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ABSTRACT 
Human computation is a powerful approach to addressing 
problems that remain beyond the reach of traditional 
computing and has been demonstrated in a variety of 
applications. However, implementing human computation 
programs remains challenging. We present Crowd-Logic, a 
general-purpose tool for implementing human computation 
algorithms, which allows application developers to 
declaratively specify the high-level control flow of 
algorithms using logic programming and implement human 
computation units using imperative programming (e.g., 
Java). The logical representation allows Crowd-Logic to 
maximally reuse the results from prior human computation, 
optimize the control flow, and reduce the general cost of 
human computation. We validate our optimization 
techniques on two sample applications: sorting a list of 
reviews using human judgment and shortening text using 
human rewrites. 
Keywords: Crowdsourcing, logic programming, planning, 
machine learning 
INTRODUCTION 
Human computation is a powerful approach to addressing 
problems that remain hard for computers but easy for 
humans to solve. Markets for human computation, such as 
Amazon Mechanical Turk (MTurk) [2], allow developers to 
programmatically post tasks that can be completed by 
human workers in return for payment. Programs can thus 
integrate human computation into their algorithms. Recent 
systems have used human computation to answer visual 
questions from blind people posted from their mobile 
phones [4], shorten and proofread texts, and run scripts in 
natural languages [3]. 
However, implementing human computation programs 
introduces new challenges. First, human feedback is slow; 
it takes time to both find a worker and for that worker to 
complete a task. Second, calls to human workers can 
introduce monetary cost, which can quickly accumulate 

over time. Third, human feedback is unreliable, which 
means systems must be architected such that some human 
workers verify or improve the work of others [3].  
Developers therefore have to manage tradeoffs between 
speed, money, and reliability in designing their algorithms. 
For example, additional verification steps can improve 
reliability but increase monetary costs and reduce speed. 
These challenges also introduce new opportunities for 
traditional computation. Since human computation can 
become the new computation bottleneck, developers may 
prefer to spend more computational resources on the human 
computation if this reduces delays, saves money, or 
improves reliability. For example, one such opportunity is 
to reuse results from prior human computations. 
Existing general-purpose human computation tools have 
focused on APIs for easily accessing human computation 
markets [2,9] and managing long running programs [9]. 
TurKit [9], for example, enables a program to efficiently 
pause and continue in order to improve the stability of the 
program over time. To our knowledge, no prior work has 
focused on tool that supports managing the cost of 
traditional computation against the cost of human 
computation. 
We present Crowd-Logic, a general-purpose tool for 
implementing human computation algorithms. In Crowd-
Logic, the high-level structure of an algorithm is specified 
using logic programming and human computations are 
encapsulated into logical primitives, which are 
implemented via imperative programming (e.g., Java). The 
logical representation of algorithms allows Crowd-Logic to 
maximally reuse the results from prior human computation. 
It also introduces opportunities for traditional computation 
to optimize algorithms for reducing the general cost of 
human computation. 
In this paper, we first show how developers can implement 
a human computation algorithm in Crowd-Logic. We then 
show how Crowd-Logic can maximally reuse the results of 
prior human computation. Next, we discuss the techniques 
for optimizing algorithms to reduce the general cost of 
human computation. We then validate our optimization 
techniques in two sample applications: sorting a list of 
restaurant reviews using human judgment and shortening 
text using human rewrites. Finally, we discuss the current 
limitations and opportunities for future work. 

 



 

 

Our main contributions are: 

• Crowd-Logic, a general-purpose tool for implementing 
human computation algorithms that maximally enables 
reuse of prior human computation, and 

• A set of techniques for optimizing algorithms to reduce 
the general cost of human computation. 

IMPLEMENTING AN ALGORITHM WITH CROWD-LOGIC 
In this section, we present an overview of Crowd-Logic via 
an example of using Crowd-Logic to implement a common 
human computation use case, DescribeImage: generating 
plain text descriptions for images. More specifically, in this 
image description problem, the task is to generate a good 
plain text description for a given image by asking human 
workers to describe the image. 
Previous research has looked at this problem [9,12]. A 
common approach is to use an iterative improvement 
workflow as shown in Figure 1a. The workflow iterates 
over improving a description ("improve") and verifying the 
improvement ("is better"). In each round of the iteration, 
first, a human worker is asked to improve an old 
description for the image by writing a new description. 
Then, a few human workers are asked to vote on if the new 
description is indeed better than the old one. The better 
version will then be improved on in the next round. The 
iteration terminates after a predetermined number of 
rounds. 
The workflow in Figure 1a can be broken down into two 
parts: the control flow and two basic human computation 
units (e.g., "improve" and "is better"). Correspondingly, the 
Crowd-Logic implementation of the above workflow has 
two parts: a logic programming part for specifying the 
control flow (shown in Figure 1b), and a Java part that 

implements the basic human computation units (shown in 
Figure 1c). 
The logic programming part contains four logic rules. Rule 
1 specifies the control flow of a single round of the 
iteration ("one_round"), which consists of two sequential 
steps: "improve" and "is_better". Rule 2 specifies that 
take the original description should be used if a better 
description is not found in Rule 1. Rule 3 and 4 specify 
recursively the iteration with N rounds of "one_round". 
The Java part contains two functions that implement the 
two human computation units of the same names in the 
logic program. Figure 1c shows the skeleton of their 
implementation. Each human computation unit is 
implemented in its corresponding method of the library 
class. Crowd-Logic will load the library and scan for 
methods that implement human computation units. 

