

Crowd-Logic: Implementing and Optimizing
Human Computation Algorithms using Logic Programming

Hao Lü and James Fogarty
Computer Science & Engineering

DUB Group, University of Washington
Seattle, WA 98195

{hlv, jfogarty}@cs.washington.edu

ABSTRACT
Human computation is a powerful approach to addressing
problems that remain beyond the reach of traditional
computing and has been demonstrated in a variety of
applications. However, implementing human computation
programs remains challenging. We present Crowd-Logic, a
general-purpose tool for implementing human computation
algorithms, which allows application developers to
declaratively specify the high-level control flow of
algorithms using logic programming and implement human
computation units using imperative programming (e.g.,
Java). The logical representation allows Crowd-Logic to
maximally reuse the results from prior human computation,
optimize the control flow, and reduce the general cost of
human computation. We validate our optimization
techniques on two sample applications: sorting a list of
reviews using human judgment and shortening text using
human rewrites.
Keywords: Crowdsourcing, logic programming, planning,
machine learning
INTRODUCTION
Human computation is a powerful approach to addressing
problems that remain hard for computers but easy for
humans to solve. Markets for human computation, such as
Amazon Mechanical Turk (MTurk) [2], allow developers to
programmatically post tasks that can be completed by
human workers in return for payment. Programs can thus
integrate human computation into their algorithms. Recent
systems have used human computation to answer visual
questions from blind people posted from their mobile
phones [4], shorten and proofread texts, and run scripts in
natural languages [3].
However, implementing human computation programs
introduces new challenges. First, human feedback is slow;
it takes time to both find a worker and for that worker to
complete a task. Second, calls to human workers can
introduce monetary cost, which can quickly accumulate

over time. Third, human feedback is unreliable, which
means systems must be architected such that some human
workers verify or improve the work of others [3].
Developers therefore have to manage tradeoffs between
speed, money, and reliability in designing their algorithms.
For example, additional verification steps can improve
reliability but increase monetary costs and reduce speed.
These challenges also introduce new opportunities for
traditional computation. Since human computation can
become the new computation bottleneck, developers may
prefer to spend more computational resources on the human
computation if this reduces delays, saves money, or
improves reliability. For example, one such opportunity is
to reuse results from prior human computations.
Existing general-purpose human computation tools have
focused on APIs for easily accessing human computation
markets [2,9] and managing long running programs [9].
TurKit [9], for example, enables a program to efficiently
pause and continue in order to improve the stability of the
program over time. To our knowledge, no prior work has
focused on tool that supports managing the cost of
traditional computation against the cost of human
computation.
We present Crowd-Logic, a general-purpose tool for
implementing human computation algorithms. In Crowd-
Logic, the high-level structure of an algorithm is specified
using logic programming and human computations are
encapsulated into logical primitives, which are
implemented via imperative programming (e.g., Java). The
logical representation of algorithms allows Crowd-Logic to
maximally reuse the results from prior human computation.
It also introduces opportunities for traditional computation
to optimize algorithms for reducing the general cost of
human computation.
In this paper, we first show how developers can implement
a human computation algorithm in Crowd-Logic. We then
show how Crowd-Logic can maximally reuse the results of
prior human computation. Next, we discuss the techniques
for optimizing algorithms to reduce the general cost of
human computation. We then validate our optimization
techniques in two sample applications: sorting a list of
restaurant reviews using human judgment and shortening
text using human rewrites. Finally, we discuss the current
limitations and opportunities for future work.

Our main contributions are:

• Crowd-Logic, a general-purpose tool for implementing
human computation algorithms that maximally enables
reuse of prior human computation, and

• A set of techniques for optimizing algorithms to reduce
the general cost of human computation.

IMPLEMENTING AN ALGORITHM WITH CROWD-LOGIC
In this section, we present an overview of Crowd-Logic via
an example of using Crowd-Logic to implement a common
human computation use case, DescribeImage: generating
plain text descriptions for images. More specifically, in this
image description problem, the task is to generate a good
plain text description for a given image by asking human
workers to describe the image.
Previous research has looked at this problem [9,12]. A
common approach is to use an iterative improvement
workflow as shown in Figure 1a. The workflow iterates
over improving a description ("improve") and verifying the
improvement ("is better"). In each round of the iteration,
first, a human worker is asked to improve an old
description for the image by writing a new description.
Then, a few human workers are asked to vote on if the new
description is indeed better than the old one. The better
version will then be improved on in the next round. The
iteration terminates after a predetermined number of
rounds.
The workflow in Figure 1a can be broken down into two
parts: the control flow and two basic human computation
units (e.g., "improve" and "is better"). Correspondingly, the
Crowd-Logic implementation of the above workflow has
two parts: a logic programming part for specifying the
control flow (shown in Figure 1b), and a Java part that

implements the basic human computation units (shown in
Figure 1c).
The logic programming part contains four logic rules. Rule
1 specifies the control flow of a single round of the
iteration ("one_round"), which consists of two sequential
steps: "improve" and "is_better". Rule 2 specifies that
take the original description should be used if a better
description is not found in Rule 1. Rule 3 and 4 specify
recursively the iteration with N rounds of "one_round".
The Java part contains two functions that implement the
two human computation units of the same names in the
logic program. Figure 1c shows the skeleton of their
implementation. Each human computation unit is
implemented in its corresponding method of the library
class. Crowd-Logic will load the library and scan for
methods that implement human computation units.

