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Abstract

We propose a new model of Bayesian computation in a two-layer recurrent

spiking network. The lower layer sensory neurons receive noisy measurements

of hidden world states. The higher layer neurons infer a posterior distribution

over world states via Bayesian inference from spike trains generated by sensory

neurons. We show how such a neuronal network with synaptic plasticity can im-

plement a form of Bayesian inference similar to Monte Carlo methods such as

particle filtering. Each spike in the population of inference neurons represents a

sample of a particular hidden world state. The spiking activity across the neural

population approximates the posterior distribution of hidden state. The model pro-

vides a functional explanation for the Poisson-like noise commonly observed in

cortical responses. Uncertainties in spike times provide the necessary variability

for sampling during inference. Unlike previous models, the hidden world state

is not observed by the sensory neurons, and the temporal dynamics of the hid-

den state is unknown. We demonstrate how the network can learn the likelihood

model as well as the transition probabilities underlying the dynamics using a spike-

timing dependent Hebbian learning rule. Our results illustrate the ability of model

to explain neurobiological data: (1) the network exhibits history dependent adapta-

tion to light intensity, mimicking responses seen in the visual system; (2) neurons

modeling area CA1 change the shapes of their receptive fields after learning in a

manner consistent with experimental observations in rat hippocampal place cells.

1



Keywords: Bayesian inference, spiking networks, hidden Markov models, se-

quential Monte Carlo sampling, Hebbian learning, online expectation-maximization,

stochastic approximation.

1 Introduction

Animals constantly face the problem of estimating unknown world states from ambigu-

ous and noisy stimuli. For example, when inferring 3D structure from a 2D image, the

neural system must choose one among many possible interpretations that are consistent

with the projected 2D image. A mouse in a maze must estimate its current location

indirectly from noisy sensory evidence such as whisker deflections, sight, and odor. In

such situations, the brain needs to combine noisy sensory information with incomplete

knowledge of the environment. An optimal way of combining such information is to use

Bayesian inference, where the level of uncertainty for each possible state is represented

as a probability distribution (Zemel et al. 2005). Behavioral and neuropsychophysical

experiments (Knill & Richards 1996, Rao et al. 2002, Kording & Wolpert 2004, Doya

et al. 2007, Wark et al. 2009) have suggested that the brain may indeed maintain such a

representation and employ Bayesian inference in a great variety of tasks in perception,

sensori-motor integration, and sensory adaptation. However, the neural implementation

of such Bayesian models remains an open question.

Furthermore, the world is dynamic, putting a premium on the ability to actively

anticipate upcoming events by learning the temporal dynamics of relevant states of the

world. For example, when facing an approaching tennis ball, a player must not only

estimate the current position of the ball, but also predict its trajectory by inferring the

ball’s velocity and acceleration, before deciding on the next stroke. The relevant hidden

variables (e.g., velocity, acceleration) are not directly available but must be estimated

from retinal images. Tasks such as these can be modeled using a hidden Markov model

(Rabiner 1989), where the relevant states of the world are latent variables related to

sensory observations via a likelihood model (determined by the emission probability

matrix). The states themselves evolve over time in a Markovian manner, the dynamics

being governed by a transition probability matrix.

In this article, we propose a new model of Bayesian computation in networks of
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spiking neurons. We show how the time-varying posterior probability distribution for

a hidden Markov model can be directly represented by mean spike counts in sub-

populations of neurons, without invoking complicated decoding methods. Each spike

in the posterior population is viewed as a Monte Carlo sample of a particular world

state. The probability that a neuron’s membrane potential exceeds spiking threshold is

shown to approximate the posterior probability of the preferred state encoded by the

neuron. Neurons within the same sub-population encode the same preferred state. The

resulting responses of model neurons exhibit a characteristic property of cortical neu-

rons, namely, that the variance of spike count proportional to the mean. In this model,

variability in spiking is not regarded as a nuisance but an integral feature that provides

the variability necessary for sampling during inference.

We show that a population of leaky integrate-and-fire (LIF) neurons with short-term

synaptic depression can perform approximate Bayesian inference similar to the Monte

Carlo method of particle filtering (Doucet et al. 2001). The posterior spike distribution

is recursively updated in a Bayesian manner by integrating feedforward spikes, whose

firing probabilities represent the likelihood of sensory measurements, with recurrent

spikes, which represent the previous posterior probability distribution. The model thus

provides a concrete neural implementation of ideas previously suggested in (Hoyer et al.

2002, Lee & Mumford 2003, Paulin 2005). We assume that the sensory neurons do

not have direct access to the hidden world state and only observe noisy stimuli. We

illustrate how a spiking network can learn the parameters of a hidden Markov model

by using a spike-timing based Hebbian learning rule to implement an online version of

Expectation-Maximization(EM) algorithm.

2 Spiking Network Model

2.1 Hidden Markov models and grid-based filtering

We begin by considering a discrete-time hidden Markov process {Xk, k ∈ N} such that

Xk+1 | (Xk = x′) ∼ f(x|x′), x, x′ ∈ X. (1)

where f(x|x′) is the transition probability density, X is the state space of Xk (e.g., real-

valued vectors), N is the set of natural numbers, and “∼” denotes distributed according
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Figure 1: Spiking Network Model for Sequential Monte Carlo Bayesian Inference.

In this simple example illustrating the model, the input spikes to the two-layer network

provide noisy and ambiguous observations while the output spikes of the inference

neurons represent a Monte Carlo approximation to the posterior distribution of hidden

state. There are 100 hidden states and the network utilizes 10,000 neurons for the Monte

Carlo approximation, with each state preferred by a sub-population of 100 neurons.

to. The hidden world stateXk could correspond to an attribute of the real world, such as

the mean light intensity of the visual stimulus, or the location of a rat in a maze. Animals

are interested in estimating Xk by constructing its probability density function (pdf),

also called the “belief state,” based only on noisy measurements or observations {Zk}.