The annotation "@HumanPrimitive" is used on Java 
methods to indicate that a particular method is an 
implementation of a human computation unit. The name of 
the method is same as its logical counterpart. Some 
metadata can be specified in the annotation. For example, 
the code in Figure 1c specifies the cost of "improve" is 1 
and the cost of "is_better" is 3. The definition of the 
cost is up to the developers. 

The annotation "@Out" applies on the parameters of the 
Java methods to indicate that a parameter is intended for 
storing an output value from human workers (an output 
parameter). For example, the "newText" parameter of 
"improve" is to store the rewrite of the old description. In 
contrast, the method "is_better" does not have such 
output parameters. The result of its human computation is 
communicated back via its return value. 

  

Figure 1: Generate plain text descriptions for image. (a) The common approach is to use the iterative text 
improvement workflow. (b) The logical representation of the iterative text improvement workflow. (c) The two Java 

functions that implement the corresponding human computation units in the logic program. 



 

 

The above demonstrates how Crowd-Logic combines logic 
programming and imperative programming. An imperative 
implementation could have a similar structure to Figure 1, 
however, when Crowd-Logic runs, one advantage is that it 
can maximally reuse the prior results of "improve" and 
"is_better", for example, if there are K rounds of 
improvement in the past, Crowd-Logic will start from the 
K+1 round. 
Logic Programming 
In the rest of this subsection, we introduce the basic notions 
in logic programming that will be used in this paper. More 
details can be found in [15]. 

Logic programming has two basic constructs. 
Terms are the single recursive data structure in logic 
programming. A term can be: 

• Number: strings in number form, i.e., 0, 3.14. 
• Variable: strings that start with an upper-case letter or 

underscore, i.e., Image, Text, N. At runtime, a 
variable can be assigned a value by binding it to 
another term. 

• Atom: general strings with no other meanings, i.e., 
true, 'a.png'. 

• Compound Term: which are composed of an atom 
(name) and a list of terms (arguments), i.e., 
improve(Image, Text, NewText). A compound 
term can mean: 
o Predicate, can be true of false depending on the 

values of its argument. 
o Primitive, a predicate that is defined outside the 

logic programs and usually in an imperative 
program. They provide abstractions that are 
difficult to express in logic programs. In Crowd-
Logic, we use human primitive when it provides 
an abstraction to some human computation. 

• List: a special compound term to represent a list. The 
following two are equivalent in representing a list 
consists of 1, 2 and 3: [1,2,3], [1|[2, 3]]. 

Rules take the following form: 
A :- B1, B2, ... , Bn.  

This states that A (the head of the rule) is true if all the Bi's 
(the body of the rule) are true. A and Bi's are all logical 
predicates. A rule with an empty body is called a fact, 
which states that the head predicate is always true. A rule 
with no head predicate is called a query, which initiates the 
computation. 
In logic programming, the computation is done 
interpretively. To solve a query, the interpreter will search 
for a proof (a sequence of logical deductions from the facts) 
for its body and the bindings for all its variables. 
To get a text description for an image using 
DescribeImage, we can input a query to Crowd-Logic. For 
example, the following query will generate a description 
for the image 'a.png' using 10 iterations: 

:- iterate(10, 'a.png', '', Text), write(Text). 

(The predicate "write" is a built-in primitive that outputs 
the value of "Text" to the console.) 
There are many existing search procedures for logic 
programs. Crowd-Logic adopts the goal-reduction search 
procedure. Each predicate is interpreted as a goal. Rules are 
interpreted as ways to reduce a goal (head of the rule) into a 
sequence of sub-goals (body of the rule). The facts and 
primitives are terminals and are reduced to an empty 
sequence. The procedure of searching for a proof is 
interpreted as searching for a sequence of reductions from 
the initial sequence of goals to an empty one. The search 
space is a tree structure with each state corresponding to a 
goal sequence. The first goal of a state is always the active 
goal, which is to be reduced next. We will refer to this 
search tree as a proof search tree. The search strategy is 
backtracking, e.g., traversing the tree in depth-first order. 
A sample proof search tree is shown in Figure 2. The initial 
query is turned into state 1 with two goals. Rule 4 can 
reduce the active (first) goal in state 1 into two sub-goals 
and result in state 2. Both Rule 1 and Rule 2 can reduce the 
first goal of state 2 and transition to state 3 and state 6 
respectively.  Since Rule 1 is specified before Rule 2 in the 
logic program, it has a higher priority and the search 
process will try Rule 1 first. The search process will then 
evaluate the human primitives in states 3 and 4, as they are 
the active goals. If the result of "is_better" is false, the 
search process will backtrack to state 2 and try Rule 2. This 
search process will eventually reach a state "iterate(0, 
...), write(...)" in which the first goal is a fact and 
second goal is a primitive. 
While logic programming languages are simple yet as 
expressive as imperative languages, most developers are 
unfamiliar with logic programming. In addition, the API 
support for logic programming languages to access existing 
human computation markets is lacking. These make it a 
high threshold to implement a human computation 
algorithm entirely in logic programs. However, logic 
programming has the benefit of enabling effective reuse 
and optimization in human computation. Crowd-Logic 

 
Figure 2: A proof search tree: an illustration of the 
goal-reduction interpretation using rules from 
DescribeImage. (This example does not consider 
reusing prior human computation.) 



