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ABSTRACT 

Taxonomies are a useful and ubiquitous way of organizing 
information. However, creating good organizational 
hierarchies is difficult because the process requires a global 
understanding of the objects to be categorized. Usually this 
is done by an individual or a small group of people working 
together. This approach does not work well for the quickly 
changing, large datasets found on the web. Cascade is a 
crowd workflow that allows crowd workers to spend as 
little at 20 seconds each towards collectively making a 
taxonomy. To achieve these results, we introduce a design 
pattern of generate-apply-edit and a novel technique called 
adaptive context filtering that allows the crowd to do robust 
categorization. We evaluate Cascade and show that on three 
datasets its quality is 80-90% of that of experts. Cascade 
has a competitive cost to expert information architects, but 
takes six times more human labor. However, that labor can 
be parallelized such that Cascade will run in as fast as four 
minutes instead of hours or days. 

INTRODUCTION 

Taxonomies are a useful and ubiquitous way of organizing 
information. However, creating good organizational 
hierarchies is difficult because the process requires a global 
understanding of the objects to be categorized. Currently, 
most taxonomies are created by a small group of experts 
that analyze a complete dataset before identifying the 
essential distinctions for classification. Unfortunately, this 
process is too expensive to apply to many of the user-
contributed datasets forming on the Internet. Despite recent 
progress, completely automated methods, such as Latent 
Dirichlet Allocation (LDA) and related AI techniques, 
produce low-quality taxonomies. They lack the common 
sense, flexibility and language abilities that come naturally 
to people.  

This paper presents Cascade, a novel method for creating 
taxonomies. Cascade applies automated techniques to 
combine the suggestions of many humans, none of whom 
have a global perspective of the data or the taxonomy under 
construction. Cascade uses crowdsourcing, a distributed 
method for solving a task by broadcasting an open call for 
solutions to its subtasks and composing the responses into 
an integrated answer. Crowdsourcing has become a popular 
way to solve problems that are too hard for today’s AI 
techniques, such as translation, linguistic tagging, and 
visual interpretation. However, our method is novel because 
of the global nature of the taxonomy-creation problem. 

Most successful crowdsourcing systems operate on 
problems that naturally break into small units of labor, e.g., 
labeling millions of independent photographs. In contrast, 
Cascade develops a unique, iterative workflow which is 
non-trivial to break down and distribute amongst hundreds 
of people and demands no more than one minute of labor 
from any worker.  

To create sophisticated crowdsourcing workflows, we need 
to employ design patterns that guide us to breaking down 
work. Just as iterative design is a guide to developing 
usable software, and map reduce is a design to help process 
distributed data, crowdsourcing needs to follow design 
patterns to achieve results. In Cascade, the crowd is led to 
follow a design pattern that we adapted from the creative 
process – generate lots of ideas for categories, and edit 
down the group of ideas to a cohesive whole by applying 
those categories to the raw data.  

In this paper we first present the Cascade Algorithm and 
describe the three human intelligence task (HIT) primitives 
used to implement it. We then demonstrate the results of 
running Cascade on three representative data sets scraped 
from the Internet. We evaluate Cascade in three ways: we 
compare its time and cost to that of four expert information 
architects we paid to taxonomize the same data, we count 
the number of mistakes in Cascade’s output and interpret it 
as an error rate, and we compare the coverage of the 
categories in Cascade to those of the expert-made 
taxonomies.  

In summary, this paper makes the following contributions: 

1. A novel crowd algorithm, Cascade, that produces a 
global understanding of large datasets from the actions 
of individual contributors, none of whom see more than 
a fraction of the data. 

2. The design pattern of generate-apply-edit that provides 
the framework for the Cascade algorithm. 

3. A technique called adaptive context filtering that 
allows the crowd to do robust categorization when the 
matches are sparse. 

4. An evaluation of Cascade on three datasets showing 
that Cascade can perform close to expert level 
agreement (80-90% of expert performance) for 
competitive time and cost. 
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INITIAL APPROACHES 

The Cascade algorithm evolved from a sequence of initial 
prototypes based on common crowdsourcing patterns.  Our 
experience resulted in a several surprising observations that 
informed our ultimate design of a crowdsourced taxonomy 
workflow. 

Iterative Improvement 

Iterative improvement is a general crowdsourcing pattern 
first described in TurKit[10].  Iterative improvement has 
proven successful at using multiple workers to build on and 
improve each other’s image descriptions, and to collectively 
decipher blurry text or bad handwriting. For example, given 
blurry text to transcribe, one worker will transcribe as much 
as he can, and another worker will iterate on the first 
worker’s answer.  The workflow can then ask a third 
worker to vote on whether the second worker has made an 
acceptable contribution.  This can be repeated until a 
stopping condition is met – such as the entire text being 
transcribed or workers no longer being able to improve the 
transcription. 

We applied iterative improvement to taxonomy creation by 
giving workers a list of tips and an editable hierarchy 
interface.  Workers were asked to improve the taxonomy by 
adding, deleting, or moving categories or by placing tips in 
the taxonomy. We tested two iterative improvement 
interfaces: A text-based Wikipedia-style outline editing 
interface (see Figure 1.) and a drag and drop, folder-tree 
interface (Figure 2).  We observed that both iteratively 
improvement interfaces suffered from the same two 
problems.   

1. The taxonomy grows quickly making the tasks more 

time consuming and overwhelming as time goes on.  
The first tasks are very easy – creating the first 
category and placing a few tips in it is quick and easy.  
However, when there are 50 categories and you have to 
read all 50 categories to figure out whether or not it 
belongs in any of the existing categories, the work 
becomes so challenging that single workers have a 
difficult time making contributions in a short time 
frame.  Additionally, taxonomy structure editing tasks 
such as merging two categories are proved difficult for 
workers because they require understanding a large 
fraction of tips to decide whether all the tips under “air 
travel” should be merged with the category “flying”.   