The {Zk} are assumed to be conditional independent given {Xk} and are governed by

a likelihood function g:

Zk | (Xk = x) ∼ g(z|x), z ∈ Z. (2)

It is not necessary for the animal to remember the complete history of observations {Zk}

to calculate the belief state. Instead, the belief state can be updated sequentially every

time the sensory organs receive a new measurement. This procedure is called “filtering”

in the engineering literature. From a Bayesian perspective, filtering corresponds to

recursively calculating the belief state of Xk given the observations Z1:k up to time k.

When both f(x|x′) and g(z|x) are given, the posterior pdf P (Xk|Z1:k) may be obtained

recursively in two steps: a prediction step (Equation 3) and a measurement update (or
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correction) step (Equation 4):

P (Xk+1|Z1:k) =

∫
f(Xk+1|Xk)P (Xk|Z1:k)dxk, (3)

P (Xk+1|Z1:k+1) = g(zk+1|xk+1)P (Xk+1|Z1:k)/P (Zk+1|Z1:k). (4)

The prediction equation 3 uses the previous belief state P (Xk|Z1:k) from time step k to

produce a prior distribution of the state at time k+1. When the new measurement Zk+1

becomes available, the update equation 4 modifies this prior density via Bayes’ rule to

obtain the posterior distribution P (Xk+1|Z1:k+1). This process is repeated for each time

step.

The two recursive equations above are the foundation for any exact or approximate

solution to Bayesian filtering, including well-known examples such as Kalman filtering

in the case of a linear Gaussian model and extended Kalman filtering for nonlinear

Gaussian models. However, for most non-linear non-Gaussian models, closed-form

solutions to equations 3 and 4 may be hard or impossible to compute. In such cases,

numerical methods can be used to approximate the optimal Bayesian solution. For

example, one can divide the state space X into X bins, each of which is centered at one

of {xi ∈ X, i = 1, . . .X}. Such a grid-based method can be used to approximate the

posterior density. Suppose the belief state at time k is given by:

P (Xk|Z1:k) '
X∑
i=1

ωik|kδ(Xk − xi), (5)

ωik|k :=

∫ (xi+1+xi)/2

(xi−1+xi)/2

P (Xk|Z1:k)dx

' P (Xk = xi|Z1:k). (6)

where δ(i) is the Kronecker delta function. The weights ωik|k denote the conditional

probability of Xk at the i-th bin given observations up to time step k. If the grid is

sufficient dense and the state space is continuous (or the state space is discrete and

finite), one can compute these weights {ωik|k} at the center of each bin. Similarly,

equations 3 and 4 can be re-written as

P (Xk+1|Z1:k) '
X∑
i=1

ωik+1|kδ(Xk+1 − xi), (7)

P (Xk+1|Z1:k+1) '
X∑
i=1

ωik+1|k+1δ(Xk+1 − xi). (8)
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where

ωik+1|k =
X∑
j=1

ωjk|kf(xi|xj) (9)

ωik+1|k+1 =
ωik+1|kg(Zk+1|xi)∑X
j=1 ω

j
k+1|kg(Zk+1|xj)

(10)

If the number of bins X is large enough and both the dynamics model f and likeli-

hood model g are known, the above equations provide the optimal Bayesian solution to

equations 3 and 4.

2.2 Network architecture

We now show that the framework of grid-based filtering can be implemented in a two-

layer spiking neural network as shown in Figure 1. Let sk denote the binary vector

of activities at time k in the hidden-layer inference neurons. The following equation

defines the dynamics of the network:

sk = Φ(ak,bk) (11)

where Φ is the neuron’s response function, ak is the vector representing the inference

neurons’ recurrent inputs, which are determined by the recurrent weight matrix W and

sk−1 from the previous time step, and bk is the vector representing feedforward inputs,

which are determined by the feedforward weight matrix M and sensory measurement

Zk. How can Bayesian inference be achieved using the above dynamics? We approach

this problem by first showing how this neural network can represent probability distri-

butions.

2.2.1 Neural representation of probability distributions

Similar to the idea of grid-based filtering, we first divide the inference neuron popula-

tion into X sub-populations. s = {sil, i = 1, . . .X , l = 1, . . . ,L}. sil(k) = 1 if there is

a spike in the l-th neuron of the i-th sub-population at time step k. sil(k) = 0 otherwise.

Each sub-population of L neurons share the same preferred world state, there being X

such sub-populations representing each of X preferred states. One can, for example,

view a neuron sub-population as a cortical column, within which neurons encode simi-

lar features (Ecker et al. 2010). A spike, generated by a neuron whose preferred world
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Figure 2: Graphical Representation of spike distribution propagation. Here,

X = Z = 2 and L = 10. At time k, spikes (shown as filled circles in the top row) in

the posterior population represent the distribution P (Xk|Z1:k). With recurrent weights

W ∝ f(Xk+1|Xk), spiking neurons send EPSPs to their neighbors and make them

partially activated (shown as half-filled circles in the second row). The distribution of

partially activated neurons is a Monte-Carlo approximation to the prediction distribu-

tion P (Xk+1|Z1:k). When a new observation Zk+1 arrives, sensory input neurons send

feedforward EPSPs to the inference neurons using synaptic weights M = g(Z|X). The

inference neurons at time k + 1 fire only if they receive both recurrent and feedforward

inputs. With the firing probability proportional to the product of prediction probability

P (Xk+1|Z1:k) and observation likelihood g(Zk+1|Xk+1), the spike distribution at time

k + 1 again represents the updated posterior P (Xk+1|Z1:k+1).
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state is xi at time k, represents an independent Monte Carlo sample (particle) from

the posterior probability P (Xk = xi|Zk). Neural variability can thus be interpreted as

arising naturally due to sampling (Hoyer et al. 2002). As depicted in the raster plot

of Figure 1, the distribution of spikes across the entire inference layer population is a

Monte-Carlo approximation to the current posterior distribution:

nik|k :=
L∑
l=1

sil(k) ∝ ωik|k (12)

Nk =
X∑
i=1

nik|k (13)

where nik|k is the number of spiking neurons in the ith sub-population at time k, which

can also be regarded as the instantaneous firing rate for sub-population i. Nk is the total

spike count in the inference layer population. The set {nik|k} represents the unnormal-

ized conditional probabilities of Xk, so that P (Xk = xi|Z1:k) = ωik|k = nik|k/Nk.

