
 University of Washington Technical Report UW-CSE-12-11-02

Cascade: Crowdsourcing Taxonomy Creation

Lydia Chilton*, Greg Little**, Darren Edge***, Daniel S. Weld*, James A. Landay*

*University of Washington, **oDesk, ***Microsoft Research Asia

ABSTRACT

Taxonomies are a useful and ubiquitous way of organizing
information. However, creating good organizational
hierarchies is difficult because the process requires a global
understanding of the objects to be categorized. Usually this
is done by an individual or a small group of people working
together. This approach does not work well for the quickly
changing, large datasets found on the web. Cascade is a
crowd workflow that allows crowd workers to spend as
little at 20 seconds each towards collectively making a
taxonomy. To achieve these results, we introduce a design
pattern of generate-apply-edit and a novel technique called
adaptive context filtering that allows the crowd to do robust
categorization. We evaluate Cascade and show that on three
datasets its quality is 80-90% of that of experts. Cascade
has a competitive cost to expert information architects, but
takes six times more human labor. However, that labor can
be parallelized such that Cascade will run in as fast as four
minutes instead of hours or days.

INTRODUCTION

Taxonomies are a useful and ubiquitous way of organizing
information. However, creating good organizational
hierarchies is difficult because the process requires a global
understanding of the objects to be categorized. Currently,
most taxonomies are created by a small group of experts
that analyze a complete dataset before identifying the
essential distinctions for classification. Unfortunately, this
process is too expensive to apply to many of the user-
contributed datasets forming on the Internet. Despite recent
progress, completely automated methods, such as Latent
Dirichlet Allocation (LDA) and related AI techniques,
produce low-quality taxonomies. They lack the common
sense, flexibility and language abilities that come naturally
to people.

This paper presents Cascade, a novel method for creating
taxonomies. Cascade applies automated techniques to
combine the suggestions of many humans, none of whom
have a global perspective of the data or the taxonomy under
construction. Cascade uses crowdsourcing, a distributed
method for solving a task by broadcasting an open call for
solutions to its subtasks and composing the responses into
an integrated answer. Crowdsourcing has become a popular
way to solve problems that are too hard for today’s AI
techniques, such as translation, linguistic tagging, and
visual interpretation. However, our method is novel because
of the global nature of the taxonomy-creation problem.

Most successful crowdsourcing systems operate on
problems that naturally break into small units of labor, e.g.,
labeling millions of independent photographs. In contrast,
Cascade develops a unique, iterative workflow which is
non-trivial to break down and distribute amongst hundreds
of people and demands no more than one minute of labor
from any worker.

To create sophisticated crowdsourcing workflows, we need
to employ design patterns that guide us to breaking down
work. Just as iterative design is a guide to developing
usable software, and map reduce is a design to help process
distributed data, crowdsourcing needs to follow design
patterns to achieve results. In Cascade, the crowd is led to
follow a design pattern that we adapted from the creative
process – generate lots of ideas for categories, and edit
down the group of ideas to a cohesive whole by applying
those categories to the raw data.

In this paper we first present the Cascade Algorithm and
describe the three human intelligence task (HIT) primitives
used to implement it. We then demonstrate the results of
running Cascade on three representative data sets scraped
from the Internet. We evaluate Cascade in three ways: we
compare its time and cost to that of four expert information
architects we paid to taxonomize the same data, we count
the number of mistakes in Cascade’s output and interpret it
as an error rate, and we compare the coverage of the
categories in Cascade to those of the expert-made
taxonomies.

In summary, this paper makes the following contributions:

1. A novel crowd algorithm, Cascade, that produces a
global understanding of large datasets from the actions
of individual contributors, none of whom see more than
a fraction of the data.

2. The design pattern of generate-apply-edit that provides
the framework for the Cascade algorithm.

3. A technique called adaptive context filtering that
allows the crowd to do robust categorization when the
matches are sparse.

4. An evaluation of Cascade on three datasets showing
that Cascade can perform close to expert level
agreement (80-90% of expert performance) for
competitive time and cost.

 University of Washington Technical Report UW-CSE-12-11-02

INITIAL APPROACHES

The Cascade algorithm evolved from a sequence of initial
prototypes based on common crowdsourcing patterns. Our
experience resulted in a several surprising observations that
informed our ultimate design of a crowdsourced taxonomy
workflow.

Iterative Improvement

Iterative improvement is a general crowdsourcing pattern
first described in TurKit[10]. Iterative improvement has
proven successful at using multiple workers to build on and
improve each other’s image descriptions, and to collectively
decipher blurry text or bad handwriting. For example, given
blurry text to transcribe, one worker will transcribe as much
as he can, and another worker will iterate on the first
worker’s answer. The workflow can then ask a third
worker to vote on whether the second worker has made an
acceptable contribution. This can be repeated until a
stopping condition is met – such as the entire text being
transcribed or workers no longer being able to improve the
transcription.

We applied iterative improvement to taxonomy creation by
giving workers a list of tips and an editable hierarchy
interface. Workers were asked to improve the taxonomy by
adding, deleting, or moving categories or by placing tips in
the taxonomy. We tested two iterative improvement
interfaces: A text-based Wikipedia-style outline editing
interface (see Figure 1.) and a drag and drop, folder-tree
interface (Figure 2). We observed that both iteratively
improvement interfaces suffered from the same two
problems.

1. The taxonomy grows quickly making the tasks more

time consuming and overwhelming as time goes on.
The first tasks are very easy – creating the first
category and placing a few tips in it is quick and easy.
However, when there are 50 categories and you have to
read all 50 categories to figure out whether or not it
belongs in any of the existing categories, the work
becomes so challenging that single workers have a
difficult time making contributions in a short time
frame. Additionally, taxonomy structure editing tasks
such as merging two categories are proved difficult for
workers because they require understanding a large
fraction of tips to decide whether all the tips under “air
travel” should be merged with the category “flying”.

