
Symbolic Execution of Multithreaded
Programs from Arbitrary Program Contexts

Tom Bergan Dan Grossman Luis Ceze
University of Washington, Department of Computer Science & Engineering

Technical Report UW-CSE-13-08-01 (revised 11/2013)

Abstract
We describe an algorithm to perform symbolic execution of a
multithreaded program starting from an arbitrary program context.
We argue that this can enable more efficient symbolic exploration
of deep code paths in multithreaded programs by allowing the
symbolic engine to jump directly to program contexts of interest.

The key challenge is modeling the initial context with reason-
able precision—an overly approximate model leads to exploration
of many infeasible paths during symbolic execution, while a very
precise model would be so expensive to compute that computing it
would defeat the purpose of jumping directly to the initial context
in the first place. We propose a context-specific dataflow analysis
that approximates the initial context cheaply, but precisely enough
to avoid some common causes of infeasible-path explosion. This
model is necessarily approximate—it may leave portions of the
memory state unconstrained, leaving our symbolic execution un-
able to answer simple questions such as “which thread holds lock
A?” or “which object does pointer X refer to?” in all cases. For
these cases, we describe novel algorithms for evaluating symbolic
pointers and symbolic synchronization during symbolic execution.
Our symbolic execution semantics are sound and complete up to
the limits of the underlying SMT solver. We describe initial exper-
iments on an implementation in Cloud9.

1. Introduction
Symbolic execution is a program analysis technique for system-
atically exploring all feasible execution paths. The idea is to exe-
cute programs with symbolic rather than concrete inputs and use
an SMT (SAT Modulo Theory) solver to prune infeasible paths. On
branches with more than one feasible resolution, the symbolic state
is forked and all feasible resolutions are explored. The key advan-
tage of this approach is precision—unlike other techniques, such as
abstract interpretation, symbolic execution is generally free of false
positives because its semantics are fully precise up to the limits of
the underlying SMT solver, and recent advances in SMT solving
have made symbolic execution faster and more practical.

Symbolic execution has been used to find bugs and generate
high-coverage test cases with great success [5, 13, 14, 25]. Un-
fortunately, building scalable symbolic execution engines is dif-
ficult because of path explosion: the number of feasible execu-
tion paths is generally exponential in the length of an execution.
Path explosion is even worse when symbolic execution is applied
to multithreaded programs [4, 18], which suffer from an explo-
sion of possible thread interleavings in addition to the explosion
of single-threaded paths. Prior work has dealt with path explosion
using summarization [12, 15, 23], path merging [16, 19], search
heuristics [5, 21], and partial order reductions [10].

Our goal is scalable symbolic execution of multithreaded pro-
grams written in the C language and its derivatives. Our approach is
to limit path explosion by symbolically executing relatively small

fragments of a program in isolation—this reduces path length,
which in turn reduces the potential for path explosion. Rather
than exploring ways that program fragments might be selected,
this paper focuses on a more basic question: how do we symbol-
ically execute a fragment of a multithreaded program in isolation,
soundly and efficiently? Prior work has largely assumed that sym-
bolic execution will begin at one of a few natural starting points,
such as program entry (for whole-program testing) or a function
call (for single-threaded unit testing). We do not make such an
assumption—we allow program fragments to begin anywhere—
so our main challenge is to perform symbolic execution of mul-
tithreaded programs from arbitrary program contexts.

1.1 Problem Statement and Solution Overview
Specifically, we address the following problem: given an initial
program context, which we define to be a set of threads and their
program counters, how do we efficiently perform symbolic exe-
cution starting from that context while soundly accounting for all
possible concrete initial states? We solve this problem in two parts.
First, we use a context-specific dataflow analysis to construct an
over-approximation of the initial state for the given program con-
text. Second, we integrate that analysis with a novel symbolic exe-
cution semantics that can execute forward from an abstract initial
state, even when precise information about pointers and synchro-
nization is not available.

Constructing an Initial State. The most precise strategy is
to symbolically execute all paths from program entry to the ini-
tial context, and then use path merging [16] to construct an initial
state. This is not scalable—it suffers from exactly the sort of path
explosion problems we are trying to avoid. Instead, we must ap-
proximate the initial state. The least precise approximation is to
leave the initial state completely unconstrained, for example by as-
signing a fresh symbolic variable to every memory location. This is
too conservative—it covers many memory states that never occur
during any actual execution—and as a result, symbolic execution
would investigate many infeasible paths.

Our solution represents a middle ground between the above two
extremes: we use a context-specific dataflow analysis to construct
a sound over-approximation of the initial state. We use an over-
approximation to ensure that all feasible concrete initial states are
included. Our analysis includes constraints on the initial memory
state as well as constraints on synchronization, such as locksets,
that together help symbolic execution avoid infeasible paths.

To illustrate, suppose we are asked to begin symbolic execution
from the program context marked by arrows in Figure 1. This
context includes two threads, each of which is about to execute line
11. Can lines 11 and 12 of Foo execute concurrently with lines 11
and 12 of Bar? To answer this we must first answer a different
question: does thread t2 hold any locks at the beginning of the
program context (i.e., at line 11)? Here we examine the locksets
embedded in our initial state and learn that t2 holds lock b->lock.

1

1 global int X,Y
2 global struct Node { Lock lock, int data } nodes[]
34 Thread 1 Thread 2
5 void RunA() { void RunB() {
6 i = ... k = ...
7 Foo(&nodes[i]) Bar(&nodes[k])
8 } }
9 void Foo(Node *a) { void Bar(Node *b) {

10 for (x in 1..X) { lock(b->lock)
11 ⇒ lock(a->lock) ⇒ for (y in 1..Y)
12

Figure 1. A simple multithreaded program that illustrates the chal-
lenges of beginning symbolic execution at an arbitrary program
context. Especially notable are challenges that arise from explicit
synchronization and from C-like pointers.

Next, we ask a second question: does a==b? Suppose our dataflow
analysis determines that i==k at line 6, and that Foo and Bar are
called from RunA and RunB only. In this case, we know that a==b,
which means that line 11 of Foo cannot execute concurrently with
line 11 of Bar.

Symbolic Execution Semantics. The input to symbolic exe-
cution is an abstract initial state constructed by our dataflow anal-
ysis. The output is a set of pairs (path, C), where path is a path
of execution and C describes a path constraint such that when C is
satisfied on the initial state, the path can be followed. To support
multithreaded programs, we make each path a serialized (sequen-
tially consistent) trace of a multithreaded execution.

The key novelty of our symbolic semantics is the way it inte-
grates with our dataflow analysis. For example, we exploit lock-
sets, as described above, along with other invariants to improve the
precision of various symbolic synchronization primitives. We rea-
son about the initial values of local variables by exploiting reach-
ing definitions that our dataflow analysis computes. We addition-
ally exploit a static points-to analysis to help reason about aliasing
relationships between pairs of symbolic pointers. Notably, our se-
mantics can reason about symbolic pointers that may refer to the
interior bytes of an object.

However, our dataflow analysis is necessarily conservative,
leaving us unable to precisely answer simple questions such as
“which object does pointer X refer to?” in all cases. For example,
suppose our dataflow analysis cannot determine if i==k at line 6.
In this case, we must investigate two paths during symbolic exe-
cution: one in which a==b, and another in which a!=b. For this
reason, the set of paths explored by symbolic execution may be a
superset of the set of paths that are actually feasible.

Soundness and Completeness. Our symbolic semantics are
sound and complete up to the limits of the underlying SMT solver.
By sound, we mean that if our symbolic execution outputs a pair
(path, C), then, from every concrete initial state that satisfies con-
straint C, concrete execution must follow path as long as context
switches are made just as in path. By complete, we mean that sym-
bolic execution outputs a set of pairs (path, C) sufficient to cover
all possible concrete initial states that may arise during any valid
execution of the program. However, our analysis is incomplete in
practice: first, SMT solvers are incomplete in practice, and second,
the set of feasible paths can be too large to practicably enumerate.

1.2 Applications
Our techniques have a variety of promising applications:

Focused Testing of Program Fragments. We can test an
important parallel loop in the context of a larger program. Classic
symbolic execution techniques require executing deep code paths
from program entry to reach the loop in the first place, where these
deep paths may include complex initialization code or prior parallel

phases. Our techniques enable testing the loop directly, using a fast
and scalable dataflow analysis to summarize the initial deep paths.

Testing Libraries. We would ideally test a concurrent library
over all inputs and calling contexts, but as this is often infeasible,
we instead might want to prioritize the specific contexts a library is
called from by a specific program. One such prioritization strategy
is to enumerate all pairs of calls into the library that may run
concurrently, then treat each pair as a program context that can be
symbolically executed using our techniques. Then do the same for
every triple of concurrent calls, every quadruple, and so on.

Piecewise Program Testing. Rather than testing a whole pro-
gram with one long symbolic execution, we can break the program
into adjacent fragments and test each fragment in isolation. Such a
piecewise testing scheme might enumerate fragments dynamically
by queuing the next fragments found to be reachable from the cur-
rent fragment. Fragments might end at loop backedges, for loops
with input-dependent iteration counts, producing a set of fragments
that are each short and largely acyclic. The key potential advantage
is that we can explore fragments in parallel, as they are enumer-
ated, enabling us to more quickly reach a variety of deep paths in
the program’s execution. The trade-off is a potential loss of preci-
sion, as our dataflow analysis may make conservative assumptions
when constructing a fragment’s initial abstract state.

Execution Reconstruction. We can record an execution with
periodic lightweight checkpoints that include call stacks and little
else. Then, on a crash, we can symbolically execute from a check-
point onwards to reconstruct the bug. Variants of this approach in-
clude bbr [7] and RES [27]. However, bbr does not work for mul-
tithreaded programs, and both systems have less powerful support
for pointers than does our semantics.

Input-Covering Schedules. Our symbolic execution tech-
niques can be used as part of an algorithm for finding input-
covering schedules [1]. For example, the algorithm from that prior
work [1] partitions execution into adjacent fragments and uses sym-
bolic execution to analyze each fragment in isolation. In §6, we
evaluate the effectiveness of our symbolic execution techniques in
the context of this algorithm.

1.3 Contributions and Outline
We propose a framework for solving the basic problem—symbolic
execution from arbitrary multithreaded contexts. While prior work
has largely focused on path explosion due to branches, our work fo-
cuses on path explosion due to pointers and synchronization, which
are often symbolic in our context. In particular, our integration of
dataflow analysis and symbolic execution (§2.3, §3.2, §4.4) and our
algorithms for symbolically evaluating pointers (§3.1) and synchro-
nization (§4.2–§4.3) are novel, to the best of our knowledge.

We start with a simple, single-threaded imperative language that
has no pointers (§2). We then add pointers (§3) and threads (§4). At
each step, we explain how we overcome the challenges introduced
by each additional language feature. We then state soundness and
completeness theorems (§5), discuss our implementation and em-
pirical evaluation (§6), and end with related work (§7).