 

 

lowers such threshold by allowing developers to only 
specify the high-level algorithms in logic programs. 
REUSE HUMAN COMPUTATION 
Since human computation can be slow, unreliable and 
expensive, the opportunity to reuse results from prior 
human computation becomes valuable. Crowd-Logic 
assumes that the results from human primitives are reusable 
unless otherwise specified. When the interpreter searches 
for a solution, it always tries to reuse the prior results of the 
human primitives when possible.  
Consider the task of sorting a list of restaurant reviews 
based on their sentiments. One solution is to implement the 
quicksort algorithm and ask human to compare the 
sentiments of two reviews. During the sorting, many 
comparisons between two reviews may have already been 
done before. They can result from situations when new 
reviews have been added and the old reviews have already 
been sorted. They can result from the previous runs that 
have terminated unexpectedly. They can also result from 
other tasks that share the same human comparison unit. 
These comparisons can reuse the prior comparison results 
rather than asking human to compare them again.  
The above is the simplest case of reusing prior human 
computation results. It can be realized by storing all prior 
comparisons in a local database and every time a human 
comparison is required, the interpreter reuses the prior 
result if the same comparison is recorded in the database. 
Consider a more complex example. In DescribeImage, the 
interpreter can encounter the two sequential primitives as 
shown in Figure 3a when searching for a solution. When it 
is at the first primitive, e.g., "improve", assuming that the 
same human computation (improving an empty description 
of 'a.png') has been done a few times before, the interpreter 
has to make a decision on whether or not to reuse the prior 
results and if so, which result to be used. However, the 
interpreter does not have enough information to make such 
decision. It is until when it sees the next primitive, e.g., 
"is_better", does the interpreter know that it can reuse a 
result that is better than the empty description. If no such 
reuse is possible, the interpreter should then invoke the 
"improve" primitive to get a new human rewrite. Things 
will get more complicated when multiple rounds of 
improvements are concerned as shown in Figure 3b. 
To enable reuse in the general case, Crowd-Logic 
introduces a constraint solver and sees all human primitives 
as constraints. For example, the primitive 
"improve('a.png', T1, T2)" in Figure 3b is 
interpreted as a constraint that constrains the values of the 
two variables T1 and T2 to have both occurred in one of the 
prior runs of the primitive. A constraint can be satisfied if 
such values exist. 
Constraints can have dependencies between each other via 
variables. For example, the constraint 
"improve('a.png', T1, T2)" depends on the other 
constraint "improve('a.png', '', T1)", because its 

argument T1 is an output from the latter. A dependency 
graph can be obtained by representing constraints as nodes 
and dependencies as edges. Figure 3c shows the 
dependency graph of the constraints in Figure 3b. 
The interpreter stores a list of constraints and maintains a 
dependency graph for them. When it encounters a 
constraint, the interpreter adds the constraint to its list of 
constraints. If the constraint solver determines that the 
resulting constraints are no longer satisfied, the interpreter 
then backtracks. A set of constraints is satisfied when there 
exists an assignment for each variable such that each 
constraint is satisfied. When a constraint is backtracked, the 
interpreter decides whether or not to invoke the human 
computation depending on whether it depends on other 
constraints (from the same rule in the logic program). 
When a constrained variable is to be used in a non-
constrained way, such as invoking human computation, or 
print its content, the constraint solver will find all its 
possible assignments and the interpreter will backtrack on 
all its assignments. 
We have described how constraints and the constraint 
solver are used in the interpreter. In the rest of this section, 
we examine the implementation of our constraint solver. 
Since checking if a set of constraints can be satisfied is 
equivalent to checking if there are possible assignments for 
all variables, we only describe the algorithm used for 
finding all possible assignments of a variable. 
Crowd-Logic stores all the prior results from human 
primitives in a local relational database. Each human 
primitive is managed in its own database table. For 
example, the primitive "improve" is managed in the table 
"improve". Each entry of a database table records a prior 
computation indexed by their ids. 
To find all possible assignments of a constrained variable, 
the constraint solver first finds all the constraints that 
contain the variable. Then, it computes a connected 
component in the dependency graph that contains this set of 
constraints. It then translates the constraints into the joins 
of corresponding database tables. The possible assignments 

 
Figure 3 Constraints and their dependency 
graph 



 

 

of the variable are the values from the column of the joint 
table that corresponds to the output of the variable. For 
example, the finding of all possible assignments of variable 
T in constraints shown in Figure 3a can be translated into 
the following SQL query: 