The annotation "@HumanPrimitive" is used on Java
methods to indicate that a particular method is an
implementation of a human computation unit. The name of
the method is same as its logical counterpart. Some
metadata can be specified in the annotation. For example,
the code in Figure 1c specifies the cost of "improve" is 1
and the cost of "is_better" is 3. The definition of the
cost is up to the developers.

The annotation "@Out" applies on the parameters of the
Java methods to indicate that a parameter is intended for
storing an output value from human workers (an output
parameter). For example, the "newText" parameter of
"improve" is to store the rewrite of the old description. In
contrast, the method "is_better" does not have such
output parameters. The result of its human computation is
communicated back via its return value.

Figure 1: Generate plain text descriptions for image. (a) The common approach is to use the iterative text
improvement workflow. (b) The logical representation of the iterative text improvement workflow. (c) The two Java

functions that implement the corresponding human computation units in the logic program.

The above demonstrates how Crowd-Logic combines logic
programming and imperative programming. An imperative
implementation could have a similar structure to Figure 1,
however, when Crowd-Logic runs, one advantage is that it
can maximally reuse the prior results of "improve" and
"is_better", for example, if there are K rounds of
improvement in the past, Crowd-Logic will start from the
K+1 round.
Logic Programming
In the rest of this subsection, we introduce the basic notions
in logic programming that will be used in this paper. More
details can be found in [15].

Logic programming has two basic constructs.
Terms are the single recursive data structure in logic
programming. A term can be:

• Number: strings in number form, i.e., 0, 3.14.
• Variable: strings that start with an upper-case letter or

underscore, i.e., Image, Text, N. At runtime, a
variable can be assigned a value by binding it to
another term.

• Atom: general strings with no other meanings, i.e.,
true, 'a.png'.

• Compound Term: which are composed of an atom
(name) and a list of terms (arguments), i.e.,
improve(Image, Text, NewText). A compound
term can mean:
o Predicate, can be true of false depending on the

values of its argument.
o Primitive, a predicate that is defined outside the

logic programs and usually in an imperative
program. They provide abstractions that are
difficult to express in logic programs. In Crowd-
Logic, we use human primitive when it provides
an abstraction to some human computation.

• List: a special compound term to represent a list. The
following two are equivalent in representing a list
consists of 1, 2 and 3: [1,2,3], [1|[2, 3]].

Rules take the following form:
A :- B1, B2, ... , Bn.

This states that A (the head of the rule) is true if all the Bi's
(the body of the rule) are true. A and Bi's are all logical
predicates. A rule with an empty body is called a fact,
which states that the head predicate is always true. A rule
with no head predicate is called a query, which initiates the
computation.
In logic programming, the computation is done
interpretively. To solve a query, the interpreter will search
for a proof (a sequence of logical deductions from the facts)
for its body and the bindings for all its variables.
To get a text description for an image using
DescribeImage, we can input a query to Crowd-Logic. For
example, the following query will generate a description
for the image 'a.png' using 10 iterations:

:- iterate(10, 'a.png', '', Text), write(Text).

(The predicate "write" is a built-in primitive that outputs
the value of "Text" to the console.)
There are many existing search procedures for logic
programs. Crowd-Logic adopts the goal-reduction search
procedure. Each predicate is interpreted as a goal. Rules are
interpreted as ways to reduce a goal (head of the rule) into a
sequence of sub-goals (body of the rule). The facts and
primitives are terminals and are reduced to an empty
sequence. The procedure of searching for a proof is
interpreted as searching for a sequence of reductions from
the initial sequence of goals to an empty one. The search
space is a tree structure with each state corresponding to a
goal sequence. The first goal of a state is always the active
goal, which is to be reduced next. We will refer to this
search tree as a proof search tree. The search strategy is
backtracking, e.g., traversing the tree in depth-first order.
A sample proof search tree is shown in Figure 2. The initial
query is turned into state 1 with two goals. Rule 4 can
reduce the active (first) goal in state 1 into two sub-goals
and result in state 2. Both Rule 1 and Rule 2 can reduce the
first goal of state 2 and transition to state 3 and state 6
respectively. Since Rule 1 is specified before Rule 2 in the
logic program, it has a higher priority and the search
process will try Rule 1 first. The search process will then
evaluate the human primitives in states 3 and 4, as they are
the active goals. If the result of "is_better" is false, the
search process will backtrack to state 2 and try Rule 2. This
search process will eventually reach a state "iterate(0,
...), write(...)" in which the first goal is a fact and
second goal is a primitive.
While logic programming languages are simple yet as
expressive as imperative languages, most developers are
unfamiliar with logic programming. In addition, the API
support for logic programming languages to access existing
human computation markets is lacking. These make it a
high threshold to implement a human computation
algorithm entirely in logic programs. However, logic
programming has the benefit of enabling effective reuse
and optimization in human computation. Crowd-Logic

