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ABSTRACT
In this work, we investigate how people refer to objects in
the world during relatively unstructured communication. We
collect a corpus of object descriptions from non-expert users
using language and naturalistic gesture to identify objects
and attributes. This corpus is used to learn language and
gesture models that enable our system to identify the objects
referred to by a user. We demonstrate that combining mul-
tiple communication modalities is more effective for under-
standing user intent than focusing on only one type of input,
and discuss the implications of these results on developing
natural interfaces for interacting with physical agents.
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INTRODUCTION
As computing systems move into the real world, the im-
portance of enabling untrained users to interact with them
in a natural way increases. For instance, interactive table
top systems [40] or mobile robots operating in populated
environments [5] require interfaces that go beyond touch
or keyboard. Fortunately, the physical capabilities of such
agents—which can potentially see, hear, speak, and so on—
offer new possibilities for the development of natural user
interfaces that take advantage of the different ways that hu-
mans interact with the physical world. Natural language and
gesture are rich, intuitive mechanisms for people to describe
objects, issue instructions, and convey intentions [11].

Existing multimodal interfaces, however, require the user to
learn how a system expects to be instructed, rather than the
system learning how the user naturally communicates. Ges-
tural interfaces have primarily focused on gesture recogni-
tion—that is, focused on identifying a lexicon of gestures
which the user must learn [14]. Natural language, which can
encode substantial complexity, is still an incomplete com-
munication mechanism in a physical setting, where it is of-
ten natural to use gesture to focus attention [34]. Compare,
for example, “Put the mug that’s on the table in the cup-
board two to the left of the stove,” versus “Put this mug in
there.” The latter is a natural way of communicating a need

Figure 1: Examples of unscripted gesture and language investigated in
this paper. (a) A circular pointing motion looping around the objects;
(b) pointing with multiple fingers and both hands; (c) an open-handed
sweep above objects. (d) and (e) give examples of different language for
the two scenarios shown (a/b and c). The grammatical statements and
errors are typical of spoken language.

to a robot, set in a context where traditional input devices
such as keyboards are lacking. As a result, there is long-
term interest in interfaces that incorporate multiple modes
of interaction, particularly gesture and language [4, 8], and
especially for human-robot interactions [23].

Unfortunately, human language and gesture can be quite com-
plex, as shown in the examples in Fig. 1. Someone referring
to a set of blocks as the “blue red (sic) rectangles,” while
sketching a rough circle above them, is entirely compre-
hensible to a person, but outside the scope of current user
interfaces—a situation which will become harder to accept
as robots and interactive systems become more widely de-
ployed and capable.

Our goal in this work is to demonstrate steps towards inter-
faces where an individual can, for instance, teach a robot to
understand combinations of the unconstrained ways a per-
son might wish to communicate. We introduce a system
that learns to interpret user intent in a physical workspace
from unstructured communication. Using low-cost RGB-D
(RGB + depth) cameras, we collected a corpus of interac-
tions from people tasked with identifying objects in a space,
and used those to train language, gesture, and vision models.
Those models were then applied to the task of selecting the
objects in a physical workspace a person is trying to indi-
cate. Combining these modalities performs better at captur-
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ing user intent than using unconstrained language or gesture
in isolation, without asking the user to become familiar with
a particular lexicon of gestures or commands.

Our contributions are as follows.

1. A large dataset with 364 annotated videos showing people
describing objects in a table top setting.

2. A technique for unsupervised learning of features that are
rich enough to enable accurate recognition of complex hu-
man gestures.

3. A recognition model that combines language, gestures,
and visual object attributes.

4. A technique for learning the joint recognition model from
weakly annotated training data.

While the specific task we target in this paper uses a limited
set of objects and attributes, understanding how people natu-
rally refer to objects in the world is common to a large set of
scenarios. Being able to understand natural human commu-
nication has the potential to enable the development of new
interfaces in areas as diverse as entertainment [29], medical
technology [37], search-and-rescue [27], human-robot inter-
action [10], and assistive care [12].