2. The task had many options for how to contribute

(add categories, place tips, merge categories, etc.)

and workers had trouble selecting tasks. Although
giving workers options for how to contribute made the
task very flexible, it also meant workers had to decide
what was important to do next. One of the things that
made it so hard to know what to do next is that you
can’t coordinate with future workers about what they
are willing to do and how they will interpret your
contributions. The uncertainty that workers faces led
us to conclude that the “what to do next” problem was

hard enough that we needed to embed structure in the
workflow to identify and support the major decisions
of how to create a taxonomy.

From our observations, we concluded that we needed to
break down the taxonomization task into manageable units
of work. Although iterative improvement may work for
tasks where the task selection is obvious and the ultimate
output is a manageable size for a single worker, it is less
successful for large tasks that require significant
coordination between workers in order to know what to do
next.

Figure 1.Iterative Improvement Interface #1

Figure 2 Iterative Improvement Interface #2

Category Comparison

Many crowdsourced workflows start with a step for
generating data (suggesting image labels [ESPGame],
finding places where writing can be improved [Soylent],
drawing bounding boxes on food [PlateMate,Gajos]), and
follow up with a step that uses those initial generated data.
For example, the ESP game uses two people to generate
image labels, and accepts only the shared labels. We tried a
similar approach for Cascade. We first asked workers to
read tips and generate categories for them. Next, we
wanted to organize the categories into a cohesive taxonomy
by removing duplicate categories and nesting subset
categories under superset categories (for example, nesting
“boarding” under the “air travel” category). Although the
category generation step worked well (and is in the final

 University of Washington Technical Report UW-CSE-12-11-02

version of Cascade), we unfortunately did not get promising
results for any of the designs we implemented for
identifying the relationships between categories.

When identifying the relationships between categories, A
and B, we want to know if A equals B, if A is a subset of B,
if B is a subset of A, or if A and B have no relationship. To
find this out, we pick two categories and ask workers which
relationship they have. In one design, we explicitly asked
whether categories were equal, supersets, subsets, or
unrelated (Figure 3,4). In another design we showed the
workers 20 categories and let them select the pairs they
wanted to compare and then say whether they were the
same concept, or related concepts (we relaxed the notion of
equals, or superset/subset to eliminate any problems from
workers not understanding the notion of a superset and a
subset.) Although this approach seems natural and
straightforward, regardless of the design, our workers did
not agree with each other and didn’t agree with our “gold
standard” judgments.

Figure 3 Category Comparison interface #1

The underlying problem in category comparison is the
inherent difficulty of comparing two abstractions. In order
to compare two abstract category names, workers must
make assumptions about their meaning – some people may
interpret categories broadly and some narrowly, some
people may see connections that others may not. There are
many assumptions that go into comparing two abstractions
and without a way for workers to write down their
assumptions, their judgments of the relationship between
two categories weren’t comparable. For example, in the
dataset of travel tips, our “gold standard” considered
categories “air travel” and “flying” to be the same concept.
Some workers agreed with this but many workers
considered these to be different. They thought that “air
travel” was a superset of “flying.” In fact, both
interpretations are correct. The category “flying” can mean
both the entire set of activities around flying (similar to “air
travel”) and can mean just the part of air travel where you
are on an airplane and in the air. Difficult comparisons also
included “TSA liquids” and “removing liquids”, “packing”
and “what to bring”, and “advice” and “general advice.” In
order to effective compare these two abstractions workers
need more context to ground the meaning of the abstract
category labels. In this case, the context is the tips.

From these observations, we concluded that it was a
mistake asking workers to compare abstractions to
abstractions – the differing assumptions people make about
abstractions are too hard to write down and render
individual worker’s judgments incomparable. Instead,
judgments should be made relating actual abstractions to
data, in this case, relating categories to tips.

Figure 4 Category Comparison interface #2

Tip Clustering (without Categories)

In effort to cluster tips, we tried putting tips in small,
randomly generated groups and asking workers which tips
were the most similar. Workers were eager to do this task,
but unfortunately, their judgments were not consistent. The
problem is that there are many potential similarities among
data that is very open-ended in its coverage. In order to
compare workers’ judgments of tip similarity, we not only
need to know which tips they think are most similar but
also the dimension along which their similarity is being
judged. For example, if we have three tips, A, B and C.
We could have that A and B are both about “air travel”, B
and C are both about “saving money” and C and A are both
about “websites.” In this case, all there is no clear pair of
similar tips in this set. The pair of tips that you pick as
similar depends on the dimension on which they are being
compared.

If this problem were rare, we could perhaps work around it,
but in an open world, there are many (dozens, hundreds,
thousands, possibly more?) dimensions on which to
measure things. We concluded that to combat the
incomparability of judgments based on unstated
assumptions it is necessary to extract the dimension of
similarity as well as clusters.

Tip Clustering (with Categories)

In order to elicit both clusters and cluster names from
workers, we prototyped an interface which presented

 University of Washington Technical Report UW-CSE-12-11-02

workers with a small number of tips (8-10) and asked them
to suggest categories that fit at least two tips (figure 5).
Although workers found the task easy and intuitive, the
quality of the categories was not as good as when we
generated category suggestions for single tips. Restricting
workers to naming categories that satisfied multiple tips
seemed to encourage people to name overly broad
categories that fit all the 8 tips such as “good tips” or
“advice” and prevented them from naming the category that
would fit one tip perfectly, and would perhaps fit other tips
which didn’t happen to be in the random group of 8. For
example, workers can use their common sense and intuition
about travel advice and infer that “TSA Security” might fit
multiple tips even though it only fits one tip in the 8-tip
subset.

We decided that the clusters workers found in small subset
of the data were often unnatural and forced and that it was

better to allow workers to suggest categories that fit one

tip very well rather than fit multiple tips more loosely.

Figure 5 Tip Clustering with categories interface

Divide and Conquer

One approach to taxonomy creation is to partition data into
several the large categories, then recursively divide large
categories into subcategories. For example, in the travel
data, you might find that “air travel” is a large category. By
recursing into the “air travel tips” you could then sub
categories of “air travel” such as “in-flight meals”,
“layover”, and “TSA security.” We found that this
approach has one critical problem which is related to the
difficulty of comparing abstractions in the Category
Comparison prototype.