With the above neural representation of probability distributions, we next show how

suitable neural dynamics and synaptic weights can be chosen such that the spike distri-

bution nik|k/Nk will propagate according to equation 10, as illustrated in the example in

figure 2. We tackle the problem of learning the synaptic weights in a later section.

2.2.2 Bayesian inference with stochastic synaptic transmission

To implement the prediction equation 3 in a spiking network, we require that the recur-

rent weights between the inference neurons encode the transition probabilities: Wij =

f(xj|xi)/CW , where CW is a scaling constant. We define the recurrent weight Wij to

be the synaptic release probability between i-th neuron sub-population and j-th neu-

ron sub-population in the inference layer. Each neuron that spikes at time step k will

randomly evoke, with probability Wij , one recurrent excitatory post-synaptic potential

(EPSP) at time step k+ 1, after some network delay. We define the number of recurrent

EPSPs received by neuron l in the j-th sub-population as ajl . Thus, ajl is the sum of Nk

independent (but not identically distributed) Bernoulli trials:

ajl (k + 1) =
X∑
i=1

L∑
l′=1

εil′s
i
l′(k), ∀l = 1 . . .L. (14)

where P (εil = 1) = Wij and P (εil = 0) = 1 −Wij . The sum ajl follows the so-called

“Poisson binomial” distribution (Hodges & Cam 1960) and in the limit approaches the
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Poisson distribution:

P (ajl (k + 1) ≥ 1) ' 1− exp(−
∑
i

Wijn
i
k|k) (15)

'
∑
i

Wijn
i
k|k =

Nk

CW
ωik+1|k (16)

where the absolute difference between the two sides of equation 15 is bounded by

3 3

√
maxi fij
CW

. Higher order terms involving Nk

CW
are discarded in the approximation of

equation 16. Detailed analysis of the distribution of ajl is provided in appendix A.

Let njk+1|k be the number of neurons in j-th sub-population receiving one or more

recurrent EPSPs. Then, we have

E[njk+1|k|{n
i
k|k}] = L

X∑
i=1

Wij n
i
k|k

= L Nk

CW
ωik+1|k (17)

Var[njk+1|k|{n
i
k|k}] ' L Nk

CW
ωik+1|k (18)

Thus, the prediction probability in equation 7 is represented by the expected number of

neurons that receive recurrent inputs, as shown in figure 2.

In the model, recurrent inputs alone are not strong enough to make the inference

neurons fire – these inputs leave the neurons partially activated. We can view these par-

tially activated neurons as the “proposed” samples drawn from the prediction density

P (Xk+1|Xk). To correct the prediction distribution based on the current observation,

these proposed samples are accepted with a probability proportional to the observa-

tion likelihood P (Zk+1|Xk+1) when the new measurement Zk+1 becomes available.

This implements a form of “rejection sampling” used in sequential Monte Carlo algo-

rithms (Doucet et al. 2001). Neurally, this is implemented by feedforward inputs from

sensory neurons (which receive Zk+1) causing neurons to spike when coincident with

recurrent inputs. Thus, the inference neurons act as coincidence detectors which fire if

and only if both recurrent and sensory inputs are received:

sjl (k + 1) = sgn(ajl (k + 1)× bjl (k + 1)) (19)

where the sign function sgn(x) = 1 only when x > 0. The feedforward input bjl
represents the number of EPSPs caused by sensory inputs. Equation 19 defines the
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output of an abstract model neuron. In section 4 we show that such abstract model

neurons can be implemented using leaky-integrate-and-fire (LIF) dynamics.

Note that P (sjl (k + 1) = 1) ∝ P (Xk+1 = xj|Z1:k+1) if and only if P (bjl (k + 1) =

1) ∝ g(Zk+1|Xk+1 = xj). In other words, the hidden-layer inference neurons will

spike with probability proportional to the updated posterior distribution if and only

if the feedforward input {bjl } arrives with probability proportional to the likelihood of

observations. We now examine what feedforward weight matrixM between the sensory

neurons and inference neurons achieves such a requirement.

The noisy measurement Zk+1 is not directly observed by the inference neurons, but

sensed through an array of Z sensory neurons, whose receptive fileds are centered at

zi ∈ Z, i = 1, . . . ,Z . We assume for simplicity that receptive fields of sensory neurons

do not overlap with each other (appendix B discusses the more general overlapping

case). Again we define the feedforward weight Mij to be the synaptic release proba-

bility between sensory neuron i and inference neurons in the j-th sub-population. A

spiking sensory neuron i causes an EPSP in a neuron in the j-th sub-population with

probability Mij . When Zk+1 = zi arrives, the sensory neuron centered at zi emits a

spike at time k, causing a feedforward EPSP in each of its post-synaptic neurons with

probability proportional to the likelihood:

P (bil(k + 1) = 1) = g(Zk+1|xi)/CM (20)

where CM is a scaling constant such that Mij = g(Zk+1 = zi|xj)/CM .

