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ABSTRACT
Test dependence arises when executing a test in different
environments causes it to return different results. In this
paper, we show through a set of substantive real-world ex-
amples that test dependence arises in practice. We also show
that test dependence can have potentially costly repercus-
sions such as masking program faults, and can be hard to
identify unless explicitly searched for: We found a depen-
dence that only manifests when a sequence of three tests
are run in a specified, non-default order.
We formally define test dependence in terms of test suites

as ordered sequences of tests along with explicit environ-
ments in which these tests are executed. We use this for-
malization to formulate the concrete problem of detecting
dependence in test suites, prove that a useful special case is
NP-complete, and propose an initial algorithm that approx-
imates solutions to this problem.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]:
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1. INTRODUCTION
Informally, dependent tests produce different test results

when executed in different contexts. It is easy to construct
an example of dependence between two tests A and B, where
running A and then B leads to both tests passing, while run-
ning B and then A leads to either or both tests failing—the
order of applying the tests, in this case, changes the execu-
tion context.
Definitions in the testing literature are generally clear

that the conditions under which a test is executed may af-
fect its result. The importance of context in testing has
been explored in some depth in some domains including
databases [11, 4, 17], with results about test generation, test
adequacy criteria, etc., and mobile applications [32]. For
the database domain, Kapfhammer and Soffa formally de-
fine and distinguish independent test suites from those that
are non-restricted and thus “can capture more of an ap-
plication’s interaction with a database while requiring the
constant monitoring of database state and the potentially
frequent re-computations of test adequacy” [17, p. 101].
At the same time, there is little focus on the core issues of

test dependence itself. Is this because test dependence does

not arise in practice (beyond domains such as databases)?
Is it because, even if-and-when it does arise, there are few
if any repercussions? Is it because it is difficult to notice
if-and-when it arises?

1.1 Manifest Test Dependence
To explore these questions, we consider a narrow charac-

terization of test dependence that:

• Adopts the results of the default, usually implicit, or-
der of execution of a test suite as the expected results.

• Asserts test dependence when there is a possibly re-
ordered subsequence of the original test suite that,
when executed, has at least one test result that dif-
fers from the expected result for that test.

That is, we focus on a manifest perspective of test depen-
dence, requiring a concrete variant of the test suite that
dynamically produces different results from the expected.
Our definition differs from that of Kapfhammer and Soffa by
considering test results rather than program and database
states. As we discuss later, considering only manifest test
dependences allows us to more easily situate this research in
the empirical domain.

1.2 Examples and Repercussions
We have identified a number of substantive examples of

test suites from fielded programs that manifest dependences.
We examined six projects and found in their human-written
test suites a total of 75 dependent tests (1.4%). For the same
set of programs, we also generated test suites automatically
using Randoop [23] and found that on average 14% of the
generated tests are dependent.
By analyzing these examples of test dependence, we iden-

tified three categories of problems that can arise due to the
presence of dependent tests. First, test suites that unexpect-
edly contain dependent tests can mask faults in a program.
We present examples where executing a test suite in the de-
fault order does not expose the fault, whereas executing the
same test suite in a different order does. Second, test suites
that unexpectedly contain dependent tests can conceal weak-
nesses in the test suite itself. We present examples where
exposing dependent tests can identify situations where some
tests do not perform proper initialization. Third, a test suite
containing undocumented test dependences can lead to spu-
rious bug reports. We present an example where it took the
developers more than a month to realize that the test de-
pendences were intentional, allowing them to close the bug
report without a change to the system.



1.3 Test Execution Environment
Our examples highlight varying execution environments as

the unsurprising central cause of test dependence. Specif-
ically, when a test is executed in different environments—
global variables with different values, differences in the file
system, differences in data obtained from web services, etc.—
it has the potential to return a different result. Most of the
dependences we see in our examples ultimately stem from
incorrect or incomplete initialization of the program envi-
ronment.
Why does this happen? Especially given frameworks such

as JUnit that facilitate the process of clean setup by pro-
viding means to automatically execute methods (setUp()
and tearDown() in JUnit 3.x, and methods annotated with
@Before and @After in JUnit 4.x) that should handle all
common setup and clean-up between test cases.
It appears that the answer is that developers are as likely

to make mistakes when writing tests as when they are writ-
ing other code. And while frameworks make it easier to get
environment setup right, they cannot ensure that it is done
properly. Like with other code, this means that tests in some
cases will have unintended and unexpected behaviors. And
as programs increase in complexity, so may tests, which may
increase the frequency of such problems in tests, which may
in turn increase the frequency of test dependence.
Another situation in which the underlying test execution

context can unexpectedly change is when a tool or tech-
nique that takes a test suite as input is used. Examples
of such techniques include test selection techniques (that
identify a subset of the input test suite that will guarantee
some properties during regression testing) [12], test prioriti-
zation techniques (that reorder the input to increase the rate
of fault detection) [9], test parallelization techniques (that
schedule the input for execution across multiple CPUs), test
factoring [27] and test carving [8] (which take system tests
as input and create unit tests and differential unit tests,
respectively), etc.
Of these techniques, we are most concerned about those

that modify the organization of test suites, rather than the
tests they contain. Many such downstream testing tech-
niques implicitly assume that there are no test dependences
in the input test suite. Our concern is that this assumption
can cause delayed problems in the face of latent test depen-
dence in the input. As an example, test selection may report
a subsequence of tests that do not return the same results
as they do when executed originally, as part of the full suite.