In our experience, when soliciting subcategories for “air
travel” workers do suggest strict subcategories of air travel
such as “in-flight meals” but workers also suggest
categories which may or may not be strict subcategories.
The categories they suggest might in fact be cross-cutting
facets that apply outside of “air travel.” For example, a
commonly suggested subcategory of “air travel” is “saving

money” because many tips are about saving money on air
fare. However, “saving money” doesn’t strictly apply to
“air travel” it could apply to nearly anything.

We learned from Category Comparison prototype that
comparing abstraction to abstraction is hard – given two
categories labels it is often difficult to say whether one is a
proper subset of the other. If the suggested subcategories
are in fact not subcategories, then we aren’t partitioning the
data effectively, which was the crux of the efficiency gain
from a divide and conquer approach.

One approach to fixing the problem of ambiguous
hierarchical relationships of categories is to narrow down
“saving money” to “saving money on air travel.” Thus, by
construction, “saving money on air travel” is a subcategory
of “air travel.” The danger of doing this is that “saving
money” might be a subset of many large categories: “saving
money in international travel” “saving money on hotels”,
“saving money on train travel” and possibly many more.
It’s possible that “saving money” is a big category, and we
don’t want it appearing multiple times in the taxonomy split
across multiple categories. If we allowed this, then the
taxonomy would have a very large branching factor and
explode quickly.

We concluded that the divide and conquer approach to
creating taxonomies did not work because of the difficulty
deciding whether a category was truly a strict subcategory
of another or a cross-cutting facet without looking at all the
data. Without lines along which we could effectively
partition the data and then only work on that partition,
divide and conquer is not an effective strategy.

Summary

From initial approaches to crowdsourcing taxonomy
creation, we learned several things. We first learned that the
task needed to be deliberately broken down into subtasks.
Next, we learned that comparing abstractions to
abstractions was noisy and thus it was better to compare
abstraction to data (in this case, comparing categories to
data). We learned that to get better tip similarity
judgments, we needed to extract the dimension of similarity
along with tips were being compared, and make sure that
each dimension of similar fit at least one tip very well as
opposed to fitting multiple tips more loosely. Lastly, we
learned that it is better to solicit multiple categories that
overlap (“air travel”, “saving money”, “luggage”) and
figure out the hierarchical relationships between them later
rather than trying to identify the biggest categories and then
recurse into them.

These approaches lead us to our final algorithm design
wherein we first generate many category names, we next
vote on the best category names to remove spam, chose the
best of multiple alternatives, and to eliminate vague
categories, and categories that otherwise are sub-par. Next
we categorize all the data into those categories, and using
the statistical overlap between the members of two

 University of Washington Technical Report UW-CSE-12-11-02

categories, decide which ones should appear in the final
taxonomy and what their hierarchical relationships should
be.

THE CASCADE ALGORITHM

In this section we discuss the inputs and output of Cascade,
the parameters that govern its execution, the steps of the
algorithm, the three HIT primitives used to implement it,
and the conditions for running Cascade iteratively on a
dynamic data set. We include a running-time and cost
analysis of Cascade.

Inputs

Cascade takes two inputs: a set of items (called the tips) to
be categorized and a descriptive phrase (the topic)
identifying this set. Although “items” is a more general
term, and has the correct level of generality, we find that in
talking about Cascade, the concreteness of the term “tip” is
less confusing than “items.” An example of inputs to
Cascade are a tip-set of 100 responses to the question
“What is your best travel advice?” with the topic “Travel
Advice.”

This paper demonstrates Cascade only on textual items
(tips). However, we believe Cascade is general enough to
work for a wide range of entities (e.g., images, audio clips,
video, charts) as long as each item can be judged
independently by a human. Cascade is not designed to run
ordered sequences of items (such as essay paragraphs or
sequential audio clips). Cascade is designed to run on tips
that take less than one minute for a human to process and
judge.

In theory, Cascade can handle tip-sets of arbitrary
cardinality. The smallest set we’ve run is 22 items,1 and the
largest is close to 200 tips. The algorithm’s expense grows
super-linearly in the number of tips, so although there is no
theoretical limit to the size of the tips-set, it does become
more expensive. Future work can be spent on optimizing
the cost for large tip-sets.

Output

The output of Cascade is a taxonomy consisting of labeled
categories and associated tips. More precisely, Cascade
generates a tree whose nodes are labeled with a textual
string, called a category; the tree’s root is labeled with the
topic input and an ‘other’ node is added as a child of the
root if necessary. Cascade appends categories to the tree
root and appends categories to non-root categories. The
depth of tree Cascade produces is often greater than one. It
is important to note that Cascade allows tips to appear in
the taxonomy in multiple categories. Tips generated in the
wild often span categories. For example, it is easy for a
travel tip to be both about “air travel” and “saving money.”

1 With fewer than 22 items it seems unlikely that one would
want a taxonomy or would need a crowd to do it.

Parameters

Cascade’s behavior is guided by a set of parameters, which
we now summarize and name our default values where
applicable.

• Let n be the number of tips input.

• Let m≤n denote the number of tips considered in
Cascade’s initial, generative pass, default = 32

• Let k be the replication factor (the number of workers
who may be asked to repeat a step), default = 5.

• Let t be the maximum number of tips shown to a
worker at once, default = 8.

• Let c denote the maximum number of categories a user
is asked to consider when selecting the best tag, default
= 5.

• Let s be the maximum number of categories a user is
asked to judge the relevance of, default = 7.

By changing the values of these parameters, the designer
can trade off cost and running time against taxonomy
quality. Decreasing k or increasing t, c, and s will lower the
cost of execution.

Primitive Worker Tasks

Before describing Cascade’s overall control flow, we first
present the three types of HITs that are presented to
workers. The order in which these tasks are generated is
dependent on the characteristics of the input tips and can be
complex, but the primitives are individually quite simple.
Here we present them abstractly; Figure 6 displays concrete
instances of these tasks.

• Generate(t tips) -> t categories
The Generate HIT presents a worker with t different
tips and asks her to generate one suggested category
tag for each tip; the categories don’t need to be distinct,
but they often are.

