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Abstract
Increasingly, the Internet is being used for services, such
as home health monitoring, where correct and continu-
ous operation is essential. Yet the current Internet is not
up to the task. There are numerous issues that should
make anyone pause before trusting the Internet with the
timely delivery of something that truly mattered.

We propose a novel approach, called Transit as a Ser-
vice (TaaS), that is designed to allow for enterprises and
governments to configure reliable and secure end to end
paths through participating providers. Unlike efforts to
redesign the Internet from scratch, TaaS provides ISPs
incremental incentives to adopt. A highly reliable ISP
can offer transit through its network as a service to re-
mote paying customers. Those customers can stitch to-
gether reliable end to end paths through a combination
of participating and non-participating ISPs in order to
improve the fault-tolerance and robustness of mission
critical transmissions. We provide an implementation of
TaaS, evaluate its performance in testbed settings, and
demonstrate using simulations its ability to provide im-
proved reliability and security.

1 Introduction
Increasingly, the Internet is being used for services where
correct and continuous operation is essential: home
health monitoring, active management of power sources
on the electrical grid, 911 service, and disaster response
are just a few examples. In these and other cases, outages
are not just an inconvenience, they are potentially life
threatening. A less life critical, but economically very
important case is presented by the outsourcing of enter-
prise IT infrastructure to the cloud – connectivity outages
to cloud servers can imply high costs due to disruptions
of day-to-day business activities.

In summary, the Internet has become a necessary part
of the world’s economic infrastructure. However, the
present Internet is not up to the task. Operational expe-
rience has uncovered numerous issues that would make
anyone pause before trusting the Internet with the timely
delivery of something that truly mattered. The list of
known causes of outages is long. For example, router
and link failures can trigger convergence delays in the
Border Gateway Protocol (BGP). When combined with
configuration errors on backup paths, outages can last for

hours and even days. Often these outages are partial or
asymmetric, indicating that a viable path exists but the
protocols and configurations are unable to find it. Other
problems that can and have triggered outages: required
maintenance tasks such as software upgrades and policy
reconfiguration, router misconfiguration, massive botnet
denial-of-service attacks, router software bugs, ambigu-
ities in complex protocols, and malicious behavior by
competing ISPs. Even if the traffic is delivered, there
are other vulnerabilities. For example, traffic from the
US Department of Defense was recently routed through
China. While it is unclear whether the problem was in-
advertent or intentional, the Internet lacks any protocol
mechanism from preventing this type of event from re-
curring.

Because of its scale, the Internet is of necessity multi-
provider, and end-to-end routes often involve multiple
organizations. While a number of research projects
have proposed tools to diagnose problems (e.g., [12,
13]), and fixes to specific issues, such as prefix hijack-
ing [4,14,17,19], route convergence [11], and denial-of-
service [5, 26, 34], there has been little progress towards
deployment except in a few cases. Part of the problem is
incentives. Many of the proposed solutions are only truly
valuable if every ISP adopts; no one who adopts first will
gain any advantage.

Another part of the problem is completeness. Is there
a set of fixes that together would mean we could trust
time critical communication to the Internet? Most ex-
isting proposals are only partial solutions. For example,
Secure BGP addresses some of the vulnerabilities sur-
rounding spoofed routes, but it doesn’t address denial of
service or route convergence. The resulting commercial
case for deployment is weak.

We attempt to answer a simpler question: what are the
minimal changes to the Internet needed to support mis-
sion critical data? We note that reliability is not equally
important for all traffic. Our requirement is to design
a system that will provide highly available communi-
cation for selected customers as long as there is a pol-
icy compliant physical path, traversing only trustworthy
ISPs, and without diverting the traffic to non-trustworthy
ISPs. This property should hold despite node and link
failures, software upgrades, operator error or byzantine
behavior by neighboring networks, and denial-of-service
attacks by third parties. We assume ISPs and cloud
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providers have a strong incentive to make their own net-
works highly available and robust against failures and at-
tacks. How can we best leverage their work for end-to-
end resilience?

In this paper, we propose a system called Transit as
a Service (TaaS) that allows ISPs to sell reliability and
security as a service, without widespread adoption hap-
pening first. End users can obtain this service from any
ISP offering it, including ISPs that do not face end-users
and primarily serve the backbone of the Internet. At the
core of our system is a protocol to secure a provisioned
path across a remote ISP. The remote ISP promises only
what it can guarantee itself: a high quality path across its
own network. The end host (or data center or enterprise
or local ISP or government) is responsible for stitching
together TaaS into an end-to-end solution. Like local
transit, TaaS is paid for by the requestor, arranged over
the web in much the same way as one would purchase
computing cycles in Amazon’s EC2 data center.

We make the following contributions:

• We present the design of TaaS, including how its
main requirements, incremental deployability, high
availability, and robustness, are achieved.

• We present the TaaS API that can be used by ISPs
and end-users to find, reserve, and establish paths on
the Internet.

• We present two different implementations of TaaS,
based on the Click software router and the Serval [25]
network protocol stack, respectively. We demon-
strate a deployment of TaaS on the Internet using the
Serval-based implementation and how it can be used
to establish a path despite blocked Internet links.

• We evaluate TaaS’s benefits both in simulation and
experimentally. Our evaluation shows TaaS’s re-
silience against IP prefix-hijacking, link failures,
path performance problems, and byzantine ISP fail-
ures, with little overhead to Internet routing perfor-
mance.

Next, we sketch the reasons that mission critical ser-
vices should not rely on the Internet today. We then out-
line our approach in Section 3, describe several ways we
have implemented TaaS in Section 4, evaluate TaaS in
Section 4, and discuss related work in Section 5.

2 Motivation
Consider the following example scenarios.

Example 1: Imagine a healthcare monitoring applica-
tion that operates over the Internet. The patient wears a
monitoring device, and the measurements are sent to a
data center or to the doctor’s location. These measure-
ments are analyzed in real-time, and anomalies are for-
warded to alert human experts who can ensure that no

medical problem has occurred (for example, side-effects
from a concurrent therapy) or might then use interactive
video streams to perform further diagnosis. The chal-
lenges of supporting such applications are substantial.
The network must provide high availability because the
network may be part of a life-critical medical feedback
loop with timeliness constraints. It must also provide de-
sired levels of quality of service, i.e., provide high band-
width streams with low loss rates. These services should
not be disrupted by transient changes in underlying paths
either due to cross-traffic or due to BGP dynamics.

Example 2: A large enterprise that is physically dis-
tributed across multiple sites, such as a Fortune 500 com-
pany, needs to use the Internet for inter-site communi-
cations, serving its customers, and accessing outsourced
IT services in the cloud. It might have multiple require-
ments for its communications: traffic should be commu-
nicated reliably even in the presence of outages, there
should be no information leakage due to traffic analysis,
and traffic should be robust to security attacks such as
prefix hijacking. To address these concerns, it wants to
ensure that its traffic only traverses a set of pre-approved,
trustworthy providers or a predictable set of ISPs that
satisfy certain geographical/jurisdictional requirements.
This is impossible to guarantee today. Near the source,
an ISP can select BGP routes to a specific destination that
obey certain restrictions. However, those routes can be
changed by the downstream ISPs without pre-approval
or prior notice. Only after the fact will BGP inform the
upstream users of the path of a change. Near the destina-
tion, the ISP has no standard way to signal that it should
only be reached through pre-approved paths or through a
predictable set of trusted ISPs.