Finally, a inference neuron fires a spike at time k + 1 if and only if it receives both

recurrent and sensory inputs. The corresponding firing probability is then the product

of the probabilities of the two inputs:

P (sil(k + 1) = 1) = P (ail(k + 1) ≥ 1)P (bil(k + 1) ≥ 1)

=
Nk

CWCM
P (Xk+1|Z1:k)g(Zk+1|Xk+1)

∝ P (Xk+1|Z1:k+1) (21)
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Let nik+1|k+1 be the number of spikes in i-th sub-population at time k + 1,

nik+1|k+1 =
L∑
l=1

sil(k + 1) (22)

E[nik+1|k+1|{nik|k}] = L Nk

CWCM
g(Zk+1|xi)ωik+1|k

= L Nk

CWCM
P (Zk+1|Z1:k)ω

i
k+1|k+1 (23)

Var[nik+1|k+1|{nik|k}] =
L∑
l=1

[Var(ail)Var(bil) + Var(ail)E(bil)
2 + Var(bil)E(ail)

2]

' L Nk

CWCM
g(Zk+1|xi)ωik+1|k (24)

Equation 23 ensures that the expected spike distribution at time k + 1 is a Monte

Carlo approximation to the updated posterior probability P (Xk+1|Z1:k+1). It also de-

termines how many neurons are activated at time k + 1. To keep the number of spikes

at different time steps relatively constant, the scaling constant CW and the number of

neurons L could be of the same order of magnitude: for example, CW = L. Note that

approximations in equations 16, 18 and 24 become exact when N2
k

C2
W
→ 0. This implies

a form of sparse coding: although the number of neurons in the network may be large,

only a small fraction of neurons are activated.

2.3 Poisson variability and convergence results

In this section, we briefly discuss some convergence results for Bayesian filtering using

the proposed spiking network. Equations 23 and 24 imply that the spike distribution

{njk|k} is approximately proportional to the true pdf P (Xk = xj|Z1:k) at time k. Sup-

pose the true distribution is known only at initial time 1: P̂ i
1 = ωi1|1. We would like to

investigate how the mean and variance of P̂ i
k vary over time. To simplify the analysis,

we let L = CW and CM = P (Zk+1|Z1:k) so that

E[Nk+1|{njk|k}] = Var[Nk+1|{njk|k}]

=
L

CWCM
P (Zk+1|Z1:k)E[Nk] = E[Nk] = N1. (25)
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where N1 is the initial spike count. Given the previous distribution {P̂ i
k}, equations 23

and 24 can be rewritten as:

E[P̂ j
k+1|{P̂

j
k}] =

g(Zk+1|xj)
P (Zk+1|Z1:k)

X∑
i=1

f(xj|xi)P̂ i
k (26)

Var[P̂ j
k+1|{P̂

j
k}] =

Var[nik+1|k+1|{nik|k}]−NkE
2[P̂ j

k+1|{P̂
j
k}]

N2
k +Nk

' 1

Nk

(E[P̂ j
k+1|{P̂

j
k}]− E

2[P̂ j
k+1|{P̂

j
k}]) (27)

The approximation holds when Nk is large so that Nk ' Nk + 1. Marginalizing over

{P̂ j
k} we obtain the recursive update equation for E[P̂ j

k+1] and Var[P̂ j
k+1] using the law

of total expectation and the law of total variance:

E[P̂ j
k+1] =

g(Zk+1|xj)
P (Zk+1|Z1:k)

X∑
i=1

f(xj|xi)E[P̂ i
k] (28)

Var[P̂ j
k+1] = E[Var[P̂ j

k+1|{P̂
j
k}]] + Var[E[P̂ j

k+1|{P̂
j
k}]]

=
E[P̂ j

k+1]− E2[P̂ j
k+1]

N1

+
g2(Zk+1|xj)
P 2(Zk+1|Z1:k)

× Var[
X∑
i=1

f(xj|xi)P̂ i
k])

≈
E[P̂ j

k+1]− E2[P̂ j
k+1]

N1

+ ηjk Var[
X∑
i=1

f(xj|xi)P̂ i
k]) (29)

where ηjk = g2(Zk+1|xj)/P 2(Zk+1|Z1:k). The variance Var[P̂ j
k+1] can be partitioned

into two parts. The first part represents the variance from current time step. The second

part represents the variance from previous time step, but weighted by the coefficient ηjk.

Since the initial distribution ωj1 is known, the solution to equation 28 is easy to

obtain:

E[P̂ j
k ] = ωjk|k (30)

Thus, P̂ j
k is an unbiased estimator of true posterior probability ωjk|k. However, the

closed-form solution for the variance update equation 29 is generally intractable, except

for some special forms of f . For example, consider a uniform transition model where
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f(xj|xi) = 1/X . Since the {P̂ i
k} are negatively correlated, we have:

Var[P̂ j
2 ] =

1

N1

(E[P̂ j
2 ]− E2[P̂ j

2 ]) + 0

Var[P̂ j
3 ] ≤ 1

N1

{(E[P̂ j
3 ]− E2[P̂ j

3 ]) +
ηj2
X 2

(1−
∑
i

E2[P̂ i
2])}

. . .

Var[P̂ j
k ] ≤ 1

N1

{(E[P̂ j
k ]− E2[P̂ j

k ]) +
ηjk−1
X 2

(1−
∑
i

E2[P̂ i
k−1]) +O(

1

X 4
)}} (31)

Equation 31 has several implications. First, when the state space X is large, we can

ignore the higher order terms of X . The variance of the estimator becomes:

Var[P̂ j
k ] ≈ 1

N1

(E[P̂ j
k ]− E2[P̂ j

k ]) (32)

Equivalently, from equations 25 and 32 the variance of the spike count njk|k = NkP̂
j
k

can be shown to have the following form:

Var[njk|k] = N1E[P̂ j
k ] + E[P̂ j

k ]− E2[P̂ j
k ] ' E[njk|k] (33)

The variance of neural response is roughly proportional to the mean when the transition

model is uniform. This is consistent with experimental results showing that spike count

variances grow in proportion to spike count means (Dean 1981, Tolhurst et al. 1983).

