
Arrakis: The Operating System is the Control Plane

Simon Peter Jialin Li Irene Zhang
Dan R. K. Ports Arvind Krishnamurthy

Thomas Anderson
University of Washington

Timothy Roscoe
ETH Zurich

Abstract
Recent device hardware trends enable a new approach to the
design of network servers. In a traditional operating system,
the kernel mediates access to device hardware by server
applications, to enforce process isolation as well as network
and disk security. We have designed and implemented a new
operating system, Arrakis, that splits the traditional role of the
kernel in two. Applications have direct access to virtualized
I/O devices, allowing most I/O operations to skip the kernel
entirely. The Arrakis kernel operates only in the control plane.
We describe the the hardware and software changes needed
to take advantage of this new abstraction, and we illustrate
its power by showing significant latency and throughput
improvements for network server applications relative to a
well-tuned Linux implementation.

1. Introduction
This paper proposes to rearrange the division of labor between
the operating system, application runtime library, and device
hardware, in order to streamline performance for I/O-bound
server applications. At the same time, we want to retain the
security properties of a traditional operating system design.

The key features of an operating system—sandboxed exe-
cution, resource isolation, and virtualization of limited physi-
cal resources—all seem to require applications to operate at
one level removed from hardware I/O devices. In a traditional
operating system, the kernel mediates all access to I/O: every
network packet, disk block, and interprocessor interrupt is
handed from user-level to hardware, and vice versa, through
the kernel. The kernel sanity checks arguments, enforces
resource limits, and prevents buggy or malicious programs
from evading the system’s security policy.

Kernel mediation comes at a cost, however. The resulting
performance is much less than what is possible from the
raw hardware, particularly for I/O-intensive web services.
Further, the kernel must provide a common implementation
shared among all applications; being “all things to all people”
makes its code paths longer and more general than the
minimum necessary to support any individual application.
The inevitable result: periodic calls that the operating system

should “get out of the way” and give applications direct
access to hardware devices. Nevertheless, most web services
are still built as applications on top of a traditional kernel,
because exchanging reliability for better performance is rarely
a good tradeoff.

Our goal is to provide the best of both worlds. Taking
a cue from very high speed Internet routers, we split the
operating system into a separate control and data plane. On
the data plane, with the right device hardware support, kernel
mediation is not needed. Network packets, disk blocks, and
processor interrupts can be safely routed directly to (and
from) user-level without going through the kernel and without
violating system security. The kernel is needed on the control
plane: to configure which data paths are allowed and what
resource limits are to be enforced in hardware.

An inspiration for our work is the recent development of
sophisticated network device hardware for the virtual ma-
chine market [1, 19]. Without special hardware, the data path
for a network packet on a virtual machine must traverse both
the host kernel and the guest kernel before reaching the appli-
cation server code. Today’s state of the art device hardware
elides one hop, providing a small number of “virtual” network
devices that can be mapped directly into the guest operating
system. The guest operating system can program these vir-
tual network devices without host intermediation, by directly
manipulating the virtual device transmit and receive queues.

We take this idea one step further: can we move the
operating system off the I/O data path? We need hardware
and software support for safely delivering I/O directly into
a user-level library. In this paper, we focus on streamlining
the data plane for network devices, as the available device
hardware allows us to build a working prototype for that case.
However, we note that our model is general-purpose enough
to apply to other I/O devices, such as disks and interprocessor
interrupts.

Our work is complementary but orthogonal to the nano-
kernel design pattern pioneered by several systems two
decades ago. In this model, the operating system retains its
sandboxing role and allocates resources to applications, but
as much as possible, from that point forward the application is
in complete control over how it uses its resources. User-level
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virtual memory pagers in Mach [24], scheduler activations
for multiprocessor management [2], and Exokernel disk
management [18] all took this approach. The key idea in
all of these systems is that the operating system remains
free to change its allocation decisions, as long as it notifies
the application. However, the nano-kernel movement did not
envision changing the data path; the kernel was still involved
in every I/O operation.

We make three specific contributions:

• We develop an architecture for the division of labor
between the device hardware, operating system kernel,
and runtime library for direct user-level I/O (Section 3).

• We implement a prototype of our model as a set of
modifications to the open source Barrelfish operating
system, running on commercially available multi-core
computers and network device hardware (Section 3.5).

• We quantify the potential benefits of our approach for two
widely used network services: a web object cache and
an application-level load balancer (Section 4). We show
that significant gains are possible in terms of both latency
and scalability, relative to Linux, without modifying the
application programming interface; additional gains are
possible by tweaking the POSIX API.

2. Background
In this section, we give a detailed breakdown of the operating
system overheads in networking stacks used today, followed
by a discussion of new hardware technologies that enable
Arrakis to almost completely eliminate operating systems
overheads in the networking stack.

2.1 Inefficiencies in Networking Stacks
Operating system support for today’s high speed network
devices is imperfect. To motivate this work, we examine the
sources of overhead in a traditional OS. Consider a UDP echo
server implemented as a Linux process. The server performs
recvmsg and sendmsg calls in a loop, with no application-
level processing, so it stresses packet processing in the OS.
Figure 1 depicts the typical workflow for such an application.

To analyze the sources of overhead, we record timestamps
at various stages of kernel and user-space processing of each
packet. Our experiments are conducted using Ubuntu Linux
13.04 on a Intel Xeon E5-2430 (Sandy Bridge) system; further
details of the hardware and benchmark configuration are
presented in Section 4.

As shown in Table 1, operating system overhead for packet
processing falls into four major categories.

• Network stack processing at the network card, IP, and
UDP layers.

• Scheduler overhead: waking the appropriate process (if
necessary), selecting it to run, and switching to its address
space.

App
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Figure 1. Linux networking architecture and workflow.

• Kernel crossings: from the kernel to user space and back.
• Copying of packet data: from the kernel to a user buffer

on receive, and back on send.

Of the total 3.36 µs (see Table 1) spent processing each
packet in Linux, nearly 70% is spent in the network stack. The
work done in the network stack consists primarily of software
demultiplexing and security checks. The kernel must validate
the header of incoming packets, and must perform security
checks on arguments provided by the application when it
sends a packet.

Scheduler overhead depends significantly on whether the
process in question is currently running. If it is, only 5% of
processing time is spent in the scheduler; if it is not, the time
to context-switch to the server process from the idle process
adds an extra 2.2 µs. In either case, making the transition from
kernel to user mode and copying data to and from user-space
buffers impose additional cost.