Figure 2: A proof search tree: an illustration of the
goal-reduction interpretation using rules from
DescribeImage. (This example does not consider
reusing prior human computation.)

lowers such threshold by allowing developers to only
specify the high-level algorithms in logic programs.
REUSE HUMAN COMPUTATION
Since human computation can be slow, unreliable and
expensive, the opportunity to reuse results from prior
human computation becomes valuable. Crowd-Logic
assumes that the results from human primitives are reusable
unless otherwise specified. When the interpreter searches
for a solution, it always tries to reuse the prior results of the
human primitives when possible.
Consider the task of sorting a list of restaurant reviews
based on their sentiments. One solution is to implement the
quicksort algorithm and ask human to compare the
sentiments of two reviews. During the sorting, many
comparisons between two reviews may have already been
done before. They can result from situations when new
reviews have been added and the old reviews have already
been sorted. They can result from the previous runs that
have terminated unexpectedly. They can also result from
other tasks that share the same human comparison unit.
These comparisons can reuse the prior comparison results
rather than asking human to compare them again.
The above is the simplest case of reusing prior human
computation results. It can be realized by storing all prior
comparisons in a local database and every time a human
comparison is required, the interpreter reuses the prior
result if the same comparison is recorded in the database.
Consider a more complex example. In DescribeImage, the
interpreter can encounter the two sequential primitives as
shown in Figure 3a when searching for a solution. When it
is at the first primitive, e.g., "improve", assuming that the
same human computation (improving an empty description
of 'a.png') has been done a few times before, the interpreter
has to make a decision on whether or not to reuse the prior
results and if so, which result to be used. However, the
interpreter does not have enough information to make such
decision. It is until when it sees the next primitive, e.g.,
"is_better", does the interpreter know that it can reuse a
result that is better than the empty description. If no such
reuse is possible, the interpreter should then invoke the
"improve" primitive to get a new human rewrite. Things
will get more complicated when multiple rounds of
improvements are concerned as shown in Figure 3b.
To enable reuse in the general case, Crowd-Logic
introduces a constraint solver and sees all human primitives
as constraints. For example, the primitive
"improve('a.png', T1, T2)" in Figure 3b is
interpreted as a constraint that constrains the values of the
two variables T1 and T2 to have both occurred in one of the
prior runs of the primitive. A constraint can be satisfied if
such values exist.
Constraints can have dependencies between each other via
variables. For example, the constraint
"improve('a.png', T1, T2)" depends on the other
constraint "improve('a.png', '', T1)", because its

argument T1 is an output from the latter. A dependency
graph can be obtained by representing constraints as nodes
and dependencies as edges. Figure 3c shows the
dependency graph of the constraints in Figure 3b.
The interpreter stores a list of constraints and maintains a
dependency graph for them. When it encounters a
constraint, the interpreter adds the constraint to its list of
constraints. If the constraint solver determines that the
resulting constraints are no longer satisfied, the interpreter
then backtracks. A set of constraints is satisfied when there
exists an assignment for each variable such that each
constraint is satisfied. When a constraint is backtracked, the
interpreter decides whether or not to invoke the human
computation depending on whether it depends on other
constraints (from the same rule in the logic program).
When a constrained variable is to be used in a non-
constrained way, such as invoking human computation, or
print its content, the constraint solver will find all its
possible assignments and the interpreter will backtrack on
all its assignments.
We have described how constraints and the constraint
solver are used in the interpreter. In the rest of this section,
we examine the implementation of our constraint solver.
Since checking if a set of constraints can be satisfied is
equivalent to checking if there are possible assignments for
all variables, we only describe the algorithm used for
finding all possible assignments of a variable.
Crowd-Logic stores all the prior results from human
primitives in a local relational database. Each human
primitive is managed in its own database table. For
example, the primitive "improve" is managed in the table
"improve". Each entry of a database table records a prior
computation indexed by their ids.
To find all possible assignments of a constrained variable,
the constraint solver first finds all the constraints that
contain the variable. Then, it computes a connected
component in the dependency graph that contains this set of
constraints. It then translates the constraints into the joins
of corresponding database tables. The possible assignments

Figure 3 Constraints and their dependency
graph

of the variable are the values from the column of the joint
table that corresponds to the output of the variable. For
example, the finding of all possible assignments of variable
T in constraints shown in Figure 3a can be translated into
the following SQL query:

SELECT improve.col_3
 FROM improve, is_better
 WHERE improve.col_3 = is_better.col_2
 AND improve.col_1 = 'a.png'
 AND improve.col_2 = ''
 AND is_better.col_1 = 'a.png'
 AND is_better.col_3 = ''