• SelectBest(1 tip, c categories) -> 1 category
The SelectBest HIT shows a worker a single tip and c
distinct category tags and asks her to pick the single
best tag.

• Categorize(1 tip, s categories) -> bit vector of
cardinality s
The Categorize HIT is similar to SelectBest, but is used
at a different point in the Cascade process. It presents a
worker with a single tip and s possible category tags
and asks the worker to select all of the categories
which are relevant to the tip.

Algorithm Steps

Described at the highest level, the Cascade algorithm takes
every tip and solicits multiple suggested categories for it
from different workers. A new set of workers then votes on
the best suggested category for each tip. Cascade then asks
workers to categorize every tip into every best suggested
category. With that data, it computes a taxonomy where
duplicate categories are removed, empty categories are
removed and related categories are nested appropriately.

 University of Washington Technical Report UW-CSE-12-11-02

Figure 6.Primitive HIT Interfaces –top to bottom:

Generate, SelectBest and Categorize

A slightly more formal description of the Cascade
workflow is as follows:

1) use a subset of m tips to generate a candidate set of
category labels,

2) filter this candidate set to produce a smaller set of the
very best labels,

3) iterate over the initial subset of tips to tag them with
every category – appropriate label using the best labels
generated in the previous step,

4) run a fully-automated process to determine which
categories are best considered to be children
(subcategories) of another category,

5) iterate over all of the n tips (not just the initial m used
previously) to assign relevant category tags to every
tip,

clean up newly-processed tips that have no applicable
categories. Cascade uses steps 1-4 to generate new category
labels for these tips.

Cascade concludes by iterating over the complete set of n
tips to label them with the new categories where
appropriate.

The rest of this section explains how these steps are
implemented using a combination of automated algorithms
and the Generate, SelectBest and Categorize HITs. Step 3,
which we term adaptive context filtering, is the most
expensive and also the most novel, since it ensures globally
meaningful results from individual contributors with a local
perspective.

Step 1. Intentional Category Over-Generation

HIT Primitives used: Generate is called (ceil m/t) *k times.
Output: k suggested categories for each of the m tips.

The first step of Cascade is to show each tip to k=5 different
people, to tell them the topic the tip belongs to, and to have
them suggest a category it might belong in. Although tips
could be presented individually, we present tips in groups
of t=8 using the HIT primitive Generate. The instructions
explain that although multiple tips are displayed together,
category suggestions should be independent, meaning that
workers do not have to try to come up with categories that
apply to multiple tips in that HIT.

By showing a group of tips in each HIT, workers get more
context about the tip-set as a whole. This is useful
particularly for a worker’s first HIT in the tip-set, by
providing the worker with an idea of the spread in the tips
before she suggests a category. Another benefit of showing
multiple tips in a group is that workers can easily “pass” on
one or two tips in the HIT that are difficult to categorize (or
have errors that make them not worthwhile to categorize –
being off topic or spam.)

Step 2. Best Category Suggestion Vote

HIT primitives used: SelectBest is called m * k times.
Output: a set of best suggested tags (of cardinality ~1.5m)

 University of Washington Technical Report UW-CSE-12-11-02

In Step 1, k=5 individual workers attempted to categorize
each tip, resulting in up to five suggested categories for
each tip. There will be fewer than k=5 suggested categories
if one or more workers “passed” on the tip or categories
were removed for being exact-string duplicates. In Step 2,
we show each worker one tip and all of its suggested
categories and ask workers to pick the one they think is best
(or select “None” meaning that none of them are good).
Any suggested category that gets two or more votes will get
passed on to the next step. We call these the best suggested

categories. The suggested categories that do not meet the
threshold will be filtered out by the algorithm.

Step 3. Adaptive Context Filtering

HIT primitives used: Categorize is called
m*ceil(|tags|/t)*k + m*k times
Output: a list of best suggested categories and the tips that
fit in them

Phase 1
In Step 1 we generated more categories than we needed for
each tip. In Step 2, we filtered out categories that were not
necessary for each tip. In Step 3, we filter out categories
that are not necessary for the tip set as a whole by asking
workers to vote whether each tip fits each of the best
suggested categories. To do this, we present workers with
one tip and a group of s=7 best suggested categories and for
each best suggested category they have to choose whether
they think it “fits” or “doesn’t fit.” If two or more out of
five workers agree that a tip fits one of the best suggested
categories, then it passes the filter and goes to the next
phase of Adaptive Context Filtering.

Phase 2

The results of Phase 1 give us a list of potentially applicable
categories for each tip. These categorization decisions are
deceptively difficult – tips range in quality and in clarity,
and best suggested categories range in how vague they are.
It is easier to make difficult categorization decisions when
the group of categories presented together are all potentially
applicable, as opposed to the applicable categories being
spread very sparsely across hundreds of HITs. Phase 1 of
this step aggregates the potentially applicable categories for
each tip, and now in Phase 2, we categorize again on those
potentially applicable categories. Although we are using the
same HIT primitive (Categorize), the context we are asking
it in (i.e., the group of other best suggested categories
displayed around it) has improved, which allows workers to
be more discriminating. If four or five out of five workers
agree that a tip fits one of the applicable categories, then it
passes the filter and goes to the next step of Cascade.

Step 4. Edit-Matrix Operations

No HITs
Output: a taxonomy

After Step 3, we compile a matrix that says for all tips, for
all best suggested categories, which tips belong in which

best suggested categories. We use this matrix to edit down
the list of best suggested categories in the following ways:

1. Remove duplicate categories. For any two
categories that share more than 75% of their tips,
we remove the category with fewer tips (or at
random in the case of a tie)

2. Create nested categories. For any category,
c_small that shares more than 75% of its tips with
another category, c_large, make c_small a
subcategory of c_large.

3. Remove categories that are too small. Remove any
category that has fewer than two tips.

This results in a taxonomy where all categories have at least
two items, sibling categories are distinct, and subset
categories are properly nested under their super category.

