches support consistent
flow-based assignment for each source-destination pair.
Our system can also benefit from the ability of switches
to randomly place flows based on configured weights cal-
culated by the central controller; however, this weighted
placement is not essential for correct operation.

4 The AB FatTree

As we saw in Section 2.2, the standard FatTree design by
Al-Fares et al. [3] has a structural weakness that makes
it difficult to locally reroute around network failures. We

introduce a novel topology, the AB FatTree, that skews
the symmetry of a traditional FatTree to address this issue.

The key weakness in the standard FatTree is that all
subtrees at level i are wired to the parents at level i+1 in
an identical fashion. A parent attempting to detour around
a failed child must use roundabout paths (with inflation
of at least four hops) because all paths from its p− 1
other children to the target subtree use the same failed
node. The AB FatTree solves this problem by defining
two types of subtrees (called type A and type B) that are
wired to their parents in two different ways. With this
simple change, a parent with a failed child in a type A
subtree can detour to that subtree in two hops through the
parents of a child in a type B subtree (and vice versa),
because those parents do not rely on the failed node.

We now make the design concrete. Let k be the number
of ports on each switch element, and L be the number of
levels; as in the standard FatTree we use p = k/2 ports
each for uplink and downlink at each switch, and can
connect a total of N = 2pL end hosts in a rearrangingly
non-blocking manner to the network. Table 1 contains a
summary of the notation we use in this paper.

Figure 2 shows the labeled structure of an AB FatTree
for k = 4 and L = 3, explained in the next few paragraphs.

Connectivity. For levels numbered 0 through L, each
level i < L contains 2pL switches arranged in 2pL−i

groups of pi switches.3 Each group at level i represents
a multi-rooted subtree of pi+1 end hosts with pi root
switches. The distinction between the standard version
and an AB FatTree is in the method of connecting these
root switches to their parents.

Let j denote the index of a root node numbered 0
through pi−1 in level i. In a type A subtree, root j will
be connected to the p consecutive parents numbered jp
through ( j+1)p−1. A standard FatTree contains only
type A subtrees, whereas in an AB FatTree only half
the subtrees are of type A. The remainder are of type B,

3The top level (i = L) has one group of pL switches, using all ports
for downlinks.
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Figure 2: A labeled AB FatTree in which the subtrees with
dotted blue lines are of type A and the subtrees with solid red
lines are of type B. The numbers to the right of the tree are the
level, the top number in each switch is the location, and the
bottom number is the index.

wherein children connect to parents with a stride of pi:
root j is connected to parents j, j+ pi, j+2pi, etc.

Addressing and Routing. Three values uniquely identify
any switch in the system:

• level i – The level of the subtree of which it is a root.
• index j – The roots of a specific subtree are consecu-

tively numbered as described above.
• location – The location of a node is an Lb+1-bit num-

ber constructed such that all nodes in the same level i sub-
tree share a prefix of (L− i)b+1 bits that encodes the path
from the root group to the subtree, where b = dlog2 pe.
The location has the format: (b+ 1 bits for level L).(b
bits for level L−1). . .(b bits for level i+1), concatenated
with ib zero bits for levels i through 0.

In the absence of failures, routing occurs much like in
PortLand [19]—each packet is routed upwards until it is
able to travel back down, following longest-prefix match-
ing. By construction, each subtree owns a single location
address and the roots of a subtree can access one child in
each of its subsubtrees. When a packet’s destination lies
within the subtree rooted in the current node, it will be
routed downwards, otherwise it is forwarded upward.

Versus a standard FatTree. Revisiting Figure 1, we see
that this rewiring allows nodes in subtrees of a different
type to route around failures, in addition to nodes on
a lower level that already had alternate paths. While the
number of switches with affected paths increases, the total
number of failed paths stays the same, and therefore the
effects of the failure are distributed across more switches.
As a consequence, more nodes have alternate paths, and
there are alternatives closer to the failure.

5 Handling Failures

Our failover protocol consists of three stages that operate
on increasing timescales. (1) When a switch detects a
failure in one of its links, it immediately begins using
local rerouting to reroute the very next packet. (2) Since

(B, 2)(A, 0)

AA B

v y

w z

u

x✘

Figure 3: Illustration of the base cases of local rerouting with
a failure at v. In the upward direction, w avoids v by routing
to any other parent. Downward, u must find detours that avoid
the failure group (A,0). The bold green path shows Scheme 1
rerouting through a type B child x, and the dotted blue path
shows Scheme 2 rerouting through a child y of same type A.

local rerouting inflates paths as well as increases local
congestion, the switch initiates a pushback protocol that
causes upstream switches to redirect traffic to resume
using shortest paths. (3) Finally, to deal with long-term
failures that create a structural imbalance in the network,
a centralized rerouting protocol determines an efficient
global rearrangement of flows. In addition, the key to fast
failure recovery is rapid and accurate failure detection,
which is discussed at the end of this section.

5.1 Local Rerouting

Our first step after a failure is to quickly establish a new
working route using only local information. We explain
this using Figure 3, which shows a 3-level AB FatTree
with k = 6. We label nodes u, v, and w, where v has failed.

Note that local rerouting for upward links in any multi-
rooted tree is simple. A child (w) can route around a
failed parent (v), by simply redirecting affected flows to
any working parent. This restores connectivity without
increasing the number of hops or requiring control traffic.
In the unlikely event that all parents have failed, the child
drops the packet; an alternative route will soon be con-
figured by the pushback schemes discussed later unless
the node is a leaf node. Most data center services are de-
signed to tolerate rack-level failures. Alternatively, eavh
leaf node can be wired into multiple ToR switches.