2. The task had many options for how to contribute 

(add categories, place tips, merge categories, etc.) 

and workers had trouble selecting tasks.  Although 
giving workers options for how to contribute made the 
task very flexible, it also meant workers had to decide 
what was important to do next.  One of the things that 
made it so hard to know what to do next is that you 
can’t coordinate with future workers about what they 
are willing to do and how they will interpret your 
contributions.  The uncertainty that workers faces led 
us to conclude that the “what to do next” problem was 

hard enough that we needed to embed structure in the 
workflow to identify and support the major decisions 
of how to create a taxonomy.   

From our observations, we concluded that we needed to 
break down the taxonomization task into manageable units 
of work.  Although iterative improvement may work for 
tasks where the task selection is obvious and the ultimate 
output is a manageable size for a single worker, it is less 
successful for large tasks that require significant 
coordination between workers in order to know what to do 
next. 

 

Figure 1.Iterative Improvement Interface #1 

 

Figure 2 Iterative Improvement Interface #2 

Category Comparison 

Many crowdsourced workflows start with a step for 
generating data (suggesting image labels [ESPGame], 
finding places where writing can be improved [Soylent], 
drawing bounding boxes on food [PlateMate,Gajos]), and 
follow up with a step that uses those initial generated data.  
For example, the ESP game uses two people to generate 
image labels, and accepts only the shared labels.  We tried a 
similar approach for Cascade.  We first asked workers to 
read tips and generate categories for them.  Next, we 
wanted to organize the categories into a cohesive taxonomy 
by removing duplicate categories and nesting subset 
categories under superset categories (for example, nesting 
“boarding” under the “air travel” category).  Although the 
category generation step worked well (and is in the final 
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version of Cascade), we unfortunately did not get promising 
results for any of the designs we implemented for 
identifying the relationships between categories. 

When identifying the relationships between categories, A 
and B, we want to know if A equals B, if A is a subset of B, 
if B is a subset of A, or if A and B have no relationship.  To 
find this out, we pick two categories and ask workers which 
relationship they have.  In one design, we explicitly asked 
whether categories were equal, supersets, subsets, or 
unrelated (Figure 3,4).  In another design we showed the 
workers 20 categories and let them select the pairs they 
wanted to compare and then say whether they were the 
same concept, or related concepts (we relaxed the notion of 
equals, or superset/subset to eliminate any problems from 
workers not understanding the notion of a superset and a 
subset.) Although this approach seems natural and 
straightforward, regardless of the design, our workers did 
not agree with each other and didn’t agree with our “gold 
standard” judgments.  

 

Figure 3 Category Comparison interface #1 

The underlying problem in category comparison is the 
inherent difficulty of comparing two abstractions.  In order 
to compare two abstract category names, workers must 
make assumptions about their meaning – some people may 
interpret categories broadly and some narrowly, some 
people may see connections that others may not.  There are 
many assumptions that go into comparing two abstractions 
and without a way for workers to write down their 
assumptions, their judgments of the relationship between 
two categories weren’t comparable.  For example, in the 
dataset of travel tips, our “gold standard” considered 
categories “air travel” and “flying” to be the same concept.  
Some workers agreed with this but many workers 
considered these to be different.  They thought that “air 
travel” was a superset of “flying.”   In fact, both 
interpretations are correct.  The category “flying” can mean 
both the entire set of activities around flying (similar to “air 
travel”) and can mean just the part of air travel where you 
are on an airplane and in the air.  Difficult comparisons also 
included “TSA liquids” and “removing liquids”, “packing” 
and “what to bring”, and “advice” and “general advice.” In 
order to effective compare these two abstractions workers 
need more context to ground the meaning of the abstract 
category labels.  In this case, the context is the tips.   

From these observations, we concluded that it was a 
mistake asking workers to compare abstractions to 
abstractions – the differing assumptions people make about 
abstractions are too hard to write down and render 
individual worker’s judgments incomparable.  Instead, 
judgments should be made relating actual abstractions to 
data, in this case, relating categories to tips.   

 

Figure 4 Category Comparison interface #2 

Tip Clustering (without Categories) 

In effort to cluster tips, we tried putting tips in small, 
randomly generated groups and asking workers which tips 
were the most similar.  Workers were eager to do this task, 
but unfortunately, their judgments were not consistent.  The 
problem is that there are many potential similarities among 
data that is very open-ended in its coverage. In order to 
compare workers’ judgments of tip similarity, we not only 
need to know which tips they think are most similar but 
also the dimension along which their similarity is being 
judged.  For example, if we have three tips, A, B and C.  
We could have that A and B are both  about “air travel”, B 
and C are both about “saving money” and C and A are both 
about “websites.”  In this case, all there is no clear pair of 
similar tips in this set.  The pair of tips that you pick as 
similar depends on the dimension on which they are being 
compared.   

If this problem were rare, we could perhaps work around it, 
but in an open world, there are many (dozens, hundreds, 
thousands, possibly more?) dimensions on which to 
measure things.  We concluded that to combat the 
incomparability of judgments based on unstated 
assumptions it is necessary to extract the dimension of 
similarity as well as clusters. 

Tip Clustering (with Categories) 

In order to elicit both clusters and cluster names from 
workers, we prototyped an interface which presented 
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workers with a small number of tips (8-10) and asked them 
to suggest categories that fit at least two tips (figure 5).  
Although workers found the task easy and intuitive, the 
quality of the categories was not as good as when we 
generated category suggestions for single tips.  Restricting 
workers to naming categories that satisfied multiple tips 
seemed to encourage people to name overly broad 
categories that fit all the 8 tips such as “good tips” or 
“advice” and prevented them from naming the category that 
would fit one tip perfectly, and would perhaps fit other tips 
which didn’t happen to be in the random group of 8.  For 
example, workers can use their common sense and intuition 
about travel advice and infer that “TSA Security” might fit 
multiple tips even though it only fits one tip in the 8-tip 
subset. 

We decided that the clusters workers found in small subset 
of the data were often unnatural and forced and that it was 

better to allow workers to suggest categories that fit one 

tip very well rather than fit multiple tips more loosely. 