1.4 Contributions
At its heart, this paper addresses and questions conven-

tional wisdom about the test independence assumption. It
is intended to balance a precise characterization of test de-
pendence with substantive empiric examples and concerns.
The contributions of the paper include:

• A precise formalization of test dependence in terms of
test suites as ordered sequences of tests and explicit
execution environments for test suites, which enables
reasoning about test dependence as well as a proof
that finding manifest dependences is an NP-complete
problem (Section 3).

• Examples from fielded software of test suites where
manifest test dependences lead to identifiable concerns
with the underlying programs or test suites (Section 4).

• Motivation for and presentation of our initial approxi-
mate algorithms and a supporting tool for identifying
test dependences (Section 5).

Although we provide evidence that test dependence un-
expectedly arises in practice, a broad study of how often
test dependences arise, and the costs that these may lead
to, is beyond the scope of this paper. We conclude the pa-
per with a set of open questions addressing this and other
possible concerns in Section 6.

2. RELATED WORK
Denoting a group of test cases as a “suite of test programs”

began around the mid-1970’s [3, p. 217]; similar terms in-
clude “testcase dataset” [21] and “scenario,” which an IEEE
Standard defines as “groups of test cases; synonyms are
script, set, or suite” [14, p. 10]. Treating test suites explicitly
as mathematical sets of tests dates at least to Howden [13,
p. 554] and remains common in the literature. The execu-
tion order of tests in a suite is usually addressed implicitly
or informally, suggesting that the potential of executing a
given test in different contexts is immaterial to those results:
that is, test independence is assumed.

2.1 Test Dependence
In addition to the work by Kapfhammer and Soffa [17],

there are a handful of categorical references that acknowl-
edge that tests can be dependent based on context, suggest-
ing ways to document or find situations where the indepen-
dence assumption fails to hold.
The IEEE Standard for Software and System Test Doc-

umentation (829-1998) §11.2.7, “Intercase Dependencies,”
says in its entirety: “List the identifiers of test cases that
must be executed prior to this test case. Summarize the
nature of the dependences” [14]. The succeeding version
of this standard (829-2008) adds a single sentence: “If test
cases are documented (in a tool or otherwise) in the order in
which they need to be executed, the Intercase Dependencies
for most or all of the cases may not be needed” [15].
McGregor and Korson discuss interaction tests that are

intended to identify “two methods that may directly or in-
directly cause each other to produce incorrect results” and
suggest constructing such interaction tests by identifying the
values shared via parameter passing between methods that
two or more test cases share [20, p .69].
Bergelson and Exman characterize a form of test depen-

dence explicitly: given two tests that each pass, the com-
posite execution of these tests may still fail [1, p. 38]. That
is, if 〈t1〉 executed by itself passes and 〈t2〉 executed by itself
passes, executing the sequence 〈t1, t2〉 in the same context
may fail.
Some practitioners acknowledge test dependence as a pos-

sible, albeit low probability, event:
Unit testing . . . requires that we test the unit in
isolation. That is, we want to be able to say, to a
very high degree of confidence [emphasis added],
that any actual results obtained from the execu-
tion of test cases are purely the result of the unit
under test. The introduction of other units may
color our results [31].

They further note that other tests, as well as stubs and
drivers, are other units that may “interfere with the straight-
forward execution of one or more test cases.”



A few approaches allow developers to annotate dependent
tests and provide supporting mechanisms to ensure that
the test execution framework respects those annotations.
DepUnit1 allows developers to define soft and hard depen-
dences. Soft dependences control test ordering, while hard
dependences in addition control whether specific tests are
run at all. TestNG2 is a testing framework intended to im-
prove upon JUnit, and allows dependence annotations and
supports a variety of execution policies such as sequential ex-
ecution in a single thread, execution of a single test class per
thread, etc. that respect these dependences. What distin-
guishes our work from these approaches is that, while they
allow dependences to be made explicit and respected during
execution, they do not help developers identify dependences.
A tool that finds dependences (Section 5.2) could co-exist
with such frameworks by generating annotations for them.

2.2 Test Prioritization
Test prioritization seeks to reorder a test suite to detect

software defects more quickly, and is the example of down-
stream testing tools that we focus on most closely both be-
cause it is characteristic of the other tools (in the dimen-
sions we address) and also because of its focus on reordering
(perhaps the most common way to change the execution
environment of a test).
Early work in test prioritization [35, 25] laid the founda-

tion for the most commonly used problem definition: con-
sider the set of all permutations of a test suite and find the
best award value for an objective function over that set [9].
The most common objective functions favor permutations
where more faults in the underlying program are found with
running fewer tests. A number of results carefully study var-
ious prioritization algorithms empirically, most by Rother-
mel and colleagues, spanning over a decade [25, 7, et alia].
These evaluations are based in part on the assumption that
the set of faults in the underlying program is known be-
forehand; the possibility that test dependence may unmask
additional faults in the program is not studied.
Kim and Porter proposed a technique that uses the his-

tory of test cases run in prior regression tests to prioritize
those that have not yet run for creating new regression test
suites [19]. Whether tests were executed is essential to the
technique; the results of specific tests are not.
Echelon defines a heuristic that exploits both a mapping

between tests and executed program paths and also a binary
differencing between two program versions to select a subset
of tests intended to quickly identify program faults [29]. Test
dependence is not considered in the approach.
Test independence is explicitly asserted as a requirement

for prioritization by Rummel et al.:

A test suite contains a tuple of tests 〈T1. . .TR〉
that execute in a specified order. We require that
each test is independent so that there are no test
execution ordering dependencies. This require-
ment enables our prioritization algorithm to re-
order the tests in any sequence that maximizes
the suite’s ability to isolate defects. The assump-
tion of test dependence is acceptable because the
JUnit test execution framework provides setUp
and tearDown methods that execute before and

1https://code.google.com/p/depunit/
2http://testng.org/

after a test case and can be used to clear appli-
cation state [26, p. 1500].