The rest of this section discusses rerouting of traffic for
failed downward links. This case is significantly more
complex, because when a child (v) fails, its parents (e.g.,
u) lose the only working path to that subtree (identified
by prefix(v)) that follows standard routing policy. Instead,
we propose two local detouring schemes. The first mecha-
nism results in shorter detours, but p/2 failures located at
specific locations can cause it to fail. The second mecha-
nism succeeds in more cases, but will have longer paths.

Scheme 1: three-hop rerouting. In most cases, we can
route around a single failed child in an AB FatTree with
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two additional hops (three hops in total, but one replacing
the link that would have been traversed anyway), without
any pre-computation or coordination.

Suppose, without loss of generality, that the failed child
(v) is located in a type A subtree. By construction, the
parent (u) has connections to p/2−1 children in type A
subtrees, and p/2 children in type B subtrees. Each of
these children has p−1 other parents (u’s siblings), which
all have a link into the affected subtree. By detouring
through one of its siblings, u can establish a path.

Not any sibling will work. With only local information,
u must assume that the entire switch v has failed, rather
than just the link 〈u,v〉. If so, none of the other parents of
v have a route to the affected subtree. We call this set of
v’s parents a failure group and identify it by a tuple (t, j)
consisting of v’s subtree type t and its index j, since each
parent is connected to the jth node in all type t subtrees.
In this example, we would denote the failure group of v
as (A,0). Figure 3 shows (A,0) and (B,2) failure groups.

All of u’s children in type A subtrees only have parents
in the (A,0) failure group, and thus cannot reach the target
prefix. Thus, in Scheme 1, u will simply pick a random
child, say x, in a type B subtree. By construction, x has
parents in all type A failure groups, and thus any parent of
x except u does not route through v. One of the alternate
paths from u to v’s subtree is shown by the bold, green
line in Figure 3. This does not exist in a standard FatTree.

Multiple failures can be handled in most cases. When
failures are located on different levels of the tree, Scheme
1 will always find a path. Multiple failures on the same
level can sometimes block Scheme 1. For the first hop,
u has p/2 links into type B subtrees; if none of these
links work (p/2+ 1 targeted failures) then u must use
Scheme 2. At the second hop, if x has no other working
parents (p targeted failures and a p/2 random choice)
then the scheme fails and packets will be dropped for
the brief period until the pushback mechanism (described
in Section 5.2) removes u from all such paths. At the
third hop, if the link from u′ into the affected subtree has
also failed (2 targeted failures and (p/2)(p−1) random
choice), u′ will invoke local rerouting recursively.

Scheme 2 – five-hop rerouting. We saw that in some
cases of at least p/2+1 failures, Scheme 1 will fail be-
cause u will have no working links to type B subtrees.
This situation trivially arises in the case of any single fail-
ure in a standard FatTree, so our work can also be seen as
showing how to do local rerouting in a standard FatTree.
Scheme 2 uses u’s type A children, but it must go two
levels down to find a working route to v, for a total of
four additional hops in the detour path. One such path is
illustrated in Figure 3 using the bold, dashed blue line. In
Scheme 2, u picks any type A child y 6= v in a different
type A subtree, y picks any of its children, and that child
proceeds to use normal routing to v’s prefix after ensuring

it routes through a parent (y’s sibling) not in a currently-
known failure group. This results in a five-hop path from
u to the target prefix. Scheme 2 can fail in the presence of
sufficiently many (at least p) targeted failures and unlucky
random choices. These unlikely cases will be resolved by
our pushback schemes, described next. With fewer than p
failures, local rerouting will always succeed.

5.2 Pushback Flow Redirection

The purpose of local rerouting is to find a quick way to
reestablish routing immediately after detecting a failure.
The detour paths it sets up are necessarily inflated, and the
schemes we use can sometimes fail although a working
path exists. We introduce pushback routing to reestablish
direct routes and handle cases where local rerouting fails,
but where connectivity is still possible. Pushback flow
redirection solves both of these issues by broadcasting
failure notifications back to the closest switch that has
an alternate route that does not include the failure. The
AB FatTree enables these notifications to occur closer to
the source of the failure than in a regular FatTree. Re-
ducing the number of notifications speeds recovery and
minimizes network state.

Consider Figure 4, which shows a 4-level AB FatTree
built with 6-port switches. This figure illustrates the extent
of pushback propagation in the network when the link
〈u,v〉 has failed. A total of 14 pushback messages are
sent (indicated by the bold red lines), and state has to be
installed at the 8 switches marked with red circles. Note
that in our pushback scheme—conversely from the local
rerouting schemes—all messages indicate link failures,
not node failures. If the entire node v had failed, u’s two
siblings would also send pushback messages along the
red dashed lines, for a total of 32 additional messages and
an additional 12 switches installing state. For pushback,
the main difference between AB FatTrees and standard
FatTrees is that AB FatTrees can install state higher in the
tree, at fewer nodes. As a result, pushback message travel
less far in AB FatTrees and the network will converge to
optimal working routes more quickly.

Pushback algorithms. There are three important scenar-
ios in which a switch u will push failure notifications to
its neighbors:

1. u cannot route to some prefix in its subtree, either be-
cause of the failure of an immediate child v or upon re-
ceiving a notification from v of a failure further down-
stream. Then u will broadcast that it can no longer
route to the affected prefix to all of its neighbors ex-
cluding v.

2. When all uplinks from u have failed, u can only route
traffic destined to its own prefix, and will inform its
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Figure 4: Illustration of pushback when the link from u to v fails (marked by the red ’X’). Solid red lines are the paths along which
the notification travels, and the switches with red circles are the set of nodes that need to be notified of the failure. In the case of the
entire switch v failing, the dashed red lines show the paths along which associated notifications travel and state would be installed at
all the endpoints they touch.

children so that they route upward traffic to other par-
ents.