The use of constraint solver essentially allows the decision
on what value to be reused to be much delayed, so that the
computation can get much more efficient and the reuse of
prior human computation can be maximized.
OPTIMIZATION AND DECLARATIVE APPROACH
Human computation introduces new potential for tradeoffs
between the costs of traditional computation and the costs
of human tasks. A developer may prefer to spend large
amounts of traditional computational resources if this
reduces delay or cost, or improves quality associated with
human tasks. For example, TurKontrol [5] uses a planning
algorithm to control the quality of a task. In Crowd-Logic,
such new tradeoffs allow our interpreter to use more
traditional computational resources to optimize the
execution of the logic programs.
Logic programs have a declarative, logical interpretation,
which specifies the computation without describing the
actual control flow. It gives the interpreter some freedom in
deciding how to execute a program. The interpreter can
optimize an algorithm by choosing the best control flow
based on factors such as delay and monetary cost.
In the next section, we examine how Crowd-Logic
optimizes for the general cost of human computation.
OPTIMIZING FOR COST
As a simple example, the following logic program provides
two rules to determine if X is in one of the two given
groups (assuming "in_group" is a human primitive):

in_group2(X, A, B) :- in_group(X, A).
in_group2(X, A, B) :- in_group(X, B).

In its declarative interpretation, the interpreter has two
choices of control flows: either test the first rule first or test
the second rule first.
Consider the situation where "in_group(X, B)" (or
"in_group(X, A))" is previously computed, the
interpreter can reduce the cost of human computation by
choosing to test the second (or first) rule first as it will

directly reuse the prior result and potentially eliminate the
need to test the other rule.
In a more difficult situation where no reuse is available,
e.g., neither "in_group(X, A)" nor "in_group(X, B)"
is ever computed, if however the interpreter can predict
which group X is more likely to be in, it can reduce the
average cost of human computation by choosing to test the
more likely group first. Such prediction can be enabled
through a statistical machine learning system trained on the
previous results of computing "in_group".
The above two situations illustrate how Crowd-Logic
optimizes control flows to reduce the cost of human
computation. To realize such strategy, Crowd-Logic
implements a set of techniques, including introducing two
new nondeterministic predicates and a best-first search
strategy with heuristics from a lookahead algorithm.
Nondeterministic Predicates
Though a logic program could have a declarative
interpretation with only partial control flow, the language
specification usually forces a procedural interpretation with
a deterministic control flow. In the "in_group2" example,
a common procedural interpretation assumes the first rule
will always be tested first. Such assumption is indeed
important to many logic programs, for example, in Figure
1, the order of Rule 1 and Rule 2 is rigorous and the
semantics will change if they are interchanged.
In order to enable a partial control flow, Crowd-Logic
introduces two new primitives, "nondeterministic" and
"choose". Developers can use them to specify where they
want the nondeterministic semantics.
The primitive "nondeterministic" takes the name of a
predicate as argument. It informs the interpreter that when
in the search for a proof for the given predicate, the order
of the rules to be tried can be arbitrary. For example, to
make the aforementioned "in_group2" example work in
Crowd-Logic, the developer can add the following query:

:- nondeterministic(in_group2).

The primitive choose will choose an item from a list in
any nondeterministic order. For example, "in_group2"
can be rewritten in a single rule with "choose":

in_group(X, [A, B]) :-
 choose([A, B], G), in_group(X, G).

It is a handy shortcut for specifying nondeterministic
behavior with lists. In theory, "choose" can be specified
by "nondeterministic". However, implementing it as a
primitive is much more efficient.

With the introduction of the above two predicates, the
interpreter is allowed to make decision upon
nondeterministic predicates about which action to take in
its search for a proof. Essentially, we would like to find the
decisions that minimize the cost of human computation.
Such minimization is possible with small search space, as
in the "in_group2" example. However, it is not always
possible when the search space is large.
Crowd-Logic takes a best-first search strategy when
solving a query: when there are multiple actions available
for a nondeterministic predicate, it computes a heuristic for
each action and try the best action first.
The challenge is to find good heuristics. Many good
heuristics come from the domain knowledge. However,
being a general programming language, the domain
knowledge of the program is not readily available.
In the next section, we describe a lookahead algorithm,
which is able to generate a partial probabilistic lookahead
tree and compute some useful heuristics.
A Lookahead Algorithm
The idea of our lookahead algorithm is to look ahead in the
proof search tree so that the interpreter can estimate the
cost of going down different paths. The more states it can
look ahead, the better such estimation could be. The sub
tree that the lookahead process has traversed is called the
lookahead tree.
We use the quicksort algorithm as an example to introduce
a variety of techniques that our lookahead algorithm
employs to deal with human primitives and state explosion.
Our quicksort implementation is shown in Figure 4. The
predicate "le" is a human primitive that compares two
items using human judgment. We use "choose(Xs, X)"
to pick a pivot, which allows the interpreter to choose a
better pivot to reduce the cost of human computation: when
the interpreter encounters a state of choosing a pivot, it
looks ahead in the proof search tree to compute heuristics
for each pivot candidate. It then picks the best pivot and
continues.
When the lookahead process tries to traverse the proof
search tree from a state of choosing a pivot, it will quickly
find many human primitives as illustrated in Figure 5a. The
interpreter does not know whether a never-encountered
human comparison, e.g., "le(H,X)", will return true or
false before executing it. Stopping the lookahead process at
these human comparisons will lead to bad heuristics
because the lookahead tree is too restricted.
To address this problem, we introduce probabilistic edges.
When a never-encountered human comparison is found in
the lookahead process, we keep expanding the lookahead
tree as if the comparison would return true and assign the
probability of this comparison being true to the expanded
edge. The lookahead tree in Figure 5a can be expanded into
Figure 5b. Without any knowledge about the comparisons,
we assign the probability of the edge to be 0.5. The
probabilities allow us to estimate the average cost.