2. A Simple Imperative Language
Figure 2 gives the syntax of Simp, a simple imperative language
that we use as a starting point. A program in this language contains
a set of functions, including a distinguished main function for
program entry. The language includes function calls, conditional
branching, mutable local variables, and a set of standard arithmetic
and boolean expressions (only partially shown). We separate side-
effect-free expressions from statements. This simple language does
not include pointers, dynamic memory allocation, or threads—
those language features will be added in §3 and §4.

2

r ∈ Var (local variables)
x, y ∈ SymbolicConst (symbolic constants)
f ∈ FName (function names)
i ∈ Z (integers)

v ∈ Value ::= f | i
e ∈ Expr ::= v | r | x | e ∧ e | e ∨ e | e < e | ...

γ ∈ StmtLabel
s ∈ Stmt ::= r ← e(e∗)

| br e, γt, γf
| return e

Func ::= func f(r∗){ (γ : s;)∗ }

Figure 2. Syntax of Simp. Asterisks (∗) denote repetition.

The concrete semantics follow the standard pattern for imper-
ative, lexically-scoped, call-by-value languages. We omit the de-
tailed rules for brevity. Note that we use r to refer to local variables
(or “registers”), while the metavariables x and y do not appear in
the actual concrete language. Instead, x and y are used to name
symbolic constants that represent unknown values during symbolic
execution, as described below.

Challenges. Although this language is simple, it reveals two
ways in which symbolic execution from arbitrary contexts can
be imprecise. Specifically, we use this language to demonstrate
imprecision due to unknown calling contexts (§2.2) and unknown
values of local variables (§2.3). We also use this language to present
basic frameworks that we will reuse in the rest of this paper.

2.1 Symbolic Semantics Overview
We now describe an algorithm to perform symbolic execution of
Simp programs. Our algorithm operates over symbolic states that
contain the following domains (also illustrated in Figure 3):

• Y, which is a stack of local variable bindings. A new stack frame
is pushed by each function call and popped by the matching
return. Variables are bound to either function arguments (for
formal parameters) or the result of a statement (as in r ← f()).
• CallCtx, which names the current calling context, where the

youngest stack label is the thread’s current program counter and
older labels are return addresses.
• path, which records an execution trace.
• C, an expression that records the current path constraint.

Constructing an Initial State. Recall from §1.1 that our job is
to perform symbolic execution from an arbitrary program context
that is specified by a set of program counters, one for each thread.
As Simp is single-threaded, the initial program context for Simp
programs contains just one program counter, γ0.

Given γ0, where γ0 is a statement in function f0, we must
construct an initial symbolic state, Sinit, from which we can begin
symbolic execution. A simple approach is: pathinit = empty; Cinit =
true; CallCtxinit = {γ0}; and Yinit contains one stack frame that
maps each ri ∈ f0 to a distinct symbolic constant xi. We describe
a more precise approach in §2.3.

Correspondence of Concrete and Symbolic States. Note
that we use symbolic constants, such as xi, above, to represent
unknown parts of a symbolic state. This allows each symbolic state
to represent a set of concrete states. Specifically, the set of concrete
states represented by Sinit can be found by enumerating the total set
of assignments of symbolic constants xi to values vi—each such
assignment corresponds to a concrete state in which xi = vi.

Y : Stack of (Var→ Expr) (local variables)
CallCtx : Stack of StmtLabel (calling context)

path : List of StmtLabel (execution trace)
C : Expr (path constraint)

Figure 3. Symbolic state for Simp.

Symbolic Execution. At a high level, symbolic execution is
straightforward. We begin from the initial state, Sinit. We execute
one statement at a time using step, which is defined below. At
branches, we use an SMT solver to determine which branch edges
are feasible and we fork as necessary. We repeatedly execute step
on non-terminated states until all states have terminated or until a
user-defined resource budget has been exceeded. We define step
as follows, and we also make use of an auxiliary function eval to
evaluate side-effect-free expressions:

• step : (State× Stmt)→ Set of State
Evaluates a single statement under an initial state and produces
a set of states, as we may fork execution at control flow state-
ments to separately evaluate each feasible branch. The type of
each State is given by Figure 3.
• eval : ((Var→ Expr)× Expr)→ Expr

Given eval(Y, e), we evaluate expression e under binding Y,
where Y represents a single stack frame. We expect that Y has a
binding for every local variable referenced by e. Note that eval
returns an Expr rather than a Value, as we cannot completely
reduce expressions that contain symbolic constants.

Our algorithm’s final result is a set of States from which we
can extract (path,C) pairs that represent our final output. For each
such pair, C is an expression that constrains the initial symbolic
state, Sinit, such that when C is satisfied, program execution must
follow the corresponding path.

SMT Solver Interface. Our symbolic semantics relies on an
SMT solver that we query using the following interface. The func-
tion isSat(C, e), shown below, determines if boolean expression e
is satisfiable under the constraints given by expression C, where C
is a conjunction of assumptions. In addition to isSat, we use may-
BeTrue and mustBeTrue as syntactic sugar, as defined below.

isSat(C, e) = true iff e is satisfiable under C
mayBeTrue(C, e) = isSat(C, e)
mustBeTrue(C, e) = ¬mayBeTrue(C,¬e)

If a query isSat(C, e) cannot be solved, then our symbolic
execution becomes incomplete. In this case, we concretize enough
subexpressions of e so the query becomes solvable and we can
make forward progress (similarly to Pasareanu et al. [22]).

2.2 Dealing with an Underspecified CallCtx
Recall that the initial program context is simply a single program
counter, γ0. If γ0 is not a statement in the main function, then the
initial state Sinit does not have a complete call stack. How do we
reconstruct a complete call stack?

We could start with a single stack frame and then lazily expand
older frames, forking as necessary to explore all paths through the
static call graph. However, we consider this overkill for our an-
ticipated applications, and instead opt to exit the program when the
initial stack frame returns. Our rationale is that, for each application
listed in §1.2, either the program fragment of interest will be lexi-
cally scoped, in which case we never return from the initial stack
frames anyway, or complete call stacks will be provided, which we
can use directly (e.g., we expect that complete call stacks will be
available during execution reconstruction, as in bbr [7]).

3

2.3 Initializing Local Variables with Reaching Definitions
The simple approach for constructing Sinit, as described above,
is imprecise. Specifically, the simple approach assigns each local
variable a unique symbolic constant, xi, effectively assuming that
each local variable can start with any initial value. This is often
not the case. For example, consider thread t1 in Figure 1. In this
example, assuming that RunA is the only caller of Foo, the value of
local variable a is known precisely. Even when the initial value of
a variable cannot be determined precisely, we can often define its
initial value as a symbolic function over other variables.

Our approach is to initialize Yinit using an interprocedural
dataflow analysis that computes reaching definitions for all local
variables. We use a standard iterative dataflow analysis framework
with function summaries for scalability, and we make the frame-
work context-specific as follows: First, we combine a static call
graph with each function’s control-flow graph to produce an inter-
procedural control-flow graph, CFG. Then, we compute the subset
of this graph, CFG0 ⊆ CFG, that includes only those flow edges
that might occur on some interprocedural path that starts at main
and ends at the initial program counter, γ0. We analyze flows in
CFG0 only, effectively summarizing all paths that end at γ0.

We use a standard must-reach analysis applied to CFG0. Specif-
ically, we compute a set of pairs Rlocal = {(ri, ei)}, where each ri
is a local variable in Yinit such that the assignment ri ← ei must-
reach the initial program context. That is, ri’s value at the initial
program context must match expression ei. We compute Rlocal us-
ing standard flow functions for reaching definitions, then assign
each ei to ri in Yinit. Some variables may not have a must-reach
assignment—these variables, rk, do not appear in Rlocal, and they
are assigned a unique symbolic constant xk in Yinit, as before.

As we compute Rlocal, each assignment r← e generates a
must-reach definition (r, eval(Rlocal, e)) on its outgoing dataflow
edge. Note that we use eval to reduce expressions. Thus, given
r1← r2+5, where (r2, x) ∈ Rlocal, we generate the definition
(r1, x+5) to express that r1 and r2 are functions of the same value.

Must-Reach vs. May-Reach. Must-reach definitions provide
a sound over-approximation of Yinit, as any variable not included in
the must-reach set may have any initial value. More precision could
be achieved through may-reach definitions; however, this would
result in a symbolic state with many large disjunctions that are
expensive to solve in current SMT solvers [16, 19].

3. Adding Pointers
Figure 4 shows the syntax of SimpHeaps, which adds pointers and
dynamic memory allocation to Simp. As a convention, we use p to
range over expressions that should evaluate to pointers.

Memory Interface. We represent pointers as pairs ptr(l, i),
where l is the base address of a heap object and i is a non-negative
integer offset into that object. Pointers may also be null. Pointer
arithmetic is supported with the ptradd(p, e) expression, which is
evaluated as follows in the concrete language:

eval(Y, p) = ptr(l, i) eval(Y, e) = i′

eval(Y, ptradd(p, e)) = ptr(l, i+ i′)

The heap is a mapping from locations to objects, and each object
includes a sequence of fields. Our notion of a field encompasses the
common notions of array elements and structure fields. To simplify
the semantics, we assume that each field has a uniform size that is
big enough to store any value. Following that assumption, we define
i to be the offset of the (i+1)th field (making 0 the offset of the first
field), and we define the size of an object to be its number of fields.
Heap objects are allocated with malloc, which returns ptr(l, 0)
with a fresh location l, and they are deallocated with free.

l ∈ Loc (heap locations)

v ∈ Value ::= ... | null | ptr(l, i)
e, p ∈ Expr ::= ... | ptr(l, e) | ptradd(p, e)

s ∈ Stmt ::= ... | r ← load p | store p, e
| r ← malloc(e) | free(p)

Figure 4. Syntax additions for SimpHeaps.

H : Loc→ {fields : (Expr→ Expr)}
A : List of {x : SymbolicConst, primary : Loc, n : PtrNode}

Figure 5. Symbolic state additions for SimpHeaps, including a
heap (H) and a list of aliasable objects (A).

Memory Errors. Out-of-bounds memory accesses, uninitial-
ized memory reads, and other memory errors have undefined be-
havior in C [17]. We treat these as runtime errors in our semantics
to simplify the notions of soundness and completeness of symbolic
execution. The details of dynamic detectors for these errors are or-
thogonal to this paper and are not discussed in detail.

Challenges. In the concrete language, load and store state-
ments always operate on values of the form ptr(l, i). The sym-
bolic semantics must consider three additional kinds of pointer ex-
pressions: ptr(l, e), in which the offset e is symbolic; and x and
ptradd(x, e), in which the heap location is symbolic as well.