RELATED WORK
The development of natural interfaces that allow humans to
interact with technology in the physical world is a problem
of general importance [1, 38]. A number of different modal-
ities have been explored to support such interfaces [36]. This
work builds on natural language understanding, gestural in-
put, and human-robot interaction particularly.

Gesture has been extensively explored for use in such inter-
faces [22, 19]. Our work is most closely related to work on
using gesture to control physical systems, such as a quad-
copter or humanoid robot [30]. However, rather than per-
forming recognition of a predefined gestures (arguably not
optimal for natural user interfaces [20]), our system is trained
on a corpus of examples of unscripted gestures.

Natural language understanding for the development of us-
able interfaces is currently a substantial research area in HRI
(Human-Robot Interaction), of particular interest to perva-
sive computing [25]. The overlap between natural language
and physical agents has led to intense study of the field of
natural language grounding, or interpreting language in the
context of physical sensing and actuation. Learning about
the world and human communication from a combination
of language and sensor data has achieved particular success
in understanding commands, for example in navigation [9,
17] robot command interpretation [33], and search and res-
cue [6]. Although in this work we assume the set of colors
and shapes is known in advance, other work in the area [16]
has demonstrated the capability of a similar system to learn
visual classifiers for previously-unseen attributes.

The proliferation of consumer-grade depth cameras such as
the Microsoft Kinect has had a substantial impact on the

feasibility of developing come-as-you-are interfaces with-
out user-based equipment such as accelerometers [36]. The
usefulness of these devices has been demonstrated in track-
ing user movement and hand gestures, [21] detecting and
responding to human information about objects in the ac-
tions [35], and gathering information about objects in the
world [31].

The usefulness of these devices has been enhanced by the
existence of standard toolkits for handling the point clouds
they produce; in this work we use the PCL library [26] for vi-
sion and ROS, the Robot Operating System [24], to manage
communication and visualization. We similarly take advan-
tage of work in the computer vision community on the study
of features suitable for object identification [3].

Combining different input modalities for natural user inter-
faces is a tremendously important area [18, 7, 8], and has
already been used with some success in controlling the nav-
igation of a robotic platform [32]. However, to the best of
our knowledge, previous work on combining modalities in
natural user interfaces does not learn from examples to han-
dle unconstrained user input. Our goal of understanding at-
tribute descriptions is most similar to work on using physi-
cal sensor data to learn about object attributes [16], but our
work is on enabling natural interfaces rather than on collect-
ing new linguistic concepts.

PROBLEM STATEMENT AND DATA COLLECTION
The ultimate goal of our work is to learn to understand the in-
tentions and references of users, from the users themselves,
without requiring specialized training. To build our system,
we first recorded examples of people describing objects after
being given minimal instructions. That data set was used to
train models of different interaction styles, which could then
be used to tackle the object selection problem.

The Object Selection Task
Our task is to build a system that understands someone who
is indicating objects found in a physical workspace, by ver-
bally describing any combination of object attributes, by ges-
turing, or both. For each scenario—consisting of an RGB-D
video of objects and people’s interactions with them, plus
transcribed language—we want to identify the objects in the
scene that are indicated (or positive).

Because the goal is to robustly understand unconstrained
user input, the indications do not need to follow a specific
format (e.g., a list of allowable gestures), and the system
tries to identify objects even when user input is partial, re-
dundant, or even insufficient.

Data Collection and Corpus
In order to collect information about how people refer to ob-
jects when given few constraints, we used the Kinect sen-
sor (usually mounted on a robotic manipulation platform) to
record people describing objects with language and gesture.

Participants were instructed to distinguish certain objects from
a collection of objects, using language and gesture “as if they
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total objects / positive obj./ pluralism arrangement participants description description description
scene scene (avg) scene (avg) (longest) (shortest) length (avg)

corpus 364 6.89 2.64
1 positive 2+ positives spread clustered (m) (f)

111 s 2.8 s 18.65 s
130 234 117 247 7 6

Table 1: Data in the collected corpus. 13 participants were asked to describe each of 28 scenes, giving a total of 364 language/gesture/vision data
tuples. Objects in scenes were arranged to vary whether positive objects were clustered together or spread out, and whether there were one or more
positive objects in the set. Participants were given minimal instruction on how to describe scenes, leading to a wide spread of language complexity
and time spent per scene.