 

Figure 5 Tip Clustering with categories interface 

Divide and Conquer 

One approach to taxonomy creation is to partition data into 
several the large categories, then recursively divide large 
categories into subcategories.  For example, in the travel 
data, you might find that “air travel” is a large category.  By 
recursing into the “air travel tips” you could then sub 
categories of “air travel” such as “in-flight meals”, 
“layover”, and “TSA security.”  We found that this 
approach has one critical problem which is related to the 
difficulty of comparing abstractions in the Category 
Comparison prototype. 

In our experience, when soliciting subcategories for “air 
travel” workers do suggest strict subcategories of air travel 
such as “in-flight meals” but workers also suggest 
categories which may or may not be strict subcategories.  
The categories they suggest might in fact be cross-cutting 
facets that apply outside of “air travel.”  For example, a 
commonly suggested subcategory of “air travel” is “saving 

money” because many tips are about saving money on air 
fare. However, “saving money” doesn’t strictly apply to 
“air travel” it could apply to nearly anything.    

We learned from Category Comparison prototype that 
comparing abstraction to abstraction is hard – given two 
categories labels it is often difficult to say whether one is a 
proper subset of the other.    If the suggested subcategories 
are in fact not subcategories, then we aren’t partitioning the 
data effectively, which was the crux of the efficiency gain 
from a divide and conquer approach. 

One approach to fixing the problem of ambiguous 
hierarchical relationships of categories is to narrow down 
“saving money” to “saving money on air travel.” Thus, by 
construction, “saving money on air travel” is a subcategory 
of “air travel.” The danger of doing this is that “saving 
money” might be a subset of many large categories: “saving 
money in international travel” “saving money on hotels”, 
“saving money on train travel” and possibly many more.   
It’s possible that “saving money” is a big category, and we 
don’t want it appearing multiple times in the taxonomy split 
across multiple categories.  If we allowed this, then the 
taxonomy would have a very large branching factor and 
explode quickly.   

We concluded that the divide and conquer approach to 
creating taxonomies did not work because of the difficulty 
deciding whether a category was truly a strict subcategory 
of another or a cross-cutting facet without looking at all the 
data.  Without lines along which we could effectively 
partition the data and then only work on that partition, 
divide and conquer is not an effective strategy. 

Summary 

From initial approaches to crowdsourcing taxonomy 
creation, we learned several things. We first learned that the 
task needed to be deliberately broken down into subtasks.  
Next, we learned that comparing abstractions to 
abstractions was noisy and thus it was better to compare 
abstraction to data (in this case, comparing categories to 
data).  We learned that to get better tip similarity 
judgments, we needed to extract the dimension of similarity 
along with tips were being compared, and make sure that 
each dimension of similar fit at least one tip very well as 
opposed to fitting multiple tips more loosely.  Lastly, we 
learned that it is better to solicit multiple categories that 
overlap (“air travel”, “saving money”, “luggage”) and 
figure out the hierarchical relationships between them later 
rather than trying to identify the biggest categories and then 
recurse into them. 

These approaches lead us to our final algorithm design 
wherein we first generate many category names, we next 
vote on the best category names to remove spam, chose the 
best of multiple alternatives, and to eliminate vague 
categories, and categories that otherwise are sub-par.  Next 
we categorize all the data into those categories, and using 
the statistical overlap between the members of two 
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categories, decide which ones should appear in the final 
taxonomy and what their hierarchical relationships should 
be. 

THE CASCADE ALGORITHM 

In this section we discuss the inputs and output of Cascade, 
the parameters that govern its execution, the steps of the 
algorithm, the three HIT primitives used to implement it, 
and the conditions for running Cascade iteratively on a 
dynamic data set. We include a running-time and cost 
analysis of Cascade.  

Inputs 

Cascade takes two inputs: a set of items (called the tips) to 
be categorized and a descriptive phrase (the topic) 
identifying this set. Although “items” is a more general 
term, and has the correct level of generality, we find that in 
talking about Cascade, the concreteness of the term “tip” is 
less confusing than “items.”  An example of inputs to 
Cascade are a tip-set of 100 responses to the question 
“What is your best travel advice?” with the topic “Travel 
Advice.”  

This paper demonstrates Cascade only on textual items 
(tips).  However, we believe Cascade is general enough to 
work for a wide range of entities (e.g., images, audio clips, 
video, charts) as long as each item can be judged 
independently by a human. Cascade is not designed to run 
ordered sequences of items (such as essay paragraphs or 
sequential audio clips). Cascade is designed to run on tips 
that take less than one minute for a human to process and 
judge.  

In theory, Cascade can handle tip-sets of arbitrary 
cardinality. The smallest set we’ve run is 22 items,1 and the 
largest is close to 200 tips. The algorithm’s expense grows 
super-linearly in the number of tips, so although there is no 
theoretical limit to the size of the tips-set, it does become 
more expensive.  Future work can be spent on optimizing 
the cost for large tip-sets. 

Output 

The output of Cascade is a taxonomy consisting of labeled 
categories and associated tips. More precisely, Cascade 
generates a tree whose nodes are labeled with a textual 
string, called a category; the tree’s root is labeled with the 
topic input and an ‘other’ node is added as a child of the 
root if necessary. Cascade appends categories to the tree 
root and appends categories to non-root categories.  The 
depth of tree Cascade produces is often greater than one. It 
is important to note that Cascade allows tips to appear in 
the taxonomy in multiple categories. Tips generated in the 
wild often span categories. For example, it is easy for a 
travel tip to be both about “air travel” and “saving money.” 

                                                           

1 With fewer than 22 items it seems unlikely that one would 
want a taxonomy or would need a crowd to do it. 

Parameters 

Cascade’s behavior is guided by a set of parameters, which 
we now summarize and name our default values where 
applicable.  

• Let n be the number of tips input.  

• Let m≤n denote the number of tips considered in 
Cascade’s initial, generative pass, default = 32 

• Let k be the replication factor (the number of workers 
who may be asked to repeat a step), default = 5.  

• Let t be the maximum number of tips shown to a 
worker at once, default = 8.  

• Let c denote the maximum number of categories a user 
is asked to consider when selecting the best tag, default 
= 5.  

• Let s be the maximum number of categories a user is 
asked to judge the relevance of, default = 7.  