3.1 Symbolic Semantics
We now extend our symbolic execution algorithm for SimpHeaps.
As shown in Figure 5, we add two fields to the symbolic state: a
heap, H, which maps concrete locations to dynamically allocated
heap objects, and a list A, which tracks aliasing information that
is used to resolve symbolic pointers. Key rules for the semantics
described in this section are given in Figure 6. The mem

==⇒ relation is
used by step to evaluate memory statements. (Note that memory
operations never fork execution in the absence of memory errors,
and we elide those error-checking details from this paper.)

Accessing Concrete Locations. We first consider accessing
pointers of the form ptr(l, e). In this case, l uniquely names the
heap object being accessed, so we simply construct an expression
in the theory of arrays [11] to load from or store to offset e of that
object’s fields array.

Accessing Symbolic Locations. Now we consider accessing
pointers of the form x and ptradd(x, e). This case is more chal-
lenging since the pointer x may refer to an unknown object. Fol-
lowing [7], our approach is to assign each symbolic pointer x a
unique primary object in the heap, then use aliasing constraints to
allow multiple pointers to refer to the same object. This effectively
encodes multiple concrete memory graphs into a single symbolic
heap. We allocate the primary object for x lazily, the first time x is
accessed. In this way, we lazily expand the symbolic heap and are
able to efficiently encode heaps with unboundedly many objects.

Stores to x update x’s primary object, lx, and also condition-
ally update all other objects that x may-alias. For example, sup-
pose pointers x and y may point to the same object. To write
value v to pointer x, we first update lx by writing v to address
ptr(lx, xoff), and we then update ly by writing the expression
(x = ptr(ly, xoff)) ? v : eold to address ptr(ly, e), where eold is
the previous value in ly (this makes the update conditional) and
xoff is a symbolic offset that will be described shortly. Loads of x
access ptr(lx, xoff) directly—since stores update all aliases, it is
unnecessary for loads to access aliases as well.

Figure 6 shows the detailed semantics for accessing symbolic
pointers of the form ptradd(x, eoff) (we treat x as ptradd(x, 0)).

4

Symbolic heap interface, including conditional put:

(l, {fields}) ∈ H read(fields, eoff) = e

heapGet(H, ptr(l, eoff)) = e

(l, {fields}) ∈ H read(fields, eoff) = eold eval = econd ? e : eold

write(fields, eoff, eval) = fields′ H
′ = H[l 7→ {fields′}]

heapPut(H, ptr(l, eoff), econd, e) = H
′

H;Y; C;A; Stmt mem
==⇒ H′;Y′; C′;A′

Load/store of a concrete location:
eval(Y, p) = ptr(l, eoff)

heapGet(H, ptr(l, eoff)) = e

H;Y; C;A; r ← load p
mem
==⇒ H;Y[r 7→ e]; C;A

eval(Y, p) = ptr(l, eoff) eval(Y, e) = e′

heapPut(H, ptr(l, eoff), true, e′) = H
′

H;Y; C;A; store p, e
mem
==⇒ H

′;Y; C;A

Load/store of a symbolic location:

eval(Y, p) = ptradd(x, eoff)
addPrimary(H,C,A, x) = (H′,C′,A′, ptr(lx, xoff))

heapGet(H′, ptr(lx, xoff + eoff)) = e

H;Y; C;A; r ← load p
mem
==⇒ H

′;Y[r 7→ e]; C′;A′

eval(Y, p) = ptradd(x, eoff) eval(Y, e) = e′

addPrimary(H,C,A, x) = (H′,C′,A′, ptr(lx, xoff))
lookupAliases(A′, x) = {l1...ln}

heapPut(H′, ptr(lx, xoff + eoff),true, e′) = H
′′
0

heapPut(H′′0 , ptr(l1, xoff + eoff),(x = ptr(l1, xoff)),e
′) = H

′′
1

· · ·
heapPut(H′′n−1,ptr(ln, xoff + eoff),(x = ptr(ln, xoff)),e

′) = H
′′
n

H;Y; C;A; store p, e
mem
==⇒ H

′′
n;Y; C′;A′

Allocate and free:
l = fresh loc H

′ = H[l 7→ {λi.undef}]
H;Y; C;A; r ← malloc(esize)

mem
==⇒ H

′;Y[r 7→ ptr(l, 0)]; C;A

true

H;Y; C;A; free(p)
mem
==⇒ H;Y; C;A

Figure 6. Representative rules from the symbolic heap semantics. In these rules, Y refers to the current stack frame (namely, the youngest
stack frame in Y), and read(A, eoff) and write(A, eoff, eval) are standard constructors from the theory of arrays (e.g., see [11]).

Restricting Aliasing with a Points-To Analysis. Recall that
symbolic constants like x represent values that originate in our
initial program context. That is, if x is a valid pointer, then x must
point to some object that was allocated before our initial program
context. In the worst case, the set of possible aliases includes
all primary objects that have been previously allocated for other
symbolic pointers. This list of objects is recorded in A (Figure 5)
and kept up-to-date by addPrimary.

In practice, we can narrow the set of aliases using a static
points-to analysis. On the first access to x, we add the record
{x, lx, nx} to A, where nx is the representative node for x in the
static points-to graph. The set of objects that x may-alias is found
by enumerating all {y, ly, ny} ∈ A for which ny and nx may
point-to the same object according to the static points-to graph—
this search is performed by lookupAliases. Note that, in practice,
the search for aliases can be implemented efficiently by exploiting
the structure of the underlying points-to graph.

We use a field-sensitive points-to analysis so we can additionally
constrain the offset being accessed. For each symbolic pointer x,
we query the points-to analysis to compute a range of possible
offsets for x, and then construct a fresh symbolic constant xoff that
is constrained to that range. (This is the same xoff used above in the
discussion of loads and stores.) For example, if x is known to point
at a specific field, then xoff is fixed to that field. If a range of offsets
cannot be soundly determined, xoff is left unconstrained.

Heap Invariants. On the first access of symbolic pointer x,
addPrimary allocates a primary object at lx, appends the record
{x, lx, nx} to A, and emits a heap invariant that we describe now.

Suppose the first access of x is a load, and suppose that x may-
alias some other symbolic pointer y. For soundness, we must ensure
that every load of x satisfies the following invariant: x = y =⇒
load(x) = load(y). Making matters more complicated is the fact
that we may have performed stores on y before our first access of

x—we must ensure that these stores are visible through x as well.
Our approach is to define the initial fields of lx as follows:

Initial fields of lx
≡ (x = ptr(ly, xoff)) ? fieldsy : fresh (1)

where fieldsy is the current fields array of object ly , which is the
primary object for y, and where fresh is a symbolic array that maps
each field fresh(i) to a fresh symbolic constant—this represents
the unknown initial values of lx in the case that x and y do not
alias. In general x may have more than one alias, in which case
we initialize the fields of lx similarly to the above, but we use a
chain of conditionals that compares x with all possible aliases.

Memory Allocation. Semantics for malloc(esize) are shown in
Figure 6. Since each object has its own symbolic fields array, we
naturally support allocations of unbounded symbolic size.

Memory Error Checkers. Since this paper elides memory
error-checking details, we treat free(p) as a no-op in Figure 6.

Briefly, to detect memory errors, we might add size and isLive
attributes to each object in H. On malloc(e), we would set size =
e and isLive = true. On free(p), we would conditionally free
all objects that p may-alias by conditionally setting isLive = false
in all aliases, much in the same way that store(p, e) conditionally
writes e to all aliases of p. Error checkers such as out-of-bounds and
use-after-free would then ensure that, for each access at ptr(l, eoff),
0 ≤ eoff < H(l).size and H(l).isLive = true.

Compound Symbolic Pointer Expressions. Figure 6 shows
rules for load and store statements where the pointer p evaluates
to an expression of the form ptr(l, e), x, or ptradd(x, e), but the
result of eval(Y, p) can also have the form read(fields, eoff). This
form appears when a pointer is read from the heap, since all heap
accesses use the theory of arrays.

The difficulty is that there may be multiple possible values at
eoff. For example, if fields is write(write(, 1, x), e′off, x

′), then we

5

cannot evaluate this address without first resolving the symbolic
pointers x and x′. Further, the values written by write can contain
conditional expressions due to the conditional store performed by
heapPut. So, in general, the fields array might include a chain of
calls as in the following: write(write(, 1, x), e′off, e

′′ ? x′ : x′′).
Our approach is to walk the call chain of writes to build guarded

expressions that summarize the possible values at offset eoff. If
the value stored by a write is a conditional expression, we also
walk that conditional expression tree while computing the guarded
expressions. This gives each guarded expression the form egrd → p,
where each p has the form x, ptradd(x, e), or ptr(l, e). In the
above example, we build guarded expressions (eoff = e′off ∧ e′′)→
x′, and (eoff = e′off ∧ ¬e′′)→ x′′, and (eoff 6= e′off ∧ eoff = 1)→ x,
and so on down the call chain.

We then execute the memory operation on this set of guarded
expressions. For stores, we evaluate each guarded expression inde-
pendently: given egrd → p, we evaluate p using the rules in Figure
6, but we include egrd in the condition passed to heapPut. For loads,
we use the rules in Figure 6 to map each pair egrd → p to a pair
egrd → e, where e is the value loaded from pointer p. We then col-
lect each egrd → e into a conditional expression tree that represents
the final value of the load. Continuing the above example, if the
values at x, x′, and x′′ are v, v′, and v′′, respectively, then a load of
the above example address would return the following conditional
expression tree: (eoff = e′off) ? (e′′ ? v′ : v′′) : (eoff = 1 ? x :).

Function Pointers. At indirect calls, we first use a sound static
points-to analysis to enumerate a set of functions F that might be
called, then we use isSat to prune functions from F that cannot be
called given the current path constraint, and finally we fork for each
of the remaining possibilities.

3.2 Initializing the Heap with Reaching Definitions
The initial symbolic state (Sinit) actually contains an empty heap
that is expanded lazily, as described above. As the heap graph
expands, newly uncovered objects are initially unconstrained, as
represented by the fresh symbolic array allocated for each primary
object (recall Equation (1), above). This approach can be imprecise
for the same reasons discussed in §2.3. We improve precision using
reaching definitions, as follows.

We extend the reaching definition analysis from §2.3 to also
compute a set of heap writes that must-reach the initial program
context. Specifically, we compute a set of pairs Rheap = {(pi, ei)},
where the heap location referenced by pi must have a value match-
ing ei in the initial state. We use standard flow functions to compute
Rheap and we use a static points-to analysis to reason about aliasing.

Then, we modify addPrimary to exploit Rheap. Specifically,
when adding a primary object lx for symbolic pointer x, we append
the following invariant to the current path constraint, C:∧

(ptradd(x,eoff),eval)∈Rheap

read(fresh, xoff + eoff) = eval

In the above, we enumerate all pairs (p, eval) ∈ Rheap where either
p = ptradd(x, eoff) or p = x (which we treat like ptradd(x, 0)).
For each such pair, we emit a constraint on fresh, which is the
symbolic array used to initialize lx as shown in Equation (1).