2.3 Syntactic and Semantic Test Dependencies
Dependences in testing are most often considered to be

syntactic dependences between program units, for exam-
ple methods calling other methods, and classes using other
classes [1, 2]. Syntactic dependence here means that a unit
A cannot be compiled and executed without unit B being
present. If we test such a unit A without convincing our-
selves first that B is correct, a test failure for A is harder to
interpret, because it could just as well indicate a fault in B.
Zhang and Ryder extend this notion to semantic depen-

dences, which is closer to our approach [37]. They use a
notion of “test outcome” to determine whether or not syn-
tactically dependent classes or methods can influence each
others results, and consider only those that can to be se-
mantically dependent. They give an informal definition of
what it means for the execution of a test to influence the
outcome of another test. We define this precisely, and we
also define manifest test dependence in terms of execution
environments and test execution order rather than in terms
of code use.
Santelices et al. define a formal model of how changes

might interact at the source code level and present a tech-
nique for detecting such interactions that arise at run-time [28].
In contrast to our approach, they identify changes that in-
teract rather than tests that depend upon each other.
Another kind of dependence helps address the testing of

configurable software, which can be combinatorial with re-
spect to the set of configurable options [5, 6]. The depen-
dences considered in this approach are not between tests,
but rather within the configuration option space.

3. THEORY
A standard textbook states that “[a] test case includes not

only input data but also any relevant execution conditions
. . . ” [24, p. 152, emphasis added]. This characterization
is consistent with the example that piqued our interest in
test dependence: we serendipitously identified a bug in an
open-source system when we found that running individual
tests one-by-one—each in a newly initialized environment—
produced different results from running the entire test suite
normally (i.e., with a single initialized environment followed
by the sequential execution of each test in order) [22]. These
tests shared global variables, and the test results varied de-
pending on the values stored in these variables. That is,
relevant execution conditions—specifically, pertinent parts
of the implicit environment comprising global variables, the
file system, operating system services, etc.—were neglected.
To characterize the relevant execution conditions precisely,

our formalism below explicitly represents the notions of (a)
the order in which test cases are executed and (b) the envi-
ronment in which a test suite is executed.
Consider two examples of how test dependences arise in

terms of order and environment (Figure 1). In the leftmost
example, test2 checks the value of a variable that has been
assigned elsewhere. If the tests are executed in the order
〈test1, test2〉, both tests will pass, while running test2
first will make it fail. The rightmost example extends this
principle to multiple tests. While none of the n−1 tests prior
to testn will fail, they all must execute in this particular
order for testn to pass.



test1 { v1 = 4 }
test2 { assert v1==4 }

(a) Direct dependence

test1 { v1 = 1 }
test2 { v2 = v1 + 1 }
...
testn {

assert vn−1 == n-1 }

(b) Chain dependence

Figure 1: Examples for basic causes of test depen-
dences

The global variables involved are usually buried deep in
the program code, and the assertions do not directly check
them, but rather check values that have been computed from
them. In any non-trivial real-world program, this deep nest-
ing effectively hides potential dependencies from developers,
and they may only become aware of them when a subtle bug
leads them there. Therefore, we explicitly distinguish poten-
tial test dependences (Definition 6)—those that could cause
a variation in test suite results under some environment and
order—and manifest test dependences (Definition 7)—those
that are guaranteed to cause a variation in test suite results
under a specific environment and order.

3.1 Definitions
We express test dependences through the results of exe-

cuting ordered sequences of tests in a given environment.

Definition 1 (Environment). An environment E for
the execution of a test consists of all values of global vari-
ables, files, operating system services, etc. that can be ac-
cessed by the test and program code exercised by the test
case.

Definition 2 (Test). A test is a sequence of program
statements, executed with fixed, well-defined inputs, and an
oracle that decides whether a test passes or fails.

Simplifying from Staats et al. [30], and without loss of
generality, we consider an oracle to be a boolean predicate
over tests and environments.

Definition 3 (Test Suite). A test suite T is an n-
tuple (i.e., ordered sequence) of tests 〈t1, t2, . . . , tn〉.

Definition 4 (Test Execution). Let T be a test suite
and E the set of all possible environments. The function
ε : T × E → E is called test execution. ε maps the execu-
tion of a test t ∈ T in an environment E ∈ E to the new
(potentially updated) environment E′.
For the execution of test suites T = 〈t1, t2, . . . , tn〉 we use

the shorthand ε(T, E) for ε(tn, ε(tn−1, . . . ε(t1, E) . . . )).

Definition 5 (Test Result). The result of a test t
executed in an environment E, denoted R(t|E) (and some-
times referred to as an oracle judgment), is defined by the
test’s oracle and is either PASS or FAIL.
The result of a test suite 〈t1, . . . , tn〉, executed in an en-

vironment E, denoted R(〈t1, . . . , tn〉|E) is a sequence of re-
sults 〈o1, . . . , on〉 with oi ∈ {PASS , FAIL}.
For example, R(〈t1, t2〉|E1) = 〈FAIL, PASS〉 represents

that given the environment E1, t1 fails and t2 passes.

Definition 6 (Potential Test Dependence). Given
a test suite T , a test tl ∈ T is potentially dependent on
test tk ∈ T , if and only if ∃E : R(T |E) = 〈o1, . . . , on〉 ∧
R(〈tk, tl〉|E) = 〈ok, ol〉 ∧ R(tl|E) = ¬ol. We write tk ≺ tl

when tl is potentially dependent on tk.