Another source of overhead is harder to directly quantify:
cache and lock contention issues on multicore systems. These
problems are exacerbated by the fact that incoming messages
can be delivered on different queues by the network card,
causing them to be processed by different CPU cores—
which may not be the same as the cores on which the
user-level process is scheduled, as depicted in Figure 1.
Advanced hardware support such as accelerated receive flow
steering (ARFS) aims to mitigate this cost, but these solutions
themselves impose non-trivial setup costs [22].

By leveraging hardware support to remove kernel media-
tion from the data plane, Arrakis is able to eliminate certain
categories of overhead entirely, and minimize the effect of
others. Table 1 also shows the corresponding overhead for
two variants of Arrakis. Arrakis eliminates scheduling and
kernel crossing overhead entirely, because packets are deliv-
ered directly to user space. Network stack processing is still
required, of course, but it is greatly simplified: it is no longer
necessary to demultiplex packets for different applications,
and the user-level network stack does not need to validate
parameters provided by the user as extensively as a kernel im-
plementation would. Because each application has a separate
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Linux Arrakis

Process running CPU idle POSIX interface Native interface

Network stack in 1.26 (37.6%) 1.24 (20.0%) 0.32 (22.1%) 0.21 (51.1%)
out 1.05 (31.3%) 1.42 (22.9%) 0.28 (19.6%) 0.20 (48.9%)

Scheduler 0.17 (5.0%) 2.40 (38.8%) - -

Copy in 0.24 (7.1%) 0.25 (4.0%) 0.27 (18.4%) -
out 0.44 (13.2%) 0.55 (8.9%) 0.58 (39.9%) -

Kernel crossing return 0.10 (2.9%) 0.20 (3.3%) - -
syscall 0.10 (2.9%) 0.13 (2.1%) - -

Total 3.36 6.19 1.44 0.41

Table 1. Sources of packet processing overhead in Linux and Arrakis. All times are averages over 1000 samples, given in µs.

network stack, and packets are delivered to the cores where
the application is running, lock contention and cache effects
are reduced.

With Arrakis’s optimized network stack, the time to copy
packet data to and from user-provided buffers makes up
the majority of the packet processing cost. This copying
is required by the POSIX interface, which specifies that
received packet data must be placed in a user-provided buffer,
and permits buffers containing transmitted data to be reused
by the application immediately. In addition to the POSIX
compatibility interface, Arrakis provides a native interface
which supports true zero-copy I/O.

It is tempting to think that zero-copy I/O could be provided
in a conventional OS like Linux simply by modifying its
interface in the same way. However, eliminating copying
entirely is possible only because Arrakis eliminates kernel
crossings and kernel packet demultiplexing as well. Using
hardware demultiplexing, Arrakis can deliver packets directly
to a user-provided buffer, which would not be possible in
Linux because the kernel must first read and process the
packet to determine which user process to deliver it to. On the
transmit side, the application must be notified once the send
operation has completed and the buffer is available for reuse;
this notification would ordinarily require a kernel crossing.

2.2 Hardware I/O Virtualization
Single-Root I/O Virtualization (SR-IOV) [19] is a hardware
technology intended to support high-speed I/O for multi-
ple virtual machines sharing a single physical machine. An
SR-IOV-capable network adaptor appears on the PCIe inter-
connect as a single “physical function” (PCI parlance for
a device) which can in turn dynamically create additional
“virtual functions”. Each of these resembles a PCI network
device, which can be directly mapped into a different virtual
machine. System software with access to the physical func-
tion (such as Domain 0 in a Xen [4] installation) not only
creates and deletes these virtual functions, but also config-

ures filters in the SR-IOV adaptor to demultiplex incoming
packets to different virtual functions.

In Arrakis, we use SR-IOV and virtualization hardware in
a non-virtualized setting to completely remove any OS code
from the data path. As we describe in the next section, existing
SR-IOV adaptors [16, 26] do not provide all of the facilities
needed for safe user-level operation; thus our implementation
is a proof-of-concept, not a fully functional solution given
the limitations of existing hardware.

3. Design and Implementation
The design of Arrakis is driven by the following design goals:

• Minimize kernel involvement for data-plane opera-
tions: Arrakis is designed to limit or completely eliminate
kernel mediation for most I/O operations. Data packets are
routed to and from the application’s address space with-
out requiring kernel involvement and without sacrificing
security and isolation properties.

• Transparency to application programmer: Arrakis is
designed to achieve significant performance improve-
ments without requiring modifications to applications that
are written assuming a POSIX API. Additional perfor-
mance gains are possible if the developer can modify the
application to take advantage of a native interface.

• Right OS/hardware abstractions: Arrakis’s abstrac-
tions should provide sufficient flexibility to efficiently
support a broad range of communication patterns, achieve
the desired level of scalability on multi-core systems,
and ably support application needs for locality and load
balance.

In the rest of this section, we elaborate how we achieve
these goals by presenting the Arrakis architecture. We de-
scribe an ideal set of hardware facilities that should be present
to take full advantage of this architecture, and we detail the
design of the control plane and data plane interfaces that we
provide to the application programmer. Finally, we describe
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Figure 2. Arrakis networking architecture.

our implementation of Arrakis in the context of the Barrelfish
operating system.

3.1 Architecture Overview
The overall architecture of Arrakis is depicted in Figure 2.
Arrakis is aimed at I/O hardware that contain hardware sup-
port for virtualization. In this paper, we focus on networking
hardware that can present multiple instances of itself to the
operating system and the applications running on the node.
For each of these virtualized device instances, the underlying
physical device provides unique memory mapped register
spaces, transmit/receive queues, and interrupts. The device
exports a management interface that is accessible from the
control plane in order to create or destroy virtualized de-
vice instances, associate individual instances with network
flows, and allocate shared network resources to the differ-
ent instances. Applications can transmit and receive network
packets through a virtualized device instance without requir-
ing kernel intervention. In order to perform these operations,
applications rely on a user-level network stack, which is im-
plemented as a library OS. The user-level network stack can
be tailored to the application as it can assume exclusive access
to a virtualized device instance and also avoid performing de-
multiplexing operations and security checks that are already
implemented in the hardware.