4. Adding Threads and Synchronization
Figure 7 shows the syntax for SimpThreads, which adds shared-
memory multithreading and synchronization to SimpHeaps.

Threads. SimpThreads supports cooperative thread scheduling
with yield(), which nondeterministically selects another thread to
run. Cooperative scheduling with yield is sufficient to model any
data race free program. As with other memory errors (recall §3),
data races have undefined behavior in C [17] and are runtime errors

s ∈ Stmt ::= ... | threadCreate(ef, earg) | yield()
| wait(p) | notifyOne(p) | notifyAll(p)

synchronization annotations
| acquire(p) | release(p)
| barrierInit(p, e) | barrierArrive(p)

Figure 7. New statements for SimpThreads.

pthread mutex lock(mutex *m) {
while (load ptradd(m, itaken)) // while (m->taken)

wait(ptradd(m, itaken)); // wait(&m->taken)
store ptradd(m, itaken) 1; // m->taken = 1
acquire(m); // acquire(m)

}
pthread mutex unlock(mutex *m) {

store ptradd(m, itaken) 0; // m->taken = 0
release(m); // release(m)
notifyOne(ptradd(m, itaken)); // notify(&m->taken)
yield(); // yield()

}

Figure 8. Pseudocode demonstrating how pthreads’ mutexes
might be implemented in SimpThreads.

in SimpThreads. Hence, cooperative scheduling is a valid model as
we can assume that all SimpThreads programs are either data race
free or will halt before the first race.

New threads are created by threadCreate(ef, earg). This
spawns a new thread that executes the function call ef(earg), and
the new thread will run until ef returns. As SimpThreads uses co-
operative scheduling, the new thread is not scheduled until another
thread yields control.

Synchronization. We build higher-level synchronization ob-
jects such as barriers, condition variables, and queued locks using
two primitive parts: cooperative scheduling with yield, which pro-
vides simple atomicity guarantees, and FIFO wait queues, which
provide simple notify/wait operations that are common across a va-
riety of synchronization patterns. Specifically, wait queues support
three operations: wait, to yield control and move the current thread
onto a wait queue; notifyOne, to wake the thread on the head of a
wait queue; and notifyAll, to wake all threads on a wait queue.

We use these building blocks to implement standard threading
and synchronization libraries such as POSIX threads (pthreads). To
aid our symbolic semantics, we assume synchronization libraries
have been instrumented with the annotation functions listed in Fig-
ure 7. Annotation functions are no-ops that do not actually per-
form synchronization—they merely provide higher-level informa-
tion that we will exploit, as described later (§4.3, §4.4). The exam-
ple in Figure 8 demonstrates how to annotate an implementation of
pthreads’ mutexes. We have written the example in a pseudocode
that uses memory operations resembling those in SimpThreads.

Note that wait queues are named by pointers. There is an im-
plicit wait queue associated with every memory address—no ini-
tialization is necessary. For example, Figure 8 uses the implicit
wait queue associated with &m->taken. The futex() system call
in Linux uses a similar design. The reason for naming wait queues
by an address rather than an integer id will become clear in §4.3.

Challenges. The primary challenge introduced by SimpThreads
is the need to reason about synchronization objects. Our approach
includes a semantics for symbolic wait queues (§4.2) and a collec-
tion of synchronization-specific invariants (§4.3) that exploit facts
learned from a context-specific dataflow analysis (§4.4).

4.1 Symbolic Semantics
We now extend our symbolic execution algorithm for SimpThreads.
As illustrated in Figure 9, we modify Y and CallCtx to include one

6

Y : ThreadId→ Stack of (Var→ Expr) (local variables)
CallCtx : ThreadId→ Stack of StmtLabel (calling contexts)

path : List of (ThreadId, StmtLabel) (execution trace)

TCurr : ThreadId (current thread)
TE : Set of ThreadId (enabled threads)

WQ : List of (Expr, ThreadId) (global wait queue)
L+ : ThreadId→ Set of Expr (acquired locksets)

Bcnts : Expr→ Set of Expr (barrier arrival cnts)

Figure 9. Symbolic state for SimpThreads, with modifications to
SimpHeaps bolded, above the line, and additions shown below.

call stack per thread, and we modify path to record a multithreaded
trace. We add the following domains to the symbolic state:

• TCurr, which is the id of the thread that is currently executing.
• TE, which is the set of enabled threads, i.e., the set of threads

not blocked on synchronization. This includes TCurr.
• WQ, which is a list that represents a global order of all waiting

threads. Each entry of the list is a pair (p, t) signifying that
thread t is blocked on the wait queue named by address p. The
initial WQ can either be empty (all threads enabled) or non-
empty (some threads blocked, as described in §4.2).
• L+, which describes a set of locks that may be held by each

thread and is derived from acquire and release annotations.
• Bcnts, which describes a set of possible arrival counts for each

barrier and is derived from barrierInit annotations.

L+ and Bcnts are both over-approximations. They are initialized as
described in §4.4 and they are used by invariants described in §4.3.

Symbolic Execution. Our first action during symbolic execu-
tion is to invoke step(Sinit, yield()), where yield forks execu-
tion once for each possible TCurr ∈ TE. This gives each thread a
chance to run first. Note that context switches (updates to TCurr)
occur only either explicitly through yield, or implicitly when the
current thread exits or is disabled through wait. Note also that ex-
ecution has deadlocked when TE is empty and WQ is non-empty.

4.2 Symbolic Wait Queues
We now give symbolic semantics for the three FIFO wait queue
operations, wait, notifyOne, and notifyAll. When a thread t
calls wait(p), we remove t from TE and append the pair (p, t) to
WQ. When t is notified, we remove it from WQ and add it to TE.
Which threads are notified is answered as follows:

notifyOne(p). Any thread in WQ with a matching queue ad-
dress may be notified. Let (p1, t1) be the first pair in WQ and let
(pn, tn) be the last pair. We walk this ordered list and fork execu-
tion up to |WQ| + 1 times. The possible execution forks are given
by the following list of path constraints:

(1) p1 = p
(2) p1 6= p ∧ p2 = p

...
(n) p1 6= p ∧ p2 6= p ∧ ... ∧ pn = p

(n+1) p1 6= p ∧ p2 6= p ∧ ... ∧ pn 6= p

In the first fork, we notify t1, in the second, we notify t2, and
so on, until the nth fork, in which we notify tn. In the final fork, no
threads are notified. Only a subset of these forks may be feasible,
so we use isSat to prune forked paths that have an infeasible path
constraint. In particular, if there exists an iwhere pi=pmust be true
on the current path, then all forks from (i+1) onwards are infeasi-
ble and will be discarded. Further, as in §3, we increase precision
by using a static points-to analysis to determine when it cannot be
true that pi=p. These semantics are simple but reveal a key design

decision: by folding all concrete wait queues into a single global
queue, WQ, we naturally allow each wait queue to be named by
symbolic addresses.

notifyAll(p). Any subset of threads in WQ may be notified. We
first compute the powerset of WQ,P(WQ), and then fork execution
once for each set S ∈ P(WQ). Specifically, on the path that is
forked for set S, we notify all threads in S and apply the following
path constraint: ∧

(pi,ti)∈WQ

{
pi = p if (pi, ti) ∈ S
pi 6= p otherwise

This forks execution 2|WQ| ways, though we expect that isSat and a
points-to analysis will prune many of these in practice.

Initial Contexts with a Nonempty WQ. Suppose we want
to analyze an initial program context in which some subset of
threads begin in a waiting state, but we do not know the order in
which the threads began waiting. One approach is to fork for each
permutation of the wait order, but this is inefficient. Instead, our
approach is to add timestamp counters. First, we tag each waiting
thread with a timestamp derived from a global counter that is
incremented on every call to wait, so that thread t1 precedes thread
t2 in WQ if and only if t1’s timestamp is less than t2’s timestamp.

Then, we set up the program context so that each waiting thread
begins with the call to wait it is waiting in. Before beginning
normal symbolic execution, we execute these wait calls in any
order, using the semantics for wait described above, but with one
adjustment: we give each waiting thread ti a symbolic timestamp,
represented by the symbol xi, and we bound each xi < 0 so these
waits occur before other calls to wait during normal execution. We
say that xi < xk is true in the concrete initial state when ti and tk
are waiting on the same queue and ti precedes tk on that queue.

Next, we update the semantics of notifyOne. If there are n
threads in WQ and w of those threads are initial waiters, meaning
they have symbolic timestamps, then notifyOne uses the follow-
ing sequence of path constraints, where 1 ≤ i ≤ w:

(i) pi = p ∧

(∧
1≤k≤w,k 6=i

(pk = p)⇒ (xi < xk)

)
(w+1) p1 6= p ∧ p2 6= p ∧ ... ∧ pw 6= p ∧ pw+1 = p

...
(n) p1 6= p ∧ p2 6= p ∧ ... ∧ pn = p

(n+1) p1 6= p ∧ p2 6= p ∧ ... ∧ pn 6= p

The first w constraints handle the cases where an initial waiter
is notified. We can notify initial waiter ti if it has a matching queue
address, pi=p, and it precedes all other initial waiters tk with a
matching address. The cases for w+1 and above are as before.

4.3 Synchronization Invariants
The semantics described above are sound, but the presence of un-
constrained symbolic constants can cause our symbolic execution
to explore infeasible paths. In an attempt to avoid infeasible paths,
we augment the path constraint with higher-level program invari-
ants. Specifically, this section proposes a particularly high-value
set of synchronization invariants.

We cannot apply synchronization invariants without first identi-
fying synchronization objects. Ideally we would locate such objects
by scanning the heap, but our core language is untyped, so we can-
not soundly determine the type of an object by looking at it. (This
conservatively models our target language, C, where potentially un-
safe type casts are prevalent.) Instead, we apply invariants when
synchronization functions are called. For example, we instrument
the implementation of pthread mutex lock(m) to apply invari-
ants to m as the first step before locking the mutex. The rest of this
section describes the invariants we have found most useful.

7

Locks. As illustrated in Figure 8, locks can be modeled by an
object with a taken field that is non-zero when the lock is held and
zero when the lock is released. Suppose a thread attempts to acquire
a lock whose taken field is symbolic: execution must fork into two
paths, one in which taken=0, so the lock can be acquired, and
another in which taken6=0, so the thread must wait. One of these
paths may be infeasible, as illustrated by Figure 1, so we need to
further constrain lock objects to avoid such infeasible paths.