3. When all non-failed uplinks from u are partially af-
fected by failures, there may exist some external pre-
fixes for which u is unable to route traffic. u informs
its children of these partial failures so that they can
use upward detouring for those prefixes.

To handle these scenarios, we define two types of push-
back messages. PBOnly messages indicate that the sender
cannot route to the specific prefix indicated in the mes-
sage. PBExcept messages mean that the sender cannot
reach any prefix except its own subtree (or the subtree
indicated in the message). Together, PBOnly and PBEx-
cept can represent any set of routable prefixes. Note that
PBOnly messages are used in scenario 1 described above,
PBExcept messages match scenario 2, and a combination
of both is used in scenario 3.

Downward failures. The most common pushback case
is scenario 1, in which any downlink fails. For this case,
the detecting node would send a PBOnly message to all
neighbors so that they no longer send it traffic to route
down that link.

When a node n receives a PBOnly message telling it
that the edge 〈u,v〉 has failed, how does it know whether
it can route around the failure—in which case it installs
pushback state locally and does not forward the message
on—or whether it needs to forward the notification on to
its neighbors? The intuition behind this is that if a node
n can connect to a root node that node u cannot (in the
absence of failures), then n has paths using this root that
can reach v’s subtree without going through the failed
edge. Thus when the edge 〈u,v〉 fails, n has an alternative
path to v’s prefix if and only if it is connected to such a
root.

There is one trivial way that n is guaranteed to be wired
to a root that u is not: when n is located at a lower level

than u, then at most one of its parents routes through u,
and an alternative path exists. In a more complex case
that occurs in AB FatTrees (and not in standard FatTrees),
pushback state can be sometimes be stored higher in the
tree. However, determining when this is the case is not as
simple as comparing node levels.

To implement a method by which n at a level above u
can know that it has an alternative root, we use subtree
type stack that represents the types of the trees on the path
from a given switch to the roots of AB FatTree. When a
switch that receives a pushback notification has the same
type stack as the originator (or partial type stack, if the
recipient is higher in the tree), then it has no alternative
route and must forward the message on to its neighbors.
In Figure 4, u and w are both have stacks {A}, while x
has a type stack {B}. Since u and w have the same type
stack, when v fails neither u nor w can route around it,
while x can as long as it uses a parent it does not share
with u and w. Formally, a node in a subtree has a path
around a failure precisely if (i) it is at a lower level than
the failure, or (ii) its subtree type stack is different than
the top of the type stack of the failure.

The PBOnly algorithm to handle downward failures
works as follows:

1. When a parent, u, detects a failure on a
downward link 〈u,v〉, u floods a messsage
〈PBOnly,v.location,v.level,S〉, to all neighbors
(except v) indicating that it does not have a path to
only the given location. The type stack S = {v.type}.

2. Recursively, when w receives a PBOnly message from
x:

(a) If x is a child of w:
i. Push the type of x onto S

ii. Flood the notification to all neighbors ex-
cept x
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(b) If x is a parent of w:
i. If w’s level is equal to v.level or w’s type is

not equal to the top of S, put an entry in the
forwarding table that redirects traffic to the
location prefix of v to another parent x′

ii. Else, pop S and flood the notification to all
children of w

Upward links failures. As mentioned above, the most
common of our three failure scenarios is scenario 1, in
which a downlink fails and so the parent can no longer
reach the destination. When upward links fail, or PBOnly
messages come from above, a child can usually route
around the failure using a detour to any of its p−1 parents
that has a working route. However, switches can run out
of upward routes, as described in scenarios 2 and 3. In
particular, if there is a switch failure, some switches on
the same level can run out of upward routes toward a
given location (Figure 4 contains three such switches).
This can also happen if all upward links on a given switch
fail or if different pushbacks compose to block a particular
location.

If all upward alternatives toward a given location prefix
have failed for some switch u, then u is considered failed
for packets traveling upwards through it. u broadcasts
to its children a message 〈PBExcept,u.location,u.level〉
that indicates that it no longer has any routes except
to its children (switches with a location such that
same prefix(location,u.location,u.level)).

This case is handled by recursive use of the upward
flow redirection scheme. Whenever a switch installs a new
pushback block or detects a new failure, it checks to see if
there is any blocked location prefix that is shared between
all links. If so, the block must be propagated down the tree.
Special cases include the fact that a PBOnly block will
never block as many locations as a PBExcept, PBOnlys
block more locations when they are for higher levels, and
PBExcepts block more locations when they are for lower
levels.

1. Given a pushback block b, let
foundCounterExample = false

2. For each upward link, l:
(a) If l is down or b is installed on l, continue
(b) Let foundPrefix = false
(c) Else, for each block b′ installed on l:

i. If both b and b′ are of type PBOnly,
A. If b′.level < b.level, continue
B. If same prefix(b′.location,b.location,

b′.level+1), then foundPrefix = true
ii. If b′ is of type PBExcept,

A. If b′.level > b.level, continue

B. If same prefix(b′.location,b.location,
b.level+1), then foundPrefix = true

(d) If foundPrefix = false,
then foundCounterExample = true

3. If foundCounterExample = false, push b further down
to all children

5.3 Epoch-based Rerouting
After pushback terminates, all traffic will be routed along
shortest paths (provided a route exists), but load may be
unbalanced. Traffic that would have traversed failed links
are shunted onto the remaining links. The third step is
then to repair load balancing by reassigning flows. This is
a global process that is somewhat more involved than the
previous two schemes, so while failures are immediately
reported to a centralized controller, the rebalancing of
load occurs periodically at discrete epochs.