3.2 Hardware model
In our design of Arrakis, we are aiming at a device model
providing an “ideal” set of hardware features. This device
model captures the functionality required to implement in
hardware the data plane operations of a traditional kernel.
Our model closely resembles what is already provided by
many hardware virtualizable network adapters, and we hope
it will itself provide guidance to future hardware designers.

In particular, we assume our network devices provide sup-
port for virtualization by presenting themselves as multiple
virtual network interface cards (VNICs) and that they can

also multiplex/demultiplex packets based on complex filter
expressions, directly to queues that can be managed entirely
in user space without the need for kernel intervention. Asso-
ciated with each VNIC are queues, filters, and rate limiters.
We discuss these components below.

Queues: Each VNIC contains multiple pairs of queues for
user-space send and receive. The exact form of these VNIC
queues could depend on the specifics of the network interface
card. For example, it could support a scatter/gather interface
to aggregate multiple physically-disjoint memory regions
into a single data transfer. It could also optionally support
hardware checksum offload and TCP segmentation facilities.
These features enable packets to be handled more efficiently
by performing additional work in hardware. In such cases,
the Arrakis system offloads packet processing operations and
thus reduces the software overhead associated with preparing
these packets for transmission.

Transmit filters: a predicate on packets and packet header
fields which the hardware will use to determine whether
to send the packet or discard it (and possibly signaling an
error either to the application or the OS). The transmit filter
prevents applications from spoofing information such as IP
addresses and VLAN tags and thus eliminates the need for
kernel mediation to enforce these security checks.

Receive filters: a similar predicate which determines which
packets received from the network will be delivered to a
VNIC and to a specific queue associated with the target VNIC.
The demultiplexing of packets to separate VNICs allows for
isolation of flows and the further demultiplexing into queues
allows for efficient load-balancing through techniques such
as receive side scaling. Installation of transmit and receive
filters are privileged operations performed via the control
plane.

Bandwidth allocators: This includes support for resource
allocation mechanisms such as rate limiters and pacing/traffic
shaping of transmitted packets. Once a frame has been
fetched out from a transmit rate-limited or paced queue,
the next time another frame could be fetched from that
queue is regulated by the rate limits and the inter-packet
pacing controls associated with the queue. Installation of
these controls are also privileged operations.

In addition, we assume that the NIC device driver supports
an introspection interface that allows the control software to
query for resource limits (e.g., the number of queues) and
check for the availability of hardware support for packet
processing (e.g., checksum calculations and segmentation).

Network cards that support SR-IOV incorporate the key
elements of this model: they allow the creation of multiple
VNICs that each may have multiple send and receive queues,
and support at least rudimentary transmit and receive filters.
Not all NICs provide the rich filtering semantics we desire;
for example, the Intel 82599 can filter only based on source
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or destination MAC addresses, not arbitrary predicates on
header fields. However, this capability is within reach: some
network cards (e.g., Solarflare 10Gb adapters) can already
filter packets on all header fields, and the hardware support
required for more general VNIC transmit and receive filtering
is closely related to that used for techniques like Receive-Side
Scaling, which is ubiquitous in high-performance network
cards.

3.3 Control plane interface
The interface between an application and the Arrakis control
plane is used to request network resources from the system
and direct packet flows to and from user programs. The key
abstractions presented by this interface are VNICs, doorbells,
filters, and rate specifiers.

An application can create and delete VNICs (subject to
resource limitations or policies imposed by Arrakis), and
also associate doorbells with particular events on particular
VNICs. A doorbell is an IPC communication end-point used
to notify the application that an event (such as a packet arrival)
has occurred, and we discuss them further in the next section.

Filters have a type (transmit or receive) and a predicate
which corresponds to a convex sub-volume of the packet
header space (for example, obtained with a set of mask-and-
compare operations). Filters can be used to specify ranges of
IP addresses and port numbers that can be associated with
valid packets transmitted/received at each VNIC. Filters are
a better abstraction for our purposes than a conventional
connection identifier (such as a TCP/IP 5-tuple), since they
can encode a wider variety of the communication patterns we
want to be able to treat as a single unit, as well as subsuming
traditional port allocation and interface specification.

To take one illustrative example, in the “map” phase of
a MapReduce job we would like the application to send to,
and receive from, an entire class of machines using the same
communication end-point, but nevertheless isolate the data
comprising the shuffle from other data. Furthermore, filters as
subsets of header space are flexible enough to support a range
of application settings while being more straightforward to
implement in hardware than mechanisms such as longest
prefix matching.

Applications create a filter with a control plane operation,
and in practice this is usually wrapped in a higher-level
call create_filter(flags, peerlist, servicelist) = filter which
sacrifices generality in the aid of simplicity in the common
case. It returns a new filter ID filter; flags specifies the filter
direction (transmit or receive) and whether the filter refers to
the Ethernet, IP, TCP, or UDP level. peerlist contains a list
of accepted communication peers specified according to the
filter type, and servicelist contains a list of accepted service
addresses (e.g., port numbers) for the filter. Wildcards are
permitted.

A filter ID is essentially a capability: it confers authority
to send or receive packets satisfying its predicate. A filter
ID can subsequently be assigned to a particular queue on a

VNIC; thereafter that queue can be used to send or receive
the corresponding packets and the assign operation causes
Arrakis to configure the underlying hardware accordingly.

Finally, a rate specifier can also be assigned to a queue,
either to throttle incoming traffic (in the receive case) or pace
outgoing packets. Rate specifiers and filters associated with a
VNIC queue can be updated dynamically, but all such updates
require mediation from the Arrakis control plane.

3.4 Data plane interface
In Arrakis, applications send and receive network packets
by directly communicating with hardware. The data plane
interface is therefore implemented in an application library.
The Arrakis library provides two interfaces to applications.
We first describe the native Arrakis interface, which departs
slightly from the POSIX standard to support true zero-copy
I/O; Arrakis also provides a POSIX compatibility layer that
supports unmodified applications.

Applications send and receive packets on queues, which
have previously been assigned filters as described above.
While filters can express packet properties which include IP,
TCP, and UDP field predicates, Arrakis does not require the
hardware to perform protocol processing, only multiplexing
between filters. In the implementation we describe below,
Arrakis provides a user-space network stack above the data
place interface.

Interaction with the network hardware is designed for
maximizing performance from the perspective of both la-
tency and throughput. We borrow ideas from previous high-
performance protocol stacks such as RDMA [12] and special-
ized HPC hardware, and maintain a clean separation between
three aspects of packet transmission and reception.