Figure 2: A data collection participant indicating objects. The experi-
menter shows an iPad with target objects circled in order to avoid pro-
viding linguistic or gestural cues that might alter participant behavior.

were describing those objects to a robot.” Participants were
not given a predefined set of gestures or instructions to use,
and experimenters provided prompts by showing images of
the table layout with objects circled, in order to avoid pro-
viding linguistic or gestural examples (see Fig. 2).

Twenty-eight different arrangements of objects were used,
varying across dimensions such as whether the objects of in-
terest were clustered together or separated, how many of the
objects on the table were to be indicated, and what attributes
(color and shape) the objects did or did not have in com-
mon. On average, scenes contained seven blocks, of which
an average of two are to be indicated. Thirteen participants
described each scene.

The length of responses from participants ranged from very
brief (around three seconds) to more than a minute, with a
median instruction time of roughly 18.5 seconds. The re-
sulting data set contains examples of language used without
gesture, gesture paired with non-descriptive language (e.g.,
“These three objects”), and gesture and language used to-
gether. In most cases, participants provided redundant infor-
mation, where either gesture or language would be sufficient
to convey intent. Statistics are given in Table 1.

Evaluation of Feasibility
Because we are using only the subset of the available data
that can be detected by our sensors (the RGB-D camera and
microphone), we are interested in learning how well that data
supports the object selection task overall. We used Mechan-
ical Turk to present human evaluators with the same object
selection task we ask the system to perform.

Figure 3: The task presented to our Mechanical Turk workers. Work-
ers were asked what objects are being indicated, given video, language,
or both (shown).

Evaluators are presented with a (silent) video of a person
gesturing to objects, the text of a person talking about those
objects, or both, and asked to indicate the objects being in-
dicated (see Fig. 3). Each task was given to three evaluators.

We report results on the complete collected data, but also
on consensus accuracy, in which a majority of our evalu-
ators agreed on an interpretation (a standard technique for
improving the quality of crowdsourcing results [28]). Re-
sults are shown in Table 2.

Inter-annotator Success
agreement Rate

Language+Vision 0.799 0.866
Total Gesture Only 0.780 0.803

Combined 0.747 0.873
Language+Vision 0.961 0.888

Consensus Gesture Only 0.964 0.830
Combined 0.967 0.926

Table 2: Inter-annotator agreement and error rate, measured per-
scene. (top) Accuracy and inter-evaluator agreement across all eval-
uators; (bottom) for majority-voting results.

For majority-vote, inter-evaluator agreement is consistently
around 96%. And evaluation achieves an 83%–93% success
when evaluated on whether all events were correctly identi-
fied (reported as per-scene accuracy in the Evaluation sec-
tion). Consistent with our hopes for multimodal learning,
both the system and human evaluators perform better when
given multimodal data.

SYSTEM OVERVIEW
Fig. 4 shows the overall architecture of the object identifi-
cation interface, starting with human input. First, RGB-D
video data and language are collected from someone trying
to indicate objects in a workspace. Objects and hands are
identified, and features are extracted that provide informa-
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Figure 4: An overview of the system. Video frames are used to locate objects and track hand movements, and language is recorded. Motion features
are used to classify which objects are being gestured to, and classifiers for object attributes (such as color) are combined with language to determine
whether an object is referred to. These are combined to determine what object(s) are being indicated.

tion about the color and shape of objects, gestures made,
and language used. From those features, a set of classifiers
determines whether an object is being gestured to or spoken
about; finally, those outputs are combined to determine the
set of objects being referred to.

To accomplish the goal of identifying objects from whatever
interactions a user offers, we first train individual compo-
nents of the system on example interactions. The system
contains the following components: (1) a classifier that inter-
prets gestures that indicate specific referents; (2) visual clas-
sifiers that correspond to the appropriate object properties;
(3) a models of how words correlate to the visual attribute
classifiers. The system then parses new user interactions via
the following pipeline.