The previous examples highlight just a few problems
of Internet use for mission-critical services. A recent sur-
vey by Trimintzios et al. [29] enumerates other known
security vulnerabilities of the Internet. A few examples
include disruption of service by resource exhaustion at-
tacks by botnets against network links and end hosts, pre-
fix hijacks by malicious ISPs, and byzantine errors by
neighboring ISPs (e.g., intentional disaggregation of ad-
dresses, causing routers to crash).

Even without vulnerabilities to malicious attack, the
Internet protocols are operationally fragile: Internet
paths are often disrupted for short periods of time as BGP
paths converge. Operational changes, such as reboots or
rewiring, and divergence between the control and data
plane can also reduce availability. With today’s proto-
cols, an endpoint has no recourse in this case but to pa-
tiently wait for the problem to be repaired.

In our work, a key observation is that the amount
of traffic for mission-critical applications can be quite
small, especially compared to normal everyday Internet
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use. Yet this traffic is often very high value. Our pro-
posal targets just these low-volume, high value applica-
tions. Most users find most of their Internet traffic works
well enough most of the time, because much of the traf-
fic on the Internet is for content delivery from nearby
cached copies. For this type of traffic, the most critical
factor is the reliability of the local ISP. Internet reliabil-
ity is of course still an issue for many users, but it is hard
to argue this part of the problem requires an architectural
fix beyond designing better tools for network operators
to diagnose their own networks.

Our focus is thus on developing a system that can en-
hance the reliability and performance of mission-critical
traffic using solutions that are incrementally deployable
and provide benefits even when it is deployed by a small
number of ISPs. Further, re-architecting the Internet
from ground up seems overkill for such a small amount
of traffic, no matter how important in human or commer-
cial terms. Given the large number of known problems,
it is unlikely that even a well-designed set of changes
would fix every problem, and a massive change to the
Internet protocol suite would run the risk of having unin-
tended side effects.

3 TaaS Design
We would like to develop a simple primitive that could be
used to provide highly available communication in addi-
tion the the Internet’s normal uses, as long as there is
a usable and policy compliant physical path between a
pair of endpoints. To this end, the key requirements of
our solution are:

Incremental Deployability: In today’s Internet, a
provider ISP (or ISPs) mediates Internet service. This
poses a chicken and egg problem; an ISP can’t promise
or charge for a new type of service unless all, or almost
all, other ISPs already provide the service. We want to
make it possible for end users, enterprises, and govern-
ments to leverage reliable intradomain paths made avail-
able by remote ISPs, without requiring global adoption
of new protocols.

High Availability: We want endpoints to be able to es-
tablish one or more high quality paths across the Internet,
provided a physical path exists through ISPs willing to be
paid for the service. For availability, endpoints need the
ability to route around persistent reachability problems,
as well as to establish multiple paths to minimize disrup-
tions due to transient routing loops and blackholes.

Robustness: Because security attacks against the Inter-
net are a real threat, we need to provide endpoints the
means to defend their routes, both by proactive installa-
tion of desirable paths and filters and reactive rerouting
of traffic in response to degradation in packet delivery.

In this section, we provide a brief overview of our pro-

AT&T Sprint 

Comcast 
Amazon FlakyISP 

PowerData 

TaaS TaaS 

Level 3 

TaaS TaaS 

Figure 1: Three example TaaS paths from PowerData to
Amazon: the dotted lines represent the BGP path. The
two dashed lines are TaaS paths.

posed approach before describing the key components of
our design.

3.1 Overview

We provide an overview of our approach using a simple
example shown in Figure 1. A company called Power-
Data is using Amazon cloud services for its day-to-day
data storage. Using BGP, traffic to Amazon would be
routed via Comcast (PowerData’s upstream ISP), Sprint,
and either FlakyISP or AT&T. However, FlakyISP often
drops packets and has caused PowerData’s service to be
slow whenever the path through FlakyISP is chosen by
Sprint and Comcast. Note that, while PowerData can
find out about the problem using various available Inter-
net measurement technologies, it has limited or no con-
trol over the paths selected by Sprint (a remote ISP) and
Comcast (the local transit provider).

To remedy this, PowerData buys TaaS transit from
AT&T, which involves provisioning a path through
AT&T and establishing the appropriate packet forward-
ing rules to transmit PowerData packets along to Ama-
zon and received responses back to PowerData. This en-
sures that PowerData packets to and from Amazon are
routed around FlakyISP since it does not appear on any
of the paths between Comcast and AT&T nor does it ap-
pear on the paths between AT&T and Amazon. Note that
PowerData does not have to provision paths across every
ISP on its path to/from Amazon in order to avoid Flaky-
ISP. Rather, a limited amount of route control at a remote
ISP (AT&T in this example) might suffice to achieve the
desired paths.

To make sure that reconfigurations and temporary out-
ages (for example, due to routing loops or misconfigu-
rations) at Sprint and AT&T do not impact PowerData’s
service, PowerData also buys TaaS transit from Level 3
and can fail-over to this path in case of problems with the
original path.

The example illustrates several properties of our pro-
posed approach. First, the system is incrementally de-
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ployable by an ISP, with incremental incentives to that
ISP. An ISP can provide TaaS even if none of its peer,
customer or provider ISPs participate in the protocol.
TaaS benefits from a network effect, but it still provides
value to enterprises and data centers needing to control
routes even if only a few ISPs have adopted the approach.
In the example in Figure 1, TaaS is still useful to Power-
Data even if Sprint does not provide TaaS transit.

Second, TaaS aims to require only modest changes to
the existing Internet infrastructure to facilitate deploy-
ment. We assume no changes to normal traffic, but we do
require that mission critical traffic be specially encoded
to simplify packet processing at the router. Most mission
critical services are new, so requiring a slightly modified
protocol stack is less of a concern. Alternately, we ex-
plain how a local ISP could offer an end to end service to
its clients, by rebundling their mission critical traffic to
use TaaS.

In the rest of this section, we present the TaaS design
and outline the key components of our proposal includ-
ing:

• the management interface for setting up transit
through a remote ISP,

• the data plane operations required for supporting re-
mote transit,

• the issues in setting up end-to-end paths, monitor-
ing them, and responding to changes in path quality,
and

• business considerations that affect the adoption of
the proposed scheme.

3.2 Setting up Remote Transit

Today, ISPs provide transit only to their immediate cus-
tomers. The key idea with TaaS is to generalize the no-
tion of transit, to allow an ISP to offer its transit as a ser-
vice to anyone on the Internet. TaaS is optional: as with
paid transit today, ISPs can choose to offer the service,
or not, at whatever price point they like.