Iteratively Running Cascade

When you apply Cascade to a tip-set there are several
reasons you might not want to run it on all the tips at once.
One reason is that the tips may be generated dynamically
and as new tips come in, you want Cascade to update its

 Running time #
HITs

Cost

Step 1 : Intentional
Category Over-
Generation

ceil (m/t) *k

20 $3.20

Step 2: Best
Category
Suggestion Vote

m * k 160 $3.20

Step 3. Adaptive
Context Filtering –
Phase 1

m*ceil(|tags|/s)*k 1100 $22

Step 3. Adaptive
Context Filtering –
Phase 2

m*k 160 $3.20

Step 5. Categorize
Hold-outs

(n-m)*

ceil(|cats.|/t)*k

320 $6.40

Iteration 1 total 1760 $38.00

Iteration 2 total 1760 $38.00

Total: 3520 $76.00

Table 1 Running Time of Cascade with n=64, m=32 and other

values at their stated typical value.

taxonomy. The second reason is that you may try to save
time and money by applying Cascade to a subset of the
data, then deciding later whether to run the rest of the tips
depending on how “done” you think the taxonomy is.
Whatever the reason, Cascade can be run on a hold-out set
of tips to grow the taxonomy as follows:

 University of Washington Technical Report UW-CSE-12-11-02

Step 5. Categorize Hold-outs

HIT primitives used: Categorize is called ceil((n-m)/t)*k
times
Output: an updated Edit-Matrix

Categorize the hold-out set of tips on the existing
categories.

Step 6. Update Taxonomy

No HITs
Output: an updated Taxonomy

Rerun Step 4 on the new Edit-Matrix to produce a
taxonomy that includes all the hold-out tips.

Step 7. Generate Iterative tip-Set

No HITs
Output: a tip-set

From the taxonomy, determine which of the hold-out tips
are not in any category and which of the hold-out tips are
only “loosely categorized.” A tip is loosely categorized if it
is not in any category that has fewer than 20 tips. 20 is the
minimum number of tips we use in Cascade in order to
recurse. The idea behind this step is that if a category that is
exceedingly large ends up in the final taxonomy, we don’t
want to treat tips that are in it as being categorized to
satisfaction. For example, the category “all tips” could be
suggested. All the tips would be in this category, but it
wouldn’t contribution to our understanding of the data. This
is actually a big problem. Workers often produce vague
categories that have 60-70% of the data in them. In our
“travel advice” tip-set the category “travel organization and
convenience” had 68% of the tips, but clearly does not
make a useful contribution to our understanding of how the
data breaks down.

EXPERIMENTS

To test the performance of Cascade we run the algorithm on
three datasets and present the taxonomies it produces.

Data

We ran Cascade on three datasets scraped from Quora.com,
an online Question and Answer site reputed to be of high
quality. Many of the questions on Quora are fact-based,
such as “How much did it cost AOL to distribute all those
CDs back in the 1990s?” which was answered by Steve
Case2. But many questions have no single best answer and
all the responses are valid answers to the question, such as
“What are your best travel hacks?” These types of questions
get many responses and it is time consuming to get a sense
of what has been said. This is the type of domain where a
taxonomy would help users get a global picture of the data
and navigate the responses.

Quora has a wiki-like section at the top of its interface for
users to summarize the answers, but from a cursory look, it

2 http://www.quora.com/AOL-History/How-much-did-it-
cost-AOL-to-distribute-all-those-CDs-back-in-the-1990s

does not seem to be used often or effectively. This is
probably because it is hard to update as new responses
appear and because the time and effort required to compile
a fair, global picture of free-text responses is non-trivial.

The three datasets were picked are summarized in the table
below.

Abbreviation Topic Number of
tips

editWriting “What are some tips for
editing your own writing?”

22

sideProjects “How can I increase my
productivity on my side
projects at the end of the day
when I’m tired from work?”

67

travel “What are your best travel
hacks?”

100

Table 2. Topics and size of tip-set

Often, a single response will contain multiple tips in
bulleted lists, numbered lists or separated by paragraphs.
We manually broke these responses into their separate tips.
We changed the text minimally to make individual tips
readable by means of capitalization, removal of leading
bullet points, and reiteration of pronouns (“I think…”).
Previously, we have had the crowd do this breakdown. It is
a trivial process but not a part of the Cascade Algorithm.

We randomized the order of the tips to avoid any effects of
our workers seeing tips in the order they were generated.

Implementation

We implemented the primitive HITs in HTML and
JavaScript to be used as externalQuestions on Mechanical
Turk. To dispatch HITs, we used TurKit[10]. Python scripts
were used to process data in between steps.

RESULTS

We ran Cascade on three tip-sets. The smallest, editWriting,
required only one iteration of Cascade, starting with all the
tips. The mid-sized tip-set, sideProjects, was first run with
32 tips (with a hold-out tip-set of 35 tips). The taxonomy
produced in the first iterations was then applied to the hold
out tip-set and there was an insufficient number of
uncategorized or loosely categorized tips to run a second
iteration of Cascade. The largest tip-set, travel, was first run
with 32 tips, (with a hold-out tip-set of 68 tips). When
categorizing the hold-out tips to the first iteration
taxonomy, 51 tips were not adequately categorized, so a
second iteration of Cascade was run.