Though the probabilistic approach enables more states to be
explored in the lookahead process, the ability to look down
all the paths in the proof tree could generate a tree that
grows exponentially. It soon becomes intractable to explore
much deeper as illustrated in Figure 5b.
To address this problem, we limit the number of active
paths that can be explored in the lookahead process under
each choice state, e.g., pivot. If at any time the number of
active paths exceeds this limit, we prune the least likely
paths based on their probabilities. Figure 5c shows a limit
of 2 active paths.

R1 qsort(Xs, Ys) :- qsort(Xs, Ys, []).

R2 qsort([], Ys, Ys).

R3 qsort(Xs, Ys, Zs) :-
 choose(Xs, X), remove(Xs, X, Ws),
 partition(X, Ws, As, Bs),
 qsort(Bs, Cs, Zs),
 qsort(As, Ys, [X|Cs]).

R4 partition(X, [], [], []).

R5 partition(X, [H|Xs], [H|As], Bs) :-
 le(H, X), partition(X, Xs, As, Bs).

R6 partition(X, [H|Xs], As, [H|Bs]) :-
 partition(X, Xs, As, Bs).

R7 remove([X|Xs], X, Xs).

R8 remove([Y|Xs], X, [Y|Ys]) :-
 X\=Y, remove(Xs, X, Ys).

Figure 4: Quicksort (using human judgment for
comparison) implemented in Crowd-Logic.

Figure 5: Lookahead trees: (a) Non-probabilistic. (b)
Probabilistic. (c) Probabilistic with sampling. (d)
States can still explode on hard problems.

@Classifier(key="le")
public double lessThan(
 BindingTable bt,
 CTerm a, CTerm b) {

 // Call the statistical machine learning
 // system to classify if a is less than b.

}

Figure 6: Annotation "@Classifier" to offer
probability estimation for human comparisons that
enables more informed sampling in the lookahead.

Using Better Probabilities
Since the sampling method is based on the probabilities of
the paths, it will be more effective if we have a better
prediction than 0.5 for the human primitives. The better
prediction could also produce better heuristics.
One way to obtain a better prediction is to use a statistical
machine learning system. For example, we can compute a
set of features for a pair of two items and train a statistical
classifier on the prior comparison results. We can then use
the probability from the classification result.
Crowd-Logic allows developers to provide such probability
via an annotated Java method, as shown in Figure 6. The
developer implements a method that takes the same
parameters as the actual implementation of the human
primitive to be predicted. The method returns a probability.
In order to inform the interpreter about the availability such
prediction, the method needs to be annotated using
"@Classifier" with the corresponding human primitive
as "key". When the library is loaded, the interpreter will
scan for such methods and use them to predict human
primitives in the lookahead process.
Bounded or Further Pruning
However, even with the perfect prediction and sampling,
the lookahead process still cannot explore all the paths.
In sorting, with perfect prediction, all the states for
choosing pivots will still remain active in the lookahead
process as illustrated in Figure 5d. There is still an
exponential number of paths can be explored.
There two options under such situation, both are available
in Crowd-Logic. One option is to stop the lookahead after
certain depth of "choose" states. For example, in sorting,
we can only look ahead the next three possible pivots.
The other option is to further prune down the size of tree by
only keeping the best paths. The goodness of a path can be
measured by their cost efficiency. Cost efficiency is the
cost in human computation versus the progress it has
contributed. The more progress has made with less human
computation cost, the better the path is. In sorting, we can
use the number of pivots have been picked as progress.
However, in general, the progress information requires
domain knowledge.
Crowd-Logic allows developers to provide the progress
information in their logic programs. Developers can inform
the interpreter about the new progress by using primitive
"progress". The primitive "progress" takes a number as
argument. The interpreter will track the total progress in
each state. The meaning of the progress is up to developers.
In our quicksort example, we can use the number of
partitions have been made as progress by adding
"progress(1)" after each "partition".
Human Primitives with Output Parameters
We now look at human primitives with output variables.
Consider the primitive "improve" in DescribeImage
example. In the lookahead process, there is little can be said

about the new text that the human worker will produce
before actually we actually run it. The lookahead bind these
unknown human output variables process to placeholders.
The placeholder saves the information about where its
value comes from.
When the logic program requires computation on the
placeholder, such as the length of a string and the value of
an integer, the lookahead process will stop unless the
developers can provide a Java method to compute it. We
will see a concrete example in our validation section.
Computing Heuristics from the Lookahead Tree
After generating a probabilistic lookahead tree, the next
step is to compute heuristics from it. Based on the
heuristics, the interpreter will decide which path to take to
solve the query.
The heuristic f can be the average cost or average cost
efficiency (cost/progress), which can be computed
recursively. Let c(i) be the cost of the selected goal at i, and
c'(i) be the cost of the sub-tree under state i. When i is
deterministic, we have:

c '(i) = c(i)+ c '(j)× p(i, j)× pfail (k)
pa(k)=i,k< j
∏

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

pa(j)=i
∑

p(i,j) is the probability of the transition from i to j, which
can be less than 1 when the selected goal at i is a human
primitive. pfail is the probability that a proof cannot be
found under that state. When i is deterministic, its children
have a linear order. k is a left sibling of j. pfail can be
computed recursively by:

pfail (i) = pfail (j)× p(i, j)
pa(j)=i
∏

When i is nondeterministic, c'(i) and pfail(i) can take the
value of its best child:

c '(i) = c '(j)∧ pfail (i) = pfail (j), j = argmax
pa(k)=i

(f (k))