We describe a centralized load balancing server in Sec-
tion 6.3; the same mechanism is used to rebalance flows
after failures. The mechanism for reporting traffic charac-
teristics and scheduling will be discussed subsequently.
Failures are communicated to the centralized controller
and taken into account in scheduling. Only shortest paths
are considered by the controller—local detours are in-
tended to be a temporary patch. Since all paths have the
same length, the controller assigns flows to minimize the
maximum traffic across any link. If there is no direct path
available, the flow will continue to take a locally rerouted
path if possible. Additionally, if a packet from a scheduled
flow encounters a failed link or node before the central-
ized controller is informed or reflects the change, it is
treated as non-scheduled from that point onwards. If it
remains stable, it will be rescheduled in the next epoch.

When a node recovers, the switch or link must prove
that it is stable by remaining up for an extended period of
time before the centralized scheduler will assign it traf-
fic. This minimizes lost packets due to repeated failures
of flaky devices. By putting recovery of hardware on a
somewhat slower time scale, we aggregate frequent and
correlated failures into a single event and only incur the
compulsory losses once. When the controller does decide
to reinstall the device, all neighbors are informed, and
they are responsible for tearing down local reroutes and
pushback blocks. Only when the neighboring switches
acknowledge reinstallation is complete does the central
controller use the new device for scheduled flows.

5.4 Failure Detection
To gain the full benefit of near-instantaneous rerouting, we
need to be able to rapidly and accurately detect failures. If
hardware has fail-stop behavior, the high-level anatomy of
a failure event will start with the actual failure, followed

8



by eventual detection, and then a recovery of connectivity
by the protocol. In this case, MTTR is bounded by the
time to detection, plus the time to compute and install
any changes into the routing table, and so it is useful to
have a failure detector that can quickly and accurately
detect failures without needing to wait for multiple losses
of relatively infrequent heartbeats. Stochastic failures can
also benefit from a quicker, more accurate failure detector
that does not rely on periodic sampling of packet loss.

Most current detection methods do not provide either
of these properties and wait for multiple, relatively slow
heartbeat intervals before declaring failure. In IP routers,
OSPF and IS-IS implement 330 millisecond heartbeats
with 1 second dead intervals. Similarly, layer 2 Ethernet
switches will report failures only after a waiting period
on the order of multiple milliseconds. (This is called de-
bouncing the interface.)

These methods depend on heartbeats because the net-
works they traditionally handle are not necessarily physi-
cally connected and/or operate on shared media. In these
settings, congestion can cause false positives. Worse,
some routing algorithms are prone to positive feedback
loops during rapid changes [24].

We argue that these protections are not necessary in our
system. F10 has very fast neighbor-to-neighbor failure
detection because switches are directly connected and
routing loops are impossible by construction. Our failure
detection mechanism requires that switches continually
send packets, even when idle. These packets test the inter-
face, data link, and to an extent, the forwarding engine.

F10’s failure detector takes advantage of the fact that
packets should be continually arriving, and allows the
network administrator to define two sets of values (one
for bit transitions to detect power loss and one for valid
packets to detect corruption):

• t, the time period over which to aggregate
• c, the required number of bit transitions/valid packets

per t for a working link to not be declared as down
• d, the number of bit transitions/valid packets per t

before a failed link is brought back up

This allows customization of the threshold for stochas-
tic losses, as well as the amount of time necessary before
the link can be declared as down. When a node detects
a neighbor failure, it also begins to send dummy “failure
detected” packets to ensure the detection is symmetric
while maintaining a way to detect when it comes back up.
c and d should be set such that the link will rarely flap.
To avoid fluctuation at a scale slightly longer than t, we
use exponential backoff.

From a protocol design standpoint, our system elimi-
nates the usual concerns with fast failure detection. Firstly,
our failover protocols only deal with one link at a time,
meaning that a spurious failure will not affect any other

link, cascade failures or create feedback loops. The only
possible concern is that the increased load from rerouted
paths will cause congestion. However, local rerouting is
intended to be short-term. Further, global load balancing
is done based on the measured end-to-end traffic matrix,
ignoring the temporary detour routes.

Secondly, local rerouting is initiated and can be re-
moved at the affected node. Instead of having an extended
period during which the network propagates status up-
dates until the system converges, our rerouting protocol
completes in the time it takes for a switch to update its
routing table. The choice of whether to send along the
link in question or to deflect to a new path is made at the
detecting switch, thus limiting the issue of convergence
of local rerouting to a single switch and guaranteeing that
the protocol converges before the next failure.

Note that blasting traffic and expecting it to continu-
ally arrive assumes certain properties of the link layer.
The type of Ethernet used in data centers are mostly full-
duplex between switches and therefore are not affected
by collisions. In fact, Cisco gigabit Ethernet switches
and Ethernet standards starting from 10GbE do not even
support half-duplex or CSMA/CD.

6 Load Balancing

Balancing load across the network is important in data
center networks. Failures compound problems of load
balance since they reduce the overall bandwidth of the
network and destroy the regular structure of the network.

Just like failures, traffic in data centers also follows
a long-tailed distribution [5]. The majority of flows are
small and short-lived, but their longer-lived counterparts
can cause long-term congestion and inefficiencies if not
handled correctly. To handle this type of workload, we
take the same ‘cascading’ approach to load as we do
failures. We again introduce three mechanisms:
• A flow-placement mechanism that allows each switch

to locally place flows based on expected load.
• A version of our pushback mechanism that is able to

gracefully handle momentary spikes in traffic.
• The same epoch-based centralized scheduler that is

also used for failure recovery.
At a high level, the centralized scheduler preallocates

a portion of each link for long-term, stable flows. The
remainder is used for new and unstable flows—these are
randomly scheduled in the remaining capacity, but with
pushback to deal with short term congestion.