Firstly, packets are transferred asynchronously between
the network and main memory using conventional DMA
techniques using rings of packet buffer descriptors.

Secondly, the application transfers ownership of a transmit
packet to the network hardware by enqueuing a chain of
buffer regions onto the same hardware descriptor rings,
and acquires a received packet by the reverse process. At
present, this is performed by two functions provided by the
VNIC driver. send_packet(queue, packet_array) sends a
packet on a queue. The packet is specified using the scatter-
gather array packet_array, and must conform to some filter
already associated with the queue. receive_packet(queue) =
packet receives a packet from a queue and returns a pointer
to it. Both these operations are asynchronous: they return
immediately with a result code, regardless of whether the
operation succeeds or not.

For optimal performance, the Arrakis stack would interact
with the hardware queues not through these calls but directly
via compiler-generated, optimized code tailored to the NIC
descriptor format. However, the implementation we report on
in this paper uses function calls to the driver.

Thirdly, we handle synchronous notification of events
using doorbells associated with queues. These are exposed

5 2013/10/14



to Arrakis programs as regular event delivery mechanisms
(e.g., POSIX signals). Doorbells are useful both to notify
an application of general availability of packets in receive
queues, as well as a lightweight notification mechanism for
the reception of packets in high-priority queues.

To facilitate waiting for multiple event types, a select-like
interface to check for events on multiple queues at once is
provided: event_wait_queues(waitset), where waitset con-
tains an array of (queue, event, closure) tuples. If an event
on queue occurs, the corresponding closure is called with
queue and event as arguments.

This design results in a protocol stack that decouples hard-
ware from software as much as possible using the descriptor
rings as a buffer, maximizing throughout and minimizing
overhead under high packet rates, and achieving low latency
by delivering doorbells directly from hardware to user pro-
grams via hardware virtualized interrupts.

On top of this native interface, Arrakis provides a POSIX-
compatible sockets layer. This compatibility layer allows
Arrakis to support unmodified Linux applications. However,
performance gains can be achieved by using the native
interface, which supports zero-copy I/O. The POSIX interface
specifies that the application can reuse the buffers it provided
to sendmsg calls immediately after the call returns, so the
Arrakis POSIX compatibility layer must wait for these buffers
to be flushed out to the network card. The native Arrakis
interface instead provides an asynchronous notification to the
application when the buffers may be safely overwritten and
reused.

3.5 Implementation
The Arrakis operating system is based upon a fork of the
Barrelfish [6] multicore OS code base.1 We added 22,454
lines of code to the Barrelfish code base in order to implement
Arrakis. Barrelfish lends itself well to our approach, as it
already provides a library OS, which we can readily build
upon. We could have chosen to base Arrakis on the Xen [4]
hypervisor or even the Intel Data Plane Development Kit
(DPDK) [17] running on Linux, both of which provide ways
to gain direct access to the network interface via hardware
virtualization. However, implementing a library OS from
scratch on top of a monolithic OS would have been more
time consuming than extending the Barrelfish library OS.

We extended Arrakis with support for SR-IOV, which
required modifying the existing PCI device manager to
recognize and handle SR-IOV extended PCI capabilities,
reserve PCI bus and memory address space to map PCI
virtual functions, and implementing a physical function driver
for the Intel 82599 10G Ethernet Adapter [16] that can
initialize and manage a number of virtual functions. We also
implemented a virtual function driver for the 82599 from
scratch. In addition—to support our benchmark applications—
we added several POSIX APIs that were not implemented

1 Publicly available at http://www.barrelfish.org/.

in the Barrelfish code base, such as POSIX threads, many
functions of the POSIX sockets API, as well as the epoll
interface found in Linux to allow scalable polling of a large
number of file descriptors.

We place the control plane implementation in the 82599
physical function driver and export its API to applications
via the Barrelfish inter-process communication system. The
control plane implementation will likely be moved out of the
82599 driver and become more pervasive within Arrakis as
support for more devices are added.

Barrelfish already supports standalone user-mode device
drivers, akin to those found in microkernels. We created a
shared library version of the virtual function driver, which
we simply link to each application utilizing the network.
The driver library automatically advertises its capability to
handle a new virtual interface upon application startup and
communicates with the physical function driver to invoke
control plane operations, such as configuring the packet filters
required to route packets to the appropriate VNICs.

We have developed our own user-level network stack, Ar-
ranet, which contains the data-plane implementation. Arranet
is a shared library that interfaces directly with the virtual
function device driver library and provides the POSIX sock-
ets API and Arrakis’s native API to the application. Arranet
is based in part on the low-level packet processing code of
the lightweight IP (lwIP) network stack [20]. It has iden-
tical capabilities to lwIP, but supports hardware offload of
layer 3 and 4 checksum operations and does not require any
synchronization points or serialization of packet operations.
Instead, Arranet’s high-level API calls operate directly on
hardware-level packet queues via the device driver. For ex-
ample, the recvfrom call will invoke the driver operation to
directly poll one of the NIC’s receive queues for the next
packet, strip off the packet headers, and copy its payload into
the user-provided receive buffer. Analogously, the sendto call
will copy the provided data into pre-allocated send buffers
and directly insert a corresponding packet descriptor into the
NIC’s send queue.

Prior to the development of Arranet, we experimented with
lwIP, but quickly discovered that it is difficult to attain line-
rate packet throughput at 10G Ethernet speeds or to handle
tens of thousands of TCP connections when using its imple-
mentation of the POSIX socket API. The implementation of
the POSIX socket API in lwIP is inherently non-scalable: ev-
ery call is serialized and handled by a single, application-wide
API handling thread.

We have integrated Arranet’s implementation of packet
flows with Barrelfish’s messaging subsystem [5]. Arranet
packet flows map directly to Barrelfish’s channel abstraction.
This makes it possible to re-use Barrelfish’s messaging API
to concurrently poll for a number of events on a variety of
different channels.
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3.6 Limitations
The 82599 network device provides hardware support for
standard 5-tuple filters that can be used to assign packet
flows to receive queues within VNICs for scaling purposes.
It however has only limited support for assigning flows
to different VNICs. Only filters based on MAC addresses
and VLAN tags are provided for this purpose. Hence, our
implementation uses a different MAC address for each VNIC,
which we use to direct flows to applications and then do
more fine-grain filtering in software, within applications. The
availability of more general-purpose filters would eliminate
this software overhead.