First, raw sensor data is tranformed into a form that has
meaning at the semantic or conceptual level. RGB-D points
are processed in order to automatically separate and iden-
tify hands, objects, and the shared agent/human workspace.
Similarly, speech is transcribed, although ultimately speech
recognition would be an integral part of a user interface.

Once objects and hands are identified, the system extracts
state of the art visual hierarchical matching pursuit (HMP)
features [3] from RGB and depth data, followed by logis-
tic regression to classify each object’s color and shape. If
a participant chooses to use gesture, the system identifies
point clusters that represent one or more moving hands in the
working area. Geometric features are extracted from depth
values at every frame, and after training, logistic regression
is used to determine, for every object, whether the hand ges-
tures to that object during the video.

Any language from the user is analyzed at a per-scene level
to determine whether it makes references to object attributes.
If so, we consider objects that have those attributes to be ‘re-
ferred to,’ and therefore a likely target of the user’s intention.
We restrict language and vision classification to a known set
of color and shape attributes and do not explicitly address
other forms of description, instead concentrating on features
that perform well for the object selection task. Bayesian lo-
gistic regression is used to determine whether a scene’s lan-
guage refers to particular attributes.

We assume users might refer to objects by verbally describ-
ing any combination of color and shape attributes, by ges-
turing, or both. Accordingly, for each object, we combine
whether it is gestured to and whether it is referred to verbally
into a final per-object score, which is used to determine what
objects in a scene a person wishes to indicate.

APPROACH
In order to understand a user’s references to the world, his/her
input goes through a number of steps. In this section, we go
into detail on each phase of processing a scene:

• Raw sensor input is processed to identify the workspace,
objects, and hands; language is transcribed.

• If hands are present, a gesture classifier is used to obtain
a probability that each object was gestured to.

• Vision classifiers return probabilities for the color and shape
of each object.

• Language is combined with the output of the vision clas-
sifiers to determine whether each object is referred to in
speech.

• The results of gesture and language analysis are combined
into a final object score for each object, representing whether
the system believes it is a positive object (that is, was
somehow indicated by the user).

We describe the individual classifiers used, then discuss how
their outputs are synthesized into a final evaluation of user
intent.

Point-Cloud Processing
In this first step, our system extracts the user’s hands and the
objects from each frame of the Kinect video. An individual
Kinect frame provides a set of points, or point cloud, each
of which has an associated RGB value and a depth corre-
sponding to its distance from the camera. First, everything
but the known workspace is cropped, and a fixed transfor-
mation is applied to rotate the point cloud to be axis-aligned
to the edge of the table. (Because the Kinect is mounted
above and to one side of the human interactor, this results in
a significant viewpoint change; see Fig. 5.)
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Figure 5: A frame from the data corpus, cropped to the workspace
(left), then x,y axis-aligned to the table (right). Moving clusters of points
that extend beyond the workspace are hands (boundaries in orange),
while static clusters on the table are objects. Areas where no 3D points
exist, due to occlusion or resolution, are gray. The leading-edge point
on each hand (yellow) is used to calculate gesture features.

To automatically segment individual objects o ∈ O from
each scene, RANSAC plane fitting is performed on point
depth values to remove the table plane, then connected com-
ponents (segments) of points more than 0.5 cm above that
plane are extracted. Remaining points are segmented into
clusters of points that are within 2 cm of one another. Fig. 6
shows an example of a segmented object. Because our set-
ting involves people describing static objects, objects can be
treated as persistent. Small, non-moving clusters on the ta-
ble are registered as objects, while larger, moving clusters
that extend past the working area of the table are hands.

We identify gestures using spatial relationships between the
user’s hands and the objects over time. For each frame in a
scene, we identify the leading-edge of a hand as the point on
the hand that is furthest from the user’s body, determined by
the highest value in the y-axis (see yellow markers in Fig. 5).
We then compute the distances between this point and the
centroid of each object. Distances are computed along each
of the three coordinate axes and as a single Euclidean dis-
tance, resulting in a four-dimensional distance vector at each
timestep.