An ISP offering TaaS advertises its willingness to pro-
vide its transit, for a fee, via SSL, much as is currently
done for cloud providers offering computer time. The
control traffic (to find out about advertised TaaS tunnels,
and to request the tunnel) can be carried over the existing
Internet, at least at first. For one, ISPs already have an
incentive to ensure that their own addresses can reach the
rest of the Internet. But to the extent that an ISP finds its
routes to its TaaS customers unreliable, it can use TaaS
mechanisms to bootstrap more reliable routes that can be
used for the contol traffic.

The ISP operates a portal that provides interested users
with an interface for obtaining information regarding

its TaaS service. We have implemented an RPC-based
query interface, shown in Table 1. Users must authenti-
cate with the service before calling any of its functions.
If transit is granted for a fee, registering with an ISP’s
service would typically involve an exchange of the cus-
tomer’s credit card information.

An ISP can exercise fine-grained control over its TaaS
service; it can offer it between all, some, or none of its
peers, direct customers, or providers. Further, the transit
provided can either be bandwidth-provisioned or best ef-
fort. For instance, it can offer strict transit SLAs (e.g.,
constant bit rate pipe with a maximum latency bound
on its intra-ISP paths), guarantee protection across DoS
attacks, or simply provide best-effort guarantees. Like-
wise, the pricing can be on any mutually agreeable terms,
e.g., with a bandwidth cap or not, priced based on total
bytes transferred or based on burst bandwidth, etc.

We envision most TaaS connections will be estab-
lished as redundant fixed bandwidth pipes, ensuring that,
say, home health monitoring data will be delivered re-
gardless of failures, denial of service attacks, or Byzan-
tine behavior by unrelated ISPs. Because TaaS tunnels
are set up in advance, links within an ISP might run out of
excess capacity, but that only prevents future TaaS tun-
nels from being set up; existing agreements can stay in
place. Market prices can then signal a need for more ca-
pacity.

If the TaaS tunnel is best effort, this promise is nothing
other than an enhanced version of what it already pro-
vides its (direct) customers: transit for specific packets
across its network, from a specific ingress ISP (and op-
tionally, ingress link) to a specific egress ISP (and op-
tionally, egress link). Even with this small extension,
TaaS customers can construct end-to-end paths that they
normally wouldn’t be able to use and could thus achieve
improved resilience and route control for their commu-
nications.

An endpoint desiring route control sets up TaaS cir-
cuits through remote ISPs in order to ensure that its pack-
ets traverse pre-determined paths. The endpoint contacts
one or more of the TaaS ISPs on the routing path and
requests provisioned paths through the individual net-
works. The TaaS customer then arranges for the routing
of the packet by associating with each hop the address
for each subsequent hop that needs to be traversed.

Endpoints need a way to determine a path to their de-
sired destination. From the ISP-provided lists of ingress
and egress PoPs, endpoints are able to compile an atlas,
where TaaS-providing ISPs can be marked. Any shortest
path discovery algorithm can be used on the atlas to de-
termine which ISPs to use to create an end-to-end circuit.
It is realistic to assume that another Internet webservice
maintains the atlas and provides a path query interface,
returning paths according to any of a number of these
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[(pop ingress, pop egress), ...] = get pops() Returns a list of ingress and egress PoP IP addresses, through
which the ISP can be transited.

string = query sla(pop ingress, pop egress) Returns the service level agreement (SLA) that the ISP is will-
ing to provide for an inter-PoP segment (from pop_ingress to
pop_egress) as a human-readable string. The SLA includes pos-
sible performance guarantees and pricing.

(pop_ingress_ip, pop_egress_ip, authenticator)
= acquire_sla(pop_ingress, pop_egress)

Acquires an SLA for transit on an inter-PoP segment (from
pop_ingress to pop_egress) and returns the ingress and egress
PoP IP addresses, as well as an authenticator. As we will discuss
later, the primary purpose of the TaaS authenticator is to identify
the TaaS tunnel corresponding to the arriving packet and to prove
that the endpoint originating the packet is authorized to use the
transit.

relinquish_sla(authenticator) Relinquishes a previously acquired SLA, by accepting an authen-
ticator returned from acquire_sla().

chain_path(auth, next_hop_addr, next_hop_auth) To allow TaaS tunnels to be chained, this call can optionally con-
figure an existing TaaS tunnel (identified by its authenticator) with
the TaaS address and TaaS authenticator of the next (TaaS) hop.
Routers responsible for this TaaS tunnel are updated dynamically
by the ISP upon calling this function.

Table 1: Path query interface, provided by TaaS-supporting ISPs.

Home ISP 
Target ISP 

ISP B 

ISP A 

TaaS TaaS 

Internet atlas ISP C 

TaaS TaaS 

Figure 2: Example TaaS transit setup process. Blue
routers marked TaaS are TaaS-compatible, gray routers
are not. Dashed lines show the path chosen in case (a).
Dotted lines show the detour taken via another TaaS ISP
in case (b). The BGP path in this example is Home-B-
Target.

algorithms.
Figure 2 shows an example of an Internet endpoint ar-

ranging a TaaS circuit with a target endpoint, registering
with a number of ISPs. It also shows how the circuit is
maintained by each of the ISPs. Two cases are consid-
ered:

(a) A tier 1 ISP A that is the provider for our home ISP
supports TaaS and a circuit is created via this ISP.
Other traffic is routed via BGP through a non-TaaS
supporting ISP B to the final destination. The path
in this case is Home-A-B-Target.

(b) An additional TaaS-supporting ISP C is configured
to avoid the non-TaaS ISP B. In this case, we con-
figure ISP A to forward packets to ISP C, via TaaS.
The path in this case is Home-A-C-Target.

In both cases, the endpoint first contacts an Internet at-
las service to determine which ISPs to contract for TaaS
service. Then, the home endpoint contacts servers of in-
teresting TaaS ISPs on the circuit to create TaaS SLAs,
providing necessary next-hop information. A possible
sequence of calls for both cases is demonstrated in Fig-
ure 3. In the figure, we leave out the step that deter-
mines the “best” TaaS ISP and instead select a low-
latency PoP of ISP A. In the figure, isp_a and isp_b
are pre-initialized RPC objects to the TaaS ISPs of Fig-
ure 2 and atlas_query() queries the Internet atlas ser-
vice for paths with a latency below 300 milliseconds be-
tween a source IP address and a number of destination IP
addresses. The function accepts the source IP address,
followed by an array of destination IP addresses and re-
turns an array of paths that match the latency require-
ment. We will cover in Section 4 how such a function
might be implemented. Other functions from Table 1 are
used to setup the routers of both ISPs to create the circuit.

TaaS paths are unidirectional. The reverse path can be
provisioned either by the peer party, or by the originator
of the traffic. This might depend upon the relationship of
the peers. If the source party is a customer of some cloud
service, it makes sense for the source to provision both
paths. A peer-to-peer relationship can be provisioned by
either peer individually.