Thus, rather than representing noise, Poisson variability in the model occurs as a nat-

ural consequence of sampling and sparse coding (equation 16). Second, the variance

Var[P̂ j
k ] ∝ 1/N1. Therefore Var[P̂ j

k ]→ 0 as N1 →∞, showing that P̂ j
k is a consistent

estimator of ωjk|k.

In general, when the transition model is arbitrary, numerical methods are needed

to study the relationship between the variance of P̂ j
k and k. In Figure 3, we test

whether the above two implications still hold for random transition models. The state

space is finite, X = {1, 2, . . . 20}, Zk ∼ N(Xk, 5), L = CW = 25 × N1. Ideally,

CM(k) = P (Zk+1|Z1:k) =
∑

j g(Zk+1|xj)P (xj|Z1:k). However, animals may not be

able to calculate P (Zk+1|Z1:k). A biologically plausible alternative is to utilize inhibi-

tion in the network to determine CW . For example, CW could be made time dependent,

e.g., CW (k + 1) = 10 ∗ Nk/N1, resulting in a form of divisive inhibition (Chance &

Abbott 2000). If the overall neural activity is weak at time k, then the global inhibition

regulating M is decreased to allow more spikes at time k + 1.
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For the experiments, elements in the transition matrix f(xj|xi) were first uniformly

drawn from [0, 1], and then normalized to ensure
∑

j f(xj|xi) = 1. In Figure 3(a-c),

we examine equation 32 for different initial spike count values: N1 = 102, 103 and 104.

Each data point represents Var[P̂ j
k ] along the vertical axis and E[P̂ j

k ] − E2[P̂ j
k ] along

the horizontal axis, calculated over 100 trials with the same random transition matrix f ,

and k = 1, . . . 10, j = 1, . . . 20. The solid lines represent a least squares power law fit

to the data: Var[P̂ j
k ] = CV ∗ (E[P̂ j

k ]− E2[P̂ j
k ])CE . For 100 different random transition

matrices f , the means of the exponential term CE were 1.2863, 1.13, and 1.037, with

standard deviations 0.13, 0.08, and 0.03 respectively, for N1 = 100 and X = 4, 20, and

100. The mean of CE continues to approach 1 when X is increased, as shown in figure

3(d). Since Var[P̂ j
k ] ∝ (E[P̂ j

k ] − E2[P̂ j
k ]) implies Var[njk|k] ∝ E[njk|k], these results

suggest that arbitrary transition models still preserve the Poisson variability.

The term CV represents the scaling constant for the variance. Figure 3(e) shows

that the mean of CV over 100 different transition matrices f (over 100 different trials

with the same f ) is inversely proportional to initial spike count N1, with power law fit

CV = 1.77N−0.92451 . This indicates that the relation Var[P̂ j
k ] ∝ 1/N1 (equation 31) still

approximately holds no matter what the dynamics model f is.

The bias between estimated and true posterior probability can be calculated as:

bias(f) = 1
XK

∑X
i=1

∑K
k=1(E[P̂ i

k] − ωik|k)2. The relationship between the mean of the

bias (over 100 different f ) versus initial count N1 is shown in figure 3(f). Since the

precision of the estimator P̂ j
k is limited by N1, we also have an inverse proportionality

between bias and N1. Therefore, as the figure shows, for arbitrary f , the estimator P̂ j
k

remains a consistent estimator of ωjk|k.

In summary, we have proposed a spiking network model that approximates Bayesian

filtering using spikes as Monte Carlo samples of probability distributions. We assume

that the transition (dynamics) and emission (obsevation) models are known and encoded

in the recurrent weights W and feedforward weights M , respectively. In addition, we

assume that the network employs a sparse coding strategy: the total neuronal activityNk

at any time step is small compared to the number of neurons L in a sub-population. The

model does not put any contraints on the particular form of the probability density over

hidden world state. When the state space X is discrete, the spiking network provides

the optimal Bayesian solution when the above assumptions hold.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Variance versus mean of estimator for different initial spike counts. (a)

N1 = 100, (b) N1 = 1000, (c) N1 = 10, 000. Each data point represents the variance of

the estimator P̂ i
k (vertical axis) and “mean” E[P̂ i

k] − E2[P̂ i
k](horizontal axis) over 100

different trials with the same transition matrix f , for i = 1, . . . 20 and k = 2, . . . , 10.

The solid lines are least-square power law fits Var[P̂ i
k] = CV ∗ (E[P̂ i

k] − E2[P̂ i
k])

CE

to different data sets, with coefficients (CV , CE) shown in the legend. (d) The mean

of the exponential term CE over 100 different transition matrices f approaches 1 as X

increases. (e) & (f) The mean of CV decreases asN1 increases, as does the bias between

the mean of the estimator and true posterior probability 1
KX

∑
i,k(E[P̂ i

k]− ωik|k)2.

15



3 On-line parameter learning

In the previous section, we assumed that the model parameters, i.e., the transition prob-

abilities f(Xk+1|Xk) and the emission probabilities h(Zk|Xk), are known. In this sec-

tion, we describe how these parameters θ = {f, g} can be learned from noisy ob-

servations {Zk}. Traditional methods to estimate model parameters are based on the

Expectation-Maximization (EM) algorithm (Dempster et al. 1977), which maximizes

the (log) likelihood of the unknown parameters logPθ(Z1:k) given a set of observations

collected previously. However, such an “off-line” approach is biologically implausible

because (1) it requires animals to store all of the observations before learning, and (2)

evolutionary pressures dictate that animals update their belief over θ sequentially any

time a new measurement becomes available.