Arrakis does not currently provide support for an IOMMU.
In building our research prototype, we currently forego full
hardware protection and write physical addresses directly to
hardware registers. In a production environment, an IOMMU
would be required. An IOMMU would also improve perfor-
mance. Without it, Arrakis must manually translate virtual
addresses for packet data to physical ones. Address transla-
tion makes up 5% of the total reported processing time in
Table 1 for Arrakis/P and 15% of that reported for Arrakis/N.
With proper IOMMU support, translations could be done
faster in hardware.

Arranet does not currently support network interrupts, and
all network packet processing is done by polling the network
interface. This can have adverse effects on packet processing
latency if network packets arrive when the network-handling
application is not currently active. In such cases, Arrakis does
not notice the arrival and does not allow the application to
act immediately. Our benchmarks are not impacted by this
limitation and support for network interrupts is future work.

Finally, our implementation of the virtual function driver
does not currently support the transmission head writeback
feature of 82599. If this was implemented, we would see a
5% network performance improvement.

4. Evaluation
We demonstrate the merits of Arrakis’s approach via exper-
imental evaluation of the performance of two cloud infras-
tructure applications: a web object cache and an HTTP load
balancer. We also take a detailed look at the performance
overheads associated with Arrakis by examining the system
under maximum load in a series of microbenchmarks and
compare the results to that of Linux. Using these experiments,
we seek to answer the following questions:

• What are the major contributors to performance overhead
in Arrakis and how do they compare to those of Linux
(presented in Section 2.1)?

• Does Arrakis achieve better latency and throughput for
application-level packet processing than operating sys-
tems such as Linux that require kernel mediation for data
plane operations?

• Does Arrakis provide better transaction throughput for
real-world cloud application workloads? Also, how does
the transaction throughput scale with the number of CPU
cores for these workloads?

• What additional performance gains are possible by depart-
ing from the POSIX interface? Also, what changes are
required to applications to take advantage of the native
interface?

We conduct all of our experiments on a six machine cluster
consisting of Intel Xeon E5-2430 (Sandy Bridge) systems.
Each system’s processor frequency is clocked to 2.2 GHz,
with 1.5 MBytes total L2 cache and 15 MBytes total L3
cache, 4 GBytes of memory, and an Intel X520 dual-port 10
Gigabit Ethernet adapter (of which we use only one port).
All machines are connected to a single 10 Gigabit Ethernet
switch (a Dell PowerConnect 8024F). One system (the server)
executes the application under scrutiny, while the others act
as workload generators and consumers.

We compare the performance of the following OS config-
urations, which we deploy on the server:

• Ubuntu Server version 13.04 (Linux). This version of
Ubuntu uses the Linux kernel version 3.8.

• Arrakis using the POSIX interface (Arrakis/P), and
• Arrakis using its native interface (Arrakis/N).

We tuned Linux’s network performance by installing the
latest ixgbe device driver version 3.17.3 and disabling receive
side scaling when applications execute on only one processor.
The changes yield a throughput improvement of 10% over
non-tuned Linux.

Linux uses a number of performance-enhancing features
of the network hardware, which Arrakis does not currently
support. Among these features is the use of direct processor
cache access by the NIC, TCP and UDP segmentation offload,
large receive offload, and network packet header splitting. All
of these features can be implemented in Arrakis and will
likely yield additional performance improvements.

4.1 Server-side Packet Processing Latency
We test network stack performance with a simple UDP echo
server that sequentially reads each incoming UDP packet
in its entirety and then echoes it back to the sender, using
non-blocking versions of the recvfrom and sendto POSIX
socket calls. We use this benchmark to show the latency and
bandwidth achieved by each system when all computation is
focused on processing network packets.

We load the UDP echo benchmark on the server and use
all other machines in the cluster as load generators. The load
generators use an open loop that generates UDP packets at a
fixed rate and consumes their echoes when they arrive. The
payload of each packet is a random, but fixed string of 1024
bytes. We configure the load generators to generate load that
yields the best attainable throughput for each system and
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Figure 3. Average UDP echo throughput for packets with
1024 byte payload. The top Y axis value shows theoretical
maximum throughput on the 10G network. Error bars show
min/max measured over 5 repeats of the experiment.

run each experiment at this load for 20 seconds. Table 1 of
Section 2.1 shows a breakdown of the average server-side
latency involved in processing each packet.

Due to the reduced code complexity of an application-
level network stack and the removal of the kernel from
the data plane, Arrakis requires uniformly lower processing
overhead than Linux. By relying on the hardware for packet
demultiplexing and a dedicated, application-level network
stack, we are able to eliminate two system calls, software
demultiplexing overhead, socket buffer locks, and security
checks. In Arrakis/N, we additionally eliminate two socket
buffer copies.

Arrakis/P incurs a total server-side overhead of 1.44
us, 1.92 us (57%) less than that of Linux. 0.85 us (59%)
of Arrakis’s overhead is due to copying packet buffers to
adhere to the POSIX interface. When using Arrakis’s native
interface (Arrakis/N) that eliminates all copying, we are able
to reduce processing overhead to 0.41 us (which is 28% that
of Arrakis/P). The additional 13% savings are due to the
elimination of additional code to determine total packet size
and reduced cache pollution due to the omission of the data
copies.

Figure 3 shows the average throughput attained by each
system over several repeats of the UDP echo benchmark. At
623,246 packets/s, Arrakis/P achieves 2.28x the throughput
of Linux (273,478 packets/s). By departing from POSIX,
Arrakis/N achieves a throughput of 930,579 packets/s, 1.9x
that of Arrakis/P, or a total throughput of 3.4x that of Linux.

To gauge the maximum possible throughput, we embedded
a minimal echo server directly into the NIC device driver,
eliminating any remaining API overhead. The device driver
achieves a throughput of 992,817 packets/s, 85% of the
theoretical line rate (1,170,000 packets/s). Note that both
the Arrakis/N and driver embedded versions still read each
packet entirely before echoing it back.

4.2 Cloud Infrastructure Application Performance
The microbenchmarks highlight the best attainable through-
put result for each system, by focusing all computation on

network packet processing. We now turn our attention to the
performance achieved by applications, which take processor
time away from network packet processing and thus make
it a less prominent part of the overall cost. Will we still see
significant improvements?