3.3 Data Forwarding

To route traffic via TaaS, the source (or its proxy) en-
capsulates the IP data packet in a separate IP envelope,
with the destination set to the first hop TaaS address (Hop
Addr), the next-level protocol field set to a value identi-
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# Case (a)
# Get all advertised TaaS PoPs of ISP A
t1_pops = isp_a.get_pops()
# Keep paths with latency <300ms to the ingress PoPs
src_to_t1 = atlas_query(src_ip, t1_pops.ingress())
# Take 1st path and get corresponding egress PoP
t1_egress = t1_pops.egress(src_to_t1[0][-1])
# Establish SLA
(t1_in, t1_out, t1_auth) =
acquire_sla(src_to_t1[0][-1], t1_egress)

# Case (b)
# The same between PoPs of ISPs A and B
t2_pops = isp_b.get_pops()
t1_to_t2 = atlas_query(t1_egress, t2_pops.ingress())
t2_egress = t2_pops.egress(t1_to_t2[0][-1])
(t2_in, t2_out, t2_auth) =
acquire_sla(t1_to_t2[0][-1], t2_egress)

# Chain TaaS PoPs of ISP A and B together
isp_a.chain_path(t1_auth, t2_in, t2_auth)

Figure 3: Call sequence to setup the two TaaS paths of
Figure 2.

Src Auth Next Auth Next IP 

TaaS Forwarding Table 

Packet flow 

Figure 4: TaaS routing.

fying TaaS (TaaS Prot), and the first hop TaaS authen-
ticator inside the packet (Hop Auth). Figure 5 shows a
diagram of all relevant fields of such a TaaS packet.

The source sends its packets normally through their
local network to their ISP. If the customer has a chain of
TaaS providers, then each is set up with the address and
authenticator of the next hop; the last ISP in the chain
removes the IP header encapsulation before forwarding.
Figure 4 shows this process. If some ISPs support the
protocol and others do not, normal Internet routing can
be used between the participating hops. While this does
not completely prevent all BGP problems from affecting
the traffic, it reduces the scope by reducing the length of
the BGP path. For example, a tier 1 ISP at the core of the
Internet is only one or two BGP hops away from most
Internet addresses. Further, because tier 1 ISPs control a
large portion of IP networks, BGP routes to/from tier 1s
are more reliable than arbitrary Internet paths because of
BGP filtering at lower tier ISPs.

We do require some level of hardware support in
routers, but it is minimal and similar to the hardware al-
ready in place on most routers. In many ISPs, ingress

Src 
Addr 

Hop 
Addr 

… 
App 
Prot 

Hop 
Auth 

IP envelope TaaS Transport 

TaaS
Prot 

Src 
Addr 

Dst 
Addr 

IP header 

Figure 5: Relevant fields of a TaaS packet (in bold). Dst
Addr is the IP address of the final destination. Note that
the source endpoint IP address and other IP header fields
are duplicated by the envelope IP header.

routers demux incoming traffic based on the destination
address to a specific MPLS tunnel to route the traffic
across their network. We can leverage similar hardware
support in TaaS: the ingress router must be able to demux
on the TaaS address (and if necessary the TaaS authen-
ticator), route the packet using MPLS or other means,
and then modify the IP header to insert the next hop
address and authenticator. Alternately, ISPs can oper-
ate high-speed software routers (e.g., RouteBricks [6],
PacketShader [10]) at ingress/egress PoPs to perform the
necessary tasks for TaaS traffic.

The TaaS authenticator is simply a 64-bit sequence
generated by the ISP for each TaaS circuit and included
in every packet sent by the endpoint. The router must
check the authenticator and drop the packet if it does
not match. We consider the authenticator a hint. Pro-
vided that the intermediate ISPs do not eavesdrop on
the data stream, the authenticator uniquely identifies the
sender. Even if the authenticator is compromised, the
only penalty is that the customer of the service is charged
for extra unrelated traffic traversing the pipe. Since pack-
ets transmitted through a TaaS circuit are sent to a spe-
cific destination (or a subsequent TaaS circuit), an au-
thenticator cannot be used with arbitrary flows and thus
has limited utility even if compromised.

We note that it is relatively straightforward to safe-
guard against eavesdropping at a slightly increased cost
to packet handling. Instead of transmitting the ISP-
provided authenticator, the endpoint can include in each
packet the hash of the checksum of the packet and the au-
thenticator; misbehaving ISPs can then only replay entire
packets, but they cannot use snooped authenticators for
other packets.

3.4 Security and Redundancy

The impact of DoS attacks on TaaS PoPs is mitigated by
dropping traffic at the ingress point of TaaS tunnels if the
packets sent to it contain an invalid authenticator. Fur-
thermore, TaaS paths can be setup to resemble swarms
of packet forwarders [5]. This can be used to increase
path availability in the face of DoS attacks and Figure 6
demonstrates how this can be achieved: multiple TaaS
segments are configured within one TaaS supporting ISP
to mitigate the effects of DoS attacks to TaaS ingress
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Source ISP 

Target ISP 

TaaS ISP 

TaaS 

TaaS 

TaaS 

TaaS 

Ingress 

Ingress 

Ingress 

Secret IP 

DoS Attacker 

Figure 6: DoS attack prevention using TaaS.

points. Since TaaS clients can migrate their traffic to
another ingress PoP if their PoP is overloaded, attackers
have to overwhelm all provided ingress points simultane-
ously in order to stop traffic to the destination. If the des-
tination endpoint’s IP address is kept secret, it does not
matter whether the TaaS supporting ISP is the provider
of the endpoint or a random ISP on the Internet. Other-
wise, if the provider of the destination endpoint provides
TaaS, the endpoint’s ISP can drop all non-TaaS traffic
and protect the endpoint in this way.

TaaS ISPs will likely have multiple redundant paths
between the ingress and egress PoPs, and can thus use
MPLS mechanisms to configure backup paths and switch
the intradomain paths in a seamless manner to han-
dle failures inside a circuit. For instance, MPLS Fast
Reroute allows routers inside the ISP to redirect traf-
fic onto a predetermined backup path when they detect
failures in upstream routers [27]. Failover will be the
rare case, however. Routers are being constructed that
continue to offer service despite component failures and
even during software upgrades [3]. Of course, these ex-
isting solutions do not work across ISPs.

What happens when an intermediate ISP on a path
does not support TaaS? The packet has to be routed via
BGP to the next TaaS hop. If this is the case, it is im-
portant to know how many hops are in-between the TaaS
hops to gauge the vulnerability of the connection to at-
tacks and failures. To figure out the number of interme-
diate hops, we can initiate a traceroute to originate from
the last TaaS supporting hop of the source end of the
path, directed at the first TaaS hop of the destination end
of the path. This can be done by sending a traceroute
via TaaS from the source endpoint to the first TaaS hop
of the destination end through the existing partial circuit.
To support this and other network debugging tasks, TaaS
routers need to be able to respond to ICMP echo requests.

3.5 Route Control

We next discuss a few examples of how TaaS can be used
to setup end-to-end paths with the appropriate properties
desired by the application, e.g., improved fault-tolerance,
provisioned service, and security.