This definition is dynamic because dependence arises only
if there exists an environment in which actual test results
would differ. It is potential as it only requires the existence
of such an environment, but does not guarantee that the
test suite will ever be executed in the context of such an
environment.
We refine this definition of dependence to require a con-

crete environment guaranteed to manifest a dependence:

Definition 7 (Manifest Dependence). Given a test
suite T , two dependent tests ti, tj ∈ T , the dependence ti ≺
tj manifests in a given environment E if ∃S ⊆ T : ti, tj ∈
S∧R(T |E) = 〈o1, . . . , on〉∧R(S|E) = 〈. . . , oi, oj〉∧R(tj |E) =
¬oj. We write ti ≺E tj for manifest dependence.3

Note that the dependent tests ti and tj do not have to
be adjacent in the original test suite, but that they must be
adjacent in the shortest test suite that manifests the depen-
dence.
The intuition behind manifest dependences is that in prac-

tice we do not construct arbitrary environments to execute
tests in. Rather, we use the natural environment E0 pro-
vided by frameworks such as JUnit, and the only modifica-
tions of this environment happen through the tests and the
tested code. Hence, potential dependences manifest only if
there is a sequence of tests S∗ whose execution ε(S∗, E0)
produces the environment E′ that will reveal the depen-
dency. The algorithm we propose in Section 5 detects de-
pendences by running tests and checking for different test
results, hence it can only detect manifest dependences. To
improve algorithms that are affected by test dependences, we
are interested in the shortest test suite S∗ ⊆ T that mani-
fests a dependence, because these define the partial order of
test execution that such techniques must respect.
In later sections we often talk about executing tests in

isolation, or executing all tests in a test suite in isolation.
This is an important approximation to detecting test depen-
dences.

Definition 8 (Test Isolation). The result of execut-
ing a test t in isolation, given an environment E0 is the re-
sult R(t|E0) of executing that test in the given environment.
The result of executing all tests in a test suite 〈t1, . . . , tm〉

in isolation is the sequence of results 〈R(t1|E0), . . . , R(tn|E0)〉.

3.2 Detecting Dependent Tests
From a practical perspective, techniques that affect the

ordering of test suites must respect dependences. Other-
wise their results cannot be interpreted correctly in the pres-
ence of dependences. Detecting dependences in existing test
suites is thus an interesting problem. In the following, we
first give a precise definition of the problem of detecting de-
pendent tests, and then prove that in general this problem
is NP-complete. In Section 5 we outline an algorithm that
approximates solutions efficiently.

3S ⊆ T means that S is a subsequence of T .



Definition 9 (Dependent Test Detection Problem).
Given a set suite T = 〈t1, . . . , tn〉 and an environment E0,
for a given test ti ∈ T , is there a test suite S ⊆ T that
manifests a test dependence involving ti?

We prove that this problem is NP-hard by reducing the
NP-complete Exact Cover problem to the Dependent Test
Detection problem [18]. Then we provide a linear time algo-
rithm to verify any answer to the question. Together these
two parts prove the the Dependent Test Detection Problem
is NP-complete.

Theorem 1. The problem of finding a test suite that man-
ifests a dependence is NP-hard.

Proof. In the Exact Cover problem, we are given a set
X = {x1, x2, x3, . . . , xm} and a collection S of subsets of X.
The goal is to identify a sub-collection S∗ of S such that
each element in X is contained in exactly one subset in S∗.
Assume a set V = {v1, v2, v3, . . . , vm} of variables, and a

set S = {S1, S2, . . . , Sn} with Si ⊆ V for 1 ≤ i ≤ n.
We now construct a tested program P , and a test suite

T = 〈t1, t2, . . . tn, tn+1〉 as follows:

• P consists of m global variables v1, v2, . . . , vm, each
with initial value 1.

• For 1 ≤ i ≤ n, ti is constructed as follows: for 1 ≤
j ≤ m, if xj ∈ Si, then adding a single assignment
statement vj = vj - 1 to ti.
tn+1 consists only of the oracle assert(v1 != 0 || v2
!= 0 ...|| vm !=0).

In the above construction, the tests ti for 1 ≤ i ≤ n will
always pass. The only test that may fail and thus exhibit
different behavior is tn+1, which only fails when each vari-
able vi appears exactly once in a test case.
For the given test tn+1, if we can find a sequence 〈ti1 , ti2 , . . . , tij 〉

that makes tn+1 fail, the subsets S∗ corresponding to each
tij are an exact cover of V .

In practice, the structure of the proof directly translates to
the structure of test suites. tn+1 is the dependent test, S is
defined by the tests that write variables used by tn+1, and
every exact cover of S represents an independent shortest
test suite that is a manifest dependency of tn+1.
To complete the proof that Dependent Test Detection is

NP-complete, we provide an algorithm to verify solutions
to the problem, that is linear in the size of the test suite.
Given a test suite T and a test suite S ⊆ T that is said
to manifest a dependency on ti, we first execute T , then
S, and compare the result for ti in both executions. If the
results differ the solution is correct, if they do not differ,
the solution is rejected. Since in the worst case we have to
execute 2n tests, the complexity of this algorithm is linear.

3.3 Discussion
This formalism has dual intents: to lay a foundation for

reasoning about test dependence in a precise way; and to be
consistent with and to allow for approximate and practical
algorithms and tools (Section 5).
This second intent, of course, requires a balance of theory

and practice. First, the dynamic nature of our our view on
dependences allows us to avoid the complexity issues that
come with a static approach. With a static approach, it

would be essential to decide how to address undecidabil-
ity. The most likely and common approach being to choose
soundness with respect to all possible executions and accept-
ing the consequent imprecision of the analysis. Second, our
focus on manifest dependence, when realized in a tool will
only identify true positives, although it may miss some de-
pendences (false negatives). It is often easier to have tools
with this kind of property accepted by practitioners than
some other kinds. Third, the manifest test dependence prob-
lem is NP-complete; although that is daunting (but less so
than undecidability), approximate algorithms can be defined
for large classes of NP-complete problems.
The examples in the following section and the algorithm

and tool following that give a better flavor for why we made
these decisions. The degree to which these are the “right”
(or at least effective) decisions is itself an empirical question
beyond the scope of this paper.