In practice, the system uses the first five frames of the video,
in which no significant motion generally occurs, to locate
objects, then stores the resulting point cloud for each object
rather than re-analyzing objects every frame. Point clouds
representing hands are always re-evaluated.

Gesture Classification
Once the user’s hands and the objects on the table are ex-
tracted for the complete video sequence, we try to determine
for each object whether the user is gesturing to that object in
some way. Unfortunately, this task turns out to be quite com-
plex, due to the substantial variability in how people use their
hands to refer to objects (see Fig. 1). Our first approach was
to learn a classifier based on the distances between an object
and the user’s hand during the interaction. While such an
approach provides reasonable results, a richer set of features
can provide substantial gain in classification performance, as
we show in our experimental evaluation. To learn rich fea-
tures, we use a technique called sparse coding, which has
become a popular tool in several fields, including signal pro-
cessing and object recognition [39].

As described in the Point-Cloud Processing section, we ex-
tract a sequence of four-dimensional vectors of spatial fea-
tures from the video. Rather than applying a classifier di-
rectly to this sequence, we apply sparse coding to learn fea-
tures that are more suitable for the classification task. Sparse
coding models data as sparse linear combinations of code-
words selected from a codebook [13]. The key idea is to
learn the codebook: a set of vectors, or codewords. Data can
then be represented by a sparse, linear combination of these
codebook entries.

In our gesture recognition task, the data are the collection of
four dimensional vectors from the entire time-series T , the
sequence of frames in which a person was interacting. Here,
we use efficient K-SVD and orthogonal matching pursuit to
build high-level features.

K-SVD finds the codebook D = [d1, · · · , dM ] ∈ RH×M

and the associated sparse codesX = [x1, · · · , xN ] ∈ RM×N

from a matrix Y = [y1, · · · , yN ] ∈ RH×N of observed data
by minimizing the reconstruction error:

min
D,X
‖Y −DX‖2F (1)

s.t. ∀m, ‖dm‖2 = 1 and ∀n, ‖xn‖0 ≤ K
where H , M , and N are the dimensionality of codewords,
the size of codebook, and the number of training samples,
respectively. ‖ · ‖F denotes the Frobenius norm, the zero-
norm ‖ · ‖0 counts non-zero entries in the sparse codes xn,
and K is the sparsity level controlling the number of non-
zero entries.

Classic K-SVD normalizes the L2 norm of each codeword
to be 1, so learned codebooks don’t capture magnitude in-
formation of input data. This is a useful property for image
recognition, as spatial pooling and contrast normalization
over sparse codes can generate features robust to lighting
condition changes [3]. However, magnitude information is
critical for gesture recognition. To allow codewords to en-
code magnitude information, we remove normalization con-
straints and limit sparse codes to be binary values:

min
D,X
‖Y −DX‖2F (2)

s.t. ∀n, xn ∈ {0, 1} and ‖xn‖0 ≤ K
We design a K-SVD-like algorithm to decompose the above
optimization problem into two subproblems: ENCODING and
CODEBOOK UPDATE, which are solved in an alternating man-
ner. At each iteration, the current codebook D is used to en-
code the data Y by computing the sparse code matrix X by
matching pursuit [15] (ENCODING). Then, the codewords of
the codebook are updated one at a time by gradient descent
optimization, resulting in a new codebook (UPDATE). The
new codebook is used in the next iteration to recompute the
sparse code matrix followed by another round of codebook
update, repeated until the maximum iteration is reached.

With the learned codebook, we are able to generate features
representing the whole gesture sequence. Since a gesture
that points to a specific object could occur in any timestep,
we maximize each component of binary sparse codes of four
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dimensional vectors over all timesteps, and generate features
robust to temporal changes:

fG =

[
max
j∈T
|xj1|, · · · ,max

j∈T
|xjM |

]
(3)

We use logistic regression to train a classifier, which gives
ho, the probability that object o is being gestured to with
one or both hands.

P (ho|ΘP ) =
eΘ

P
g

1 + eΘ
P
g

(4)

where ΘP
g is the parameters in ΘP for the gesture classifier.

This combination of features outperforms the naı̈ve closest
approach distance, as discussed in Evaluation.