Many cloud infrastructure workloads consist of a large
number of short transactions. We have an interest in process-
ing each transaction as quickly as possible as this means a
larger number of users can benefit from these services. It
can also shorten the latency of a higher-level user request
that might result in many requests to backend infrastructure
services. For example, to return a cached entry from the mem-
cached distributed object caching system, a request-response
transaction over the network is required. Likewise, HTTP
load balancers and web proxy servers have to deal with high
volumes of individual client HTTP transactions. A high-level
user request to a web service operating on cloud infrastruc-
ture might result in several backend requests to each of these
services.

In this subsection, we investigate the average achieved
transaction throughput of two of these cloud infrastructure
workloads:

• A typical load pattern observed in many large deployments
of the memcached distributed object caching system, and

• a workload consisting of a large number of individual
client HTTP requests made to a farm of webservers via an
HTTP load balancer.

4.2.1 Memcached
Many cloud applications employ distributed object storage
systems, such as memcached.2 Memcached is an in-memory
object caching system that can be used to store frequently
accessed web objects and allows them to be fetched at much
lower latencies than by requesting them from a database
or a file service. Memcached deployments are often hit
by large amounts of object requests by frontend servers
and transaction throughput is an important metric of the
effectiveness of such a deployment.

We observed that the memcached program incurs a pro-
cessing overhead between 2 and 3 us on our systems for an
average object fetch request. This is low enough to merit an
investigation into whether reducing OS network processing
overhead would benefit the throughput of the deployment.

We are not concerned with investigating potential end-to-
end latency improvements. We only require the memcached
server to run the Arrakis operating system and assume that
the client machines remain unmodified. In this scenario, we
do not expect end-to-end transaction latency to improve by a
significant margin, as the overheads of the network and client
networking stacks remain unchanged.

Typical deployments of memcached use pre-arranged
TCP connections or connectionless UDP to facilitate the

2 http://www.memcached.org/.
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processing of large numbers of transactions. Researchers
have reported that real deployments of memcached encounter
workloads where the amount of object fetches is much greater
than the amount of object store requests [3].

We replicate this setup by installing memcached version
1.4.15 on the server machine for each of our systems and
use the other five machines as load generating clients. We
implemented our own workload generator program that uses
memcached’s binary UDP protocol and sends requests at
a configurable rate in an open loop. We verified that this
achieves similar throughput to that measured using the popu-
lar memslap3 benchmark, which uses a closed benchmarking
loop.

We configure a workload pattern of 90% object fetches
and 10% object store requests on a pre-generated range of
128 different keys of a fixed size of 64 bytes and a value
size of 1024 bytes. We determine at which request rate each
system achieves the highest throughput and run the following
benchmark at the optimal request rate for each system for 20
seconds.

To measure network stack scalability with number of CPU
cores, we repeat the benchmark as we increase the number of
memcached server processes executing on the server. Each
server process executes independently on its own port num-
ber, such that measurements are not impacted by potential
scalability bottlenecks in memcached itself. We configure the
load generators to distribute load equally among the avail-
able memcached instances. On Linux, memcached processes
still share the kernel-level network stack. On Arrakis, each
process obtains its own VNIC with an independent set of
packet queues, each controlled by an independent instance of
Arranet.

We show the results in Figure 4 and observe that mem-
cached, when executing on Arrakis/P, achieves a throughput
1.7x that of the same version executing on Linux. Increasing
the number of memcached instances on Arrakis scales lin-
early with an increasing number of CPU cores and attains
near line-rate (top of graph) at four CPU cores. Throughput
drops slightly when moving to a six core setup. This is due
to background system management processes executing on
the last CPU that cannot be stopped and take processing time
away from the memcached instance running on that core.

Linux scales at a factor of 1.7x for the first doubling of
CPUs and is now at half the throughput of Arrakis/P. It then
plateaus to a throughput increase of 1.2x per the next doubling
of CPUs, while Arrakis continues to scale.

We also measure the throughput of a single memcached
instance using threads instead of processes, but observe no
noticeable difference to the multi-process scenario. This is not
surprising as memcached is optimized to scale well with an
increasing number of CPUs and utilizes only one fine-grained
lock around its hashtable data structure.

3 http://www.libmemcached.org/.
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Figure 4. Average memcached transaction throughput when
executing on different numbers of CPU cores. Error bars show
min/max measured over 5 runs of the experiment. The top
y-axis shows the theoretical maximum throughput achievable
in this experiment at a speed of 10Gbits/s.

We conclude that, even with the additional processing
overhead of memcached, the control-plane/data-plane split of
Arrakis still allows for substantial application-level through-
put improvements when compared to Linux, which involves
the kernel for even the data plane operations. Note however
that since the experiment is carried out on an isolated network
with a single connectionless socket, Linux does not incur the
cost of additional system calls to create and destroy individ-
ual connections. Still, its performance is reduced due to the
overheads of its network stack.

We note that memcached is an excellent example of
the communication endpoint abstraction: We can create
hardware filters to allow packet reception and transmission
only between the memcached server and a designated list of
client machines that are part of the cloud application. In the
Linux case, we either have to employ individual connections
or use connectionless UDP, which receives packets from
arbitrary sources and then filter them in the application.

Turning to scalability, the tight separation of kernel-level
network stack and user-space application in Linux means
that the network stack cannot simply assign incoming packet
flows to hardware device queues to be handled directly by
application threads. It also has only limited information about
which application threads might be responsible for packet
processing and hence has difficulty assigning threads to the
right CPU cores that have the packet data hot in their cache.
The shared nature of the Linux socket data structures also
means that locks need to be taken out when socket queues
are accessed. The resulting cache misses and lock contention
are responsible for the rest of the overhead.

In Arrakis, the application is in control of the whole packet
processing flow: assignment of packet flows to packet queues,
packet queues to cores, and finally the scheduling of its own
threads on these cores. The application can thus arrange
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for packets to always arrive on a queue assigned to a core
executing the packet handling threads. The network stack
thus does not need to acquire any locks, and packet data is
always available in the right processor cache.

4.2.2 HTTP Load Balancer
To aid scalability of web services, HTTP load balancers are
often deployed to distribute client load over a number of
frontend web servers. A key performance figure for HTTP
load balancers is the number of HTTP transactions they are
able to sustain without becoming a performance bottleneck
themselves.