We therefore propose an on-line estimation method where observations are used

for updating parameters as they become available and then discarded. Our approach is

based on recursively calculating the sufficient statistics of θ using stochastic approxima-

tion algorithms and the Monte Carlo method. We explore how animals can implement

this on-line learning algorithm in a spiking network, where changes in synaptic weights

are subject to Hebbian learning rules.

3.1 General framework

In this section, we describe a general framework for on-line learning of parameters in

non-linear non-Gaussian state space models, following (Andrieu et al. 2005, Cappe &

Moulines 2009). Again, {Xk, k ∈ N} is a hidden Markov process, with the addi-

tional assumption that it is stationary and ergodic: as before, Xk+1|Xk ∼ fθ(Xk+1|Xk)

and {Zk} are the observations with emission probabilities Zk|Xk ∼ gθ(Zk|Xk). We

would like to find the parameters θ that maximize the log likelihood: logPθ(Z1:k) =∑k
t=1 logPθ(Zt|Zt−1).

We first show how the traditional off-line EM algorithm (Dempster et al. 1977)

accomplishes this goal in an iterative manner. In iteration k, the EM algorithm approx-

imates the joint log-likelihood logPθ(X,Z) using the expected value over the hidden

data X based on the current estimate of parameters θk (E-step):

Q(θ, θk) = Eθk [logPθ(X,Z)|Z] (34)
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Then the value of θ that maximizes Q(θ, θk) is found in the M-step. This gives rise to

the new estimate:

θk+1 = arg maxQ(θ, θk). (35)

MaximizingQ(θ, θk) is equivalent to increasing the marginalized log likelihood logPθ(Z1:k),

since their gradient terms coincide (Dempster et al. 1977):

Eθ∇θ logPθ(X,Z)|Z] = ∇θ logPθ(Z), (36)

Starting from an initial guess θ0, the EM algorithm generates a sequence of estimates

{θk}, which converge to the true parameter θ∗ under some regularity conditions (Wu

1983).

To perform on-line parameter estimation, we aim to produce a new estimate θk+1

when the observation Zk becomes available, where θk+1 maximizes the function

Q(θ, θk) = Eθk [logPθ(X1:k, Z1:k)|Z1:k]

= Eθk [
k∑
t=1

logPθ(Xt, Zt|Xt−1)|Z1:k]

= Eθk [
k∑
t=1

log(fθ(Xt|Xt−1)gθ(Zt|Xt))|Z1:k] (37)

In general, Q(θ, θk) and its derivative ∇θQ(θ, θk) are difficult to estimate because

they are functions of the complete data {X1:k, Z1:k}. Equation 37 is only of theo-

retical interest unless the unknown parameter θ can be estimated, without any loss

of information, from a function of the complete data that has much lower dimen-

sion, the so-called sufficient statistic for θ. As an example, suppose the likelihood

Pθ(Xt, Zt|Xt−1) = fθ(Xt|Xt−1)gθ(Zt|Xt) belongs to an exponential family (Casella &

Berger 2001):

Pθ(Xt, Zt|Xt−1) ∝ Pθ(T ) = exp[ψ(θ) · T (Xt, Zt, Xt−1)− A(θ)] (38)

where T (Xt, Zt, Xt−1) is a complete sufficient statistic for parameter θ, and ψ and A

are arbitrary functions of θ. All inference about θ depends only on

T̂ (θk) = k−1Eθk [
k∑
t=1

T (Xt, Zt, Xt−1)|Z1:k], (39)

17



which is the expected sufficient statistic of the joint distribution P (X1:k, Z1:k). The

expectation Eθk(.|Z1:k) is taken with respect to the posterior distribution Pθk(X1:k|Z1:k)

based on the current θk.

An online EM algorithm can be obtained by approximating the expected suffi-

cient statistic T̂ (θk) using the stochastic approximation (or Robbins-Monoro) proce-

dure (Robbins & Monro 1951):,

T̂ (θk) ' γkEθk−1
(T (Xk−1, Zk, Xk)|Zk) + (1− γk)T̂ (θk−1), (40)

where the learning rate γk is a decreasing function of k. Equation 40 enables us to

combine new observations Zk with the previous estimate T̂ (θk−1) sequentially. When

the learning rate is small γk → 0 such that θk changes slowly, the approximation in

equation 40 becomes exact. In general, convergence is guaranteed when
∑∞

k=1 γk =∞

and
∑∞

k=1 γ
2
k <∞. Note that if γk = 1/k, T̂k is simply the running average of T .

In summary, the online EM algorithm based on the sufficient statistic can be re-

written as:

E-step T̂ (θk) = γkEθk−1
(T (Xk−1, Zk, Xk)|Zk) + (1− γk)T̂ (θk−1)

M-step θk+1 = arg maxPθ(T̂k), which is the unique solution to the equation

∇θψ(θ) · T̂k = ∇θA(θ).

3.2 Learning transition and emission probabilities

For a discrete hidden Markov model, the unknown parameters θ consist of the transition

matrix fij = f(xj|xi) and the emission probability matrix gij = g(zj|xi). Recall that

for the spiking network in Section 2.2, we defined Mk and W k as the feed-forward and

recurrent weights respectively at time step k. In this section, we introduce Hebbian

learning rules (based on equation 40) for the synaptic weights Mk and W k such that

Mk and W k become consistent estimators of f and g respectively as k →∞.

Recall that the population of inference neurons in the model maintains a Monte-

Carlo approximation of the posterior distribution Pθk(Xk|Z1:k) over the hidden stateXk,

given observations up to time k. However, the expectation Eθk−1
(T (Xk−1, Zk, Xk)|Zk)

in equation 40 is taken with respect to the smoothed distribution

Pθk(Xk−1, Xk|Z1:k) = Pθk(Xk−1|Xk, Z1:k)P (Xk|Z1:k), (41)
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which is the product of the posterior distribution and the distribution of hidden state at

the previous time step k−1 given the observationsZ1:k. Such a retrospective distribution

cannot be implemented in a two-layer spiking network such as the one described above.