Color and Shape Classification
The goal of this step is to determine what attributes each
object in a scene has—that is, to find its color and shape.
More formally, for each color and shape present in our cor-
pus, we want to return a probability that each object has that
attribute. We let C and S be sets of discrete symbols which
denote known colors and shapes, respectively:

C = {blue,green,red,yellow}
C = {arch,ball,cube,cylinder,rectangle,triangle,other}

Once segmented objects are obtained, we extract the same
hierarchical matching pursuit (HMP) features as are used for
gesture. These features have been successfully used for ob-
ject attribute analysis in similar contexts [31]. These fea-
tures, drawn from the training scenes in our corpus, are used
to train binary classifiers for each attribute inC and S. These
classifiers are then run on on each object o. See Fig. 6 for ex-
ample color and depth image inputs of an object, and outputs
for classifiers.

Figure 6: Data for one object in a scene, after automatic segmentation.
(a) and (b) show the RGB and depth signal from the camera; (c) is
a transcription of the spoken description. (d) gives the output of the
visual shape and color classifiers.

We apply the binary K-SVD features described in Gesture
Classification to learn features for RGB-D images. Input
data are now collections of 8 × 8 × 3 image patches and
8 × 8 × 1 depth patches, rather than four-dimensional dis-
tance vectors. Spatial max pooling instead of temporal max
pooling is applied with the learned codebooks to aggregate
the sparse codes.

A cropped object image I is divided spatially into smaller
cells. The features of each spatial cell E are the max pooled

sparse codes, which are simply the component-wise maxima
over all sparse codes within a cell:

fI(E) =

[
max
j∈E
|xj1|, · · · ,max

j∈E
|xjM |

]
(5)

Here, j ranges over all entries in the cell, and xjm is the m-
th component of the sparse code vector xj of entry j. The
feature fI describing an image I are the concatenation of
aggregated sparse codes in each spatial cell

fI =
[
F (E1), · · · , F (EP )

]
(6)

whereEp is a spatial cell generated by spatial partitions, and
P is the total number of spatial cells.

Once these features are calculated, they are again used to
train standard logistic regression classifiers for each possible
shape and color attribute, which then output the probabil-
ity that any new object encountered possesses each attribute.
The outputs of individual classifiers are denoted V ∈ R,
where vo,c, c ∈ C and vo,s, s ∈ S are the outputs of appro-
priate color or shape classifiers for object o.

Language Model
At a high level, the goal of the language analysis step is the
same as that of gesture analysis: for each object in a scene,
determine whether the user is indicating that object. Intu-
itively, an object o has been “referred to,” expressed as ro, if
it has attributes the user mentions. Accordingly, the inputs
for the language classifier are the transcribed speech, L, con-
taining the user’s description of the scene, plus the output of
the vision classifiers.

ro = P (o|vi∈{C,S},o, L) (7)

For example, if L = “The blue one” and vo1,blue has a high
value, ro1 should be high.

In keeping with the goal of allowing free-form user input,
the system does not use a priori information about what
words correspond to what attributes; instead, such corre-
spondences are learned from training data. This allows the
system to learn correct interpretations of unexpected words,
such as the recurring use of “parcel” and “package” to de-
scribe cube-shaped blocks, as in Fig. 7.

From the language L for all training scenes, we first extract
a bag-of-words feature vector from W , the set of all words
found in the corpus. Each individual word w ∈ W is as a
boolean feature lw ∈ {1, 0}, whose value is its presence or
absence in L; these features are analogous to the unordered
codewords used for visual analysis. The scene description L
can then be represented as a vector of these features.

These word features are then combined pairwise with the
output of the visual classifiers for each object (in practice,
this is performed by training the language model using logis-
tic regression with a polynomial kernel), to produce features
for the co-occurrence of words and attributes:

γo =
[
lw1 × vo,i1, . . . , lw|W | × vo,i|{C,S}|

]
,

w ∈W, i ∈ {C, S}
(8)
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Figure 7: An image taken during data collection, and examples of lan-
guage used to describe the scene, showing errors typical of spoken lan-
guage. Given knowledge of objects’ attributes from vision, our goal is
to connect words such as “green” and “cuboid” with objects displaying
those characteristics.