4. MANIFESTATIONS
Dependent tests reach beyond theory and appear in real-

world programs. In some cases, they are intentional, de-
velopers are aware of them and document them, but in
other cases they are inadvertent. Test dependence can cause
problems, not only when test suites are reordered, but even
when they are executed in the intended order. This sec-
tion presents concrete examples of test dependence found
in well-known open source programs. Figure 2 summarizes
the projects we studied and the results: The table sum-
marizes the number of tests in the suites produced by the
developers (MT), the number of tests we generated auto-
matically with Randoop (AT), and the corresponding num-
bers of dependent tests in those test suites (MTD and ATD,
respectively). The discussion of the examples in this sec-
tion is distinguished by the problems caused by test depen-
dence (Kind): when faults are masked because tests make
incorrect assumptions about the global environment (Sec-
tion 4.1); when tests do not respect required initialization
protocols (Section 4.2); and when undocumented test de-
pendence leads to spurious bug reports (Section 4.3). We
also describe dependent tests in an automatically-generated
test suite (Section 4.4). While this list—and associated set
of examples—certainly is not exhaustive, it shows that there
are several classes of dependence-related problems that have
practical relevance.

4.1 Masking Faults
Masking is a particularly perplexing problem caused by

dependence. The negative effect of masking is that it hides
a fault in the program, exactly when the test suite is ex-
ecuted in its default order. Masking occurs when a test
case t (a) should reveal a fault, (b) only does so when exe-
cuted in a specific environment ER, but (c) tests executed
before t in a test suite always generate environments dif-
ferent from ER. More precisely and without loss of gen-
erality, assume any environment with only a single vari-
able. Then let T = 〈t1, . . . , tn〉 be the test suite, and let
ti, 1 < i ≤ n be the test that should reveal the fault in en-
vironment ER. A dependency tk ≺ ti, k < i masks the fault
if ε(〈t1, . . . , ti−1〉, E0) 6= ER.
The following two examples illustrate masking in practice.

CLI: A Long-Standing Bug.
A straightforward example of fault masking occurs in the



Project MT MTD AT ATD Kind Revision
CLI 206 2 2821 20 Masking Faults 757051
JodaTime 3875 3 2663 711 Masking Faults b609d7d66d
Crystal 75 18 2542 20 Test Structure trunk version
XML Security 108 3 2947 925 Test Structure version 1.0.4
Eclipse SWT 80∗ 49 – – Spurious Bug version 3.0
Beanutils 1060 0 2692 299 Test Structure version 1.8.3

Figure 2: Summary of all examples. Columns “MT” and “AT” are the numbers of human-written and auto-
matically generated tests, respectively. Columns “MTD” and “ATD” are the numbers of test dependences in
the corresponding test suites. Column “Kind” refers to the kind of problem associated with the dependency.
∗ We only examined 80 tests in SWT manually, and found 49 dependencies among them.

1 public final class OptionBuilder {
2 private static String argName;
3
4 private static void reset () {
5 ...
6 argName = "arg";
7 ...
8 }
9

10 public static Option create ( String opt ){
11 Option option =
12 new Option (opt , description );
13 ...
14 option . setArgName ( argName );
15 OptionBuilder.reset();
16 return option ;
17 }
18 }

Figure 3: Fault-related code from OptionBuild-
er.java

Apache CLI library.4 Two test cases fail when run in iso-
lation: test13666 and testOptionWithoutShortFormat2 in
test classes BugsTest and HelpFormatterTest, respectively.
A detailed study of the code under test revealed that both

tests fail due to the same hidden dependence. The fault is
located in OptionBuilder.java and is caused by not initial-
izing a global variable early enough. Figure 3 shows code
that illustrates the fault. By default, argName is initialized
to null (line 2), and only set to its intended default value
"arg" by the create() method via calling reset() (line
15). Consequently, if clients of CLI do not explicitly initial-
ize the value of argName, the first option created will have
null rather than "arg" as its argument name.
Both dependent tests can reveal this fault, since they cre-

ate an option with the default argument as the first thing
in their execution. However, in the default order of test ex-
ecution, tests that create options with explicit arguments
execute before these dependent tests. Thus, the tests that
are executed before call create() at least once, which sets
the default argName value, thus masking the fault.
This fault is reported in the bug database several times,5

4http://commons.apache.org/cli/
5https://issues.apache.org/jira/browse/CLI-26
https://issues.apache.org/jira/browse/CLI-186
https://issues.apache.org/jira/browse/CLI-187

starting on March 13, 2004 (CLI-26). The report is marked
as resolved three years later on March 15, 2007, but is then
reopened as CLI-186 on July 31, 2009. On this report, one
of the developers commented:

I reproduced the issue, it requires a dedicated
test case since it is tied to the initialization of a
static field in OptionBuilder.

Despite the realization that a dedicated test is required, no
such test was ever created. About one month later, the bug
is duplicated as CLI-187, and the actual fix happens one
year later on June 19, 2010, about six years after the bug
was first reported (and four years total on the open-issue
list).