We use locksets to constrain the taken field of a lock object.
Given a symbolic state with locksets L+ and a pointer p to some
lock object, the lock’s taken field can be non-zero only when there
exists a thread T and an expression e, where e ∈ L+(T), such
that e = p. This invariant is expressed by the following constraint,
where ei ranges over all locks held by all threads:

(taken = 0) ⇔

(∧
ei∈L+(∗)

ei 6= p

)
Our dataflow analysis computes L+ for the initial symbolic state

(§4.4). We keep L+ up-to-date during symbolic execution using the
acquire and release annotations: on acquire(p) we add p to
L+(TCurr), and on release(p) we remove e from L+(TCurr) where
e must-equal p on the current path.

Barriers. A pthreads barrier can be modeled by two fields,
expected and arrived, and a wait queue, where arrived is
the number of threads that have arrived at the barrier, the barrier
triggers when arrived=expected, and the wait queue is used to
release threads when the barrier triggers.

Suppose a program has N threads spin in a loop, where each
loop iteration includes a barrier with expected=N. Now suppose
we analyze the program from an initial context where the barrier is
unconstrained. When the first thread arrives at the barrier, execution
forks at the condition arrived=expected. In the true branch we
set arrived=0 and notify the queue, and in the false branch we
increment arrived and wait. This repeats for the other threads,
and an execution tree unfolds in which we explore O(2N) paths
through a code fragment that has exactly one feasible path.

We compute invariants for both of these fields. Bounds for
arrived can be determined by examining WQ: the number of
threads that have arrived at a barrier is exactly the number of
threads that are waiting on the barrier’s wait queue. Let q be the
wait queue address used by the barrier and let C be the current
path constraint. We compute conservative lower- and upper-bounds
for arrived. The lower-bound L is the number of pairs (p, t) ∈
WQ for which mustBeTrue(C, p=q), and the upper-bound H is
the number of pairs for which mayBeTrue(C, p=q). Given these
bounds, the invariant is L ≤ arrived ≤ H .

A barrier’s expected count is specified during barrier initializa-
tion, i.e., when pthread barrier init is called. Each symbolic
state contains a Bcnts that maps barrier pointers p to a set of ex-
pressions that describes the set of possible expected counts for all
barriers pointed-to by p. So, we can use Bcnts directly to construct
an invariant for expected:∧

p′∈Bcnts

(∨
e∈Bcnts(p′)

(p′ = p)⇒ (expected = e)

)
Bcnts is computed for the initial state (§4.4) and does not change
during symbolic execution—when pthread barrier init is
called during symbolic execution we write to the barrier’s expected
field directly, making Bcnts irrelevant in this case.

Other Types of Synchronization. The invariant described
above for a barrier’s arrived field is more generally stated as an
invariant on the size of a given wait queue, making it applicable
to other data structures that use wait queues, such as condition
variables and queued locks.

Why Wait Queues are Named by Address. For standard
synchronization objects such as barriers, condition variables, and
queued locks, different objects do not share the same wait queue.
For example, notifying the queue of lock L should not notify
threads waiting at any other lock. By using the address of L to
name L’s wait queue, we state this invariant implicitly.

For contrast, suppose we instead named wait queues by an
integer id. We would be forced to add a queueId field to each lock,
then state the following invariant: ∀p1, p2 : (p1 = p2) ⇔ (id1 =
id2), where p1 and p2 range over the set of pointers to locks, and
where id1 and id2 are the queueId fields in p1 and p2, respectively.
Stating this as an axiom would require enumerating the complete
set of pointers to locks, which can be extremely inefficient.

4.4 Approximating the Initial State of Synchronization
We update the context-specific dataflow framework introduced in
§2.3 to support multiple threads. Specifically, we apply the dataflow
framework as described in §2.3 to each thread, separately, and then
combine the per-thread results to produce a multithreaded analysis.
We perform the following analyses for SimpThreads:

Reaching Definitions. We update the reaching definitions anal-
ysis described in §3.2 to support multiple threads. Importantly,
since we analyze each thread in isolation, we must reason about
cross-thread interference. Our approach is to label memory lo-
cations in Rheap as either conflict-free or shared. A location is
conflict-free if it is provably thread-local (via an escape analysis)
or if all writes to the location must-occur before the first call to
threadCreate—the second case captures a common idiom where
the main thread initializes global data that is kept read-only during
parallel execution. Shared locations may have conflicts—we reason
about these conflicts using interference-free regions [8].

Locksets. We use a lockset analysis to compute L+(T), the
set of locks that may be held at thread T ’s initial program counter.
Our analysis uses relative locksets as in RELAY [26]: each function
summary includes two sets, L+f and L−f , where L+f is the set of locks
that function f may acquire without releasing, and L−f is the set of
locks that f always releases without first acquiring.

The key difference between our implementation and RELAY’s
is that we compute may-be-held sets while RELAY computes must-
be-held sets. This reflects differing motivations: as a static race de-
tector, RELAY wants to know which locks must be held to deter-
mine if accesses are properly guarded, but we want to know which
locks may be held to determine when two lock() calls may need
to be serialized (as motivated by Figure 1). Hence, our L+ and L−

are may-acquire and must-release, while those used by RELAY are
must-acquire and may-release.

Barrier Expected Arrivals. To compute Bcnts, we simply
enumerate all calls to barrierInit(p, e) that might be performed
on some path from program entry up to the initial context, and for
each such call, we add e to the set Bcnts(p). This can be viewed as
may-reach analysis applied to each barrier’s expected field.

Barrier Matching. A large class of data-parallel algorithms
use barriers to execute threads in lock-step. For example, a program
might execute the following loop in N different threads, where each
iteration happens in lock-step:

for (i=0; i < Z; ++i) { barrierArrive(b); ... }

Suppose we are given an initial program context in which each
thread begins inside this loop. In this case, since the loop runs
in lock-step, we know that all threads must start from the same
dynamic loop iteration, so we can add a constraint that equates
the loop induction variable, i, across all threads. This constraint
is included in the initial path constraint, Sinit.C.

This is the barrier matching problem: given two threads, must
they pass the same sequence of barriers from program entry up to

8

the initial context? Solutions have been proposed—we adapt [28],
which builds barrier expressions to describe the possible sequence
of barriers each thread might pass through. Two threads are barrier-
synchronized if their barrier expressions are compatible.

The algorithm in [28] does not support our use case directly
because it cannot reason about loops with input-dependent trip
counts. So, we extend that algorithm by computing a symbolic trip
count for each loop node in a barrier expression. Two loops match if
their symbolic trips counts must be equal. We compute trip counts
using a standard algorithm, but we discard trip counts that depend
on shared memory locations (recall the definition of shared, from
above). To determine if the trip count can be kept, we compute a
backwards slice of the trip count expression and ensure that slice
does not depend on any shared locations.

5. Soundness and Completeness
Our symbolic execution algorithm is sound, and it is complete
except when the SMT solver uses concretization to make progress
through an unsolvable query (recall §2.1). Our theorem relies on a
notion of correspondence between concrete and symbolic states—
because the heap is expanded lazily in the symbolic semantics, this
notion relies on partial equivalence and is somewhat technical. We
give the full concrete semantics and a proof of the theorem in a
supplementary appendix.

Definition 1 (Correspondence of concrete and symbolic states). We
say that symbolic state SS models concrete state SK under con-
straint C if there exists an assignment Σ that assigns all symbolic
constants in SS to values such that (a) Σ is a valid assignment un-
der the constraint C, and (b) the application of Σ to SS produces a
state that is partially-equivalent to SK (as defined in the appendix).

Theorem 1 (Soundness and completeness of symbolic execution).
Consider an initial program context, an initial concrete state SK

for that context, and an initial symbolic state SS:
– Soundness: If symbolic execution from SS outputs a pair

(p,C), then for all SK such that SS models SK under C, con-
crete execution from SK must follow path p as long as context
switches happen exactly as specified by path p.

– Completeness: If concrete execution from SK follows path p,
then for all SS such that SS models SK under SS .C, symbolic
execution from SS will either (a) output a pair (p,C), for some
C, or (b) encounter a query that the SMT solver cannot solve.

6. Implementation and Evaluation
We implemented the above algorithms on top of Cloud9 [4], which
symbolically executes C programs that use pthreads and are com-
piled to LLVM bytecode (Cloud9 operates directly on LLVM byte-
code). Where a points-to analysis is needed, we use DSA [20].

The C language allows casts between pointers and integers. This
is not modeled in our semantics but is partially supported by our im-
plementation. Our approach is to represent each pointer expression
p like any other integer expression. Then, at each memory access,
we analyze p to extract (base, offset) components. For example, our
implementation represents int *p = &a[x*3] as p = a+4 · (x ·3),
and to access p we transform it to ptr(a, 12 ·x). We determine that
a is the base address by exploiting LLVM’s simple type system to
learn which terms are used as pointers.

The precise semantics of integer-to-pointer conversions in C
are implementation-defined (§6.3.2.3 of [17]). Our implementa-
tion does not support programs that use integer arithmetic to jump
between two separately-allocated objects, such as via the clas-
sic “XOR” trick for doubly-linked lists. Such programs are not
amenable to garbage collection for analogous reasons [2], even
though they are supported by some C implementations.

Evaluation: Infeasible Paths. Recall (§1.1) that our approach
lies on a spectrum between a naı̈ve approach, which approximates
the initial state very conservatively by leaving all memory locations
unconstrained, and a fully precise approach, which constructs a per-
fectly precise initial state using an intractably expensive analysis.

We first compare the naı̈ve approach with our approach: how
many fewer infeasible paths do we explore? We answer this ques-
tion for a given program context C by exhaustively enumerating
all paths reachable from C up to a bounded depth. Any path that
is enumerated by the naı̈ve approach, but not by our approach,
must be an infeasible path that our approach has avoided. We use a
bounded depth to make exhaustive exploration feasible.

Table 1 summarizes our results. Each row summarizes experi-
ments for a unique program context. We selected applications from
standard benchmark suites to cover a range of parallelism styles,
including fork-join parallelism, barrier-synchronized parallelism,
task parallelism, and pipeline parallelism. For each application, we
manually selected one or two program contexts in which at least
two threads begin execution from the middle of a core loop. Col-
umn 2 shows the number of threads used in each initial context, and
Column 3 shows the maximum number of conditional branches ex-
ecuted on each path during bounded-depth exploration.

Columns 4 and 7 show the number of paths explored by our
fully optimized approach (Full) and the naı̈ve approach, respec-
tively. To further characterize our approach, we also ran our ap-
proach with optimizations disabled: -RD disables reaching defini-
tions (§2.3, §3.2, §4.4) and -SI disables synchronization invariants
(§4.3, §4.4). Our approach explores significantly fewer infeasible
paths compared to the naı̈ve approach, and a comparison across
Columns 4–7 shows that each optimization is essential.