Here are details of how Cascade ran on each tip-set, which
will be discussed below.

editWriting

Cascade is meant to run on tip-sets with at least 20 items.
With 22 tips, editWriting is the smallest tip set we ran

 University of Washington Technical Report UW-CSE-12-11-02

Cascade on. This tip-set required only one round of
Cascade, wherein we created a taxonomy for all 22 tips.
None of the tips were uncategorized at the end and we
ended up with 15 categories, 8 of which were top-level
categories (i.e., children of the root node). To get to the
final 15 categories, we started with 83 suggested categories,
filtered that down to the 33 best suggested categories, then
did exactly-string matching to filter that down to 27 unique
best suggested categories. After applying the best suggested
categories to all the tips, we removed 4 categories for
having too much overlap (Table 3) and 8 categories because
they had 0 or 1 tips in them (Table 4). The resulting
taxonomy can be seen in Figure 7

Larger Category Smaller
Category

Overlap %

Self-Editing Editing 82%

Read out loud Read aloud 100%

getting help asking for help
editing

100%

working off an outline Outlining 100%

Table 3. Overlapping categories for editWriting

Category # tips

'Continuity and consistency' 1

'Edit when you are finished writing' 1

'Eliminate repetition' 1

'Know Your Limits' 1

'Put yourself in someone elses shoes' 1

'Reformat 1

'Write, Delete, Rewrite' 1

'story detail editing' 1

Table 4. Categories with fewer than 2 items for editWriting

sideProjects

sideProjects is a mid-sized tip-set with 67 items, of which
32 were used in the first round to generate a taxonomy with
22 categories. After generating the first-round taxonomy,
we applied the remaining 35 tips to it and found that it
explained all but 2 of the tips and had no loosely
categorized tips and thus we did not need to start a second
round of Cascade because no new categories were required
to categorize the tips.

To get the final 22 categories in the first round of Cascade,
we generated 120 suggested categories and filtered that
down to the 37 best suggested categories. After doing
exact-string matching we were left with 34 unique best
suggested categories to apply the data to. After applying the
32 first-round tips to all 24 unique best suggested

categories, we removed 2 categories for having too many
associated tips, and nine categories which had too few (0 or
1) tips in them.

The resulting taxonomy can be seen in Figure 8.

 editWriting sideProjects Travel

of tips total 22 67 100

of tips used in
round 1

22 32 32

Step 1 – Intentional Category Over-generation

of suggested
categories

83 120 149

Step 2 – Best Category Suggestion Vote

best suggested
categories

33 37 45

unique best
suggested
categories

27 34 43

Step 4 – Edit Matrix Operations

of overlapping
categories

4 2 7

of
empty/singleton
categories

8 9 29

of applicable
categories

15 23 7

of
uncategorized
tips

0 4 15

Step 5 – Categorize Hold-Out Tips

of tips applied n/a 35 68

of
uncategorized
tips

n/a 2 15

of loosely
categorized tips

n/a 0 51

Table 5 Cascade Iteration 1 details

travel

Travel is a large tip set with 100 items, of which 32 were
used in the first round to generate a taxonomy with 7
categories. After generating the first-round taxonomy, we
applied the remaining 68 tips to it and found that it there
were 15 tips which it did not categorize and 51 loosely
categorized tips. The loose tips were all in the category
“travel organization and convenience.”

 University of Washington Technical Report UW-CSE-12-11-02

Figure 7. Taxonomy for editWriting

Figure 8. taxonomy for sideProjects

Figure 9. taxonomy for travel, iteration 1

Figure 10 taxonomy for travel, iteration 2

 University of Washington Technical Report UW-CSE-12-11-02

To get the final 7 categories in the first round of Cascade,
we generated 149 suggested categories and filtered that
down to 45 best suggested categories. After doing exact-
string matching we were left with 40 unique best suggested
categories to apply the data to. After applying the 32 first-
round tips to all 40 unique best suggested categories, we
removed 4 categories for having too much overlap, and 29
categories which had 0 or 1 tips in them.

The fact that one round of Cascade left 66 items
unclassified gave us the opportunity to run a second round
of Cascade. We reran Cascade on 45 tips – the 15
uncategorized tips and 30 of the 51 loosely categorized
tips). This resulted in a taxonomy with 51 items. (Figure
10)

Observations:

The most important things to notice about the performance
of Cascade is that in all three datasets, we started with many
more tips than we intended to include in the final
taxonomy, and effectively edited it down to a better and
more cohesive set of categories.

Most of the categories that were eliminated for having
fewer than 2 tips had 1 tip (only 1 of the 46 categories that
was eliminated had 0 tips). This makes sense because one
would expect each category to contain at least the one tip
that originally generated it.

EVALUATION

The goal of Cascade is to produce a taxonomy that provides
a global understanding of independent tips. There are three
questions we want to answer to determine how well
Cascade performs:

1. Are the category labels in the taxonomy as good as
labels created by experts?

2. Do we create an appropriate hierarchical structure
in the taxonomy?

3. Is the cost and running time of Cascade
competitive with that of hiring experts?

Good Category Labels

Taxonomies are inherently subjective; there is no right
answer. One would not necessarily expect two experts to
produce the same hierarchy. However, given a small pool
of experts independently categorizing a dataset, one would
expect some of the same categories to appear in multiple
experts’ taxonomies. In order to compare Cascade’s
categories to those of experts, we paid four information
architects to produce taxonomies independently for our
three datasets.

We performed the following comparison on the
taxonomies. For each data set, we took the Cascade-
produced taxonomy, taxC, and the four expert taxonomies:
tax1-tax4. We wanted to know two things:

1. What fraction of taxC categories are also named in
tax1-tax4?

2. What fraction of tax1-tax4categories are named in
another taxonomy in tax1-tax4?

We want to compare the fraction of taxC categories used by
experts to the fraction of categories used by at least two
experts for tax1-tax4. The comparison may seem slightly
unfair in favor of taxC because taxC gets compared against
4 other taxonomies and tax1-tax4can only compare against
3 other taxonomies. However, Table 6 contains the results.
For all three datasets, about 50% of Cascades categories
were also named by an expert. For example, in the
editWriting dataset, four out of four experts named a
category closely matching Cascade’s category “working off
an outline.” When comparing experts to themselves, the
average expert matching fraction was 32%, 70%, and 64%
for the three datasets. This averages to 55% of tips
matching another expert’s tips across these three
hierarchies. Therefore, Cascade had 91% of the category
agreement the experts did among themselves.

 edit-
Writing

side-
Projects

travel Avg

Cascade
categories
taxonomy

15 18 51

% of Cascade
categories shared
by expert

47% 50% 53% 50%

Number of
categories shared
by 2+ experts

2 11 6

Avg # expert
categories

14 22 30

Avg % of tips
shared by 2+
experts

32% 70% 64% 55%

Table 6 Category name quality comparison – Cascade vs.