Intuitively, this means that features encoding “good” corre-
spondences will have high values when found with positive
examples in the training data (e.g., 〈l“bridge” × vo,arch〉 in
Fig. 6), and can be weighted up accordingly.

We take the language L from each scene as a positive ex-
amplar for attributes of all positive objects. This introduces
noise into the training data (for example, the first description
in Fig. 7 might cause the classifier to learn an inappropriately
low value for the feature 〈l“cuboid” × vo,cube〉, since there
are no words describing shape), but avoids hand-labeling of
the spoken language, in line with the long-term goal of hav-
ing users train a robot without expert assistance.

Integration of Vision, Language & Gesture
Since users are free to use any combination of language and
gesture when indicating objects, the final step is to combine
the output of all the classifiers to produce a final object score
that represents whether our system believes the user is indi-
cating that object.

More formally, given a combination of language, vision, and
gesture, the object selection task is to automatically map a
natural language scene description L, a (possible) gesture h,
and a set of scene objects to the subset of objectsG indicated
by L and h, that is, P (G | L, h). Rather than considering
object subsets explicitly, we have factored this directly into
individual classifiers over objects.

Because we are combining possibly-redundant ways of re-
ferring to objects, a user may choose to use only gesture
or only language. Since we do not wish to penalize single-
mode interactions, we use a small minimum value when the
language or gesture signal is below some threshold ε:

r′o =

{
ro, ro ≥ ε
ε, ro < ε

h′o =

{
ho, ho ≥ ε
ε, ho < ε

(9)

Experimentally, we found that ε = 0.2 worked well for the
data set; however, our results were not particularly sensitive
to small changes in ε.

The final score is then readily obtained by summing lan-

Figure 8: Leading-edge versus closest distance: (left) From the per-
spective of the physical agent; (right) side view. Orange lines show the
closest-approach distance between the hand and the two front objects,
while blue lines show the leading-edge distance. The actual shortest
distance is to the red block, while the shortest leading-edge approach is
consistent with the person’s intent.

guage and gesture to produce a final score ko, the probability
that object o is being indicated:

ko = (r′o + h′o) (10)

To determine whether an object is being indicated using lan-
guage or gesture in isolation (as in Fig. 10), r′o or h′o can be
used directly.

EVALUATION
Our corpus consists of data collected with 13 participants,
each describing 28 scenes, yielding 364 language/video pairs.
Testing was performed on a held-out set of 20% of these
pairs, containing a total of 520 objects.

Gesture Recognition
In order to investigate the complexity and usefulness of ges-
ture recognition, we evaluated different approaches to de-
termining which objects a person is gesturing at. As base-
line, we trained a logistic regression classifier over the min-
imum of the 4D leading-edge distances between the object
and the person’s hand, computed over an entire interaction
(see Point-Cloud Processing). In our early tests, we found
the leading-edge distance to provide significantly better re-
sults than the minimum distance between any point on the
hand and the object. One explanation for this is that the
participant is communicating with the interlocutor to whom
they have been asked to describe objects, and position their
hands to make sense from that perspective (see Fig. 8).

We then trained a logistic regression classifier using our novel
hierarchical matching pursuit features described in the Ges-
ture Classification section. Fig. 9 shows precision / recall
curves for logistic regression on minimum leading-edge and
on our features. As can be seen, our high-dimensional hier-
archical matching pursuit features provide significantly bet-
ter results than the simple leading-edge vector. The differ-
ence is particularly striking in areas with high recall. For
instance, our approach achieves 65% and 91% precision at
90% and 80% recall, whereas the baseline approach only
reaches 34% and 63% precision for the same recall values,
respectively. This is due to the fact that people do not clearly
point at individual objects, but they tend to move their hands
in much more complex patterns, often moving closely over
objects they do not want to indicate. While a minimial leading-
edge value is not able to capture such complex relationships,
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Figure 9: Precision (y-axis) and recall (x-axis), obtained from varying
the cutoff above which object o is considered to have been indicated
(positive). The red line shows the performance of a classifier trained
directly over the 4D feature vectors extracted from the video, and the
blue line over higher-level hierarchical matching pursuit-derived fea-
tures.

our hierarchical matching pursuit features are rich enough to
provide good classification results.