It is difficult to compare our approach with the fully precise
approach, as the fully precise approach is intractable. For lu and
streamcluster, we have manually inspected the paths explored
by our approach (Column 4) and estimated, through our best under-
standing of the code, how many of those paths are infeasible (Col-
umn 18). Sources of infeasible paths include the following: Both
programs assign each thread a unique id parameter (e.g., by incre-
menting a global counter), but we are unable prove that these ids
are unique across threads. Further, they performs calls of the form
pthread join(t[i])—we are unable to prove that each t[i] is
a valid thread id, so we must fork for (infeasible) error cases.

Evaluation: Performance. Columns 8–12 show the average
number of LLVM instructions executed per second (IPS), and
Columns 13–17 show the percentage of total execution time de-
voted to isSat. The two metrics are correlated, as slower isSat times
lead to lower IPS. Full uses more precise constraints than the naı̈ve
approach, but this does not necessarily lead to higher IPS for Full.
Namely, precise and simple constraints such as x = 5 lead to high
IPS, but precise and complex constraints can lead to low IPS—the
latter effect has been observed previously [16, 19].

To further understand the overheads of our approach, we sym-
bolically executed multiple whole program paths that each begin at
program entry and pass through the initial context (WP in Columns
8 and 13). Although Full can be an order-of-magnitude slower than
WP, many paths explored by WP visit 100s of branches before
reaching the initial context, suggesting that exhaustive summariza-
tion of all paths from program entry is infeasible—approximating
the initial context is necessary. Further profiling shows that much
of our overhead comes from resolving symbolic pointers: LLVM’s
load and store instructions typically comprised 15% to 50% of
total execution time in Full, but < 5% in WP.

Lastly, we tried disabling our use of a points-to analysis to
restrict aliasing (§3.1, §4.2). With this optimization disabled, each
symbolic pointer was assigned 100s of aliases, leading to large
heap-update expressions and poor solver performance—so slow

9

Program Context Num Paths Avg IPS Exec Time in isSat inf.
thr br Full -RD -SI N WP Full -RD -SI N WP Full -RD -SI N pths

blackscholes 4 20 763 1087 765 1087 927 176 1171 178 1206 75% 93% 65% 93% 65% –
dedup-1 5 10 103 122 863 971 4731 72 49 67 64 3% 30% 62% 36% 51% –
dedup-2 5 12 458 550 1811 1904 4692 45 26 39 32 5% 35% 64% 30% 59% –
lu-1 4 22 681 1026 1133 1864 3997 93 170 64 107 2% 55% 16% 75% 57% 625
lu-2 4 18 554 1400 1290 4680 3860 80 136 105 162 32% 57% 23% 56% 26% 380
pfscan 3 18 246 246 3785 3785 6250 5368 5650 5254 5503 17% 28% 25% 15% 13% –
streamcluster 3 11 60 617 229 1004 5382 161 59 7 19 15% 9% 35% 74% 31% 48

Table 1. Results for manually-selected program contexts. Full is our fully optimized approach, and N is the naı̈ve approach.

that on most benchmarks, throughput decreased to well under 5
IPS. Hence, we consider this optimization so vital that we left it
enabled in all experiments.

Evaluation: Input-Covering Schedules. We evaluate how
well our techniques support an algorithm for finding input-covering
schedules [1]. The algorithm partitions execution into epochs of
bounded length and uses symbolic execution to enumerate a set of
input-covering schedules for each epoch. The beginning of each
epoch is defined by a multithreaded program context with fully
specified call stacks, so our techniques are directly applicable.

We ran the algorithm (from [1]) on the programs shown in
the table below, using our approach at various optimization levels,
along with the naı̈ve approach. We report the number of schedules
enumerated by that algorithm and the algorithm’s total runtime.
Similarly to the infeasible paths evaluation above, if a schedule is
enumerated with the naı̈ve approach, but not our approach, then it
must be an infeasible schedule. The results show, again, that our
techniques are essential: the naı̈ve approach suffers from slower
algorithm runtimes and more infeasible schedules.

Program NumSchedules / RunningTime
thr Full -RD -SI N

fft 2 2 / 9s 2 /12s 2/ 10s 2/ 11s
lu 4 3/ 6s 23/14s 1550/396s 1976/202s
pfscan 2 455/24s 455/28s 2245/ 78s 2273/ 80s

7. Related Work
We have cited related work throughout the paper. We stress that
prior approaches to path explosion, such as summarization [12, 15,
23], heuristics [5, 21], path merging [16, 19], and partial order re-
ductions [10], are completely orthogonal to our symbolic execu-
tion semantics and could be profitably incorporated along with our
ideas. We believe our integration of dataflow analysis with sym-
bolic execution is novel, and §6 shows that our choice of analysis
represents an essential sweet spot in our context. However, we do
not claim that our dataflow analysis is powerful in a novel way.

Some prior work has investigated symbolic pointers. Our ap-
proach is most similar to bbr’s [7], but bbr cannot reason about in-
terior pointers or memory allocations of a symbolic size. SAGE [9]
handles interior pointers, as in our semantics, but does not support
symbolic object sizes or symbolic pointer inputs. CUTE [24] sup-
ports symbolic pointer inputs in C unit tests, but can reason about
aliasing relationships only when they are explicitly stated in pro-
gram branches, such as via if(p1!=p2). Pex [25] exploits static
types (not available to us) and cannot reason soundly when type
casts are involved (our approach is sound on an untyped language).
We originally implemented the algorithm from Khurshid et al. [18],
which explores each possible memory graph via aggressive forking,
but this suffered from unacceptably extreme path explosion.

Program verifiers often represent memory with a global sym-
bolic array [3, 6]. This can result in large chains of writes to the
global array, which can burden symbolic executors, like Cloud9,
which frequently invoke isSat to resolve local properties (e.g., to
resolve a branch). Our semantics assigns each heap object its own

symbolic array to reduce such solver pressure and to simplify
caching optimizations such as those implemented by Klee [5].

References
[1] T. Bergan, L. Ceze, and D. Grossman. Input-Covering Schedules for

Multithreaded Programs. In OOPSLA, 2013.
[2] H.-J. Boehm. Simple Garbage-Collector-Safety. In PLDI, 1996.
[3] S. Böhme and M. Moskal. Heaps and Data Structures: A Challenge

for Automated Provers. In Conf. on Automated Deduction, 2011.
[4] S. Bucur, V. Ureche, G. Candea, et al. Parallel Symbolic Execution for

Automated Real-World Software Testing. In EuroSys, 2011.
[5] C. Cadar et al. KLEE: Unassisted and Automatic Generation of High-

Coverage Tests for Complex Systems Programs. In OSDI, 2008.
[6] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamaric. A Reacha-

bility Predicate for Analyzing Low-Level Software. In TACAS, 2007.
[7] A. Cheung, A. Solar-Lezama, and S. Madden. Partial Replay of Long-

Running Applications. In FSE, 2011.
[8] L. Effinger-Dean, H.-J. Boehm, et al. Extended Sequential Reasoning

for Data-Race-Free Programs. In MSPC, 2011.
[9] B. Elkarablieh, P. Godefroid, and M. Y. Levin. Precise Pointer Rea-

soning for Dynamic Test Generation. In ISSTA, 2009.
[10] C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for

Model Checking Software. In POPL, 2005.
[11] V. Ganesh and D. L. Dill. A Decision Procedure for Bit-vectors and

Arrays. In CAV, 2007.
[12] P. Godefroid. Compositional Dynamic Test Generation. In POPL, ’07.
[13] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated

Random Testing. In PLDI, 2005.
[14] P. Godefroid, M. Y. Levin, and D. Molnar. Automated Whitebox Fuzz

Testing. In NDSS, 2008.
[15] P. Godefroid and D. Luchaup. Automatic Partial Loop Summarization

in Dynamic Test Generation. In ISSTA, 2011.
[16] T. Hansen, P. Schachte, and H. Sondergaard. State Joining and Split-

ting for the Symbolic Execution of Binaries. In RV, 2009.
[17] ISO. C Language Standard, ISO/IEC 9899:2011. 2011.
[18] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized Symbolic

Execution for Model Checking and Testing. In TACAS, 2003.
[19] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient State

Merging in Symbolic Execution. In PLDI, 2012.
[20] C. Lattner. Macroscopic Data Structure Analysis and Optimization.

PhD thesis, Computer Science Dept., UIUC, Urbana, IL, May 2005.
[21] Y. Li, Z. Su, L. Wang, and X. Li. Steering Symbolic Execution to Less

Traveled Paths. In OOPSLA, 2013.
[22] C. S. Pasareanu, N. Rungta, and W. Visser. Symbolic Execution with

Mixed Concrete-Symbolic Solving. In ISSTA, 2011.
[23] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing Procedures in

Concurrent Programs. In POPL, 2004.
[24] K. Sen, D. Marinov, and G. Agha. CUTE: a Concolic Unit Testing

Engine for C. In FSE, 2005.
[25] N. Tillmann and J. de Halleux. Pex - White Box Test Generation for

.NET. In Tests and Proofs (TAP), 2008.
[26] J. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detection on

Millions of Lines of Code. In FSE, 2007.
[27] C. Zamfir, B. Kasikci, J. Kinder, E. Bugnion, and G. Candea. Auto-

mated Debugging for Arbitrarily Long Executions. In HotOS, 2013.
[28] Y. Zhang and E. Duesterwald. Barrier Matching for Programs With

Textually Unaligned Barriers. In PPoPP, 2007.

10

Appendix A. Concrete Semantics of SimpThreads

Full syntax for SimpThreads:
r ∈ Var (local variables)

x, y ∈ SymbolicConst (symbolic constants)
f ∈ FName (function names)
l ∈ Loc (heap locations)
i ∈ Z (integers)

v ∈ Value ::= f | i | null | ptr(l, i)
e ∈ Expr ::= v | r | x | e ∧ e | e ∨ e | e < e | ...

| ptr(l, e) | ptradd(p, e)

γ ∈ StmtLabel
s ∈ Stmt ::= return e

| br e, γt, γf
| r ← e(e∗)
| r ← load p | store p, e
| r ← malloc(e) | free(p)
| threadCreate(ef, earg) | yield()
| wait(p) | notifyOne(p) | notifyAll(p)

synchronization annotations
| acquire(p) | release(p)
| barrierInit(p, e) | barrierArrive(p)

Func ::= func f(r∗){ (γ : s;)∗ }

Program state in the concrete semantics:
H : Loc→ {fields : (Z→ Value)} (heap)
Y : ThreadId→ Stack of (Var→ Value) (local variables)

CallCtx : ThreadId→ Stack of StmtLabel (calling contexts)
TCurr : ThreadId (current thread)

TE : Set of ThreadId (enabled threads)
WQ : List of (Value, ThreadId) (global wait queue)
L+ : ThreadId→ Set of Value (acquired locksets)

Auxiliary Functions:
• eval : ((Var→ Value)× Expr)→ Value

This is just as in the symbolic semantics (§2.1), except that all
expressions can be reduced to values as symbolic constants do
not appear in the concrete language.
• wqGetOne : (WaitQueue,Value)→ (ThreadId,WaitQueue)

Given wqGetOne(WQ, v), we walk the global queue WQ and
return the first thread (t) waiting on the queue at address v. If
found, we return a pair (t,WQ′), where WQ′ is WQ with t de-
queued. If the queue at address v is empty, we return ε.
• wqGetAll : (WaitQueue,Value)→ (Set of ThreadId,WaitQueue)

As above, except we dequeue all threads waiting on the queue
at address v. If that queue is empty, we return (ε,WQ).
• wqAppend : (WaitQueue,Value, ThreadId)→ WaitQueue

Given wqGetOne(WQ, v, t), we append the pair (v, t) to WQ.