6.1 Weighted Random Load Balancing
To make immediate, local load balancing decisions, we
use random placement of short-term traffic across all of
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the available shortest paths. Because TCP dynamics make
packet reordering is undesirable. Instead, we schedule
traffic on a per-flow basis and rely on the central controller
to handle any long-term congestion.

Unscheduled traffic is that which is too short-lived to
benefit from our centralized scheduling algorithm. Each
flow is directed along upward edges randomly, and in the
case that the centralized scheduler makes paths unequal
in terms of scheduled load, we use weighted ECMP that
is based on the residual capacity left after scheduling.

When new links are installed, we set their residual ca-
pacity to zero. New flows do not use the link so that the
centralized controller is able to ensure consistent weight-
ing. If all links have zero remaining capacity, a new flow is
placed across some non-failed link with equal probability.

6.2 Push Back Load Balancing

When traffic suddenly spikes, there is a period before
the centralized controller can react. Measurement studies
have shown that this congestion usually manifests itself
in isolated hotspots across the network [13].

As mentioned previously, switches have information
about their expected remaining capacity. When its ex-
pected usage is significantly exceeded, the switch notifies
other nodes about the change with the same mechanism
as described in Section 5.2, except that notified switches
modify the ECMP weights instead of blocking all traffic.

The switch keeps traffic statistics for the last 500ms,
and calculates the average difference between instanta-
neous and scheduled load. The difference between a link’s
randomly-placed load and the average randomly-placed
load is LBdelta, and if any link has an LBdelta above
20%, a congestion pushback message will be sent back
upstream for the link, rerouting a portion of upstream
traffic around the spontaneous congestion. These push
back blocks are removed after each scheduling epoch.

6.3 Centralized scheduling

Longer-term, predictable flows can and should be sched-
uled centrally to ensure good placement to avoid persis-
tent congestion. For these longer flows, we use a similar
approach to MicroTE [6], which advocates centralized
scheduling of ToR to ToR pairs that remain predictable
for a sufficient timespan. The authors found from mea-
surement data that data center traffic is predictable at the
granularity of a couple seconds. They propose a system
in which a server in each rack saves traffic statistics for
two seconds, and, every second, sends to a centralized
controller a list of “predictable” flows that have instan-
taneous values within some delta of their average value
over the last two seconds (they used a factor of .2).
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Figure 5: TCP congestion window trace with and without failure.
In the case of the failure, a link went down at 15sec and F10
recovered before a timeout occurred.

In F10, these flows are scheduled with a greedy al-
gorithm that sorts the flows from largest to smallest and
places them in order on the paths with the least cost, where
the cost of a path is defined as ∑

1
R(e) over the edges e in

the path P, where R(e) is the remaining capacity of edge
e. The controller informs ToRs about scheduled flows,
and residual capacities are sent to each switch to use for
weighted ECMP. If a scheduled flow runs into a failure,
it becomes unscheduled at the point of failure, and gets
placed using weighted ECMP.

In general, optimal rearrangement is an NP-complete
problem for single-source unsplittable flows. We choose
the greedy algorithm for scability reasons, but the exact
choice of algorithm is orthogonal to our work. Multipath
flows are more flexible from a load balancing perspective,
but require end host changes to the TCP stack.

7 Prototype and Evaluation

7.1 Prototype

We built a Click-based implementation of F10 and tested
it on a small deployment in Emulab [23]. The prototype
runs either in user-mode or as a kernel module. The im-
plementation is a proof of concept and correctly performs
all of the routing and rerouting functionality of F10. It is
able to accept traffic from unmodified servers and route
them to their correct destinations.
Failure Characteristics. We instrumented a Linux kernel
to gather detailed TCP information, including accurate
information about congestion window size; we used this
instrumented kernel to test the effect of a failure on a
TCP stream. Tests were performed in Emulab, but since
bandwidth limitations in both the links and the Click
implementation are lower than in a real data center, we
lowered the packet size so that the transmission time
and the number of packets in flight are comparable to
a real deployment. We used this testbed to compare the
evolution of a congestion window with and without failure
during a 25 second interval in Figure 5. F10 is able to
recover from the failure before a timeout occurs and the
performance hit is minimal.
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Figure 6: Aggregate losses due to lack of connectivity and con-
gestion in the case a single failure.
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Figure 7: Comparison of throughput of the testbed and the sim-
ulator through ten failures and the same topology/offered load.

Failure Detector. We have also implemented an approx-
imation of F10’s failure detector using Click in polling
mode. The detector would ideally be built in hardware,
but preliminary results indicate that we can approximate
the ideal detector with a Click-based implementation. Un-
fortunately, with Click, it is not possible to track bit tran-
sitions on the wire, and there is some amount of jitter
between successive schedulings of the network device
poller. Even so, our Pentium III testbed machine was able
to accurately detect failures after as little as 30µs—much
less than a single RTT in a data center. With this property,
we were able to fail based on the rate of valid packets.

At each output port, we placed a strict priority sched-
uler that pulls from the output queue if possible, or else
generates a test packet. The dummy packets are inter-
cepted and dropped by the downstream failure detector
before being passed to the rest of the system. The detector
asserts a failure and notifies the rest of the system when
the arrival rate of either good or nonce packets drops
below the specified threshold.

7.2 Evaluation Environment
Simulator. We created an event-driven simulator to test
the efficacy of F10 with medium- to large-scale data
centers—resources limited the feasibility of such experi-
ments in our testbed setting. The simulation includes the
entire routing and load balancing protocol along with the
fast failure detection algorithm. When there is no traffic,
each switch generates nonce messages to its neighbors.
The link is marked as failed if three consecutive packets
are not received correctly.