By changing the values of these parameters, the designer 
can trade off cost and running time against taxonomy 
quality. Decreasing k or increasing t, c, and s will lower the 
cost of execution.   

Primitive Worker Tasks  

Before describing Cascade’s overall control flow, we first 
present the three types of HITs that are presented to 
workers. The order in which these tasks are generated is 
dependent on the characteristics of the input tips and can be 
complex, but the primitives are individually quite simple. 
Here we present them abstractly; Figure 6 displays concrete 
instances of these tasks. 

• Generate(t tips) -> t categories 
The Generate HIT presents a worker with t different 
tips and asks her to generate one suggested category 
tag for each tip; the categories don’t need to be distinct, 
but they often are. 

• SelectBest(1 tip, c categories) -> 1 category 
The SelectBest HIT shows a worker a single tip and c 
distinct category tags and asks her to pick the single 
best tag. 

• Categorize(1 tip, s categories) -> bit vector of 
cardinality s 
The Categorize HIT is similar to SelectBest, but is used 
at a different point in the Cascade process. It presents a 
worker with a single tip and s possible category tags 
and asks the worker to select all of the categories 
which are relevant to the tip. 

Algorithm Steps  

Described at the highest level, the Cascade algorithm takes 
every tip and solicits multiple suggested categories for it 
from different workers.  A new set of workers then votes on 
the best suggested category for each tip.  Cascade then asks 
workers to categorize every tip into every best suggested 
category.  With that data, it computes a taxonomy where 
duplicate categories are removed, empty categories are 
removed and related categories are nested appropriately.  
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Figure 6.Primitive HIT Interfaces –top to bottom:  

Generate, SelectBest and Categorize 

A slightly more formal description of the Cascade 
workflow is as follows: 

1) use a subset of m tips to generate a candidate set of 
category labels,  

2) filter this candidate set to produce a smaller set of the 
very best labels,  

3) iterate over the initial subset of tips to tag them with 
every category – appropriate label using the best labels 
generated in the previous step,  

4) run a fully-automated process to determine which 
categories are best considered to be children 
(subcategories) of another category,  

5) iterate over all of the n tips (not just the initial m used 
previously) to assign relevant category tags to every 
tip,  

clean up newly-processed tips that have no applicable 
categories. Cascade uses steps 1-4 to generate new category 
labels for these tips.  
 
Cascade concludes by iterating over the complete set of n 
tips to label them with the new categories where 
appropriate.  
 
The rest of this section explains how these steps are 
implemented using a combination of automated algorithms 
and the Generate, SelectBest and Categorize HITs. Step 3, 
which we term adaptive context filtering, is the most 
expensive and also the most novel, since it ensures globally 
meaningful results from individual contributors with a local 
perspective. 

Step 1. Intentional Category Over-Generation 

HIT Primitives used: Generate is called (ceil m/t) *k times. 
Output: k suggested categories for each of the m tips. 

The first step of Cascade is to show each tip to k=5 different 
people, to tell them the topic the tip belongs to, and to have 
them suggest a category it might belong in. Although tips 
could be presented individually, we present tips in groups 
of t=8 using the HIT primitive Generate. The instructions 
explain that although multiple tips are displayed together, 
category suggestions should be independent, meaning that 
workers do not have to try to come up with categories that 
apply to multiple tips in that HIT. 

By showing a group of tips in each HIT, workers get more 
context about the tip-set as a whole. This is useful 
particularly for a worker’s first HIT in the tip-set, by 
providing the worker with an idea of the spread in the tips 
before she suggests a category. Another benefit of showing 
multiple tips in a group is that workers can easily “pass” on 
one or two tips in the HIT that are difficult to categorize (or 
have errors that make them not worthwhile to categorize – 
being off topic or spam.) 

Step 2. Best Category Suggestion Vote 

HIT primitives used:  SelectBest is called m * k times. 
Output: a set of best suggested tags (of cardinality ~1.5m) 
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In Step 1, k=5 individual workers attempted to categorize 
each tip, resulting in up to five suggested categories for 
each tip. There will be fewer than k=5 suggested categories 
if one or more workers “passed” on the tip or categories 
were removed for being exact-string duplicates. In Step 2, 
we show each worker one tip and all of its suggested 
categories and ask workers to pick the one they think is best 
(or select “None” meaning that none of them are good). 
Any suggested category that gets two or more votes will get 
passed on to the next step. We call these the best suggested 

categories. The suggested categories that do not meet the 
threshold will be filtered out by the algorithm. 

Step 3. Adaptive Context Filtering  

HIT primitives used: Categorize is called  
m*ceil(|tags|/t)*k + m*k times 
Output: a list of best suggested categories and the tips that 
fit in them 

Phase 1 
In Step 1 we generated more categories than we needed for 
each tip. In Step 2, we filtered out categories that were not 
necessary for each tip. In Step 3, we filter out categories 
that are not necessary for the tip set as a whole by asking 
workers to vote whether each tip fits each of the best 
suggested categories. To do this, we present workers with 
one tip and a group of s=7 best suggested categories and for 
each best suggested category they have to choose whether 
they think it “fits” or “doesn’t fit.” If two or more out of 
five workers agree that a tip fits one of the best suggested 
categories, then it passes the filter and goes to the next 
phase of Adaptive Context Filtering. 

Phase 2 

The results of Phase 1 give us a list of potentially applicable 
categories for each tip. These categorization decisions are 
deceptively difficult – tips range in quality and in clarity, 
and best suggested categories range in how vague they are. 
It is easier to make difficult categorization decisions when 
the group of categories presented together are all potentially 
applicable, as opposed to the applicable categories being 
spread very sparsely across hundreds of HITs. Phase 1 of 
this step aggregates the potentially applicable categories for 
each tip, and now in Phase 2, we categorize again on those 
potentially applicable categories. Although we are using the 
same HIT primitive (Categorize), the context we are asking 
it in (i.e., the group of other best suggested categories 
displayed around it) has improved, which allows workers to 
be more discriminating. If four or five out of five workers 
agree that a tip fits one of the applicable categories, then it 
passes the filter and goes to the next step of Cascade. 