Fault-tolerant routes: Resilience is obtained through

pre-configured backup paths, established by the endpoint
and used in the case of failures. An endpoint can estab-
lish one or more TaaS paths to the destination and use
them in conjunction with the direct Internet path. End-
points can use the query interface provided by TaaS ISPs
to choose efficient alternate TaaS routes. For instance, it
can contact multiple tier-1 ISPs providing TaaS service,
query them to compute the end-to-end performance of
TaaS paths traversing the ISPs, and establish TaaS cir-
cuits through those ISPs that provide good performance.
Note that the endpoint can also use compact Internet
maps (such as iPlane Nano [20]) to predict which ISPs
are likely to provide good routes and thus minimize the
number of ISPs they have to query for performance data.

The transport layer requires a small change at the end-
point to ensure that the switch from one path to the other
is transparent to the endhost application. This can be
done using systems such as Serval [25]. The endpoint
monitors the communication flow and fails over to the
backup path in the event of disruptions or degraded per-
formance.

Securing routes: An endpoint can setup TaaS circuits
through each intermediate ISP in an end-to-end path to
ensure that its packets traverse only trusted ISPs. If
some of the intermediate ISPs don’t provide TaaS sup-
port, endpoints have to resort to normal Internet rout-
ing between the TaaS ISPs. This means that those hops
are vulnerable to BGP effects such as prefix hijacking
and rerouting of packets through untrusted ISPs. How-
ever, if a TaaS provider is also a provider of the non-
participating ISP (e.g., a tier 1 ISP), then it is unlikely
that those effects will be problematic. To limit the scope
of prefix hijacking, most ISPs in practice are configured
to filter competing advertisements for addresses originat-
ing in their direct customers/providers. For example, if a
small ISP advertises it is UUNet, other ISPs can be con-
figured to ignore it. If so, even if a route is announced
by multiple peers, the correct TaaS route will continue
to be used. It is worth noting that if all we need is alter-
nating compliant ISPs, the average number of TaaS hops
we would need for an end to end path in today’s Inter-
net is very small, typically one or two. An endpoint can
also constrain that all communications sent to it should
be through TaaS tunnels by providing other endpoints
with a TaaS address as opposed to its actual IP address.
This provides the endpoint with a simple DoS protection
mechanisms, as the attack traffic can then be filtered out
at a large TaaS ISP.

3.6 Business issues

An ISP has an incentive to ensure correct forwarding of
TaaS traffic across its network, because it is receiving
revenue in addition to the price it is receiving for carrying
the packet from its immediate neighbor. Also, since end-
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points have the ability to switch over to pre-configured
backup paths, it is in the ISP’s interest to perform lo-
cal fault recovery quickly if it wants to retain the traf-
fic from the TaaS customers. Further, since TaaS would
allow ISPs to attract traffic that they normally wouldn’t
receive, there is an incentive for ISPs to implement TaaS
even when other ISPs don’t.

An ISP might intentionally disrupt traffic to a TaaS
provider, e.g., if it sees a packet for the special address,
it might drop it. On the other hand, the ISP is receiving
revenue for the packet as a normal Internet service, so it
would need to do traffic inspection and violate network
neutrality to do so. If this were a problem, the pack-
ets could be encrypted when traversing non-cooperative
ISPs, so that they appear to be normal SSL traffic. Fur-
ther, note that such a disruption would cause the endpoint
to fail over to an alternate path that traverses a different
set of ISPs, thus providing a disincentive for the filtering
ISP that stands to lose revenue due to its actions.

Although TaaS will allow enterprises to contract for
exactly the amount of route control, resilience, and DoS
protection that they need, ISPs may also find it useful
to leverage TaaS services on behalf of their customers.
That is, a customer-facing ISP would arrange tunnels to
important data services, and this would be (nearly) trans-
parent to the ISP’s customers, except that they would find
their Internet service through the ISP to be highly reli-
able. This aggregation will be particularly valuable for
thin devices that lack the ability to monitor routes and
perform route control on their own behalf.

4 Implementation
In this section, we describe two implementations of
TaaS, as well as two TaaS deployments. The first deploy-
ment is on a local cluster to measure overheads incurred
to ISPs due to TaaS’ additional routing requirements.
The second deployment is on several geographically dis-
tributed nodes on the Internet and serves to demonstrate
that our system is practical and can be used on the Inter-
net today.

4.1 GRE Implementation

Our first implementation of TaaS is based on Generic
Routing Encapsulation (GRE) [8] tunnels, which we
craft to resemble TaaS packets. We use the key field ex-
tension [7] to GRE, which we set to the TaaS authentica-
tor value. The GRE protocol type stands in for the TaaS
protocol type in the envelope IP header. We use the stock
Linux kernel GRE implementation, which we setup such
that generated GRE packets will duplicate the source IP
address and all other IP header fields among the envelope
and internal IP headers.

We exclude all other (optional) GRE fields, such that
the only additional overhead from using GRE, compared

Src 
Addr 

Hop 
Addr 

… 
App 
Prot 

Source 
FlowID 

Dest 
FlowID 

Trans
Prot 

Flags 
Hop 
Auth 

Network Service Access TaaS Transport 

Figure 7: Relevant fields of a Serval packet with TaaS
extension (in bold).

to using the TaaS packet format, comes from the manda-
tory 32-bit GRE header, which appears in front of the
TaaS authenticator (GRE key field). This header is ig-
nored by our router implementation.

To route packets, we have implemented a module for
the Click [15] modular router version 2.1, which is run-
ning as a Linux kernel module. The routing module reads
packets directly from the network interface and classi-
fies them based on GRE header. If the packet has a
GRE header, the module tries to resolve the authenti-
cator, taken from the GRE key field, in its local TaaS
forwarding table and, if found, replaces the IP envelope
destination address and GRE key with the next-hop ad-
dress and authenticator, respectively. If the next-hop au-
thenticator is zero, the IP envelope and GRE headers are
removed instead. In either case, the packet is fed to the
host operating system routing mechanism, where its fur-
ther fate is determined. Finally, if the TaaS forwarding
table lookup fails, the packet is dropped.

4.2 Serval Implementation

We have also integrated TaaS support into the Serval [25]
protocol stack to demonstrate how robustness is achieved
using this solution. To extend Serval, we have added a
new packet header extension, which contains the TaaS
authenticator. This extension is included on any data
packet. If the source endpoint’s service access table con-
tains a forward rule with a TaaS authenticator annotation,
this header extension will be generated with the corre-
sponding authenticator and all packets forwarded to the
specified next-hop service router. The service routers de-
tect the TaaS extension and match it in a special TaaS
authenticator table to the next-hop IP address. Each
packet’s destination IP address is rewritten according to
this table. Figure 7 shows the layout of a Serval packet
with the TaaS extension.