JodaTime: Complex interactions that mask faults.
JodaTime6 is an open source date and time library in-

tended to improve upon the weaknesses of the date and
time facilities provided by the standard JDK. It is a mature
project that has been under active development for more
than eight years.
JodaTime uses intricate caching mechanisms that are high-

ly complex and coupled. All dependences we found are com-
plex, in two cases even requiring a specific ordering of three
tests to manifest.
In a simple dependence, JodaTime caches PeriodType ob-

jects, which contain an array of DurationFieldTypes (e.g.,
week, month). The order of DurationFieldTypes in the
array is an important of the data representation, and two
PeriodTypes with the same DurationFieldTypes in a differ-
ent order are not equal internally in JodaTime, even though
they are equal to JodaTime clients. To make this internal
detail transparent to users of JodaTime, new PeriodTypes
are normalized before they are cached. However, a fault in
the code makes it possible to insert non-normalized Period-
Types into the cache, leading to cache misses when searching
for correctly normalized PeriodTypes.
A test that checks for correct normalization when caching

objects fails in isolation but passes when the entire test suite
executes in the default order; this happens because a prior
test creates the expected PeriodType, and thus it is already
in the cache for the later test. This behavior has been re-
ported as a bug and has been fixed by the developers.
After inspecting the code, we reported the more com-

plex dependence of three tests to the developers of Joda-
Time. They confirmed the phenomenon, but contended that

6http://joda-time.sourceforge.net/



it is due to interactions that are not intended in the de-
sign of the library [16]. In particular, one of the methods,
DateTimeZone.setProvider(), is only supposed to be called
a single time to initialize the library. In practice, multiple
tests initialize the library, which leaves incorrect values in
the cache and causes other tests to fail under some execution
orders.

4.2 Poor Test Construction
Based on our interaction with the JodaTime developers,

this last dependence does not mask a fault in the program.
Instead, it represents a less severe consequence of test de-
pendence that suggest that a test, or a test suite, has been
constructed poorly in some dimension. While test depen-
dences that mask faults correspond to a defect in the pro-
gram source, these dependences correspond to defects in the
test code.
The test dependences presented in this section arise due

to incorrect initialization of program state by one or more
tests. In the first case, tested program code relies on a global
variable that is a part of the environment, but the test does
not properly initialize it. In the second case, a test should
but does not call an initialization function before later in-
vocations to a complex library. This flaw in the test code
is masked because the default test suite execution order in-
cludes other tests that initialize the library. The defect is
inconsequential until and unless the flawed test is reordered,
either manually or by a downstream tool, to execute before
any other initializing test.

Crystal: Global Variables Considered Harmful.
Crystal7 is a tool that pro-actively examines developers’

code and precisely identifies and reports on textual, compi-
lation, and behavioral conflicts.
The latest release of Crystal contains 81 human-written

unit tests. Of those, 75 are fully automated, and 18 exhibit
dependences. All these dependencies are caused by incom-
plete initialization of the environment when testing methods
of three distinct classes (DataSource, LocalStateResult,
ConflictDaemon). In all cases, one test initializes the en-
vironment correctly, and all other tests rely on that test
executing first.
A short conversation with the developers confirmed that

this was not intentional and most likely happened because
the developers were not aware of the potential dependency
caused by the use of global variables. Since we pointed out
this problem, the developers treat the dependencies as unde-
sirable and opened a bug report to have this issue resolved.8

XML Security: Global Initialization.
XML Security9 is a component library implementing XML

signature and encryption standards. Each released version
of XML Security has a human-written JUnit test suite that
achieves fairly high statement coverage.
Four stable released versions (1.0.2, 1.0.4, 1.0.5d2, and

1.0.71) of XML Security have been incorporated in the Soft-
ware-artifact Infrastructure Repository (SIR).10 We found
7http://crystalvc.googlecode.com
8https://code.google.com/p/crystalvc/issues/
detail?id=57
9http://projects.apache.org/projects/xml_security_
java.html

10http://sir.unl.edu

that at least two out of the four versions contain dependent
tests. Specifically, in versions 1.0.4 and 1.0.5d2, test_Y1,
test_Y2, and test_Y3 in class ExclusiveC14NInterop show
dependent behavior. Since the dependences are the same in
both versions, in the further discussion and in Figure 2, we
consider only version 1.0.4.
For all three dependences, the cause of the dependence is

the same: before any method in the library can be used, the
global initialization function Init.init() has to be called.
Internally, it initializes the static field that the code tested
by the dependent tests rely on.
Given that the error when executing the dependent tests

clearly explains the cause of the error, we speculate that
developers either simply forgot to initialize the tests prop-
erly, or expected that these tests would always execute in
the order defined in the test suite.

4.3 Spurious Bug Reports and Bug Fixes
Sometimes developers introduce dependent tests inten-

tionally because it is easier, more efficient or more conve-
nient to write unit tests for some modules in that way [17,
33]. Even though the developers are aware of these instances
when they create them, this knowledge can get lost, and
other people who are not aware of these dependences can
get confused when they run a subset of the test suite that
manifests the dependences.
As a result, they might report bugs backed by the failing

tests, although this is exactly the expected behavior. If the
dependence is not documented clearly and correctly, it can
take a considerable amount of time to work out that these
reported failures are spurious. Or worse, the developers may
try to fix a bug that is not there.