Statement evaluation rules. The =⇒ relation, defined below, is equivalent to step in the symbolic semantics except that =⇒ never forks
the concrete state. We do not include semantics for the annotations barrierInit and barrierArrive, as these are no-ops during symbolic
execution. We include a few shorthands for brevity: We elide a domain from a rule if the domain is not used or updated by the rule. We use
Y (without the overline) to refer to the current stack frame (namely, the youngest stack frame of Y(TCurr)). We write M [k 7→ v] to assign
k = v in map M , and we write M/k to remove M(k) from map M . We also elide rules that check for memory errors such as out-of-bounds
accesses and data races, as the details of these checkers are orthogonal to this paper.

H;Y; CallCtx; TCurr; TE; WQ; L+; Bcnts|Stmt =⇒ H′;Y
′
; CallCtx′; TCurr

new ; TE
new; WQ′; L+new; Bcntsnew

size(CallCtx(TCurr)) > 1 Y
′

= Y[TCurr 7→ pop(Y(TCurr))] CallCtx′ = CallCtx[TCurr 7→ pop(CallCtx(TCurr))]

γ′ = top(CallCtx′(TCurr)) Stmts(γ′) = r ← ef (e∗a) eval(Y, e) = v Y
′ = top(Y

′
(TCurr))[r 7→ v]

Y; CallCtx; TCurr; TE|return e =⇒ Y
′
[TCurr 7→ replaceTop(Y

′
(TCurr),Y′)]; CallCtx′; TCurr; TE

size(CallCtx(TCurr)) = 1 TCurr
new ∈ TE TCurr

new 6= TCurr

Y; CallCtx; TCurr; TE; L+|return e =⇒ Y[TCurr → ε]; CallCtx[TCurr → ε]; TCurr
new ; TE/TCurr; L+[TCurr → ε]

size(CallCtx(TCurr)) = 1 TE = {TCurr}
Y; CallCtx; TCurr; TE; L+|return e =⇒ ε; ε; ε; ε; ε

eval(Y, e) = i γ = ((i 6= 0) ? γt : γf)

Y; CallCtx; TCurr|br e, γt, γf =⇒ Y; goto(CallCtx, TCurr, γ); TCurr

eval(Y, ef) = f eval(Y, ei) = vi Funcs(f) = func f(ri∗){γ0 : . . .}
Y
′

= Y[TCurr 7→ push(Y(TCurr), {ri → vi})] CallCtx′ = CallCtx[TCurr 7→ push(CallCtx(TCurr), γ0)]; TCurr

Y; CallCtx; TCurr|r ← ef (e∗i) =⇒ Y
′
; CallCtx′; TCurr

eval(Y, p) = ptr(l, i) (l, {fields}) ∈ H

H;Y|r ← load p =⇒ H;Y[r 7→ fields(i)]

eval(Y, p) = ptr(l, i) eval(Y, e) = e′ (l, {fields}) ∈ H

H;Y|store p, e =⇒ H[l 7→ {fields[i 7→ e′]}];Y

l = fresh loc
H;Y|r ← malloc(e) =⇒ H[l 7→ {λi.undef}];Y[r 7→ ptr(l, 0)]

true
H;Y|free(p) =⇒ H;Y

eval(Y, ef) = f eval(Y, earg) = v Funcs(f) = func f(r){γ0 : . . .} Tnew = fresh id

Y; CallCtx; TE|threadCreate(ef, earg) =⇒ Y[Tnew 7→ {{r → v}}]; CallCtx[Tnew 7→ γ0]; TE ∪ {Tnew}

11

TCurr
new ∈ TE

TCurr; TE|yield() =⇒ TCurr
new ; TE

eval(Y, p) = v wqAppend(WQ, v, TCurr) = WQ′ TE = {TCurr}
Y; TCurr; TE; WQ|wait(p) =⇒ Y; ε; {}; WQ′

eval(Y, p) = v wqAppend(WQ, v, TCurr) = WQ′ TCurr
new ∈ TE TCurr

new 6= TCurr

Y; TCurr; TE; WQ|wait(p) =⇒ Y; TCurr
new ; TE/{TCurr}; WQ′

eval(Y, p) = v wqGetOne(WQ, v) = ε

Y; TE; WQ|notifyOne(p) =⇒ Y; TE; WQ

eval(Y, p) = v wqGetOne(WQ, v) = (hd,WQ′)

Y; TE; WQ|notifyOne(p) =⇒ Y; TE ∪ {hd}; WQ′
eval(Y, p) = v wqGetAll(WQ, v) = {Twoke,WQ′}
Y; TE; WQ|notifyAll(p) =⇒ Y; TE ∪ {Twoke}; WQ′

eval(Y, p) = v

Y; TCurr|acquire(p) =⇒ Y; TCurr; L+[TCurr 7→ L
+(TCurr) ∪ {v}]

eval(Y, p) = v

Y; TCurr; L+|release(p) =⇒ Y; TCurr; L+[TCurr 7→ L
+(TCurr)/{v}]

Appendix B. Soundness and Completeness
We restate and expand on Definition 1 and then restate and give a
proof for Theorem 1. These were first stated in §5.

Definition 1 (Correspondence of concrete and symbolic states). We
say that symbolic state SS models concrete state SK under con-
straint C if there exists an assignment Σ that assigns all symbolic
constants in SS to values such that (a) Σ is a valid assignment un-
der the constraint C, and (b) the application of Σ to SS produces a
state S′S that is partially-equivalent to SK (as defined below).

The above definition relies on a notion of partial equivalence
between S′S and SK , rather than true equivalence, because we ex-
pand the symbolic memory graph lazily (recall §3.1). Thus, the
symbolic heap may contain a subset of the objects contained in
the concrete heap. Our notion of partial equivalence considers only
this overlapping subset of S′S and SK . Hence, to determine whether
S′S and SK are partially equivalent, we must construct a mapping,
λ, that maps locations lS in S′S to isomorphic locations lK in SK .
This is actually a many-to-one mapping as multiple locations in the
symbolic heap can alias a single location in the concrete heap, due
to our representation of aliasing in SS .H (again, recall §3.1).

We give a complete definition of partial equivalence below:

Definition 2 (Partial equivalence of states). Given a symbolic state
SS , an assignment Σ, and a concrete state SK , let S′S be the state
produced when Σ is applied to SS . We assume, without loss of gen-
erality, that the set of locations used by values in S′S is disjoint from
the set of locations used by values in SK .

We check if the memory graph in S′S is isomorphic to a subset of
the memory graph in SK , where each memory graph is defined rel-
ative to the pointer roots in Y. If no such isomorphism exists, then
S′S and SK are not partially equivalent.

Specifically, we must find a correspondence λ(lS) = lK be-
tween heap locations lS from S′S and lK from SK such that λ sat-
isfies the following conditions. We say that S′S and SK are partially
equivalent if and only if such a λ exits.

• ∀lS ∈ S′S , lS ∈ λ. That is, if location lS is used by any value
in S′S (not just in S′S .H), then it must have a mapping in λ.
• ∀lK ∈ SK .H, if there does not exist an lS such that λ(lS) = lK

and lS ∈ S′S .H, then it should be possible to “expand” some
symbolic pointer in S′S to reach such an lS . Specifically, there
should exist an x such that Σ(x) = ptr(l′S , i) and λ(l′S) = l′K
(but l′S /∈ S′S .H, as x should be unexpanded), where either
(a) l′K = lK , or (b) l′K 6= lK , but lK is reachable from l′K
in SK .H. In case (a), we expand x directly to a heap object lS
(where λ(lS) = lK), and in case (b), we expand x to some heap
object l′S from which object lS is transitively reachable.

• ∀lS ∈ S′S .H, the heap object at S′S .H(lS) matches the heap
object at SK .H(λ(lS)). We say that two values vS and vK
“match” if either vS = vK or if vS = ptr(lS , iS) and
vK = ptr(lK , iK) where λ(lS) = lK and iS = iK .
• T ∈ S′S .Y if and only if T ∈ SK .Y, and further, ∀T ∈
S′S .Y, the stack S′S .Y(T) matches the youngest stack frames
in SK .Y(T). This definition allows SK to have deeper stack
frames than S′S , as the call stacks in S′S may be underspecified
(recall §2.2).
• T ∈ S′S .CallCtx if and only if T ∈ SK .CallCtx, and fur-

ther, ∀T ∈ S′S .CallCtx, the stack S′S .CallCtx(T) matches the
youngest stack frames in SK .CallCtx(T). As above, this defini-
tion allows SK to have deeper stack frames than S′S .
• TCurr and TE match exactly in S′S and SK .
• WQ matches exactly in S′S and SK . If the symbolic WQ uses

initial waiter timestamps {x0, x1, · · · } (recall §4.2), then those
initial entries of S′S .WQ are ordered by the concrete values of
their respective timestamps as assigned by Σ.
• T ∈ S′S .L

+ if and only if T ∈ SK .L
+, and further, ∀T ∈

S′S .L
+, SK .L

+(T) ⊆ S′S .L+(T). This definition allows S′S .L
+

to be a conservative over-approximation of SK .L
+.

Theorem 1 (Soundness and completeness of symbolic execution).
Consider an initial program context, an initial concrete state SK

for that context, and an initial symbolic state SS:
– Soundness: If symbolic execution from SS outputs a pair

(p,C), then for all SK such that SS models SK under C, con-
crete execution from SK must follow path p as long as context
switches happen exactly as specified by path p.

– Completeness: If concrete execution from SK follows path p,
then for all SS such that SS models SK under SS .C, symbolic
execution from SS will either (a) output a pair (p,C), for some
C, or (b) encounter a query that the SMT solver cannot solve.

Proof. First, we state our assumptions. We assume the underlying
points-to analysis is sound. We assume that isSat is sound, though
not necessarily complete. We assume that synchronization libraries
are correctly implemented, as otherwise, the invariants described
in §4.3 would be incorrect. Note that the initial symbolic state SS

is a given, thus our theorem implicitly assumes correctness of the
dataflow analyses used to construct that initial symbolic state. Fi-
nally, our completeness proof is valid only for paths p in which
no thread continues executing after returning from its initial stack
frame (recall from §2.2 that symbolic execution does not continue
beyond this point). We now prove the theorem:

Soundness. The proof proceeds by induction over the length of
an execution trace, with symbolic and concrete executions proceed-
ing in lockstep. The base case is given. In the inductive cases, sym-

12

bolic execution from SS and concrete execution from SK take the
next action on path p, resulting in states S′S and S′K , respectively,
and we show that the inductive hypothesis is maintained (i.e., that
S′S models S′K under C).