SELECT improve.col_3 
 FROM improve, is_better 
 WHERE improve.col_3 = is_better.col_2 
  AND improve.col_1 = 'a.png' 
  AND improve.col_2 = '' 
  AND is_better.col_1 = 'a.png' 
  AND is_better.col_3 = '' 

The use of constraint solver essentially allows the decision 
on what value to be reused to be much delayed, so that the 
computation can get much more efficient and the reuse of 
prior human computation can be maximized. 
OPTIMIZATION AND DECLARATIVE APPROACH 
Human computation introduces new potential for tradeoffs 
between the costs of traditional computation and the costs 
of human tasks. A developer may prefer to spend large 
amounts of traditional computational resources if this 
reduces delay or cost, or improves quality associated with 
human tasks. For example, TurKontrol [5] uses a planning 
algorithm to control the quality of a task. In Crowd-Logic, 
such new tradeoffs allow our interpreter to use more 
traditional computational resources to optimize the 
execution of the logic programs. 
Logic programs have a declarative, logical interpretation, 
which specifies the computation without describing the 
actual control flow. It gives the interpreter some freedom in 
deciding how to execute a program. The interpreter can 
optimize an algorithm by choosing the best control flow 
based on factors such as delay and monetary cost. 
In the next section, we examine how Crowd-Logic 
optimizes for the general cost of human computation. 
OPTIMIZING FOR COST 
As a simple example, the following logic program provides 
two rules to determine if X is in one of the two given 
groups (assuming "in_group" is a human primitive): 

in_group2(X, A, B) :- in_group(X, A). 
in_group2(X, A, B) :- in_group(X, B). 

In its declarative interpretation, the interpreter has two 
choices of control flows: either test the first rule first or test 
the second rule first. 
Consider the situation where "in_group(X, B)" (or 
"in_group(X, A))" is previously computed, the 
interpreter can reduce the cost of human computation by 
choosing to test the second (or first) rule first as it will 

directly reuse the prior result and potentially eliminate the 
need to test the other rule. 
In a more difficult situation where no reuse is available, 
e.g., neither "in_group(X, A)" nor "in_group(X, B)" 
is ever computed, if however the interpreter can predict 
which group X is more likely to be in, it can reduce the 
average cost of human computation by choosing to test the 
more likely group first. Such prediction can be enabled 
through a statistical machine learning system trained on the 
previous results of computing "in_group". 
The above two situations illustrate how Crowd-Logic 
optimizes control flows to reduce the cost of human 
computation. To realize such strategy, Crowd-Logic 
implements a set of techniques, including introducing two 
new nondeterministic predicates and a best-first search 
strategy with heuristics from a lookahead algorithm. 
Nondeterministic Predicates 
Though a logic program could have a declarative 
interpretation with only partial control flow, the language 
specification usually forces a procedural interpretation with 
a deterministic control flow. In the "in_group2" example, 
a common procedural interpretation assumes the first rule 
will always be tested first. Such assumption is indeed 
important to many logic programs, for example, in Figure 
1, the order of Rule 1 and Rule 2 is rigorous and the 
semantics will change if they are interchanged.  
In order to enable a partial control flow, Crowd-Logic 
introduces two new primitives, "nondeterministic" and 
"choose". Developers can use them to specify where they 
want the nondeterministic semantics.  
The primitive "nondeterministic" takes the name of a 
predicate as argument. It informs the interpreter that when 
in the search for a proof for the given predicate, the order 
of the rules to be tried can be arbitrary. For example, to 
make the aforementioned "in_group2" example work in 
Crowd-Logic, the developer can add the following query: 

:- nondeterministic(in_group2). 

The primitive choose will choose an item from a list in 
any nondeterministic order. For example, "in_group2" 
can be rewritten in a single rule with "choose": 

in_group(X, [A, B]) :- 
        choose([A, B], G), in_group(X, G). 

It is a handy shortcut for specifying nondeterministic 
behavior with lists. In theory, "choose" can be specified 
by "nondeterministic". However, implementing it as a 
primitive is much more efficient. 



 

 