Our multicore, packet-level, event-driven simulator

comprises 4181 lines of Java. It implements both low-
level device behaviors and protocols. The Layer 2 Eth-
ernet switches use standard drop-tail queues and have
unbounded routing state; our evaluation shows that even
with many failures in the network, only a modest amount
of state needs to be installed. The simulator models 100 ns
latency across each link to cover switch and interface pro-
cessing as well as network propagation latencies.

Our experiments are performed assuming 24-port
10GbE switches in a configuration that has 1,728 end
hosts, resulting in a standard or AB FatTree with three
layers. Except in Section 7.6, we use UDP traffic in our
experiments so that we can more precisely measure the im-
pact of the failure on load. This enables us to understand
how well the evaluated mechanisms improve network ca-
pacity. TCP will generally back off quickly, resulting in
lower bandwidth and fewer losses than shown here.

We have compared the measurements generated by
both the testbed and simulator, for an identical topology
and offered load. Figure 7 is a CDF of throughput for a
single source-destination pair that experienced a sequence
of ten failures, which each went through all of the stages
of failover in F10. We found that, in all cases tested, the
simulator and testbed results matched each other closely.

Workload model. We derive our workload from mea-
surements of Microsoft data centers given by Benson
et al. [5]. We generate log-normal distributions for (1)
packet interarrival times, (2) flow ON-periods, and (3)
flow OFF-periods, parameterized to match the experimen-
tal data from the paper. In certain experiments (labeled
explicitly below), we scale the packet interarrival times
to adjust the load on the network.

Failure model. Failures are based on the study by Gill et
al. [9] that investigated failures in modern data centers.
We generated log-normal distributions for (1) the time be-
tween failures and (2) the time to repair for both switches
and individual links based on their experimental data.

Note that we do not consider leaf (ToR) switch fail-
ures, as these are well handled by cloud software. Fault
tolerance of rack failures is orthogonal to our work on the
robust interconnection between them.

7.3 Recovering from a Single Failure

Figure 6 shows a breakdown of the losses over time after
a single switch failure in F10 running a uniform all-pairs
workload at 50% (UDP) load. The y-axis in this graph
shows the loss rate normalized to the expected number of
packets traversing each switch.

When the failure occurs at 10ms, there is a burst of
packet drops due to failure. At around 11ms, the neighbors
of the failed switch detect the failure, and local rerouting
installs new working routes and eliminates failure drops.
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Figure 8: CDF of the congestion losses of both PortLand and
F10 under realistic traffic and failure conditions.

Local rerouting reduces the capacity of the network, trig-
gering congestion. When the pushback scheme is initiated
later, it quickly and effectively optimizes paths, spreading
the extra load and eliminating the congestion loss.

7.4 Comparison with PortLand
F10 recovered from the single failure evaluated in the
prior section within 1 ms of the failure; this is more than
two orders of magnitude faster than possible with Port-
Land [19], the state of the art research proposal for fault
tolerance in data center networks, which reports minimum
failure response times of 65 ms. In addition, F10 was able
to recover load balancing in 35 ms, while PortLand does
not handle congestion losses at all. In this section, we
compare F10 against PortLand using the realistic, syn-
thetic traffic and failure models described in Section 7.2.

Figure 8 shows the congestion rate in each system. We
generated workload and failure events from a random
seed and fed the same trace into PortLand, which uses a
standard FatTree, and F10 with an AB FatTree and all our
techniques. We aggregated loss statistics over a 500µs
time interval, and report the distribution of congestion loss
over these intervals. The figure aggregates data points for
multiple runs that start from different initial conditions.

Overall, F10 has much less congestion than PortLand.
F10 sees negligible loss for 3/4 of time periods, whereas
PortLand nearly always has congestion. In total, Portland
has 7.6× the congestion loss of F10 for UDP traffic.

7.5 Local Rerouting and AB FatTrees
Note that both standard and AB FatTrees can perform
local rerouting, but the former is unable to exploit the
shorter detours of F10. Here, we evaluate the impact of
the novel structure of AB FatTrees during local reroutes.

We measured the path inflation of local reroutes using
varying numbers of switch failures (up to 15 concurrent
failures, implying up to 360 failed links) in standard vs
AB FatTrees. We found that local reroutes in AB FatTrees
experience roughly half the path inflation than in standard
FatTrees, owing to F10’s ability to use Scheme 1 rerouting
in addition to Scheme 2. Even for many concurrent fail-
ures, the vast majority—more than 99.9%—of reroutes

use the minimum number of hops (2 for AB FatTrees,
and 4 for standard FatTrees). We also looked at random
link failures as opposed to switch failures, and obtained
similar results in terms of how the path dilation in F10
compares with that of standard FatTrees.

7.6 Speeding up MapReduce
We conclude our evaluation by simulating the behavior of
a MapReduce job (with TCP flows) in our data center. We
used a MapReduce trace generated from a 3600-node pro-
duction data center [7], and considered the performance
of just the shuffle phase, where flows are initiated from
mappers to reducers, with mappers and reducers assigned
randomly to servers. We focus our study on only those
MapReduce computations that involved fewer than 200
mappers and reducers in total.

Figure 9 compares the performance of the shuffle opera-
tion under the two architectures—F10 and PortLand—and
the failure model used thus far. Since the shuffle opera-
tion completes only after all the constituent flows are
complete, it suffers from the well-known stragglers prob-
lem. If any of the flows traverse a failed or rerouted link,
it suffers from suboptimal performance. We measure the
speedup of an individual job as the completion time under
PortLand divided by that of the job under F10.