Experts

Mistakes in Hierarchical Structure

Cascade infers a global understanding of the data from the
tip membership of categories. Cascade removes categories
that do not have enough tips in them, removes categories
that have a high tip overlap, and creates a parent-child
relationship for categories where one category has high tip
overlap with the other. These inferences are based on many
small judgments by potentially hundreds of different
people. We want to know if all those judgments come
together to infer a sensible hierarchy. In particular, we are
looking for three types of mistakes in the Cascade
hierarchies:

1. Duplicate categories
2. Missing Parent-Child Relationships
3. Incorrect Parent-Child Relationships

 University of Washington Technical Report UW-CSE-12-11-02

To find the error rate in the hierarchical structure, we divide
the number of errors by the number of categories in the
taxonomy. editWriting has the smallest error rate of 13%
(Table 7), with only 2 errors in 15 categories. Both were
duplicate categories errors. The categories “tips to edit
better” and “how to edit better” should have been the same,
but Cascade did not remove one of them.

Edit-
Writin
g

Side
Projects

Travel:
iteration 1

Travel:
iteration
2

categories 15 18 7 51

Duplicate
Categories 2 2 0 2

Missing
Nesting 0 0 0 5

incorrect
Nesting 0 3 1 3

Correct
Nesting 5 3 1 23

total errors 2 5 1 10

Error rate 13% 27% 14% 20%

Table 7 Error rate for structural mistakes in the

hierarchy

sideProjects had the highest error rate of 27%. This came
from 3 incorrect parent-child relationships: ‘prioritizing’
was the parent of ‘commitment,’ ‘prioritizing’ was the also
parent of ‘consistency,’ and ‘motivation’ was the parent of
‘relaxation.’ In our judgment, there is no clear reason that
prioritizing should be a parent of commitment or
consistency, or that motivation should be the parent of
relaxation, and thus it is a mistake in the hierarchical
structure of the taxonomy. These are errors produced by
the machine step – the Edit Matrix Operations - which
created a parent-child relationship any time more than 75%
of the tips of a smaller category were also in a larger
category. Concretely, the Edit Matrix operations nested
commitment under prioritizing because more than 75% of
the tips about commitment were also about prioritizing.
However, although these categories share many tips in
common, they aren’t semantically related: this is a danger
of machine steps. Perhaps a solution would be to have
humans check the resulting taxonomy for obvious errors.

Across the three datasets, the average error rate was 18.5%.

There was an impressive number of correct parent-child
relationships, especially in the travel dataset. (23 correct
parent child relationship and 3 incorrect ones). Many air-
travel and flight related categories with complicated nesting
are expressed with coherent hierarchical structure. For
example, “Air Travel Tips” is a parent of “flights” which is
a parent of “flight layovers.”

Time and Money

It is non-trivial to compare the costs associated with
creating a taxonomy with Cascade versus experts. There is
a cost-quality-time trade-off. For example, on MTurk, if
you under-price a HIT, it will eventually get done, but it
will take a long time. The most basic comparison we
provide is the actual costs and times in our run of Cascade
and that of our recruited experts (Table 8). Cascade took
~6.5 times longer to complete the HITs, and was 1-3 times
as expensive. However, the prices were set fairly arbitrarily.
We paid our experts $25/hour as a set wage. We paid
MTurk workers $0.05 per HIT. The average time to
complete a HIT was 21.46 seconds. This equates to
$8.39/hour which is high for MTurk. $3-$4 an hour would
be more expected. That would reduce the cost of Cascade
by a factor of 2, making Cascade’s cost competitive with
the wage we offered experts.

Comparing time is also difficult. The total time spent on all
three datasets by the average expert was 6 hours and 50
minutes. And the total time spent by MTurk workers was
43 hours and 3 minutes. This is a factor of 6.3 more time
spent by MTurk workers. Seeing as the work done by
workers is basically replicated k=5 times over, the time it
would take one person to run Cascade on themselves would
be competitive with the expert’s time.

More important than comparing total time spent on the
algorithm is to think about the amount of time that it would
take to run the algorithm if infinitely many people work in
parallel, as is supported by Cascade. Each worker spends on
average 21.3 seconds per HIT, and all the HITs in any step
can be run completely in parallel. Thus, assuming Cascade
is run in two iterations of 5 steps each, the entire time it
would take to run Cascade would be 3 minutes and 33
seconds

DISCUSSION

Cascade is driven not only by human judgments, but by
human judgments based on other human judgments. Since
humans are difficult to predict, it is impossible to guarantee
how Cascade will perform with different worker
populations. In the worst case, the workers could be
unfamiliar with the domain and not generate any useful
category suggestions in the first step. If that happened,

Table 8 Time and Cost Comparison - Cascade vs. Experts

 editWriting sideProjects travel

Cascade Time 7 h 56 m 16h 13 m 16h 32m

Cascade Cost $35.40 $109.45 $224.45

Avg Expert
Time

1h 23 m 2h 36m 2h 5 m

Average
Expert Cost $34.87 $65.13 $71.38

 University of Washington Technical Report UW-CSE-12-11-02

Cascade would not produce any taxonomy at all beyond the
root node. If the categories were good, but workers voted
erratically, the resulting taxonomy would have essentially
random structure – repeated categories, parents and children
that do not relate semantically, and missing parent-child
relationships.

The worst case will always be bad for crowdsourcing
problems, but the performance of Mechanical Turk workers
represents a reasonable lower bound for the quality of the
resulting taxonomy. Given a community that cared about
the data and had domain specific knowledge, they would
probably do it very well. Moreover, we believe that this
task is as fun for some people as the ESP game and other
game-based crowdsourcing and thus people will probably
be willing to do it for free. Every step involves reading tips
and the tips are interesting. It is hard to read one without
wanting to read more. There is probably potential to game-
ify the interface to encourage contributions.

Cascade has five steps, including two slightly unusual steps
– over-generation and adaptive context filtering. In this
paper we did not seek to prove that these steps are required.
It seems plausible that we could just generate n categories,
categorize all the tips and then do the edit-matrix step.
These two steps are the result of design decisions we made
based on running the algorithm many different ways early
in its development. Things we noticed that encouraged us to
keep these two steps. First, the quality of the taxonomy is
most strongly correlated with the quality of the categories.