4.3 Internet Atlas

To provide the Internet atlas service, we use a combina-
tion of the iPlane [22] database, which we augment with
information about hypothetical TaaS providers.

iPlane is available as an Internet XMLRPC and Sun-
RPC service that can be queried dynamically for met-
rics, such as reachability, latency and throughput perfor-
mance, between any given two IP addresses. It is kept
up-to-date with live traceroute information from Inter-
net vantage points. As such, it can be used to determine
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require ’iplane’

egress = ARGV[0]
prefixes = Array.new
(1..ARGV.length-1).each { |i|

prefixes.push(ARGV[i])
}

iplane = IPlane.new
prefixes.each{ |p|

iplane.addPath(egress, p)
}
responses = iplane.queryPendingPaths
responses.each{ |r|

if (r.latency < 300) # 300ms
puts(r.path.join(" "))

end
}

Figure 8: A Ruby program that returns all TaaS paths
with latency below 300 ms from a given egress PoP to a
number of given IP addresses. Hops on a path are sepa-
rated by spaces, paths are separated by newlines.

the performance between any two PoPs, as well as the
performance to any Internet prefix from an egress PoP.
This is especially useful when choosing among multiple
TaaS-offering ISPs.

To reduce the amount of data transfered when multiple
paths with a certain characteristic are requested, iPlane’s
SunRPC interface expects a Ruby program on its input
and provides the output of that program as its result. The
iPlane-specific objects and their methods are described
in [21]. Figure 8 demonstrates a program that returns all
paths with a latency below 300ms from a given egress
PoP to a number of IP prefixes, given as a list of IP ad-
dresses living within each prefix, respectively.

4.4 Cluster Deployment

We have deployed the Click and Serval implementa-
tions of TaaS on a 6-node cluster. All cluster sys-
tems run Linux 3.2.0 on Intel Xeon E5-2430 processors,
clocked at 2.2 GHz, with 15 Mbytes total cache, 4 Gbytes
memory, and Intel X520 dual-port 10 Gigabit Ethernet
adapters, connected to a 10 Gigabit Ethernet switch. Fig-
ure 9 shows this setup.

Source 

Forward 
Hop 1 

Forward 
Hop 2 

Backward 
Hop 2 

Backward 
Hop 1 

Dest 

Figure 9: TaaS 6-node cluster deployment.

In the cluster, one node acts as the source endpoint of a
route and another one as the target. The other nodes are
used as TaaS routers. The deployment is symmetrical:
Both forward and reverse TaaS paths are established be-
tween source and target, over distinct nodes in the cluster.
We can construct up to 2 TaaS hops in this symmetrical
fashion. We will use this deployment to measure TaaS
overheads in Section 5.1.

4.5 TaaS Internet Backplane

We have deployed TaaS software routers at two loca-
tions1, in Europe and the USA. Using the Serval imple-
mentation, we configure Europe to forward incoming
TaaS traffic to USA. USA is configured to decapsulate
incoming TaaS packets from Europe before forwarding
to its final destination. The setup is symmetrical. On
the reverse path, we configure USA to automatically add
a TaaS header with a preconfigured authenticator to in-
coming traffic from, e.g., the New York Times, and for-
ward to Europe, which in turn is configured to forward
TaaS traffic from USA to China, where it is decapsu-
lated. Figure 10 shows this setup.

China 

New York 
Times 

Europe 

TaaS 

USA 

TaaS 

Figure 10: TaaS Internet deployment to the New York
Times. Dotted lines show the configured TaaS path. The
dashed line shows the firewalled BGP path to the New
York Times.

Because we did not have access to ISP infrastructure,
we deployed the routers at datacenter locations within
the ISP’s autonomous system (AS). Unfortunately, this
prevents us from forwarding packets by rewriting only
their destination address in most cases. The upstream
ISPs filter packets with source IP addresses that do not
originate within their allocated block. To work around
this, we rewrite the source IP address to the router’s IP
address. This has the implication that BGP-based routes
of the forwarded packets might end up being different
if intermediate ISPs decide to route specially based on
source IP address. We expect this discrepancy to go away
if TaaS was deployed as part of an ISP’s infrastructure.

To test our setup, we initiated a browsing session from
a Planetlab node in China to the New York Times web-
site2. When we send the request via the regular BGP
route the access was blocked. When configuring the
Planetlab node to generate TaaS traffic instead and for-

1Names not given for double-blind reviewing.
2http://www.nytimes.com/
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ward to Europe, the request went through fine. Reverse
traffic was sent TaaS-encapsulated back to us.

This demonstrates that TaaS can be deployed to
change actual routes on the Internet to route around
blocked links.

5 Evaluation
We evaluate TaaS both via simulation—to estimate ef-
fects on the large-scale Internet topology—and by mea-
surement of an actual implementation deployed on a lo-
cal cluster of machines, to gauge the overhead of TaaS on
Internet traffic. Specifically, this section seeks to answer
the following questions:

• How are throughput and latency of Internet traffic af-
fected when a TaaS path (of various lengths) is used?

• How resilient are various TaaS deployments to Inter-
net link failures?

• Can we achieve more reliable performance using
TaaS?

• How effectively do various TaaS deployments pre-
vent IP prefix-hijack attacks?

• Can we use TaaS to route around ISPs that behave in
a Byzantine way?

5.1 Performance Overhead

TaaS should impose only minor overhead to latency and
throughput of traffic when compared to standard routing
on the Internet. We evaluate the latency and throughput
overheads of the cluster-deployed version. We determine
the latency along a path by measuring the average round-
trip time (RTT) of 100 individual ICMP echo requests
sent from source to target endpoint. Serval does not sup-
port ICMP. Hence, latency measurements on the Serval
stack were carried out by sending 100 individual 64 byte
UDP packets to an echo server, which sends them back
unmodified. We measure the average throughput over 5
TCP transfers of a data stream over 10 seconds each, us-
ing the iperf3 bandwidth measurement tool.

In the first iteration of our throughput measurement,
we noticed that throughput fell sharply, from 9.1 to 2.7
Gbits/s, when encapsulating packets in GRE. This was
due to TCP segmentation offload to the Ethernet network
interface card. With the GRE headers in front of the TCP
headers, hardware offloading is not possible and the op-
erating system has to perform the segmentation, at a sig-
nificant performance hit. Thus, to perform our measure-
ments, we configured each network interface’s MTU to
the maximum supported by our switch (9198 bytes) in-
stead of the default 1500 bytes. This eliminates the over-
head, as the operating system is able to create larger TCP
segments. Hardware routers typically employed on ISP

3http://iperf.sourceforge.net

Ping RTT [µs] Thruput [Gbits/s]
Linux 44/96/107 9.05/9.36/9.68
GRE 96/105/131 7.93/9.03/9.87
Click 182/189/266 9.35/9.52/9.74

1 TaaS hop 265/272/289 9.37/9.55/9.85
2 TaaS hops 454/463/485 8.19/8.49/8.72

Serval 73/81.23/154 0.62/1.19/1.71
1 TaaS hop 113/131.96/290 0.89/0.97/1.04

2 TaaS hops 158/191.38/444 0.90/0.96/1.03

Table 2: TaaS overhead of different path lengths to
packet latency and TCP throughput vs. Click and Ser-
val. Numbers for GRE and Linux are also given.
Min/avg/max are shown.

infrastructure do not exert this problem. Also, even with-
out large MTUs, the throughput is still good enough for
most of our target, small-bandwidth applications.