Step 4. Edit-Matrix Operations 

No HITs 
Output: a taxonomy 

After Step 3, we compile a matrix that says for all tips, for 
all best suggested categories, which tips belong in which 

best suggested categories. We use this matrix to edit down 
the list of best suggested categories in the following ways: 

1. Remove duplicate categories. For any two 
categories that share more than 75% of their tips, 
we remove the category with fewer tips (or at 
random in the case of a tie) 

2. Create nested categories. For any category, 
c_small that shares more than 75% of its tips with 
another category, c_large, make c_small a 
subcategory of c_large.  

3. Remove categories that are too small. Remove any 
category that has fewer than two tips. 

This results in a taxonomy where all categories have at least 
two items, sibling categories are distinct, and subset 
categories are properly nested under their super category. 

Iteratively Running Cascade 

When you apply Cascade to a tip-set there are several 
reasons you might not want to run it on all the tips at once. 
One reason is that the tips may be generated dynamically 
and as new tips come in, you want Cascade to update its  

 Running time # 
HITs 

Cost 

Step 1 : Intentional 
Category Over-
Generation 

ceil (m/t) *k 

 

20  $3.20 

Step 2: Best 
Category 
Suggestion Vote 

m * k  160 $3.20 

Step 3. Adaptive 
Context Filtering –
Phase 1 

m*ceil(|tags|/s)*k  1100 $22 

Step 3. Adaptive 
Context Filtering –
Phase 2 

m*k  160 $3.20 

Step 5. Categorize 
Hold-outs 

(n-m)* 

ceil(|cats.|/t)*k  

320 $6.40 

Iteration 1 total  1760 $38.00 

Iteration 2 total  1760 $38.00 

Total:  3520 $76.00 

Table 1 Running Time of Cascade with n=64, m=32 and other 

values at their stated typical value. 

taxonomy. The second reason is that you may try to save 
time and money by applying Cascade to a subset of the 
data, then deciding later whether to run the rest of the tips 
depending on how “done” you think the taxonomy is. 
Whatever the reason, Cascade can be run on a hold-out set 
of tips to grow the taxonomy as follows: 
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Step 5. Categorize Hold-outs 

HIT primitives used: Categorize is called ceil((n-m)/t)*k 
times 
Output: an updated Edit-Matrix 

Categorize the hold-out set of tips on the existing 
categories. 

Step 6. Update Taxonomy 

No HITs 
Output: an updated Taxonomy 

Rerun Step 4 on the new Edit-Matrix to produce a 
taxonomy that includes all the hold-out tips. 

Step 7. Generate Iterative tip-Set 

No HITs 
Output: a tip-set 

From the taxonomy, determine which of the hold-out tips 
are not in any category and which of the hold-out tips are 
only “loosely categorized.”  A tip is loosely categorized if it 
is not in any category that has fewer than 20 tips. 20 is the 
minimum number of tips we use in Cascade in order to 
recurse. The idea behind this step is that if a category that is 
exceedingly large ends up in the final taxonomy, we don’t 
want to treat tips that are in it as being categorized to 
satisfaction. For example, the category “all tips” could be 
suggested. All the tips would be in this category, but it 
wouldn’t contribution to our understanding of the data. This 
is actually a big problem. Workers often produce vague 
categories that have 60-70% of the data in them. In our 
“travel advice” tip-set the category “travel organization and 
convenience” had 68% of the tips, but clearly does not 
make a useful contribution to our understanding of how the 
data breaks down.  

EXPERIMENTS 

To test the performance of Cascade we run the algorithm on 
three datasets and present the taxonomies it produces.  

Data  

We ran Cascade on three datasets scraped from Quora.com, 
an online Question and Answer site reputed to be of high 
quality. Many of the questions on Quora are fact-based, 
such as “How much did it cost AOL to distribute all those 
CDs back in the 1990s?” which was answered by Steve 
Case2. But many questions have no single best answer and 
all the responses are valid answers to the question, such as 
“What are your best travel hacks?” These types of questions 
get many responses and it is time consuming to get a sense 
of what has been said. This is the type of domain where a 
taxonomy would help users get a global picture of the data 
and navigate the responses.  

Quora has a wiki-like section at the top of its interface for 
users to summarize the answers, but from a cursory look, it 

                                                           

2 http://www.quora.com/AOL-History/How-much-did-it-
cost-AOL-to-distribute-all-those-CDs-back-in-the-1990s 

does not seem to be used often or effectively. This is 
probably because it is hard to update as new responses 
appear and because the time and effort required to compile 
a fair, global picture of free-text responses is non-trivial.  

The three datasets were picked are summarized in the table 
below.  

Abbreviation Topic Number of 
tips 

editWriting “What are some tips for 
editing your own writing?” 

22 

sideProjects “How can I increase my 
productivity on my side 
projects at the end of the day 
when I’m tired from work?” 

67 

travel “What are your best travel 
hacks?”  

100 

Table 2. Topics and size of tip-set 

Often, a single response will contain multiple tips in 
bulleted lists, numbered lists or separated by paragraphs. 
We manually broke these responses into their separate tips. 
We changed the text minimally to make individual tips 
readable by means of capitalization, removal of leading 
bullet points, and reiteration of pronouns (“I think…”). 
Previously, we have had the crowd do this breakdown. It is 
a trivial process but not a part of the Cascade Algorithm. 

We randomized the order of the tips to avoid any effects of 
our workers seeing tips in the order they were generated. 

Implementation 

We implemented the primitive HITs in HTML and 
JavaScript to be used as externalQuestions on Mechanical 
Turk. To dispatch HITs, we used TurKit[10]. Python scripts 
were used to process data in between steps. 

RESULTS 

We ran Cascade on three tip-sets. The smallest, editWriting, 
required only one iteration of Cascade, starting with all the 
tips. The mid-sized tip-set, sideProjects, was first run with 
32 tips (with a hold-out tip-set of 35 tips). The taxonomy 
produced in the first iterations was then applied to the hold 
out tip-set and there was an insufficient number of 
uncategorized or loosely categorized tips to run a second 
iteration of Cascade. The largest tip-set, travel, was first run 
with 32 tips, (with a hold-out tip-set of 68 tips). When 
categorizing the hold-out tips to the first iteration 
taxonomy, 51 tips were not adequately categorized, so a 
second iteration of Cascade was run.  