Eclipse SWT: Causing Spurious Bug Reports.
The Eclipse Standard Widget Toolkit (SWT)11 is a cross-

platform GUI library developed within the Eclipse frame-
work. Due to the difficulty of obtaining source, compiling
and running test suites with the SWT project, we only exam-
ined some test cases manually, after a bug report indicated
test dependence. The numbers reported in Figure 2 are the
number of tests we manually examined, and the number of
dependencies we found among those respectively.
As is common practice in GUI toolkits, SWT permits

only one Display object per thread. Attempting to create
multiple Displays in a single thread causes an Invalid-
ThreadAccessException. To permit the reuse of Displays,
SWT provides two methods: Display.getDefault and new
Shell. These methods return the existing Display or create
a new one if none exists.
In the test suite of SWT, all tests except those in the class

Test_org_eclipse_swt_widgets_Display (TestDisplay for
short) retrieve the current Display by using one of the lat-
ter methods. On the other hand, all tests in TestDisplay
create their Display at the beginning of the test and dispose
of it at the end.
In September 2003, a user reported a bug,12 stating that

tests throw an InvalidThreadAccessException if she runs
any other test before DisplayTest. The cause of this is sim-
ple: any other test creates, but does not dispose of a Display
object. Then the tests in TestDisplay attempt to create a

11http://eclipse.org/swt/
12https://bugs.eclipse.org/bugs/show_bug.cgi?id=
43500



new object, which fails, as one is already associated with
the current thread. Since this is the expected and desired
behavior, the bug report is spurious (except maybe it points
to a problem in the test suite, rather than the code).

4.4 Dependence in Auto Generated Tests
Test dependence in automatically generated test suites is

even more troublesome than in human-written suites. The
reason for this is that all automated test generation tools we
are aware of produce tests that are hard to read for humans,
are undocumented, and their intent cannot easily be gleaned
from naming conventions and other aids developers normally
use. While there is some work to alleviate this problem,
it still remains difficult to determine whether a failed test
points to a bug in the program or a dependent test [10].
We already showed some evidence that test dependence is

not uncommon in human-written tests. Given the increas-
ing importance of automatically generated tests, we also
wanted to at least get a glimpse of what is happening in
that area. As a very preliminary, and by no means exhaus-
tive or conclusive investigation, we applied Randoop to all
the projects for which the source was readily available (this
excludes SWT). The test suites were created by configuring
Randoop to generate 5,000 tests for each program, and then
drop what it considers to be redundant tests [23]. As the
table in Figure 2 shows, in most projects, a large fraction of
the remaining tests are dependent, while in some projects,
there are almost no dependent tests. Why this strong divi-
sion happens, and whether the differences between the pro-
grams can be used to derive guidelines for better testing is
an interesting question left to future work.
In the following, we discuss one of the examples where

tests generated with Randoop exhibit a large number of de-
pendences, many of which could easily be fixed by humans.

Beanutils: Incomplete Automatic Generation.
Beanutils13 is a library that provides services for collec-

tions of Java beans. Using Randoop, we generated a test
suite consisting of 2692 unit tests for a recent release of
Beanutils (version 1.8.3). The prototype tool we outline in
Section 5 detected 299 dependent tests in this test suite.
After a close inspection of the automatically generated

test code, we found the primary reason for the dependencies
is missing initialization (cf. Sec. 4.2). Specifically, 248 tests
attempt to retrieve values from a cache before anything has
been added to the cache. This particular dependence could
be fixed by adding a single line of setup code to each test.
Most of the other dependencies could be fixed with similarly
low effort, too. However, this particular fix requires under-
standing of at least part of the program semantics, which is
a feat beyond the abilities of current test generation tools.
Given the high ratio of dependent tests in the automat-

ically generated test suite, we speculate that the following
two phenomena could be reasons for this.
First, developers usually know a lot about the intended

purpose of a program when they write tests for it. This
knowledge helps them to build well-structured and coherent
test suites. Automated tools, on the other hand, have no
such knowledge. One possible consequence of this is illus-
trated by the example: the automated tool does not under-
stand the cache protocol and thus does not know that it

13http://commons.apache.org/beanutils/

Input: a test suite T , an execution length k
Output: a set of dependent tests depTests
1: depTests ← ∅
2: expectedResults ← R(T |E0)
3: for each T k

i in getPossibleExecOrder(T , k) do
4: execResults ← R(T k

i |E0)
5: for each test t in T k

i do
6: if execResults[t] 6= expectedResults[t] then
7: depTests ← depTests ∪ t
8: end if
9: end for
10: end for
11: return depTests
Figure 4: k-bounded approximation algorithm to de-
tect dependent tests. “getPossibleExecOrder” re-
turns all permutations of tests from T of length k.

must add values to the cache first.
Second, it is often hard for automated tools to understand

that specific parts of the code depend on the environment,
and thus may not explicitly generate code that sets up the
environment correctly. If, at the same time, other tests are
generated that as a side effect create the needed environ-
ment, test dependence ensues.

5. ALGORITHM AND IMPLEMENTATION
In this section we present an algorithm and a prototype

tool to detect dependent tests. In the worst case, a naive,
exhaustive search would execute all n! permutations of the
test suite to detect dependent tests. While this is not feasi-
ble for realistic n, our approximate algorithm uses our intu-
ition that many dependences can be found by running only
short subsequences of test suites, and introduces a bound k
on the length of subsequences. That effectively bounds the
execution time to O(nk), which for small k is tractable. At
the same time, our prototype tool and the experiments we
conducted with it, suggest that many dependences can be
found for small k.

5.1 Algorithm
Since the general form of the dependent test detection

problem is NP-complete, we do not expect to find an effi-
cient algorithm for it. Instead, we developed an algorithm
to approximate solutions by detecting a subset of dependent
tests. For tractability, our algorithm in Figure 4 bounds the
length of test execution sequences, and thus the number of
permutations to execute. Instead of executing all permuta-
tions of the whole test suite, we execute all possible k-tuples
for a bounding parameter k.
Given a test suite T = 〈t1, t2, . . . , tn〉, our algorithm exe-

cutes ε(T, E0) to obtain the expected result R(T |E0) of each
test (line 2). The environment E0 is the environment pro-
vided by the test execution framework. It then executes
every k-tuple T k

i of tests as ε(T k
i , E0), and checks whether

any result R(T k
i |E0) differs from the expected result, i.e.

that there is a dependence in T k
i (lines 3–10). The algo-

rithm returns the set of all tests ti ∈ T that have at least
one dependence.
It is easy to extend this algorithm to return the shortest

sequence of tests that manifest a dependency for a given
test ti, for example by reducing manifesting sequences with
Delta Debugging [36].