Therefore, we employ an approximation to equation 40:

T̂ (θk) ' γk ×
∑

Xk,Xk−1

T (Xk−1, Zk, Xk)P (Xk|Z1:k, θk−1)P (Xk−1|Z1:k−1, θk−1)

+(1− γk)× T̂ (θk−1)

' γk ×
Nk∑
n=1

Nk−1∑
n′=1

T (x̂n
′

k−1, Zk, x̂
n
k)/(Nk ×Nk−1) + (1− γk)× T̂ (θk−1) (42)

where {x̂nk} and {x̂n′k−1} are Monte-Carlo samples drawn from posterior distributions

P (Xk−1|Z1:k−1, θk−1), P (Xk|Z1:k, θk), respectively.

The sufficient statistic for g given the current estimator Mk = ĝk can be written as

T (Xk, Zk|g) = δ(Xk = xj, Zk = zi) (43)

T̂ (Mk) = γkEMk−1(δ(Xk = xj, Zk = zi)|Zk) + (1− γk)T̂ (Mk−1) (44)

The expectation in the first term can be further approximated by Monte Carlo sampling

of spikes:

EMk−1(δ(Xt = xj, Zt = zi)|Zk) =
njk|k
Nk

× ñi(k)∑
i ñ

i(k)
, (45)

where njk|k is the number of post-synaptic spikes in the j-th sub-population of inference

neurons, Nk =
∑

j n
j
k|k, and ñi(k) is the number of pre-synaptic spikes in i-th sub-

population of sensory neurons at time k.

The corresponding M-Step is given by:

ĝk = Mk =
T̂ (Mk

ij)∑
i T̂ (Mk

ij)
(46)

Combining equations 44 and 46, we derive a local Hebbian learning rule for Mk:

Mk
ij =

γkn
j
k|k

Nk

× ñi(k)∑
i ñ

i(k)
+ (1−

γkn
j
k|k

Nk

)×Mk−1
ij

Mk
ij −Mk−1

ij

γMk
= −Mk−1

ij +
ñi(k)∑
i ñ

i(k)
, when njk|k > 0, (47)

where the effective learning rate γMk = γk
nj
k|k
Nk

is proportional to the post-synaptic activ-

ity njk|k in the inference layer population. A higher value of njk|k/Nk represents a higher

posterior belief for the world state Xj , resulting in faster learning.
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Similarly, the transition probability matrix f can be learned by estimating its suffi-

cient statistics:

T (Xk, Zt, Xk−1|fij) = δ(Xk = xj, Xk−1 = xi) (48)

Equation 40 can then be implemented as

T̂ (W k) = γkEWk−1(δ(Xk−1 = xi, Xk = xj)|Zk) + (1− γk)T̂ (W k−1)

= γk ×
nik−1|k−1
Nk−1

×
njk|k
Nk

+ (1− γk)×W k−1
ij (49)

The corresponding M-step also has the form:

W k
ij =

T̂ (W k
ij)∑X

j=1 T (W k
ij)

(50)

Combining equations 49 and 50 we derive a local Hebbian learning rule for Mk:

W k
ij = γk

nik−1|k−1
Nk−1

×
njk|k
Nk

+ (1− γk
nik−1|k−1
Nk−1

)×W k−1
ij

W k
ij −W k−1

ij

γWk
= −W k−1

ij +
njk|k
Nk

, when nik−1|k−1 > 0, (51)

where the effective learning rate γWk = γk
ni
k−1|k−1

Nk−1
is proportional to the pre-synaptic

activity nik−1|k−1 in the inference layer population.

3.3 Numerical Experiments

Learning both emission and transition probability matrices at the same time using the

online EM algorithm with stochastic approximation is very difficult because there are

many local minima in the likelihood function. To simplify the task, we divide the learn-

ing process into two phases. The first phase involves learning the emission probability

g when the hidden world state is stationary, i.e., Wij = fij = δij . This corresponds to

learning the observation model of static objects at the center of gaze before learning the

dynamics f of objects. After an observation model g is learned, we relax the stationary

constraint, and allow the spiking network to update the recurrent weights W to learn

the arbitrary transition probability f .

Figure 4 illustrates the performance of learning rules (47) and (51) for a discrete

HMM with X = 4 and Z = 12. X and Z values are spaced equally apart: X ∈
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(a)

(b)

(c)

Figure 4: Performance of the Hebbian learning rules. (a) The mean square error

(MSE) between the learned Mk and the true emission probability g as a function of the

number of time steps k. The blue solid line shows the average MSE over trials with

different g. The initial estimator M0 was randomly chosen. The dotted lines show ±

1 standard deviation. The red straight line is the power law fit y = axb to the average

MSE. (b) MSE between learned W k and true transition matrix f when the observation

noise σZ is low, after the emission model g has been learned. (c) MSE between learned

W k and true transition matrix f when the observation noise σZ is high. As expected,

learning is slower when the noise level of the observations is larger.
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{1, . . . , 4} and Z ∈ {2
3
, 1, 4

3
, . . . , 41

3
}. The transition probability matrix f then involves

4 × 4 = 16 parameters and the emission probability matrix g involves 12 × 4 = 48

parameters.

In figure 4(a), we examine the performance of learning rule 47 for the feedforward

weightsMk, with fixed transition matrix fij = δij . The true emission probability matrix

has the form g.j = P (Zk|Xk = xj) ∼ N(xj, σ2
Z). Each column of g is a Gaussian

with observation noise σZ . The solid blue curve shows the average MSE between the

learned feedforward weights Mk and the true emission probability matrix g over trials

with different g, with MSE(k) =
√∑

ij(M
k
ij − gij)2. The dotted lines show ± 1

standard deviation for MSE based on 10 different trials. σZ varied from trial to trial and

was drawn uniformly between 0.2 and 0.4, representing different levels of observation

noises. The initial spike distribution was uniform ni0|0 = nj0|0,∀i, j = 1 . . . ,X and

the initial estimate M0
i,j = 1

Z . The learning rate was set to γk = 1
k
, although a small

constant learning rate such as γk = 10−5 also gives rise to similar learning results.