Per-Object Accuracy
In this evaluation, objects are evaluated independently, mak-
ing it possible to get some objects in a particular scene right
and others wrong. To determine whether an object is being
indicated, a cutoff is applied to the object score ko, gesture
score h′o, or language+vision score ro; the system considers
an object positive (indicated) if its score is above the cutoff.
This allows us to vary the cutoff to produce a precision/recall
curve for the task (Fig. 10). As expected, the combination
of interaction modes outperforms either gesture or language
alone.

Figure 10: Precision (y-axis) and recall (x-axis), obtained from varying
the cutoff above which object o is positive. The cutoff is applied to ro
(for language+vision, red), h′

o (gesture only, blue), or ko, which com-
bines language and gesture (purple). Combining input data produces
better results than using only one source of input.

The system achieves a peak F1 score (a weighted average of
precision and recall) of 80.7%. As the cutoff increases, the
system increasingly returns only correct objects, but misses
more objects as well; depending on the context, different
trade-offs of such false positives vs. false negatives might be

appropriate.

Note that at a recall of 90%, gesture only achieves a preci-
sion of 26%, the combination of visual classifiers and lan-
guage reaches 47% precision, and the combination of all in-
formation sources increases this precision to 66%, indicating
that combining all sources of information can drastically in-
crease the capabilities of systems requiring interactive object
identification.

Scene-Based Accuracy
In scene-based accuracy analysis, we again use object scores
to determine whether objects are indicated, but treat a trial as
a success only if all objects in the scene are correctly clas-
sified as positive or negative. This metric is strictly more
difficult than the per-object analysis. At a naı̈ve score cutoff
of 0.5, our system performs perfectly on 53.9% of scenes;
when the cutoff is tuned to best performance, which can be
done using training data, the success rate rises to 57.9%.

Discussion
It seems clear that combining modalities of interaction—
here, gesture combined with relatively unconstrained natu-
ral language—resulted in more robust interpretation of hu-
man intent than using only one approach. This conclusion is
consistent with the observation that combining gesture and
language reduces ambiguity in user interfaces [18].

Comparing our results to those obtained by human evalua-
tors (see Evaluation of Feasibility) is is informative. Unlike
our system, human interpretation of language only outper-
forms gesture only by a nontrivial margin, which strongly
suggests that our simple mechanism for language could be
improved by using a more complex language model, such as
those found in work by Artzi & Zettlemoyer [2].

DISCUSSION & FUTURE WORK
As robots and physical sensors become more ubiquitous, the
value of interfaces that allow people to interact with them
naturally and comfortably increases as well. In this work, we
have described steps towards an interface which improves
on that goal in two ways. First, our system takes language,
gesture, and perception of a scene and uses them to per-
formed joint, unsupervised learning of how to understand
a human’s intentions; this joint reasoning improves on us-
ing only one kind of interaction. Second, our system learns
from examples how the people in our data set communicate
naturally, without making making strong suppositions about
what modes they are most comfortable using, and without
requiring them to learn how to interact with the system. Push-
ing the learning from the human to the system in this way
improves on some of the ways in which current interfaces
are less than natural.

We train our system and evaluate it on a corpus of video,
depth information, and transcribed language of people inter-
acting with objects in whatever way they find comfortable.
Its performance strengthens our belief that this sort of uncon-
strained, natural interaction can be used to build successful
interfaces. An evaluation of human performance on the same
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corpus suggests that it is, in fact, an appropriate resource for
further exploring and improving on the task of understand-
ing how people refer to objects.

Understanding references to things in the word is already
a necessary component of many tasks; however, we believe
that our approach has the potential to scale to similarly learn-
ing how humans interface with systems in more elaborate
contexts. In future, it is our intention to improve the system
presented here, and to apply this kind of interaction learning
to other areas.
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