5.2 Tool Implementation
We implemented our k-bounded dependent test detection

algorithm in a prototype tool.14 The tool is fully-automated
and needs only a test suite and the bounding parameter k
as inputs. Our current implementation supports JUnit 3.x
tests. We consider JUnit test results to be the same when
the tests either both pass, or exactly the same exception or
assertion violation leads to test failure. The tool creates a
fresh JVM for each T k

i , thus, ignoring external state such as
files and OS services, the environment that the test suites
are executed in is always the same E0. This ensures that
there is no interaction between different T k

i through shared
memory.
We used the prototype to verify the dependent tests re-

ported by users, developers, other researchers, and us, and
to find new dependent tests in the example programs in
Section 4 using isolated execution (k = 1) and pairwise ex-
ecution (k = 2).
All the dependent tests reported in Figure 2, except for

two dependent tests in JodaTime and the dependences in
SWT, can already be found by isolated execution. Since we
could not run the test suite of SWT, we could not check these
dependences with our tool. During manual bug diagnosis in
JodaTime, we identified two test dependences that require
three tests to manifest. While these are easy to reproduce,
we did not check that our tool finds them, because the time
needed to run our naive algorithm on JodaTime with k = 3
is measured in months.
While we believe that most test dependences can be found

with small k. This is in part because the set of dependent
tests that can be found with a bound k is always a subset of
the set of dependent tests that can be found with any bound
k′ > k. Additionally, our intuition and preliminary explo-
ration seem to indicate that small k find many dependences,
while larger k do not. However, in principle it is conceivable
that any number of chain dependences with chains longer
than any tried k exist in all the libraries we analyzed.

6. CONCLUSIONS
In the introduction we posed several questions why test

dependence may have received little attention despite the
ease of constructing concrete but contrived examples. Our
contributions suggest answers, to differing degrees, to these
questions:

Does test dependence arise in practice? Yes.

Reproducible examples, both from human-written test suites
and automatically generated test suites that we synthesized,
show this in six fielded, substantative, open-source systems.
This “existence proof” of test dependence is unlikely to sur-
prise anyone, nor does it suggest that test dependence is
common across all software. However, at least under our
definition of manifest test dependence, this question is closed.
If and when test dependence arises, are there signifi-
cant repercussions? Sometimes, although the ex-
tent is unknown.
Several of our examples identified situations in which test

dependence masked faults in the underlying program. In
another example, developers wasted time tracking down a
non-existent fault because of a spurious report that was due

14Available at: http://testisolation.googlecode.com

to an undocumented test dependence. Even though these
are real and reproducible examples, it is not possible to make
any general claims about the frequency nor the significance
of the repercussions of test dependence. At the same time,
it seems unlikely that these are the only software systems
where test dependence causes problems.
Is dependence easy to notice if-and-when it arises?
At present, usually not.
This is a more subtle question, because the answer de-

pends not only on the tools being used but also on the per-
ceptions and insights of the developers. If tools always run
tests in the same context, and if developers never consider
the possibility of test dependence, then it is unlikely that de-
pendence will be observed. Masking of faults in the under-
lying program is a good illustration of this. Our prototype
tool shows the potential for revealing dependences, allowing
developers to observe them and make conscious decisions
about how, or even whether, to deal with the dependences.
We have also shown that, in principle, test dependence

can compromise the application of downstream testing tech-
niques such as selection, prioritization, and parallelization.
Like contrived examples of test dependence itself, it is easy
to produce simple examples where downstream techniques
produce incorrect output when applied to dependent tests.
We conjecture, based on intuition and very thin evidence,
that if and when this happens in practice, it is hard to notice
in part because tools do not surface the necessary informa-
tion.

Our formalism provides a precise definition of manifest
test dependence, allows reasoning about test dependence,
and enables the proof that detecting manifest test depen-
dence in test suites is NP-complete. Our prototype tool
shows that even our approximate algorithm can reveal large
numbers of important dependences. Faster and more precise
approaches are plausible, especially as more understanding
of test dependence “in the field” is acquired.
The question of the role of test dependence in the real

world merits more aggressive empirical study. A better un-
derstanding of the frequency and scope of repercussions from
test dependence should be developed. Of particular concern
is the masking of program faults because, unlike weaknesses
in test suites or spurious bug reports, masking faults could
be costly to find by other methods or to leave in the program.
Tools that surface test dependences may help researchers
and practitioners study and deal with dependences more ef-
fectively.
As such deeper knowledge is acquired, we may better un-

derstand what contributes to creating test dependence. Is
this phenomenon linked to particular testing levels (unit,
integration, system, etc.), specified testing techniques and
frameworks, the programming languages and/or the soft-
ware development process employed, the relationship and
communication structures between developers and testers on
a team, etc. In turn, any insights gained in these dimensions
may lead to more systematic approaches to dealing with test
dependence. There is already some work aiming at reduc-
ing the potential for dependences by refactoring programs
to use less global state [34].
The question of how second-order testing techniques, like

regression test selection and prioritization should handle de-
pendences is also open. Most current techniques just assume
independence and make no statement about what happens



when this assumption is not true. One straightforward way
to amend this situation might be to augment such techniques
to respect a defined partial order among tests. And this par-
tial order can be derived from knowledge about dependent
tests.
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