Here are details of how Cascade ran on each tip-set, which 
will be discussed below. 

editWriting 

Cascade is meant to run on tip-sets with at least 20 items. 
With 22 tips, editWriting is the smallest tip set we ran 
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Cascade on. This tip-set required only one round of 
Cascade, wherein we created a taxonomy for all 22 tips. 
None of the tips were uncategorized at the end and we 
ended up with 15 categories, 8 of which were top-level 
categories (i.e., children of the root node). To get to the 
final 15 categories, we started with 83 suggested categories, 
filtered that down to the 33 best suggested categories, then 
did exactly-string matching to filter that down to 27 unique 
best suggested categories. After applying the best suggested 
categories to all the tips, we removed 4 categories for 
having too much overlap (Table 3) and 8 categories because 
they had 0 or 1 tips in them (Table 4). The resulting 
taxonomy can be seen in Figure 7 

Larger Category Smaller 
Category 

Overlap % 

Self-Editing Editing 82% 

Read out loud Read aloud 100% 

getting help asking for help 
editing 

100% 

working off an outline Outlining 100% 

Table 3. Overlapping categories for editWriting 

Category # tips 

'Continuity and consistency' 1 

'Edit when you are finished writing' 1 

'Eliminate repetition' 1 

'Know Your Limits' 1 

'Put yourself in someone elses shoes' 1 

'Reformat 1 

'Write, Delete, Rewrite' 1 

'story detail editing' 1 

Table 4. Categories with fewer than 2 items for editWriting 

sideProjects 

sideProjects is a mid-sized tip-set with 67 items, of which 
32 were used in the first round to generate a taxonomy with 
22 categories. After generating the first-round taxonomy, 
we applied the remaining 35 tips to it and found that it 
explained all but 2 of the tips and had no loosely 
categorized tips and thus we did not need to start a second 
round of Cascade because no new categories were required 
to categorize the tips.  

To get the final 22 categories in the first round of Cascade, 
we generated 120 suggested categories and filtered that 
down to the 37 best suggested categories. After doing 
exact-string matching we were left with 34 unique best 
suggested categories to apply the data to. After applying the 
32 first-round tips to all 24 unique best suggested 

categories, we removed 2 categories for having too many 
associated tips, and nine categories which had too few (0 or 
1) tips in them. 

The resulting taxonomy can be seen in Figure 8.  

 editWriting sideProjects Travel 

# of tips total 22 67 100 

# of tips used in 
round 1 

22  32 32 

Step 1 – Intentional Category Over-generation 

# of suggested 
categories 

83 120 149 

Step 2 – Best Category Suggestion Vote 

# best suggested 
categories 

33 37 45 

# unique best 
suggested 
categories 

27 34 43 

Step 4 – Edit Matrix Operations 

# of overlapping 
categories 

4 2 7 

# of 
empty/singleton 
categories 

8 9 29 

# of applicable 
categories 

15 23 7 

# of 
uncategorized 
tips 

0 4 15 

Step 5 – Categorize Hold-Out Tips 

# of tips applied n/a 35 68 

# of 
uncategorized 
tips 

n/a 2 15 

# of loosely 
categorized tips 

n/a 0 51 

Table 5 Cascade Iteration 1 details 

travel 

Travel is a large tip set with 100 items, of which 32 were 
used in the first round to generate a taxonomy with 7 
categories. After generating the first-round taxonomy, we 
applied the remaining 68 tips to it and found that it there 
were 15 tips which it did not categorize and 51 loosely 
categorized tips. The loose tips were all in the category 
“travel organization and convenience.”    
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Figure 7. Taxonomy for editWriting 

 

Figure 8. taxonomy for sideProjects 

 

Figure 9. taxonomy for travel, iteration 1 

 

Figure 10 taxonomy for travel, iteration 2 

  



 University of Washington Technical Report UW-CSE-12-11-02  

To get the final 7 categories in the first round of Cascade, 
we generated 149 suggested categories and filtered that 
down to 45 best suggested categories. After doing exact-
string matching we were left with 40 unique best suggested 
categories to apply the data to. After applying the 32 first-
round tips to all 40 unique best suggested categories, we 
removed 4 categories for having too much overlap, and 29 
categories which had 0 or 1 tips in them. 

The fact that one round of Cascade left 66 items 
unclassified gave us the opportunity to run a second round 
of Cascade. We reran Cascade on 45 tips – the 15 
uncategorized tips and 30 of the 51 loosely categorized 
tips). This resulted in a taxonomy with 51 items. (Figure 
10) 

Observations: 

The most important things to notice about the performance 
of Cascade is that in all three datasets, we started with many 
more tips than we intended to include in the final 
taxonomy, and effectively edited it down to a better and 
more cohesive set of categories.  

Most of the categories that were eliminated for having 
fewer than 2 tips had 1 tip (only 1 of the 46 categories that 
was eliminated had 0 tips). This makes sense because one 
would expect each category to contain at least the one tip 
that originally generated it.  
 
EVALUATION 

The goal of Cascade is to produce a taxonomy that provides 
a global understanding of independent tips. There are three 
questions we want to answer to determine how well 
Cascade performs: 

1. Are the category labels in the taxonomy as good as 
labels created by experts? 

2. Do we create an appropriate hierarchical structure 
in the taxonomy?  

3. Is the cost and running time of Cascade 
competitive with that of hiring experts? 

Good Category Labels 

Taxonomies are inherently subjective; there is no right 
answer. One would not necessarily expect two experts to 
produce the same hierarchy. However, given a small pool 
of experts independently categorizing a dataset, one would 
expect some of the same categories to appear in multiple 
experts’ taxonomies. In order to compare Cascade’s 
categories to those of experts, we paid four information 
architects to produce taxonomies independently for our 
three datasets. 