Table 2 shows the measurement results of different
lengths of TaaS routes compared to Linux, the GRE pro-
tocol, the Click software router, and Serval when TaaS
is not active. The Linux measurements measure direct
bandwidth and latency between two endpoints, without
going through any intermediate hops. The GRE mea-
surement measures the overhead of using the GRE pro-
tocol on the same path. The Click measurement uses 1
Click hop, without any special TaaS processing, to for-
ward the GRE packets to the target endpoint. The exper-
iments using 1 TaaS hop do the same, but with the extra
TaaS processing to determine the packets’ fate. Finally,
the 2 TaaS hop experiments involve one extra TaaS node
in each direction that forwards packets to the next TaaS
hop without decapsulating them, as shown in Figure 9.

In terms of latency, TaaS adds an overhead of 44%
over the baseline Click software router implementation.
A 2-hop TaaS path has an overhead of 76% over the la-
tency of a 1-hop path. Throughput is not affected by
adding TaaS to a 1-hop path. However, adding another
TaaS hop impacts throughput by 10%. This might be
due to our switch not being able to handle the bandwidth
requirement.

The Serval measurements use the Serval protocol
stack to forward packets instead of the GRE protocol and
the Click router. We use the default MTU of 1500 bytes
for the Serval experiments, hence the lower throughput
rates. Our measurements are in-line with those done in
the Serval paper [25] and show that average throughput
drops by 18% on a 1-hop TaaS path, which is due to the
additional packet processing and routing table lookup.
Latency overheads in Serval are better than, but generally
comparable to that of the Click implementation. This is
due to the Serval implementation, which is tailored to
the Linux packet processing code. Click instead com-
piles packet processing code from high-level processing
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modules.

5.2 Simulation Dataset and Methodology

Next, we explore the reliability and performance prop-
erties of TaaS deployed at Internet-scale. For this pur-
pose we simulate routing events on the Internet topol-
ogy, based on measurements collected by iPlane.4 The
iPlane network atlas is built using traceroutes from over
200 PlanetLab sites to more than 140K prefixes, i.e., al-
most every routable prefix on the Internet. The iPlane
dataset also provides IP-to-AS mapping, IP-to-PoP map-
ping (where each PoP is a set of routers from a single AS
co-located at a given geographic location), and the RTTs
of inter-PoP links. The resulting topology is a superset
of that provided by the CAIDA AS-level graph [1] or
the RouteViews BGP tables [2]. We use the most recent
iPlane snapshot collected for February 2013. This has
a total of 27,075 ASes and 106,621 unique AS-AS links.
At the PoP-level, it has 183,131 PoPs and 1,540,466 PoP-
level links.

5.3 Resilience to Link Failures

We start by evaluating the resilience provided by TaaS
in case of link failures. To simulate all failures, we se-
lect each provider link L of each multi-homed stub AS
A, successively. A multi-homed stub AS is an AS with
more than one provider and no customers; our topology
includes 16110 such ASes. We focus on these because
the stub AS has a valid physical route to the rest of the
Internet even if the provider link L fails. We arrive at a
total number of 42605 failures, affecting 475 sources per
victim AS. At the beginning of the experiment, we select
a small number of tier-1 ASes as our TaaS -supporting
ASes, ordered by the size of their customer tree [30]. For
example, if we want k tier1s as TaaS ASes, we will se-
lect k tier1 ASes with the largest customer tree size. For
each failure trial, we fail the link L, and see what frac-
tion of the sources still have connectivity to the stub AS
A through any of the TaaS path segments. Figure 11
is a CCDF plot of these failures showing the results of
our experiment. Each curve represents a particular TaaS
deployment scenario. The x-axis measures the discon-
nectivity seen in topology as the result of the failure, i.e.,
the fraction of sources unreachable from the victim AS.
For each such fraction f on the x-axis we have the cor-
responding fraction of failures that resulted in at most f
disconnectivity. We compare four TaaS deployments of
various sizes with simple BGP routing.

All four deployments of TaaS provide significantly
better reliability against failures than BGP. For exam-
ple, with a TaaS deployment of size 1, more than 60%
of failures result in only 20% or less disconnections, as
opposed to just above 20% of failures using only BGP

4http://iplane.cs.washington.edu/data/data.html
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Figure 11: CCDF showing the fraction of failures result-
ing in a certain amount of disconnectivity, as measured
by the fraction of sources unable to reach the target as a
result of the failure.

routing. This number goes up to nearly 90% when 8
TaaS ASes are deployed. In fact, more than 85% of fail-
ures in the 8-AS deployment case result in less than 1%
disconnectivity.

As can be seen from the plot, increasing the number
of tier-1s supporting TaaS provides additional resilience,
but the gains are diminishing. The reliability provided
by 8 TaaS ASes is not much better than that provided by
4 TaaS ASes. This is intuitive since most tier-1s have a
significant global presence as well as peerings with other
tier-1s. Therefore deployment on 2 or 3 tier-1s likely
provides as rich a topology as that on 7 or 8 tier-1s. In
fact, deployment on just one tier-1 already provides sig-
nificant gains in reliability compared to BGP.

5.4 Resilience to Byzantine Failures

To reduce the risk of encountering any AS that behaves
in a Byzantine manner we ask if we can build a TaaS path
with complete or near-complete AS-level redundancy.
We define a path q to be completely redundant to path
p, if the set of AS-hops in q is disjoint from that of p, ex-
cept for the source and destination ASes. The metric that
we are interested in evaluating is the number of common
hops between the original path p and the best TaaS path
q as a fraction of p’s length. Figure 12 plots this distribu-
tion over all paths in our dataset (around 5 million). The
two curves represent the CDFs for TaaS deployments on
2 tier-1 and 4 tier-1 ASes respectively.

As can be seen in Figure 12, alternative TaaS paths
ensure a high degree of redundancy between the old and
new paths. Almost 40% of the paths for the 2-AS de-
ployment, and 50% for the 4-AS deployment provide
completely disjoint paths, respectively (disregarding the
source and the destination). Almost 80% of the paths in
both cases have less than half of the ASes from the old
path still present in the new TaaS path. The significant
redundancy with a small TaaS deployment can again be
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Figure 12: A TaaS deployment provides significant path
redundancy, with almost half of the paths having com-
pletely disjoint TaaS paths at the AS-level.

explained by the rich peering provided by a tier-1 ISP.

5.5 Protection against Prefix-hijacking

IP prefix hijacking is a serious challenge to the reliabil-
ity and security of the Internet. Since the Internet lacks
any authoritative information on the ownership of pre-
fixes, IP prefix-hijacking is extremely hard to eliminate.
TaaS can be used to mitigate the effects of prefix hijack-
ing. We imagine a scenario where the prefix-hijacking
has already been detected. Specifically, given a standard
TaaS deployment on a small number of tier-1s, we ask
what fraction of sources still remain polluted (i.e., paths
going through any of the polluted ASes) for a particular
prefix-hijacking attack.