Figure 9a shows the distribution of the speedup; we find
that F10 is faster than PortLand with a median speedup of
about 1.3×. Figure 9b, shows the distribution of speedup
vs job size, and we find that gains are larger when more
nodes participate and compete for bandwidth. We con-
clude that F10 offers significant gains over PortLand, and
this will improve in larger future data centers.

8 Discussion

Symmetry: Another concern is that the structure of an
AB FatTree is no longer symmetric. Mechanisms like
ECMP rely on symmetric shortest paths, present in stan-
dard FatTrees. However, AB FatTrees also have symmet-
ric shortest paths, and the distribution of load is similar
so ECMP is just as effective in our architecture as it is in
standard FatTrees.
Beyond AB FatTrees: Our architecture introduces an
extra type of subtree that connects to a different set of
roots and thus provides additional path diversity closer
to a given rerouting node. A natural question to ask is
whether we can get even more diversity with more types.

In the limit, we can create a p-type FatTree in which
all subtrees are connected to a slightly different set of
roots. This is accomplished by rotating the set of roots to
which a subtree connects—subroot j of the first subtree
connects to the jp through the ( j+1)p−1 roots, subroot
j of the second subtree connects to roots jp+1 through
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Figure 9: An end-to-end evaluation using PortLand or F10 for MapReduce jobs.

( j+1)p, and in the same manner, each additional subtree
incrementally shifts by one. This guarantees that every
sibling of a given node n has at least one alternative path.

At first glance, this seems to improve the potential
for efficient reroutes. However, more choices at the first
hop of local rerouting comes at the cost of fewer at the
second. While an AB FatTree provides p−1 alternatives
for the second hop of Scheme 1 given a single failure, a p
type FatTree will have an average of p/2−1, with some
nodes having more alternatives than others. Increasing the
number of types does not, in general, increase the chance
of finding a two-hop detour.

For pushback, more alternatives means that the notifi-
cations can stop earlier (in the case of a single failure in a
p-type FatTree, pushback can terminate after the message
traverses any downward link). However, traffic destined
for the failed path is split over a smaller number of al-
ternate paths, disproportionately increasing the load on
those paths. In sum, the tradeoffs are complex, and we
leave a fuller comparison for future work.
Oversubscribed and Overprovisioned Networks: So
far, we have assumed that the number of uplinks at any
switch is equal to the number of downlinks. In an over-
subscribed or overprovisioned network, these numbers
can potentially differ between levels. Fortunately, these
networks require little to no change in our algorithms.

The placement of flows by the global rebalancer is
straightforwardly extended to this case. Pushback simi-
larly does not rely on the number of links; notifications
are broadcast to all uplinks and downlinks, and termi-
nation only depends on level and type stack. For ba-
sic routing, local rerouting and recursive pushback, a
few generalizations of functions must be made, and for
this we require configuration of the number of down-
links for switches at each level, Dlevel. All references
to p should be replaced by Dlevel and protocols should
be changed to take the nonuniformity into account (e.g.,
prefix(a, i) = a� (Σi

l=1(dlog(Dl)e))).
Central Controller Fault Tolerance: We previously as-
sumed the central controller to be fault tolerant. The imple-
mentation for this is not complicated: it can be replicated
with a primary/backup approach, with the benefit that data
like traffic matrices (which are thrown away after each

epoch) and liveness of switches is soft-state. Even if the
controller or its links do fail, the role the central controller
plays is not essential to correct operation.

If the controller fails to receive the traffic matrix from
any leaf switch, schedule flows or install weights at
switches, the switch will use the last set of information it
received, if available, and randomly place the rest of the
flows—load balancing may suffer, but connectivity is not
affected.

If the controller fails to receive a failure notification,
flows through that failure will hit a pushback block and
become a randomly placed flow from that point onward.
If the controller misses an installation notification or fails
to install a new device or link, we again fall back on the
philosophy that a node that fails and recovers is still a
faulty node. It must wait until the controller comes back
up, but this is fine since installation already occurs on a
slower time scale and, if all installed alternatives go down,
uninstalled but active alternatives are used.
Topology Verification: Good network administration is
an essential prerequisite of high-bandwidth, scalable and
fault-tolerant network operation. Thus we assume admin-
istrators plan out the network to adhere to our topology
and, from the structure, can set the level, location and
index of each switch. However, configuration errors do
occur.

Each switch checks in with the centralized controller
to aid in load balancing and fault tolerance at a global
level. We take advantage of this single point of control to
assist in correctly implementing our architecture—it can
verify that the switches are addressed properly, connected
properly and address values correctly correspond to the
actual wiring. To protect against multiple switches taking
the same three values accidentally, a UUID is added to
the three existing address variables, which can simply be
the lowest MAC address of any of the switch’s ports.

In addition to checking that no two nodes share the
same three address variables, we run the following check
whenever the controller detects new switches or links:

1. Let c be the current node and N be the set of neighbors
of the current node

2. For each node, n in N

13



(a) If n.level = c.level+1
i. Assert same prefix(n.location,c.location,n.level)

ii. If prefix(c.location,c.level) (mod 2) = 0,
then assert n.index ≥ c.index ∗ p and
n.index < (c.index+1)∗ p

iii. Else, assert n.index − c.index
(mod pc.level) = 0

(b) Else assert n.level = c.level−1

In this way, we can verify that the address values correctly
correspond to the actual wiring.
Automatically Addressing Nodes: Once the topology of
the F10 data center network is verified, we are guaranteed
that children and parents are wired together in precisely
the way specified in Section 4. In this case, switches can
automatically learn their identifiers (level, location, and
index) using similar mechanisms as those employed by
PortLand.