We performed the following comparison on the 
taxonomies. For each data set, we took the Cascade-
produced taxonomy, taxC, and the four expert taxonomies: 
tax1-tax4. We wanted to know two things: 

1. What fraction of taxC categories are also named in 
tax1-tax4? 

2. What fraction of tax1-tax4categories are named in 
another taxonomy in tax1-tax4? 

We want to compare the fraction of taxC categories used by 
experts to the fraction of categories used by at least two 
experts for tax1-tax4. The comparison may seem slightly 
unfair in favor of taxC because taxC gets compared against 
4 other taxonomies and tax1-tax4can only compare against 
3 other taxonomies. However, Table 6 contains the results. 
For all three datasets, about 50% of Cascades categories 
were also named by an expert. For example, in the 
editWriting dataset, four out of four experts named a 
category closely matching Cascade’s category “working off 
an outline.” When comparing experts to themselves, the 
average expert matching fraction was 32%, 70%, and 64% 
for the three datasets. This averages to 55% of tips 
matching another expert’s tips across these three 
hierarchies. Therefore, Cascade had 91% of the category 
agreement the experts did among themselves. 

 edit-
Writing 

side-
Projects 

travel Avg 

# Cascade 
categories 
taxonomy  

15 18 51  

% of Cascade 
categories shared 
by expert 

47% 50% 53% 50% 

Number of 
categories shared 
by 2+ experts 

2 11 6  

Avg # expert 
categories 

14 22 30  

Avg % of tips 
shared by 2+ 
experts 

32% 70% 64% 55% 

Table 6 Category name quality comparison – Cascade vs. 

Experts 

Mistakes in Hierarchical Structure 

Cascade infers a global understanding of the data from the 
tip membership of categories. Cascade removes categories 
that do not have enough tips in them, removes categories 
that have a high tip overlap, and creates a parent-child 
relationship for categories where one category has high tip 
overlap with the other. These inferences are based on many 
small judgments by potentially hundreds of different 
people. We want to know if all those judgments come 
together to infer a sensible hierarchy. In particular, we are 
looking for three types of mistakes in the Cascade 
hierarchies: 

1. Duplicate categories 
2. Missing Parent-Child Relationships 
3. Incorrect Parent-Child Relationships 
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To find the error rate in the hierarchical structure, we divide 
the number of errors by the number of categories in the 
taxonomy. editWriting has the smallest error rate of 13% 
(Table 7), with only 2 errors in 15 categories. Both were 
duplicate categories errors. The categories “tips to edit 
better” and “how to edit better” should have been the same, 
but Cascade did not remove one of them.  

 

Edit- 
Writin
g 

Side 
Projects 

Travel:  
iteration 1 

Travel:  
iteration
2 

# categories 15 18 7 51 

Duplicate 
Categories 2 2 0 2 

Missing 
Nesting 0 0 0 5 

incorrect 
Nesting 0 3 1 3 

Correct 
Nesting 5 3 1 23 

total errors 2 5 1 10 

Error rate 13% 27% 14% 20% 

Table 7 Error rate for structural mistakes in the 

hierarchy 

 

sideProjects had the highest error rate of 27%. This came 
from 3 incorrect parent-child relationships: ‘prioritizing’ 
was the parent of ‘commitment,’  ‘prioritizing’ was the also 
parent of ‘consistency,’ and ‘motivation’ was the parent of 
‘relaxation.’ In our judgment, there is no clear reason that 
prioritizing should be a parent of commitment or 
consistency, or that motivation should be the parent of 
relaxation, and thus it is a mistake in the hierarchical 
structure of the taxonomy.  These are errors produced by 
the machine step – the Edit Matrix Operations - which 
created a parent-child relationship any time more than 75% 
of the tips of a smaller category were also in a larger 
category.  Concretely, the Edit Matrix operations nested 
commitment under prioritizing because more than 75% of 
the tips about commitment were also about prioritizing. 
However, although these categories share many tips in 
common, they aren’t semantically related: this is a danger 
of machine steps.  Perhaps a solution would be to have 
humans check the resulting taxonomy for obvious errors.   

Across the three datasets, the average error rate was 18.5%.  

There was an impressive number of correct parent-child 
relationships, especially in the travel dataset. (23 correct 
parent child relationship and 3 incorrect ones). Many air-
travel and flight related categories with complicated nesting 
are expressed with coherent hierarchical structure. For 
example, “Air Travel Tips” is a parent of “flights” which is 
a parent of “flight layovers.” 

Time and Money 

It is non-trivial to compare the costs associated with 
creating a taxonomy with Cascade versus experts. There is 
a cost-quality-time trade-off. For example, on MTurk, if 
you under-price a HIT, it will eventually get done, but it 
will take a long time. The most basic comparison we 
provide is the actual costs and times in our run of Cascade 
and that of our recruited experts (Table 8). Cascade took 
~6.5 times longer to complete the HITs, and was 1-3 times 
as expensive. However, the prices were set fairly arbitrarily. 
We paid our experts $25/hour as a set wage. We paid 
MTurk workers $0.05 per HIT. The average time to 
complete a HIT was 21.46 seconds. This equates to 
$8.39/hour which is high for MTurk. $3-$4 an hour would 
be more expected. That would reduce the cost of Cascade 
by a factor of 2, making Cascade’s cost competitive with 
the wage we offered experts. 

Comparing time is also difficult. The total time spent on all 
three datasets by the average expert was 6 hours and 50 
minutes. And the total time spent by MTurk workers was 
43 hours and 3 minutes. This is a factor of 6.3 more time 
spent by MTurk workers. Seeing as the work done by 
workers is basically replicated k=5 times over, the time it 
would take one person to run Cascade on themselves would 
be competitive with the expert’s time.  