The function f is the heuristic function. The average
progress can be computed similarly as the average cost.
IMPLEMENTATION
Crowd-Logic is implemented in Java. It implements a
subset of standard Prolog. It uses Java DB (Derby) to
manage its local databases. All the human primitives from
the examples are also implemented in Java. In the
evaluation, the human tasks are implemented on MTurk
using its Java SDK to manage HITs and Amazon S3 to
store question HTML.
VALIDATION
In this section, we validate Crowd-Logic and its
optimization techniques by implementing two human
computation algorithms, sorting a list of reviews using
human judgment and shortening text using human rewrites.

Quicksort
The first algorithm is sorting a list of reviews by their
sentiments using the quicksort algorithm. We want to
validate that our optimization is able to optimize the control
flow to reduce the cost of human computation when there
are opportunities for reuse and better prediction for human
primitives.
We have already examined the quicksort implementation in
Crowd-Logic in the previous sections (and in Figure 4). For
comparison, a similar imperative implementation can be
found in [9]. The implementation of the human primitive
"le" can be as simple as asking three people if one review
is more positive than the other. A classifier can be learned
from a set of prior comparison results. However, what is
more interesting about this quicksort algorithm is how
much our optimization algorithm can reduce the cost of
human computation, i.e., the number of human
comparisons.
More specifically, we examine how the quicksort algorithm
performs with our optimization under different conditions:
the combinations of different amounts of re-usable data,
e.g., 0%, 20%, 40%, 60% and 80% of the total
comparisons, and classifiers with different accuracies, e.g.,
0.5 (a random guess), 0.8 and 1.0 (an oracle), and a
baseline condition where the quicksort algorithm always
chooses the first element as the pivot. Reuse is enabled for
all conditions.
We conduct an experiment on sorting a list of 20 reviews.
The experiment contains a total of 100 runs. In each run,
the list is first randomized and then sorted by the quicksort
algorithm across all conditions. The percentage of total
amount reduction in human comparisons from the baseline
is computed for each condition and then averaged over the
100 runs.
For the purpose of our experiment, we simulate the human
comparison by assuming a total order of the reviews. We

also simulate the predictions from the classifier. For a
classifier of accuracy 0.8, we first compute a distorted
order of the reviews from their total order so that only 80%
of the comparisons between two reviews remain the same.
The probability that one review is better than the other is
0.8 if it is consistent with the distorted order and 0.2
otherwise.
The result of the experiment is shown in Figure 7. The
more prior results that are available or the more accurate
the classifier is, the more reduction can be gained from the
optimization. The accuracy of 0.8 is quite common between
machine learning systems, yet it is almost as helpful as the
oracle. With a common classifier and some prior results,
the optimization algorithm can produce 20% to 30%
reductions. When no prior results can be reused, a common
classifier can still give us about 15% reductions, and when
no classifier is available, a random guess can still give us
about 15% reductions. These results validates that our
optimization algorithm is effective.
Shortening Text
We want to validate that our optimization is able to

R0 shorten_ranges(Paragraph, ShortenLength, Ranges, []) :- ShortenLength =< 0.

R1 shorten_paragraph(Paragraph, ShortenLength, Patches) :-
 find(Paragraph, Ranges),
 shorten_ranges(Paragraph, ShortenLength, Ranges, Patches).

R2 shorten_ranges(Paragraph, ShortenLength, [], []).

R3 shorten_ranges(Paragraph, ShortenLength, Ranges, [patch(From, Length, Text)|Patches]) :-
 choose(Ranges, range(From, Length)),
 remove(Ranges, range(From, Length), NewRanges),
 shorten_verify(5, Paragraph, From, Length, Text),
 TextLength is length(Text),
 progress(Length - TextLength),
 shorten_ranges(Paragraph, ShortenLength - Length + TextLength, NewRanges, Patches).

R4 shorten_verify(0, Paragraph, From, Length, substring(Paragraph, From, Length)).

R5 shorten_verify(Trial, Paragraph, From, Length, Text) :-
 Trial > 0, fix(Paragraph, From, Length, Text), verify(Paragraph, From, Length, Text),
R6 shorten_verify(Trial, Paragraph, From, Length, Text) :-
 Trial > 0, shorten_verify(Trial-1, Paragraph, From, Length, Text).