With the introduction of the above two predicates, the 
interpreter is allowed to make decision upon 
nondeterministic predicates about which action to take in 
its search for a proof. Essentially, we would like to find the 
decisions that minimize the cost of human computation. 
Such minimization is possible with small search space, as 
in the "in_group2" example. However, it is not always 
possible when the search space is large. 
Crowd-Logic takes a best-first search strategy when 
solving a query: when there are multiple actions available 
for a nondeterministic predicate, it computes a heuristic for 
each action and try the best action first. 
The challenge is to find good heuristics. Many good 
heuristics come from the domain knowledge. However, 
being a general programming language, the domain 
knowledge of the program is not readily available. 
In the next section, we describe a lookahead algorithm, 
which is able to generate a partial probabilistic lookahead 
tree and compute some useful heuristics. 
A Lookahead Algorithm 
The idea of our lookahead algorithm is to look ahead in the 
proof search tree so that the interpreter can estimate the 
cost of going down different paths. The more states it can 
look ahead, the better such estimation could be. The sub 
tree that the lookahead process has traversed is called the 
lookahead tree. 
We use the quicksort algorithm as an example to introduce 
a variety of techniques that our lookahead algorithm 
employs to deal with human primitives and state explosion. 
Our quicksort implementation is shown in Figure 4. The 
predicate "le" is a human primitive that compares two 
items using human judgment. We use "choose(Xs, X)" 
to pick a pivot, which allows the interpreter to choose a 
better pivot to reduce the cost of human computation: when 
the interpreter encounters a state of choosing a pivot, it 
looks ahead in the proof search tree to compute heuristics 
for each pivot candidate. It then picks the best pivot and 
continues. 
When the lookahead process tries to traverse the proof 
search tree from a state of choosing a pivot, it will quickly 
find many human primitives as illustrated in Figure 5a. The 
interpreter does not know whether a never-encountered 
human comparison, e.g., "le(H,X)", will return true or 
false before executing it. Stopping the lookahead process at 
these human comparisons will lead to bad heuristics 
because the lookahead tree is too restricted. 
To address this problem, we introduce probabilistic edges.  
When a never-encountered human comparison is found in 
the lookahead process, we keep expanding the lookahead 
tree as if the comparison would return true and assign the 
probability of this comparison being true to the expanded 
edge. The lookahead tree in Figure 5a can be expanded into 
Figure 5b. Without any knowledge about the comparisons, 
we assign the probability of the edge to be 0.5. The 
probabilities allow us to estimate the average cost. 

Though the probabilistic approach enables more states to be 
explored in the lookahead process, the ability to look down 
all the paths in the proof tree could generate a tree that 
grows exponentially. It soon becomes intractable to explore 
much deeper as illustrated in Figure 5b. 
To address this problem, we limit the number of active 
paths that can be explored in the lookahead process under 
each choice state, e.g., pivot. If at any time the number of 
active paths exceeds this limit, we prune the least likely 
paths based on their probabilities. Figure 5c shows a limit 
of 2 active paths. 

R1  qsort(Xs, Ys) :- qsort(Xs, Ys, []). 

R2  qsort([], Ys, Ys). 

R3  qsort(Xs, Ys, Zs) :- 
       choose(Xs, X), remove(Xs, X, Ws), 
       partition(X, Ws, As, Bs), 
       qsort(Bs, Cs, Zs), 
       qsort(As, Ys, [X|Cs]). 

R4  partition(X, [], [], []). 

R5  partition(X, [H|Xs], [H|As], Bs) :- 
       le(H, X), partition(X, Xs, As, Bs). 

R6  partition(X, [H|Xs], As, [H|Bs]) :- 
       partition(X, Xs, As, Bs). 

R7  remove([X|Xs], X, Xs). 

R8  remove([Y|Xs], X, [Y|Ys]) :- 
       X\=Y, remove(Xs, X, Ys). 

Figure 4: Quicksort (using human judgment for 
comparison) implemented in Crowd-Logic. 

 
Figure 5: Lookahead trees: (a) Non-probabilistic. (b) 
Probabilistic. (c) Probabilistic with sampling. (d) 
States can still explode on hard problems. 

@Classifier(key="le") 
public double lessThan( 
        BindingTable bt, 
        CTerm a, CTerm b) { 

    // Call the statistical machine learning 
    // system to classify if a is less than b. 

} 

Figure 6: Annotation "@Classifier" to offer 
probability estimation for human comparisons that 
enables more informed sampling in the lookahead. 



 

 

Using Better Probabilities 
Since the sampling method is based on the probabilities of 
the paths, it will be more effective if we have a better 
prediction than 0.5 for the human primitives. The better 
prediction could also produce better heuristics. 
One way to obtain a better prediction is to use a statistical 
machine learning system. For example, we can compute a 
set of features for a pair of two items and train a statistical 
classifier on the prior comparison results. We can then use 
the probability from the classification result. 
Crowd-Logic allows developers to provide such probability 
via an annotated Java method, as shown in Figure 6. The 
developer implements a method that takes the same 
parameters as the actual implementation of the human 
primitive to be predicted. The method returns a probability. 
In order to inform the interpreter about the availability such 
prediction, the method needs to be annotated using 
"@Classifier" with the corresponding human primitive 
as "key". When the library is loaded, the interpreter will 
scan for such methods and use them to predict human 
primitives in the lookahead process. 
Bounded or Further Pruning 
However, even with the perfect prediction and sampling, 
the lookahead process still cannot explore all the paths. 
In sorting, with perfect prediction, all the states for 
choosing pivots will still remain active in the lookahead 
process as illustrated in Figure 5d. There is still an 
exponential number of paths can be explored. 
There two options under such situation, both are available 
in Crowd-Logic. One option is to stop the lookahead after 
certain depth of "choose" states. For example, in sorting, 
we can only look ahead the next three possible pivots. 
The other option is to further prune down the size of tree by 
only keeping the best paths. The goodness of a path can be 
measured by their cost efficiency. Cost efficiency is the 
cost in human computation versus the progress it has 
contributed. The more progress has made with less human 
computation cost, the better the path is. In sorting, we can 
use the number of pivots have been picked as progress. 
However, in general, the progress information requires 
domain knowledge. 
Crowd-Logic allows developers to provide the progress 
information in their logic programs. Developers can inform 
the interpreter about the new progress by using primitive 
"progress". The primitive "progress" takes a number as 
argument. The interpreter will track the total progress in 
each state. The meaning of the progress is up to developers. 
In our quicksort example, we can use the number of 
partitions have been made as progress by adding 
"progress(1)" after each "partition". 
Human Primitives with Output Parameters 
We now look at human primitives with output variables. 
Consider the primitive "improve" in DescribeImage 
example. In the lookahead process, there is little can be said 