More important than comparing total time spent on the 
algorithm is to think about the amount of time that it would 
take to run the algorithm if infinitely many people work in 
parallel, as is supported by Cascade. Each worker spends on 
average 21.3 seconds per HIT, and all the HITs in any step 
can be run completely in parallel. Thus, assuming Cascade 
is run in two iterations of 5 steps each, the entire time it 
would take to run Cascade would be 3 minutes and 33 
seconds 
  
DISCUSSION 

Cascade is driven not only by human judgments, but by 
human judgments based on other human judgments. Since 
humans are difficult to predict, it is impossible to guarantee 
how Cascade will perform with different worker 
populations. In the worst case, the workers could be 
unfamiliar with the domain and not generate any useful 
category suggestions in the first step. If that happened, 

Table 8 Time and Cost Comparison - Cascade vs. Experts 

 editWriting sideProjects travel 

Cascade Time 7 h 56 m 16h 13 m 16h 32m 

Cascade Cost $35.40 $109.45 $224.45 

Avg Expert 
Time 

1h 23 m 2h 36m 2h 5 m 

Average 
Expert Cost $34.87 $65.13 $71.38 
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Cascade would not produce any taxonomy at all beyond the 
root node. If the categories were good, but workers voted 
erratically, the resulting taxonomy would have essentially 
random structure – repeated categories, parents and children 
that do not relate semantically, and missing parent-child 
relationships.  

The worst case will always be bad for crowdsourcing 
problems, but the performance of Mechanical Turk workers 
represents a reasonable lower bound for the quality of the 
resulting taxonomy. Given a community that cared about 
the data and had domain specific knowledge, they would 
probably do it very well. Moreover, we believe that this 
task is as fun for some people as the ESP game and other 
game-based crowdsourcing and thus people will probably 
be willing to do it for free. Every step involves reading tips 
and the tips are interesting. It is hard to read one without 
wanting to read more. There is probably potential to game-
ify the interface to encourage contributions. 

Cascade has five steps, including two slightly unusual steps 
– over-generation and adaptive context filtering. In this 
paper we did not seek to prove that these steps are required. 
It seems plausible that we could just generate n categories, 
categorize all the tips and then do the edit-matrix step. 
These two steps are the result of design decisions we made 
based on running the algorithm many different ways early 
in its development. Things we noticed that encouraged us to 
keep these two steps. First, the quality of the taxonomy is 
most strongly correlated with the quality of the categories. 

If we did not over-generate tags, then ask people to pick the 
best, we would have ended up with lower quality 
categories. In particular, we often end up with vague 
categories which are problematic for Cascade. Vague 
categories contain a lot of members. For example, in the 
travel dataset, vague categories might be something like 
“comfort and convenience” or “organization and advice.”  
These categories encompass most, but not all of the tips. 
And are indistinguishable from large categories which are 
not vague, such as “air travel.” A combination of trying to 
filter out vague categories in the Best Suggested Categories 
phase and in Phase 2 of adaptive context filtering is the 
design that we settled on.  

Although the evaluation in this paper only deals with text 
data, we have applied Cascade to visual data as well. Figure 
11 is an example of creating a taxonomy for 100 randomly 
generated colors.  Part of the future work for Cascade is to 
push the boundaries of what types of data humans can 
taxonomize For example, can we create taxonomies for 
images, audio clips, videos, and xixed media such as 
websites?  Nothing about the Cascade algorithm is 
particular to text.  We believe that any data type that 
humans can process will be applicable to use Cascade on. 

Figure 11 Cascade applied to 100 randomly generated colors.  On the left is the input to Cascade - 100 colors .  On the right is the 

output of Cascade – a taxonomy organizing the colors.  Colors can appear in multiple categories, and 12 of the 100 colors are in 

the “other” category – meaning they were not categorized into a category with at least two items. 
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RELATED WORK 

Crowdsourcing complex tasks 

In the past three years, there have been several crowd 
workflows that produce outputs more complex than the 
results of worker’s local contributions.  

TurKit[10] is a programming environment that allows you 
to easily compose the results of tasks and issue new tasks 
built upon the previous tasks. Turkit has been used to 
iteratively improve image descriptions, to pick the best 
photo from an album, and to decipher nearly-unintelligible 
handwriting. These iterative tasks are a step beyond simple 
image labeling [1]. Much work was able to build upon this 
simple iterative framework [2][3][5]. 

Considering workflows that go beyond TurKit, 
CrowdForge[7] uses a MapReduce-like framework for 
writing articles by mapping separate workers to different 
aspects of the article (e.g., outline, the facts, the quotes, 
etc.) and then composing the results in a reduce-step.  
Mobi[12] solves problems like travel planning that have 
global constraints  which are met by workers creating to-do 
items for other workers to do. Turk-o-matic[9] asks workers 
to break down the task and then creates subtasks for more 
workers to do. Real-Time Audio Capture [11] uses a 
combination of novel interface and sequence alignment to 
combine work. Complex tasks can be tracked and managed 
[8]. 

Card Sorting  

Card Sorting[6] is a technique for members of a group to 
contribute to an organization of their data. Today, card 
sorting is often used for employees to influence the 
knowledge architecture of their intranet, or for 
supermarkets to organize their produce in ways that 
shoppers think about things (for example, putting peanut 

butter next to jelly). Card sorting is an investigative 
technique. It is not designed to give output a usable 
categorization. It is designed to help knowledge architects 
understand their target users’ mental models, and it requires 
a moderator to digest all the work participants do. 

Automated Approaches 

Automated text-clustering such as LDA[4] could be 
employed recursively to create hierarchical taxonomies. 
One drawback of these automated approaches is that they 
tend to work best on very large datasets - 50 to 500 short 
responses are insufficient.  In practice, AI clustering 
algorithms require substantial tuning, e.g., manually 
removing stop words and choosing the number of 
categories.  Additionally, there are categories that LDA 
would not be able to produce because they are not based 
strictly on the text.  For example, LDA would not be able to 
create clusters that distinguish jokes with observational 
humor from jokes with puns because similarities within the 
groups are not present in the words, but are properties of the 
meaning as a whole. 

CONCLUSION 

In this paper we present a crowd-algorithm that produces a 
taxonomy for a set of independent data items, such as travel 
tips or ideas for how to edit your own writing or strategies 
for working on personal projects after work. We show that 
using three HIT primitives – Generate, SelectBest, and 
Categorize, we can create an algorithm where each worker 
can do as little as 20 seconds of work and produce a 
taxonomy competitive in price and quality with expert 
information architects, but which will require more total 
time put in by people, mainly due to the replicative factor 
we use to ensure the crowd agrees on judgments.  
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