Figure 8: The logical representation of ShortenText in Crowd-Logic

Figure 7 The percentage of comparisons saved
under different conditions compared with the
baseline: always using first element as pivot.

optimize the control flow to reduce the cost of human
computation when the estimation of human answers is
available.
Soylent [3] demonstrates that human computation can be
used to shorten text paragraphs without changing their
meanings by using a proper workflow (Find-Fix-Verify).
We implemented ShortenText to accomplish the same task
with the same workflow as in Soylent. The logic
programming part of ShortenText is shown in Figure 8.
There are three human primitives: "find", "fix", and
"verify". The human computation is realized via MTurk.
In the task of shortening a text, progress can be represented
by how much has been shortened. Thus, in ShortenText,
when a rewrite is verified, the change in length is reported
as progress through primitive "progress".
In Soylent, although the interface provides a slider to let the
user control how much to be shortened, the algorithm for
shortening is unaware of the how much to be shortened. It
always tries to find all possible rewrites even when the user
only wants to shorten text by a couple of words. While the
original algorithm can be modified to take into account
how much to be shortened, we show that Crowd-Logic
allows this to be done easily: by adding R0. The interpreter
will terminate once the paragraph is short enough.
The interpreter is also able to prioritize which range to
shorten first with the estimation about how much a range
can be shortened. The estimation can be provided via an
annotated Java method as shown in Figure 9. We provide a
simple estimation that the length of the new text is 80% of
the original text length.

To validate the optimization, we run ShortenText on 50
paragraphs from TOEFL writing test. For our purpose (to
validate the optimization), we use simulation for "find",
"fix" and "verify", rather than asking human to perform
the tasks, as the purpose our experiment is not to validate if
text can be shortened using human computation which has
been validated in Soylent [3].
To simulate "find" we randomly generate 4 to 8 text
ranges with varying length from 10 to 50. To simulate
"fix", we generate a string with a random length between
50% and 90% of the original length. To simulate "verify",
we assume that probability of a good answer to be 70%.
We assume "fix" costing 0.05 USD and "verify" costing
0.12 USD (three votes, each 0.04 USD).
We only measure the cost of "fix" and "verify" with and
without estimation. ("find" is the always same under both
conditions) and vary the lengths to be shortened: 20%,
40%, 60%, 80% and 100% of the max possible shortening
length. The result is shown in Figure 10. It validates that
the optimization is able to better optimize the cost of
human computation with the help of estimation.
RELATED WORK
Multiple tools have been proposed for making
programming human computation easier. MTurk provides a
basic API [2] for managing human tasks on its
crowdsourcing platform. TurKit [9] provides a thin
Java/JavaScript API wrapper around MTurk API. It also
introduces a crash-and-rerun programming model to avoid
running redundant human tasks when re-running a
program. However, since it is implemented by restoring the
program state, unlike Crowd-Logic, it does not actually
reuse redundant human tasks. The same human tasks will
be run again if the program or the data input changes.
CrowdForge [8] is a general purpose framework for
crowdsourcing complex tasks by splitting and recombining
complex human computation. Jabberwocky [8] provides a
similar framework, ManReduce. In addition, it implements
a human and machine resource management system and a
high-level procedural programming language for
programming in ManReduce. Crowd-Logic allows a human
computation program to be built on any crowdsourcing
platform including Jabberwocky, and is not designed
towards any particular framework.
The declarative approach to human computation has
received much interest in the database research. CrowdDB
[1] is a database system that processes queries using human
computation. Both the queries and data models are
specified in the declarative language SQL. Deco [7] is a
similar system that uses a simple extension to SQL to pose
queries. Qurk [14] is another SQL query system enables
human-based processing. All these systems enable reuse of
prior human computation as in Crowd-Logic. However,
unlike the SQL-like query languages, the logic
programming language in Crowd-Logic allows developers
to implement general human computation algorithms.

@Estimator(key="shorten")
public Term estimate(
 BindingTable bt, CTerm arg) {

 // If arg is 'length(placeholder)', where
 // the placehoder is for the output text
 // from fix,
 // return the original length * 4 / 5.

}

Figure 9 An annotated Java method that could
provide additional information about how to
compute with a placeholder.

Figure 10 Cost when only a certain percentage of
the maximal shorten length is required