about the new text that the human worker will produce 
before actually we actually run it. The lookahead bind these 
unknown human output variables process to placeholders. 
The placeholder saves the information about where its 
value comes from. 
When the logic program requires computation on the 
placeholder, such as the length of a string and the value of 
an integer, the lookahead process will stop unless the 
developers can provide a Java method to compute it. We 
will see a concrete example in our validation section. 
Computing Heuristics from the Lookahead Tree 
After generating a probabilistic lookahead tree, the next 
step is to compute heuristics from it. Based on the 
heuristics, the interpreter will decide which path to take to 
solve the query. 
The heuristic f can be the average cost or average cost 
efficiency (cost/progress), which can be computed 
recursively. Let c(i) be the cost of the selected goal at i, and 
c'(i) be the cost of the sub-tree under state i. When i is 
deterministic, we have: 

c '(i) = c(i)+ c '( j)× p(i, j)× pfail (k)
pa(k )=i,k< j
∏

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

pa( j )=i
∑  

p(i,j) is the probability of the transition from i to j, which 
can be less than 1 when the selected goal at i is a human 
primitive. pfail is the probability that a proof cannot be 
found under that state. When i is deterministic, its children 
have a linear order. k is a left sibling of j. pfail can be 
computed recursively by: 

pfail (i) = pfail ( j)× p(i, j)
pa( j )=i
∏  

When i is nondeterministic, c'(i) and pfail(i) can take the 
value of its best child: 

c '(i) = c '( j)∧ pfail (i) = pfail ( j), j = argmax
pa(k )=i

( f (k))  

The function f is the heuristic function. The average 
progress can be computed similarly as the average cost. 
IMPLEMENTATION 
Crowd-Logic is implemented in Java. It implements a 
subset of standard Prolog. It uses Java DB (Derby) to 
manage its local databases. All the human primitives from 
the examples are also implemented in Java. In the 
evaluation, the human tasks are implemented on MTurk 
using its Java SDK to manage HITs and Amazon S3 to 
store question HTML. 
VALIDATION 
In this section, we validate Crowd-Logic and its 
optimization techniques by implementing two human 
computation algorithms, sorting a list of reviews using 
human judgment and shortening text using human rewrites. 



 

 

Quicksort 
The first algorithm is sorting a list of reviews by their 
sentiments using the quicksort algorithm. We want to 
validate that our optimization is able to optimize the control 
flow to reduce the cost of human computation when there 
are opportunities for reuse and better prediction for human 
primitives. 
We have already examined the quicksort implementation in 
Crowd-Logic in the previous sections (and in Figure 4). For 
comparison, a similar imperative implementation can be 
found in [9]. The implementation of the human primitive 
"le" can be as simple as asking three people if one review 
is more positive than the other. A classifier can be learned 
from a set of prior comparison results. However, what is 
more interesting about this quicksort algorithm is how 
much our optimization algorithm can reduce the cost of 
human computation, i.e., the number of human 
comparisons. 
More specifically, we examine how the quicksort algorithm 
performs with our optimization under different conditions: 
the combinations of different amounts of re-usable data, 
e.g., 0%, 20%, 40%, 60% and 80% of the total 
comparisons, and classifiers with different accuracies, e.g., 
0.5 (a random guess), 0.8 and 1.0 (an oracle), and a 
baseline condition where the quicksort algorithm always 
chooses the first element as the pivot. Reuse is enabled for 
all conditions. 
We conduct an experiment on sorting a list of 20 reviews. 
The experiment contains a total of 100 runs. In each run, 
the list is first randomized and then sorted by the quicksort 
algorithm across all conditions. The percentage of total 
amount reduction in human comparisons from the baseline 
is computed for each condition and then averaged over the 
100 runs. 
For the purpose of our experiment, we simulate the human 
comparison by assuming a total order of the reviews. We 

also simulate the predictions from the classifier. For a 
classifier of accuracy 0.8, we first compute a distorted 
order of the reviews from their total order so that only 80% 
of the comparisons between two reviews remain the same. 
The probability that one review is better than the other is 
0.8 if it is consistent with the distorted order and 0.2 
otherwise. 
The result of the experiment is shown in Figure 7. The 
more prior results that are available or the more accurate 
the classifier is, the more reduction can be gained from the 
optimization. The accuracy of 0.8 is quite common between 
machine learning systems, yet it is almost as helpful as the 
oracle. With a common classifier and some prior results, 
the optimization algorithm can produce 20% to 30% 
reductions. When no prior results can be reused, a common 
classifier can still give us about 15% reductions, and when 
no classifier is available, a random guess can still give us 
about 15% reductions. These results validates that our 
optimization algorithm is effective. 
Shortening Text 
We want to validate that our optimization is able to 

R0  shorten_ranges(Paragraph, ShortenLength, Ranges, []) :- ShortenLength =< 0. 
 