To simulate prefix hijacks, we select a victim AS and
an attacker AS, both stubs. We use all stubs in our topol-
ogy as victims and average the results over a random se-
lection of 20 attackers for each victim. This gives us a to-
tal of 16160 victim ASes. For each attack, we determine
the set of polluted ASes as follows: an AS is polluted if
its BGP path to the attacker is shorter than its path to the
victim [36]. For each attack and a given TaaS deploy-
ment we see what fraction of the sources remain unpol-
luted, i.e., able to send traffic to the victim through any
of the TaaS path segments. Figure 13 shows the CCDF
of the hijack attacks. The x-axis measures the level of
pollution, i.e., the fraction of sources remaining polluted
as a result of the attack. For each such fraction p on
the x-axis we have the corresponding fraction of attacks
that resulted in at most f pollution. Again we compare
four TaaS deployments of various sizes with simple BGP
routing.

Again TaaS provides significant advantages to com-
bat prefix-hijack attacks, even more so than failures as
evaluated earlier in Section 5.3. All four deployments of
TaaS provide significant protection against prefix-hijack
attacks. For example, for a maximum number of polluted
sources of 5%, TaaS deployments of size 1, 2, 4 and 8
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Figure 13: CCDF showing the fraction of prefix-hijack
attacks resulting in a certain amount of pollution, as mea-
sured by the fraction of sources unable to reach the target
as a result of the attack.

cover 75%, 88%, 100% and 100% of the attacks, respec-
tively. We need a TaaS deployment only on 4 tier-1s to
eliminate most of the unreachability caused by prefix-
hijack attacks.

5.6 Reliable Performance

We now evaluate the performance gains achievable from
a TaaS deployment. Assuming that the destination AS is
a TaaS client of all k TaaS -supporting ASes, we ask the
question: what is the fraction of sources that have an al-
ternative TaaS path with an end-to-end latency that is at
least X% lower than the original path? For this purpose
we use the PoP-level link latencies provided by iPlane.
Figure 14 is the distribution of fractional improvement in
the end-to-end latencies for a total of 1143652 PoP-level
paths.
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Figure 14: A TaaS deployment provides performance la-
tency gains for more than 80% of the paths.

As can be seen from Figure 14, more than 80% of the
source-destination pairs experience an improvement in
the end-to-end latency while using a TaaS path. The dis-
tribution of improved latencies is pretty even for both de-
ployment scenarios, with the gains slightly higher for a
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deployment over four tier-1ASes.

6 Related Work
TaaS draws inspiration and builds upon a number of re-
lated proposals and systems targeted at other goals, in-
cluding OpenFlow [23], ATM networks, MPLS, i3 [28],
pathlet routing [9], denial of service defenses [5,34], and
Telex [31]. We will discuss the most important in this
section.

Several proposals provide endpoints with greater con-
trol over Internet routing. In Icing [24], every entity on a
communication path has to provide consent before pack-
ets can be transmitted over the path. Yang el al. [33]
propose a solution that allows both senders and receivers
to choose AS-level routes to the Internet core, with the
end-to-end path the concatenation of the two segments.
Routing as a Service [18] recognized the tussle between
users who want control over end-to-end paths and ISPs
who desire control over how their infrastructure is used.
To resolve this tussle, the authors introduce a separate
entity that contracts with both ASes and customers and
establishes paths that are acceptable to all entities. These
proposals are clean-slate redesigns of the routing proto-
col and provide limited incentives and opportunities for
incremental deployment.

Pathlet routing [9] is a related proposal that allows for
endpoints to perform source routing over a virtual topol-
ogy. Endpoints can select any path within the topology
and can take into account the needs of the application in
doing so. i3 introduces a level of indirection in network
communications, decoupling the act of sending from the
act of receiving; as a consequence, it can efficiently sup-
port a wide variety of communication services (e.g., mo-
bility, service composition, and multicast) [28]. TaaS
shares the flexibility goals of these proposals, but strives
to achieve them in the context of today’s Internet without
re-architecting it from the ground up.

MIRO [32] is a multi-path interdomain routing pro-
tocol that allows ISPs to negotiate alternate paths as
needed. MIRO is designed to be an incrementally de-
ployable extension to BGP. RBGP [16] proposes to use
pre-computed backup paths to provide reliable delivery
during periods where the network is adapting to failures.
TaaS has similar goals, but obtains additional deployabil-
ity benefits since it doesn’t require changes to the inter-
domain routing protocol. A single ISP can unilaterally
provide TaaS service and obtain revenues directly from
end users who would benefit from the service.

There are two widely used solutions to improving In-
ternet reliability that help a bit, but not enough: Multi-
homing and overlays. With multihoming, a customer ar-
ranges for multiple Internet providers, in case one fails.
However, this does not provide a guarantee – if the paths
through both provider autonomous systems (ASes) tra-

verse a specific problem AS, then the endpoint will ex-
perience an outage, despite multihoming. Using a De-
tour overlay can avoid these problems, but measurements
have shown that because of the unreliability of the un-
derlying Internet, at best Detour routes improve reliabil-
ity by a factor of two. Detour routes also generally do
not protect end-to-end communication against denial-of-
service attacks or byzantine behavior by some ISPs.

Because of the importance of Internet reliability and
security, large ISPs have widely deployed MPLS to pro-
vide more reliable and more predictable routes within
their own networks. IP fast reroute proposals have been
developed by the IETF and others to improve recovery
from intradomain faults. Within a data center, network
topologies and routing protocols are increasingly being
designed to be resilient to network device failures. We
build on this work to provide a deployable end-to-end
solution.

Our approach is complementary to clean-slate Inter-
net re-designs and builds upon some of their ideas. For
example, SCION [4, 35] introduces the notion of trust
domains and endpoint-selected path preferences. TaaS
builds upon both ideas to provide an incrementally-
deployable routing architecture for mission-critical traf-
fic on the existing Internet.

7 Conclusion
The Internet is increasingly being used for critical ser-
vices, such as home health monitoring, management of
the electrical grid, 911 IP service, and disaster response.
Yet, there is increasing evidence that the current Inter-
net is unable to meet the availability demands of these
emerging and future uses. In this paper, we examine what
are the minimal changes needed for the Internet to sup-
port such mission critical data transmissions.

Our proposal is to provide a mechanism that would
enable end users, enterprises, and governments to stitch
together reliable end to end paths by leveraging highly
reliable intradomain path segments. At the core is a pro-
tocol called Transit as a Service, which allows users to
provision a path across a remote ISP. We outline the de-
sign of TaaS, examine how it can be used to enhance the
robustness and security of end-to-end paths, and describe
an implementation of its key components. Our evalua-
tions show that TaaS imposes only minor overheads and
can provide significant resiliency benefits even when de-
ployed by a limited number of ISPs.
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