Although we expect network administrators to carefully
plan out their networks, it is possible to automatically
address each node. Due to space constraints and the fact
that this is not the main thrust of our work, we will not
delve into all the details. The main modification between
the administrator-defined and automatically-configured
address is that the index is not actually required. What
we essentially need is just a way to determine failure
groups, and so, when ease of sanity checking is not a
factor, we can actually replace the index with two integers
that represent failure groups directly: groupA and groupB.
Nodes that are in the same failure group share the same
value for either groupA and groupB, but this value can
be any integer. The level can be immediately determined
by the controller by propagating upwards. Initially, all
switches connected to at least one end host have level = 0.
The propagation then occurs in rounds, with all switches
connected to level 0 neighbors taking level = 1, and so
on. From the above we learn parent-child relationships,
which we use to actually construct the subtrees (which
can be represented by the set of roots of the subtree). We
first take a node that is not yet in a set of root, adding it
to a new set, S and repeatedly adding parents of children
of every node in S until the algorithm converges. After
this process, S will be the roots of a subtree. Assigning
types and failure groups is a bit more complicated, but
essentially occurs in two phases: creating a base type
assignment and then filling in other assignments to create
a full assignment that is consistent with the base. The
intuition is that the types are actually interchangeable and
a tree entirely made of type A subtrees is equivalent to a
tree entirely made of type B subtrees—the key difference
is the way that they are wired in relation to each other. In
fact, given a diagram of a tree with labeled type A and
type B subtrees like the one in Figure 2, we can swap
labels and rearrange the nodes in the diagram to create

the same diagram. Type A subtrees will still connect to
consecutive groups of nodes and type B subtrees will still
connect in a strided manner. For any given tree, we can
arbitrarily choose one subtree to be of type A and then
assign types for other trees based on that base grouping.
Specifically, for each tree, we look at the children of the
set of roots and choose a node c with the the greatest
number of uplinks to be in a subtree of type A. All of c’s
parents would then have groupA = c.UUID. Everything
else is filled in with two simple rules: if at least two of a
node’s parents share a value for either groupA or groupB,
all parents should share that value, and if at least two
of a node’s parents differ on a value for either groupA
or groupB, it is of the opposite type and should fill in
its parent’s fields accordingly. Locations are assigned
in a straightforward manner by starting at the topmost
level (whose location is all zeroes), and propagating the
information downward. For each subtree, s of a tree, t,
the controller chooses a unique value, i, less than dlog pe
(again, even for type A subtrees and odd for type B). We
then set s.location = prefix(t.location, t.level). Nodes are
not considered for installation until all of these address
variables have been defined. There may be instances of
switches that are barred from operation because they are
partially connected (or their neighbors are faulty) in such
a way that some address variable is ambiguous, but those
cases are not of much import since they are extreme corner
cases that have the network severely crippled.

9 Related Work

The topic of fault tolerance in interconnection networks
has a long history [1, 8, 16]. Most previous work on this
topic, most notably [2], has added hardware in the form of
stages, switches and links to existing topologies to make
them more fault tolerant while keeping latency and non-
blocking characteristics constant. We instead allow for a
temporary increase in latency for paths affected by faults
in exchange for no increase in hardware cost.

In the context of today’s data centers, researchers have
recently proposed several alternative interconnects. Our
work directly builds on FatTrees [3] as they are used
in PortLand [19], although our ideas generalize to other
multi-rooted trees like VL2 [10] and beyond. We leverage
many of the earlier mechanisms in our work. We replace
the interconnect with our novel AB FatTree network and
co-design local rerouting, pushback, and load balancing
mechanisms to exploit the topology.

DCell [12] and BCube [11] introduce structured net-
works that are not multi-rooted trees.The key difference
is that these topologies trade more hardware for their in-
creased robustness. DCell performs local rerouting after a
failure but is not loop free (unlike ours). Loop freedom is
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important to enable fast failure detectors at the link layer
without compromising reliability.

Jellyfish [22] takes a different approach to datacenter
design—unstructured, random-wiring. It trades regular-
ity and rearangeable, non-blocking guarantees for better
average-case performance with less hardware. Our mech-
anisms might apply to their topology, though it would re-
quire precomputation of all detour paths, and it is unclear
how much path dilation would be needed on average.

Our failure recovery schemes leverage existing tech-
niques. Our local rerouting scheme uses tags and fail-
ure lists analogous to MPLS and Failure-Carrying Pack-
ets [14], respectively. MPLS supports a similar style of
immediate local detours (Fast Reroute) while waiting for
the failure to propagate upstream (Facility Backup) [20].
MPLS failover requires manual preconfiguration and
stored state, whereas our system has easy-to-compute
backup paths and stores state only when there is a failure.

DDC [18] has the same intuition that failover should
be done at the network layer. They make no assump-
tions about network topology, and so they cannot benefit
from preset local reroutes. In order to handle unstructured
networks, their approach reroutes for each destination
separately and does not result in paths that are as efficient
as the ones produced by our local rerouting scheme.

Hedera [4] implements centralized load balancing on
top of PortLand. Hedera only schedules new flows and
does so in real-time, whereas we choose to globally rear-
range flows periodically.

10 Conclusion

Scalable, cost-efficient and failure resilient data center net-
works are increasingly important for cloud-based services.
In this paper, we describe F10, a novel fat-tree topol-
ogy and routing algorithm to achieve near-instantaneous
restoration of connectivity and load balance after a switch
or link failure. Our approach operates entirely in the net-
work with no end host modifications, and experiments
show that routes can generally be reestablished with de-
tours of two additional hops and no global coordination,
even during multiple failures. We couple this fast rerout-
ing with complementary mechanisms to quickly reestab-
lish direct routes and global load balancing. Our evalua-
tion shows 30% improvement for MapReduce tasks.
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