R1  shorten_paragraph(Paragraph, ShortenLength, Patches) :- 
      find(Paragraph, Ranges), 
      shorten_ranges(Paragraph, ShortenLength, Ranges, Patches). 

R2  shorten_ranges(Paragraph, ShortenLength, [], []). 

R3  shorten_ranges(Paragraph, ShortenLength, Ranges, [patch(From, Length, Text)|Patches]) :- 
      choose(Ranges, range(From, Length)), 
      remove(Ranges, range(From, Length), NewRanges), 
      shorten_verify(5, Paragraph, From, Length, Text), 
      TextLength is length(Text), 
      progress(Length - TextLength), 
      shorten_ranges(Paragraph, ShortenLength - Length + TextLength, NewRanges, Patches). 

R4  shorten_verify(0, Paragraph, From, Length, substring(Paragraph, From, Length)). 

R5  shorten_verify(Trial, Paragraph, From, Length, Text) :- 
      Trial > 0, fix(Paragraph, From, Length, Text), verify(Paragraph, From, Length, Text), 
R6  shorten_verify(Trial, Paragraph, From, Length, Text) :- 
      Trial > 0, shorten_verify(Trial-1, Paragraph, From, Length, Text). 

Figure 8: The logical representation of ShortenText in Crowd-Logic 

Figure 7 The percentage of comparisons saved 
under different conditions compared with the 
baseline: always using first element as pivot. 



 

 

optimize the control flow to reduce the cost of human 
computation when the estimation of human answers is 
available. 
Soylent [3] demonstrates that human computation can be 
used to shorten text paragraphs without changing their 
meanings by using a proper workflow (Find-Fix-Verify). 
We implemented ShortenText to accomplish the same task 
with the same workflow as in Soylent. The logic 
programming part of ShortenText is shown in Figure 8. 
There are three human primitives: "find", "fix", and 
"verify". The human computation is realized via MTurk. 
In the task of shortening a text, progress can be represented 
by how much has been shortened. Thus, in ShortenText, 
when a rewrite is verified, the change in length is reported 
as progress through primitive "progress".  
In Soylent, although the interface provides a slider to let the 
user control how much to be shortened, the algorithm for 
shortening is unaware of the how much to be shortened. It 
always tries to find all possible rewrites even when the user 
only wants to shorten text by a couple of words. While the 
original algorithm can be modified to take into account 
how much to be shortened, we show that Crowd-Logic 
allows this to be done easily: by adding R0. The interpreter 
will terminate once the paragraph is short enough. 
The interpreter is also able to prioritize which range to 
shorten first with the estimation about how much a range 
can be shortened. The estimation can be provided via an 
annotated Java method as shown in Figure 9. We provide a 
simple estimation that the length of the new text is 80% of 
the original text length. 

To validate the optimization, we run ShortenText on 50 
paragraphs from TOEFL writing test. For our purpose (to 
validate the optimization), we use simulation for "find", 
"fix" and "verify", rather than asking human to perform 
the tasks, as the purpose our experiment is not to validate if 
text can be shortened using human computation which has 
been validated in Soylent [3]. 
To simulate "find" we randomly generate 4 to 8 text 
ranges with varying length from 10 to 50. To simulate 
"fix", we generate a string with a random length between 
50% and 90% of the original length. To simulate "verify", 
we assume that probability of a good answer to be 70%. 
We assume "fix" costing 0.05 USD and "verify" costing 
0.12 USD (three votes, each 0.04 USD). 
We only measure the cost of "fix" and "verify" with and 
without estimation. ("find" is the always same under both 
conditions) and vary the lengths to be shortened: 20%, 
40%, 60%, 80% and 100% of the max possible shortening 
length. The result is shown in Figure 10. It validates that 
the optimization is able to better optimize the cost of 
human computation with the help of estimation. 
RELATED WORK 
Multiple tools have been proposed for making 
programming human computation easier. MTurk provides a 
basic API [2] for managing human tasks on its 
crowdsourcing platform. TurKit [9] provides a thin 
Java/JavaScript API wrapper around MTurk API. It also 
introduces a crash-and-rerun programming model to avoid 
running redundant human tasks when re-running a 
program. However, since it is implemented by restoring the 
program state, unlike Crowd-Logic, it does not actually 
reuse redundant human tasks. The same human tasks will 
be run again if the program or the data input changes. 
CrowdForge [8] is a general purpose framework for 
crowdsourcing complex tasks by splitting and recombining 
complex human computation. Jabberwocky [8] provides a 
similar framework, ManReduce. In addition, it implements 
a human and machine resource management system and a 
high-level procedural programming language for 
programming in ManReduce. Crowd-Logic allows a human 
computation program to be built on any crowdsourcing 
platform including Jabberwocky, and is not designed 
towards any particular framework. 
The declarative approach to human computation has 
received much interest in the database research. CrowdDB 
[1] is a database system that processes queries using human 
computation. Both the queries and data models are 
specified in the declarative language SQL. Deco [7] is a 
similar system that uses a simple extension to SQL to pose 
queries. Qurk [14] is another SQL query system enables 
human-based processing. All these systems enable reuse of 
prior human computation as in Crowd-Logic. However, 
unlike the SQL-like query languages, the logic 
programming language in Crowd-Logic allows developers 
to implement general human computation algorithms. 