Much work has explored optimization techniques for
human computation tasks. TurKontrol [10,11] is a planner
that uses a decision-theoretical model to learn and optimize
the iterative improvement workflow for better utility.
Marcus A., Wu E. and et al. [5,6] studied the various
algorithms for sorting and joining in Qurk. CrowdScreen
[10] studied the optimization problem of filtering data
based on a set of human-verifiable properties. In contrast,
Crowd-Logic is agnostic to the tasks to be optimized. The
input to our optimization process is the actual code that
specifies the algorithm.
DISCUSSION
The Boundary of Logic Programming
In our hybrid framework, the separation of what is
implemented in logic programming and what is
implemented in imperative programming is not strictly
defined. It is up to the developers to decide where to set the
boundary.
In the DescribeImage example, the implementation of the
primitive "is_better" computes the majority from
multiple human votes. It hides the actual voting process
from the iterative improvement workflow. An alternative is
to specify the voting process in logic rules and implement a
single vote as a human primitive in imperative language.
There are two obvious extremes here. On one side, a
developer can implement the entire human computation
algorithm using imperative programming as a single human
primitive. Then it loses all the benefits from Crowd-Logic,
e.g., reusing human computation and optimization cost. On
the other side, a developer can put as much as they can into
the logic programs and only implements basic API to the
crowdsourcing platforms in imperative programs. This
would cause a much larger state space in proof search tree
and degrade the performance of the optimization process.
Both extremes are not good practices.
Parallelism
Crowd-Logic did not look at enabling and optimizing for
parallelism in workflows. However, logic programs offer
intrinsic parallelism and parallel logic programming is one
of the heavily explored topics in logic programming [13].
An easy approach is to find all the independent goals in the
search state and then search them concurrently. More
sophisticated approach is to use lookahead to optimize for
the speed rather cost, and find a much larger set of human
computations to run in parallel. These suggest an avenue of
future work for Crowd-Logic.
Reuse and Pure Logic Programming
The reuse of human computation is essential to the
declarative approach. Consider the implementation of "an
input agreement": an answer is agreed when two people
have both verified. One plausible specification can be the
following rule (where "verify" is a human primitive that
asks a person to verify a given answer):

agree2(A) :- verify(A), verify(A).

In Crowd-Logic, the above rule will not behave as expected
because the second verify will always directly reuse the
first "verify". This is consistent with its logical
interpretation: P P=P. We can introduce side effect to
human primitives as in impure logic programming
languages, however, but then agree2 cannot be reused. A
better option here is to implement agree2 as a human
primitive. However, if the developer has to reuse the
individual "verify", it still can be done:

agree2(A) :-
 verify(A), verify(B), id(A) \= id(B), A=B.

"id" is the id of an answer and both the inequality of the
ids of A and B and the equality of A and B are interpreted
as constraints in our constraint solver.
Indirect Reuse to Replace Human Computation
Crowd-Logic only uses machine prediction as guidance to
optimize the control flow. All results from the human
primitives are still obtained from the human labor. This is
less ideal when a highly accurate machine learning system
is available. One easy approach is to monitor the quality of
machine results with human results, and replace human
when the quality is on par. More complicated approach is
to mix human computation with machine results to achieve
higher quality, lower monetary cost, and faster. This also
can be one of our future directions.
CONCLUSION
We presented Crowd-Logic, a tool for implementing and
optimizing human computation algorithms using logic
programming. It enables maximally reusing prior human
computation results by using constraint solving. We also
explored adding nondeterministic choices to the logic
programming and optimizing control flows on these
choices to reduce the general human cost in human
computation algorithms.
REFERENCES

1. Ahmad, S., Battle, A., Malkani, Z., and Kamvar, S. The
jabberwocky programming environment for structured
social computing. Proc. UIST 2011, 53-64.

2. Amazon Mechanical Turk Documentation.
http://aws.amazon.com/documentation/mturk/.

3. Bernstein, M.S., Little, G., Miller, R.C., et al. Soylent :
A Word Processor with a Crowd Inside. Proc. UIST
2010, 313-322.

4. Bigham, J.P., Jayant, C., Ji, H., et al. VizWiz: nearly
real-time answers to visual questions. Proc. UIST 2010,
333-342.

5. Dai, P., Mausam, and Weld, D.S. Decision-Theoretic
Control of Crowd-Sourced Workflows. AAAI 2010,
1168-1174.

6. Dai, P., Mausam, and Weld, D.S. Artificial Intelligence
for Artificial Artificial Intelligence. AAAI 2011, 1153-
1159.

7. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S.,
and Xin, R. CrowdDB: answering queries with
crowdsourcing. Proc. SIGMOD 2011, 61-72.

8. Kittur, A., Smus, B., Khamkar, S., and Kraut, R.E.
Crowdforge: Crowdsourcing complex work. Proc. UIST
2011, 43–52.

9. Little, G., Chilton, L.B., Goldman, M., and Miller, R.C.
TurKit : Human Computation Algorithms on
Mechanical Turk. Proc. UIST 2010, 57-66.

10. Marcus, A., Wu, E., Karger, D., Madden, S., and Miller,
R. Human-powered sorts and joins. Proceedings of the
VLDB Endowment 5, 1 (2011), 13-24.

11. Marcus, A., Wu, E., Karger, D.R., Madden, S., and
Miller, R.C. Demonstration of Qurk: A Query Processor

for Human Operators. Proc. SIGMOD 2011, 1315-
1318.

12. Noronha, J., Hysen, E., Zhang, H., and Gajos, K.Z.
PlateMate : Crowdsourcing Nutrition Analysis from
Food Photographs. Proc. UIST 2011.

13. Parameswaran, A., Garcia-molina, H., Park, H., and
Widom, J. CrowdScreen : Algorithms for Filtering Data
with Humans. Proc. SIGMOD 2012.

14. Parameswaran, A., Park, H., Garcia-Molina, H.,
Polyzotis, N., and Widom, J. Deco: Declarative
Crowdsourcing. Stanford InfoLab, 2011.

15. Sterling, L. and Shapiro, E. The Art of Prolog:
Advanced Programming Techniques. The MIT Press,
1986.