A popular HTTP load balancer employed by many web
and cloud services is haproxy.4 haproxy is used by web sites
with high client load, such as GitHub.com, Instagram, and
Twitter. It is also frequently deployed in the Amazon EC2
cloud. In these settings, many connections are constantly
opened and closed and the OS needs to handle the creation
and deletion of the associated socket data structures.

To investigate how performance is impacted when many
connections need to be maintained, we conduct an experiment
to examine the throughput limit of HTTP transactions on
haproxy. We replicate a cloud deployment with five web
servers and one load balancer on our cluster. To minimize
overhead at the web servers, we deploy a simple static web
page of 1,024 bytes, which is served by haproxy out of main
memory. We found this solution to yield the highest per-
server throughput, compared to other web server packages
such as Apache and lighttpd.

We use these same web server hosts as workload gener-
ators, using ApacheBench version 2.3. We found this setup
to yield better throughput results than other partitions of
client/server duties among the cluster nodes. On the load
balancer host, we deploy haproxy version 1.4.24, which we
configure to distribute incoming load in a round-robin fashion
among the web servers.

We configure the ApacheBench instances to conduct
as many concurrent requests for the static web page as
possible, opening as many concurrent connections to the
single haproxy instance as is necessary. We execute the
benchmark in this way for 20 seconds. Each request is
encapsulated in its own TCP connection. haproxy relies
on cookies, which it inserts into the HTTP stream of each
connection, after determining assignment of incoming new
connection requests to web servers. It uses these cookies to
remember its assignment, despite possible client re-connects.
This requires it to investigate the HTTP stream at least once
for each new client request.

Linux provides an optimization called TCP splicing that
allows applications to forward traffic between two sockets
without user-space involvement. This reduces the overhead of
kernel crossings when connections are long-lived. We enable

4 http://haproxy.1wt.eu.
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Figure 5. Average HTTP transaction throughput on haproxy
when executing on different numbers of CPU cores. Error
bars show min/max measured over 5 runs of the experiment.

haproxy to use this feature on the Linux operating system
when it decides that this is beneficial.

Finally, haproxy contains a feature known as “speculative
epoll” (SEPOLL), which uses knowledge about typical socket
operation flows within the Linux kernel to avoid calls to the
epoll interface and optimize performance. Since the Arranet
implementation differs from that of the Linux kernel network
stack, we were not able to use this interface on Arrakis,
but speculate that this feature could be ported to Arrakis
to yield similar performance benefits. To show the effect of
the SEPOLL feature, we repeat the Linux benchmark both
with and without it and show both results.

To conduct the scalability benchmark, we run multiple
copies of the haproxy process on the load balancing node,
each executing on their own port number. We configure the
ApacheBench instances to distribute their load equally among
the available haproxy instances.

In Figure 5, we can see that Arrakis outperforms Linux in
both regular and SEPOLL configurations, by a factor of 2.2x
and 2x, respectively. Both systems show equivalent scalability
curves. We expect the slightly less perfect scalability to be
due to the additional overhead induced by TCP connection
handling (SYN, ACK and FIN packets) that is not included in
the figure. Unfortunately, we do not own a multi-core machine
large enough to investigate where we hit a scalability limit.
The lower scalability factor in Arrakis’s case on 6 CPUs is
again due to the background activity on the last CPU.

To conclude, connection oriented workloads require a
higher number of system calls for maintenance operations,
such as setup (the accept system call and possible invocations
of setsockopt to configure the new socket) and teardown
(the close system call). In Arrakis, we can use filters, which
require only one control plane interaction to specify which
clients and servers may communicate with the load balancer
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service. Further socket operations are reduced to function
calls in the library OS, which have lower overhead.

4.3 Arrakis Native Interface Case Study
Table 1 shows that, by using the native Arrakis API described
in Section 3.4, we can eliminate 60% of the network stack
overhead present in Arrakis/P.

By returning a pointer to the payload of a received packet,
instead of requiring the user to specify its own buffer space,
the native API allows the application to interact directly
on packet data provided by the NIC on the receive side,
eliminating a buffer copy that is required in the POSIX
API. Likewise, by providing a scatter/gather I/O interface
and an asynchronous completion notification on the transmit
interface, the native API saves a buffer copy, which would be
required for performance even with the sendmsg POSIX API
call to allow buffering of packet data. The POSIX interface
requires synchronous completion of the I/O upon return from
the call and the application is free to overwrite any specified
data after completion.

As a case study, we modified memcached to make use of
the native Arrakis interface, both on the receive and on the
transmit side. Only limited changes needed to be made to
support the new interfaces. In total, 74 lines of code were
changed, with 11 pertaining to the receive side, and 63 to the
send side interface.

On the receive side, the changes involve eliminating mem-
cached’s receive buffer and working directly with pointers to
packet buffers provided by Arranet, as well as returning each
buffer to Arranet when receive-side processing is completed.
The changes amount to an average performance increase of
9% in the memcached benchmark from Section 4.2.1.

On the send side, the changes involve the allocation of
a number of send buffers to allow buffering of responses
until fully sent by the NIC, which now has to be done within
the memcached application. They also involve the addition
of reference counts to hashtable entries and send buffers to
determine when it is safe to free or overwrite buffers and
hashtable entries that might otherwise still be processed by
the NIC. We gain an additional average performance increase
of 10% when using the send side API in addition to the
receive side API.

With these modest changes to make use of the native Ar-
rakis API, memcached is able to achieve a total performance
increase of 19% over Arrakis/P. While evaluating our changes,
we found that it is important to be careful about proper mem-
ory alignment of packet payload and reading the packet data
to the appropriate CPU cache within the Arranet network
stack. For example, using the native interface, memcached’s
hash function operates directly on the payload of the received
packet. The hash function is very sensitive to proper data
alignment and a slowdown due to misalignment can easily
nullify any performance improvements gained by eliminating
a data copy. The 82599 provides a hardware feature to auto-
matically split packet headers from payload and store each

in a different receive buffer, which helps aligning the packet
payload.

We conclude that decent performance improvements can
be attained with modest application changes, by moving to
an API that eliminates packet copy overheads. We note that
this API change is only useful with unmediated application
access to the network device. A lightweight asynchronous
notification mechanism is required, as well as the ability
to configure network queues to steer packet data to the right
CPU cache and align it properly according to the application’s
needs.

5. Discussion
In this section, we discuss how we can extend the Arrakis
model to apply to solid state and magnetic disk operations,
as well as to interprocessor interrupts.