@Estimator(key="shorten") 
public Term estimate( 
        BindingTable bt, CTerm arg) { 

    // If arg is 'length(placeholder)', where 
    // the placehoder is for the output text  
    // from fix, 
    // return the original length * 4 / 5. 

} 

Figure 9 An annotated Java method that could 
provide additional information about how to 
compute with a placeholder. 

 
Figure 10 Cost when only a certain percentage of 
the maximal shorten length is required 



 

 

Much work has explored optimization techniques for 
human computation tasks. TurKontrol [10,11] is a planner 
that uses a decision-theoretical model to learn and optimize 
the iterative improvement workflow for better utility. 
Marcus A., Wu E. and et al. [5,6] studied the various 
algorithms for sorting and joining in Qurk. CrowdScreen 
[10] studied the optimization problem of filtering data 
based on a set of human-verifiable properties. In contrast, 
Crowd-Logic is agnostic to the tasks to be optimized. The 
input to our optimization process is the actual code that 
specifies the algorithm. 
DISCUSSION 
The Boundary of Logic Programming 
In our hybrid framework, the separation of what is 
implemented in logic programming and what is 
implemented in imperative programming is not strictly 
defined. It is up to the developers to decide where to set the 
boundary. 
In the DescribeImage example, the implementation of the 
primitive "is_better" computes the majority from 
multiple human votes. It hides the actual voting process 
from the iterative improvement workflow. An alternative is 
to specify the voting process in logic rules and implement a 
single vote as a human primitive in imperative language. 
There are two obvious extremes here. On one side, a 
developer can implement the entire human computation 
algorithm using imperative programming as a single human 
primitive. Then it loses all the benefits from Crowd-Logic, 
e.g., reusing human computation and optimization cost. On 
the other side, a developer can put as much as they can into 
the logic programs and only implements basic API to the 
crowdsourcing platforms in imperative programs. This 
would cause a much larger state space in proof search tree 
and degrade the performance of the optimization process. 
Both extremes are not good practices. 
Parallelism 
Crowd-Logic did not look at enabling and optimizing for 
parallelism in workflows. However, logic programs offer 
intrinsic parallelism and parallel logic programming is one 
of the heavily explored topics in logic programming [13]. 
An easy approach is to find all the independent goals in the 
search state and then search them concurrently. More 
sophisticated approach is to use lookahead to optimize for 
the speed rather cost, and find a much larger set of human 
computations to run in parallel. These suggest an avenue of 
future work for Crowd-Logic. 
Reuse and Pure Logic Programming 
The reuse of human computation is essential to the 
declarative approach. Consider the implementation of "an 
input agreement": an answer is agreed when two people 
have both verified. One plausible specification can be the 
following rule (where "verify" is a human primitive that 
asks a person to verify a given answer): 

agree2(A) :- verify(A), verify(A). 

In Crowd-Logic, the above rule will not behave as expected 
because the second verify will always directly reuse the 
first "verify". This is consistent with its logical 
interpretation: P P=P. We can introduce side effect to 
human primitives as in impure logic programming 
languages, however, but then agree2 cannot be reused. A 
better option here is to implement agree2 as a human 
primitive. However, if the developer has to reuse the 
individual "verify", it still can be done: 

agree2(A) :-  
  verify(A), verify(B), id(A) \= id(B), A=B. 

"id" is the id of an answer and both the inequality of the 
ids of A and B and the equality of A and B are interpreted 
as constraints in our constraint solver.  
Indirect Reuse to Replace Human Computation 
Crowd-Logic only uses machine prediction as guidance to 
optimize the control flow. All results from the human 
primitives are still obtained from the human labor. This is 
less ideal when a highly accurate machine learning system 
is available. One easy approach is to monitor the quality of 
machine results with human results, and replace human 
when the quality is on par. More complicated approach is 
to mix human computation with machine results to achieve 
higher quality, lower monetary cost, and faster. This also 
can be one of our future directions. 
CONCLUSION 
We presented Crowd-Logic, a tool for implementing and 
optimizing human computation algorithms using logic 
programming. It enables maximally reusing prior human 
computation results by using constraint solving. We also 
explored adding nondeterministic choices to the logic 
programming and optimizing control flows on these 
choices to reduce the general human cost in human 
computation algorithms. 
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