Importantly, our proof must demonstrate that, whenever the
symbolic execution makes a choice (such as at branch statements),
the path constraint S′S .C and execution trace S′S .path must be up-
dated in such a way that the concrete execution is forced to make
the same choice. That is, the concrete execution cannot make a dif-
ferent choice unless it is not true that SS models SK under C.

In this proof, as a shorthand, we say that an expression in the
symbolic state is consistent with a value in the concrete state if
there exists a valid assignment Σ such that, if Σ is applied to the
symbolic expression, then the resulting value matches the concrete
value. (This is merely an application of Definition 1.)

We give one case for each possible program statement:

• return stmt “return e”: The symbolic and concrete executions
pop call stacks in the same mechanical way, hence their updates
will be consistent. The consistency of return value e in the sym-
bolic and concrete executions follows from the inductive hy-
pothesis. If the current thread T is returning from its final stack
frame in SS .CallCtx, then there are three special cases: (1) T
is the only thread in TE, in which case symbolic execution halts
and the path completes; otherwise (2) |SK .CallCtx| = 1 and
T exits from both the symbolic and concrete executions; or (3)
|SK .CallCtx| > 1, in which case the call stacks are underspec-
ified and symbolic execution will not schedule T again (recall
§2.2). In case (3), on a technical point, to maintain the induc-
tive hypothesis, we must ensure that T ∈ SS .Y if and only if
T ∈ SK .Y (recall Definition 2)—we do this by not removing
T from Y or CallCtx when T exits (e.g., see the second rule for
return in the concrete semantics).
• call stmt “r ← ef (e∗)”: The symbolic and concrete execu-

tions push call stacks in the same mechanical way, hence their
updates will be consistent. The consistency of values e∗ in the
symbolic and concrete executions follows from the inductive
hypothesis. At indirect calls, if the symbolic execution invokes
function f , it updates the path constraint to C′ = (C ∧ ef =
f). By the inductive hypothesis, the concrete execution must
derefence a function pointer ef that is consistent with C′ in the
symbolic execution. Thus, the concrete execution must invoke
the same function.
• branch stmt “br e, γt, γf”: When symbolic execution takes

the branch to γt, it updates the path constraint to C′ = C ∧ e
(similarly, to C′ = C∧¬e for γf). This constraint is sufficiently
narrow to force the concrete execution to take the same branch.
• the first access of symbolic pointer x: Suppose the symbolic

execution is about to access pointer x for the first time. In this
case, there does not yet exist a record {x, lx, nx} ∈ SS .A.
Such a record will be appended and a new primary object lx
will be allocated. We must show that this update is performed in
such a way that the resulting symbolic state will be consistent
with the concrete state. Specifically, consider all pairs (lS , i)
such that Σ(x) = ptr(lS , i), where Σ is a valid assignment
as in Definition 1. We first show that, for all such pairs (lS , i),
x = ptr(lS , i) =⇒ SS .H(lS).fields = SS .H(lx).fields.
This is ensured by Equation (1), which ensures that lx has an
initial state that matches all possible aliases. (Note that this
argument implicitly assumes that the set of aliases is soundly
chosen—this follows from our assumption that our underlying
static points-to analysis is sound.) We next show that, for any lK
in the concrete heap that corresponds to one possible lS , the ob-
jects at lK and lS are consistent. This follows directly from the
inductive hypothesis when lS 6= lx, and otherwise, it follows

from the fact that we assign each new symbolic heap object a
fresh symbolic array (recall Equation (1)).
• memory access stmt “r ←load(p) or store(p, e)”: First we

assume that the access does not have a memory error. By the
inductive hypothesis, the pointer p and value e are consistent in
the symbolic and concrete executions. We consider three cases:

(1) p has the form ptr(l, eoff) in the symbolic state. Note that
this case can arise only if l was allocated by a call to malloc
during symbolic execution. That is, l cannot alias any symbolic
pointer x in SS , and we do not need to consider the correctness
of aliases. Thus, for this case, loads and stores perform the same
mechanical action in both semantics, and we conclude that the
resulting states are consistent.

(2) p has the form x or ptradd(x, eoff) in the symbolic state
and the action is a load. Suppose that Σ(x) = ptr(lS , i), where
Σ satisfies Definition 1. We must show that the symbolic and
concrete executions read consistent values. By the inductive hy-
pothesis combined with the above case for the “first access of
x,” location lS in the symbolic heap must be consistent with
some corresponding location lK in the concrete heap. Thus, we
conclude that the concrete and symbolic loads will return con-
sistent values.

(3) p has the form x or ptradd(x, eoff) in the symbolic state
and the action is a store. Suppose again that Σ(x) = ptr(lS , i).
By the inductive hypothesis combined with the above case for
the “first access of x,” location lS in the symbolic heap must be
consistent with some corresponding location lK in the concrete
heap. We must show that lS and lK are updated in a consistent
manner. This follows from, first, the fact that symbolic execu-
tion updates all l ∈ SS .lookupAliases(x), and second, from the
assumption that our static points-to analysis is sound, which im-
plies that the set of aliases in SS .A soundly covers all possible
aliases in the symbolic heap. Thus, we conclude that the con-
crete and symbolic heaps are updated in a consistent manner.

As we do not give detailed semantics for memory errors in
this paper, our proof will not discuss memory errors in detail.
Briefly, at each access of p, the symbolic execution forks into
two states—one with a memory error and one without—and up-
dates the path constraint C in each state to describe each case.
For soundness, the constraints must be narrow enough so that,
if the symbolic execution does (or does not) follow a path with
a memory error, then the concrete execution must (or must not)
follow a path with the same memory error.
• allocator stmt “malloc(e) or free(p)”: Again, as we do not dis-

cuss memory errors in this paper in detail, these cases are trivial
as the concrete and symbolic executions both perform the same
mechanical action.
• threadCreate stmt: The consistency of values ef and earg in

the symbolic and concrete executions follows from the induc-
tive hypothesis. Hence, as this statement has the same mechan-
ical action in both semantics, the resulting states are consistent.
• yield stmt: By the inductive hypothesis, SS .TE = SK .TE.

Hence, whichever next TCurr is selected in the symbolic execu-
tion can also be selected by the concrete execution. Further, we
conclude that the same next TCurr will be selected by the con-
crete execution, as our inductive hypothesis assumes that con-
text switches in the concrete execution are dictated precisely by
the path output by the symbolic execution.
• wait stmt “wait(p)”: The consistency of value p in the sym-

bolic and concrete executions follows from the inductive hy-
pothesis. Hence, WQ is updated the same way in both execu-
tions. Further, as with yield, the next TCurr selected by the sym-
bolic execution will also be selected by the concrete execution.

13

• notify stmt “notifyOne(p) or notifyAll(p)”: By the inductive
hypothesis, the wait queues WQ are consistent in both the
symbolic and concrete states. Suppose the symbolic execution
wakes a set of threads T woke (which includes at most one thread
for notifyOne). We submit that the constraints described in
§4.2 are sufficiently narrow to force the concrete execution to
wake the exact same set of threads, T woke.
• annotation “acquire(p) or release(p)”: By the inductive hy-

pothesis, L+ is consistent in both the symbolic and con-
crete states. On acquire, L+ is updated in mechanically the
same way in both the symbolic and concrete semantics (recall
§4.3). On release, the symbolic semantics removes p from
L+(TCurr) only if there exists a lock in L+(TCurr) that must-
equal p given the current path constraint. This makes the sym-
bolic L+ an over-approximation of the concrete L+, which is
allowed by Definition 2.

Completeness. The theorem trivially holds when isSat encoun-
ters an unsolvable query. Thus, in the remainder of this proof, we
assume that isSat will soundly resolve any query it is given.

As above, the proof proceeds by induction over the length of an
execution trace, with symbolic and concrete executions proceeding
in lockstep. The base case is given. In the inductive cases, symbolic
execution from SS and concrete execution from SK take the next
action on path p, resulting in states S′S and S′K , respectively, and
we show that the inductive hypothesis is maintained (i.e., that S′S
models S′K under S′S .C). While the soundness proof required con-
straints to be sufficiently narrow to force concrete execution down
a specific path, here we require constraints to be sufficiently wide
so that the symbolic execution can cover all paths that might be
followed during the concrete execution.

We again have one case for each possible program statement:

• call stmt “r ← ef (e∗)”: As before, we argue that the symbolic
and concrete executions push call stacks in the same mechani-
cal way, hence their updates will be consistent. At indirect calls,
if the concrete execution invokes function f , then the symbolic
execution must cover a path that invokes function f . This fol-
lows, first, from the inductive hypothesis (the expression ef in
the symbolic state is consistent with f), and second, from the
assumed soundness of our static points-to analysis that selects
the set of possible target functions for this call site.
• branch stmt “br e, γt, γf”: When symbolic execution takes

the branch to γt, it updates the path constraint to C′ = C ∧ e
(similarly, to C′ = C ∧ ¬e for γf). These two constraints are
sufficiently wide to cover all possible paths that the concrete
execution may take.
• memory access stmt or allocator stmt: In the absence of

memory errors, we can reuse the same argument from the
soundness proof to argue that the resulting states are consistent.
In the case of memory errors, recall again that at each access
of p, the symbolic execution forks into two states—one with a
memory error (S′S) and one without (S′′S). For completeness, if
the concrete execution encounters a memory error, then the up-
dated path constraints in S′S .C must be wide enough so that, as
execution proceeds from S′S , the symbolic execution will en-
counter the same memory error.
• yield stmt: By the inductive hypothesis, SS .TE = SK .TE.

Hence, whichever next TCurr is selected in the concrete execu-
tion can also be selected by the symbolic execution.
• notify stmt: By the inductive hypothesis, the wait queues WQ

are consistent in both the symbolic and concrete states. Sup-
pose the concrete execution wakes a set of threads T woke (which
includes at most one thread for notifyOne). We submit that
the constraints described in §4.2 are sufficiently wide so that, in

at least one forked state, the symbolic execution will explore a
path in which the exact same set of threads, T woke, is woken.
• return stmt, threadCreate stmt, wait stmt, or annotation: In

these cases, the concrete and symbolic semantics perform es-
sentially the same mechanical updates. Hence, similarly to the
proof cases stated above under soundness, the theorem holds
for these statements. (Further, for wait(p), we observe that, as
for yield(), any next TCurr chosen by the concrete execution
can also be chosen in the symbolic execution.)

14