5.1 Virtualized Disk I/O
Database designers have long recognized the performance
and scalability limitations of the traditional operating system
architecture for I/O-intensive applications [27]. Although—or
perhaps because—file systems are designed to be general-
purpose, their semantics are often too weak and their perfor-
mance too slow for the database to use as a storage manager.
Typically, the database knows precisely how data should be
arranged on disk, and what constraints must be obeyed in
terms of applying updates in order to maintain transactional
semantics.

A practical workaround exists for the special case where
the database’s storage requirements are known in advance,
and the database can be assumed to be part of the kernel’s
trust domain. A portion of the disk is pre-allocated for
the database’s exclusive use, and the disk device controller
is memory-mapped into the database runtime system. The
database can then schedule reads and writes onto its portion
of the disk without mediation by the kernel. Any other
application interested in reading data from that portion of
the disk is required to go through the database in order to
retrieve it.

Our approach is a generalization of this idea to work
with multiple applications. Although our approach requires
hardware changes in the disk controller, we observe that
commercial disk hardware already has much of what is
needed. Modern magnetic and solid state disk devices insert
a block remapping layer for handling bad block avoidance
and wear-levelling. We likewise need a block remapping
layer to translate from application-level block numbers to
physical block numbers. Because disks need to handle many
concurrent operations to get good disk scheduling or wear-
levelling performance, and those operations can complete out
of order, disk device controllers already have a request and
completed operation queue quite similar to the asynchronous
transmit and receive queues found in network cards. To this
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we would need to add the fault isolation and resource limits
discussed in Section 3.

Our model is that most applications will make use of a
kernel-resident file system, as is the case today. However, for
performance or reliability sensitive applications, we provide
the ability for those applications to allocate chunks of disk
space, and then manage those chunks directly from a user-
level library without kernel intervention. These chunks can
be thought of as equivalent to LFS segments [25] – large
enough to prorate the disk seek in the common case that the
application accesses the chunk sequentially. Unlike LFS, the
application has control over the segment layout and write
order, allowing individual applications to choose journalling,
LFS, or WAFL depending on application needs. For example,
a web cache might format its data using WAFL, while a video
editor might use journalling. The disk controller enforces
access control, translating a segment:offset to a physical disk
block. The kernel-resident file system operates on this same
interface, allocating space as needed, one chunk at a time.

As in the database workaround we described above, any
other applications that need access to file data (e.g., for
backup or local search) must retrieve it from the application
that wrote it. A file system lookup proceeds as in a traditional
operating system, except when the lookup reaches a part of
the name space managed by an application (e.g., the web
cache), the application is invoked with an NFS-style RPC
protocol to return the linearized file data.

5.2 Virtualized Interprocessor Interrupts
To date, most parallel applications are designed assuming that
shared-memory is (relatively) efficient, while interprocessor
signalling is (relatively) inefficient. A cache miss to data
written by another core is handled in hardware, while alerting
a thread on another processor requires kernel mediation on
both the sending and receiving side. The kernel is involved
even when signalling an event between two threads running
inside the same application.

Without kernel mediation, a remote cache miss and a
remote event delivery are similar in cost at a physical level.
Modern hardware already provides the operating system the
ability to control how device interrupts are routed. To safely
deliver an interrupt within an application, without kernel
mediation, requires that the hardware add access control.
With this, the kernel could configure the interrupt routing
hardware to permit signalling among cores running the same
application, and to require kernel mediation between cores
running different applications.

6. Related Work
Previous work on reducing kernel overheads for I/O opera-
tions has focused on minimizing the amount of kernel-level
processing for each operation, although not to the extreme
degree as Arrakis. SPIN [9] and Exokernel [13] both reduced
shared kernel components to allow each application to have

customized operating system management. Exokernel, in par-
ticular, targets the overheads introduced by the operating
system in I/O operations. Nemesis [10] also reduces shared
components to provide more performance isolation for multi-
media applications. Arrakis is able to completely eliminate
kernel-level processing for normal I/O operations providing
all of the benefits of having customized I/O stacks for each
application.

Other work has focused on more general inefficiencies in
the operating systems networking stack. Affinity-Accept [22]
identifies and proposes a solution for the misdirection of
I/O interrupts on a multicore system. Arrakis avoids this
problem by having the hardware directly deliver interrupts to
the application. I/O Lite [21] eliminates redundant copying
throughout the network processing stack. We alos found
copying to be a major source of overhead in the Linux
networking stack, which we were largely able to eliminate in
Arrakis.

The High-Performance Computing field has long been
interested in transferring data directly between user programs
and the network, bypassing the OS which is often viewed as
an undesirable source of “noise” [7, 23]. A sequence of hard-
ware standards such as U-Net [28], VIA [11], Infiniband [15]
and Remote Direct Memory Access (RDMA) [12] with as-
sociated programming models such as Active Messages [29]
have addressed the challenge of minimizing, or eliminating
entirely, OS involvement in sending and receiving network
packets in the common case. However, these new technolo-
gies require significant changes to applications and only work
in the enclosed environments that HPC applications run in.
Arrakis works with unmodified applications, does not require
special hardware, and works over wide-area networks.

Arrakis takes advantage of hardware multiplexing intro-
duced for virtualization to completely eliminate the operating
system kernel from fast-path operations. In this respect, we
follow on from previous work on Dune [8], which used virtu-
alization extensions such as nested paging in a non-virtualized
environment, and Exitless IPIs [14], which presented a tech-
nique to demultiplex hardware interrupts between virtual
machines without mediation from the virtual machine moni-
tor.

7. Conclusion
In this paper, we described and evaluated Arrakis, a new
operating system designed to remove the operating system
kernel from the I/O data path. Unlike a traditional operating
system kernel, which mediates all I/O operations to enforce
process isolation and resource limits, Arrakis uses device
hardware to deliver I/O directly to a customized user-level
library. The Arrakis kernel operates in the control plane,
configuring the hardware to limit application misbehavior.

To demonstrate the practicality of our approach, we have
implemented Arrakis for user-level network device access.
At a microbenchmark level, we show the potential for an
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order of magnitude performance improvement from elimi-
nating unnecessary work: domain crossings, thread context
switches, buffer copies, shared kernel locks, and library im-
plementation complexity. We have also measured Arrakis on
two widely used network services, a web object cache and
an application-level load balancer. In each case, Arrakis was
able to significantly outperform native Linux.
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