If we did not over-generate tags, then ask people to pick the
best, we would have ended up with lower quality
categories. In particular, we often end up with vague
categories which are problematic for Cascade. Vague
categories contain a lot of members. For example, in the
travel dataset, vague categories might be something like
“comfort and convenience” or “organization and advice.”
These categories encompass most, but not all of the tips.
And are indistinguishable from large categories which are
not vague, such as “air travel.” A combination of trying to
filter out vague categories in the Best Suggested Categories
phase and in Phase 2 of adaptive context filtering is the
design that we settled on.

Although the evaluation in this paper only deals with text
data, we have applied Cascade to visual data as well. Figure
11 is an example of creating a taxonomy for 100 randomly
generated colors. Part of the future work for Cascade is to
push the boundaries of what types of data humans can
taxonomize For example, can we create taxonomies for
images, audio clips, videos, and xixed media such as
websites? Nothing about the Cascade algorithm is
particular to text. We believe that any data type that
humans can process will be applicable to use Cascade on.

Figure 11 Cascade applied to 100 randomly generated colors. On the left is the input to Cascade - 100 colors . On the right is the

output of Cascade – a taxonomy organizing the colors. Colors can appear in multiple categories, and 12 of the 100 colors are in

the “other” category – meaning they were not categorized into a category with at least two items.

 University of Washington Technical Report UW-CSE-12-11-02

RELATED WORK

Crowdsourcing complex tasks

In the past three years, there have been several crowd
workflows that produce outputs more complex than the
results of worker’s local contributions.

TurKit[10] is a programming environment that allows you
to easily compose the results of tasks and issue new tasks
built upon the previous tasks. Turkit has been used to
iteratively improve image descriptions, to pick the best
photo from an album, and to decipher nearly-unintelligible
handwriting. These iterative tasks are a step beyond simple
image labeling [1]. Much work was able to build upon this
simple iterative framework [2][3][5].

Considering workflows that go beyond TurKit,
CrowdForge[7] uses a MapReduce-like framework for
writing articles by mapping separate workers to different
aspects of the article (e.g., outline, the facts, the quotes,
etc.) and then composing the results in a reduce-step.
Mobi[12] solves problems like travel planning that have
global constraints which are met by workers creating to-do
items for other workers to do. Turk-o-matic[9] asks workers
to break down the task and then creates subtasks for more
workers to do. Real-Time Audio Capture [11] uses a
combination of novel interface and sequence alignment to
combine work. Complex tasks can be tracked and managed
[8].

Card Sorting

Card Sorting[6] is a technique for members of a group to
contribute to an organization of their data. Today, card
sorting is often used for employees to influence the
knowledge architecture of their intranet, or for
supermarkets to organize their produce in ways that
shoppers think about things (for example, putting peanut

butter next to jelly). Card sorting is an investigative
technique. It is not designed to give output a usable
categorization. It is designed to help knowledge architects
understand their target users’ mental models, and it requires
a moderator to digest all the work participants do.

Automated Approaches

Automated text-clustering such as LDA[4] could be
employed recursively to create hierarchical taxonomies.
One drawback of these automated approaches is that they
tend to work best on very large datasets - 50 to 500 short
responses are insufficient. In practice, AI clustering
algorithms require substantial tuning, e.g., manually
removing stop words and choosing the number of
categories. Additionally, there are categories that LDA
would not be able to produce because they are not based
strictly on the text. For example, LDA would not be able to
create clusters that distinguish jokes with observational
humor from jokes with puns because similarities within the
groups are not present in the words, but are properties of the
meaning as a whole.

CONCLUSION

In this paper we present a crowd-algorithm that produces a
taxonomy for a set of independent data items, such as travel
tips or ideas for how to edit your own writing or strategies
for working on personal projects after work. We show that
using three HIT primitives – Generate, SelectBest, and
Categorize, we can create an algorithm where each worker
can do as little as 20 seconds of work and produce a
taxonomy competitive in price and quality with expert
information architects, but which will require more total
time put in by people, mainly due to the replicative factor
we use to ensure the crowd agrees on judgments.

REFERENCES

1. von Ahn, L., Dabbish, L. Labeling Images with a
Computer Game. CHI 2004

2. Bernstein, M., et al.. Soylent: A Word Processor with a
Crowd Inside.UIST 2010

3. Bigham, Jeffrey P., et al.. VizWiz: Nearly Real-time
Answers to Visual Questions. UIST 2010

4. Blei, D. M., Ng, A. Y., Jordan, M. I. Latent dirichlet
allocation. The Journal of Machine Learning Research.

Volume 3, 3/1/2003. Pages 993-1022.

5. Dai, P., Mausam, Weld, D.S. Decision-Theoretic
Control of Crowd-Sourced Workflows. AAAI 2010.

6. Hudson, William (2012): Card Sorting. In: Soegaard,

Mads and Dam, Rikke Friis (eds.). "Encyclopedia of

Human-Computer Interaction". Aarhus, Denmark: The

Interaction-Design.org Foundation.

7. Kittur, A., Smus, B., Khamkar, S., Kraut, R. E.
CrowdForge: crowdsourcing complex work. UIST 2011.

8. Kittur, A., Khamkar, S., Kraut, R.E. (in press).
CrowdWeaver: Visually managing complex crowd
work. CSCW 2012

9. Kulkarni, A., Can, M., Hartmann, B. Collaboratively
crowdsourcing workflows with turkomatic. CSCW 2012.

10. Little, G., Chilton, L. B., Goldman, M., Miller, R. C.
TurKit: human computation algorithms on mechanical
turk. UIST 2010.

11. Walter S. Lasecki, etal . Online Sequence Alignment for
Real-Time Audio Transcription by Non-Experts (UIST
2012).

12. Zhang, H., Law, E., Miller, R., Gajos, K., Parkes, D.,
Horvitz, E. Human computation tasks with global
constraints. CHI 2012.