A notable feature in figure 4(a) is that the average MSE exhibits a fast power-law

decrease. The red solid line in figure 4(a) represents the power-law fit to the average

MSE: MSE(k) ∝ k−1.1. Furthermore, the standard deviation of MSE approaches zero

as k grows large. Figure 4(a) thus shows the asymptotic convergence of equation (47)

irrespective of the σZ of the true emission matrix g.

We next examined the performance of learning rule 51 for the recurrent weights

W k, given the learned emission probability matrix g (the true transition probabilities f

are unknown to the network). The initial estimator W 0
ij = 1

X . Performance was evalu-

ated by calculating the mean square error MSE(k) =
√∑

ij(W
k
ij − fij)2 between the

learned recurrent weight W k and the true f . Different randomly chosen transition ma-

trices f were tested. The average MSE and standard deviation over trials with different

f are displayed in blue solid and dotted lines respectively in figure 4(b) and figure 4(c).

When σZ = 0.04, the observation noise is 0.04
1/3

= 12% of the separation between

two observed states. Hidden state identification in this case is relatively easy. The red

solid line in figure 4(b) represents the power-law fit to the average MSE: MSE(k) ∝

k−0.36. Furthermore the standard deviation of MSE approaches zero as k grows large,

indicating asymptotic convergence of equation 51 irrespective of the form of the true

transition matrix f . Similar convergence results can still be obtained for higher σZ , e.g.,
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σZ = 0.4 (figure 4(c)). In this case, hidden state identification is much more difficult

as the observation noise is now 1.2 times the separation between two observed states.

This difficulty is reflected in a slower asymptotic convergence rate, with a power-law fit

MSE(k) ∝ k−0.21, as indicated by the red solid line in figure 4(c). In the extreme case

when σZ = 1, hidden state identification becomes impossible due to high observation

noise, causing the online learning rule (51) to fail.

4 LIF Implementation and Results

In this section, we demonstrate that the network model can be implemented using leaky

integrate-and-fire neurons, which are commonly used to model CNS neurons. Model

parameters are chosen to reflect those reported for biological neurons.

Figure 5 shows the dynamics of an example neuron. Let vi be the membrane poten-

tial of a neuron whose preferred state is xi.

τm
dvi
dt

= −vi +R× (IS(t) + IR(t)) (52)

where τm is the membrane time constant and R is the input resistance. The neuron

spikes when vi(t) > vth. Note that the time variable t is continuous, while the HMM

time variable k is discrete. Suppose the size of the HMM time step is ∆hmm. We define

Zt = Zk and Xt = Xk if (k − 1)∆hmm < t ≤ k∆hmm. nik|k represents the spike count

in the time interval ((k − 1)∆hmm, k∆hmm] over neurons in the i-th sub-population. If

an LIF neuron in the i-th sub-population fires at time t, (k − 1)∆hmm < t ≤ k∆hmm,

then it evokes a recurrent EPSP in the j-th sub-population at time t′ = t + ∆hmm, with

probability Wij . A neuron also receives sensory EPSPs, whose arrival probability is

proportional toMijdt. IR(t) and IS(t) represent the accumulated recurrent and sensory

inputs respectively. Using the notation ι = R or S, we have:

I ι(t) =
αι

τι

ν∑
ν=1

exp(−(t− tιν)/τ ι)Θ(t− tιν) (53)

where τι is the synaptic time constant, αι is the amplitude of synaptic input, and {tι1, . . . , tιν}

are the the arrival times of pre-synaptic spikes. The Heaviside step function Θ(t) en-

sures causality.
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The normalized EPSP evoked by one input spike (either sensory or recurrent) mim-

ics the effect of an ‘alpha’ synapse:

ει(τ) ∝ exp(−τ/τm)− exp(−τ/τι)
τm − τι

Θ(τ); τ = t− tιν ; τm > τι (54)

with maxτ ε(τ) = 1. The synaptic constants τι are smaller than the membrane time

constants τm (Gerstner & Kistler 2002, Shadlen & Newsome 1994), e.g., τι = 1ms and

τm = 8ms. Thus, one can drop the dependence of vi(t) on the arrival times of past

spikes except for the most recent sensory and recurrent spikes.

Let tι
ζ̂

= max{tιζ |tιζ < t} and t0 = min(tR
ζ̂
, tS
ζ̂
). Then:

vi(t) = vi(t0) + αRεR(t− tR
ζ̂

) + αSεS(t− tS
ζ̂
); t0 ≤ t < min(tR

ζ̂+1
, tS
ζ̂+1

) (55)

For the model to perform Bayesian filtering correctly, the LIF neuron should fire

when there is coincident recurrent and sensory input and minimize firing for a sequence

of spikes of one type. Due to the sparseness of the network, the proportionality con-

stantsCW andCM can be chosen such that interspike intervals between two input spikes

of the same type are much greater than the membrane time constant: tιζ+1 − tιζ � τm.

This helps reduce the probability of spiking for multiple spikes of the same type. We

also choose αR and αS such that max(vi(t)) > vth only when |tR
ζ̂
− tS

ζ̂
| ≤ ∆cd, where

∆cd is the coincidence detection window. We then obtain a LIF model neuron that fires

only if it receives both sensory and recurrent inputs within ∆cd. Finally, we require

that ∆cd < ∆hmm to ensure that the neuron’s spiking probability is proportional to the

product of likelihood P (Zk|Xk) and the prediction probability P (Xk|Z1:k−1), which in

turn is proportional to the posterior probability P (Xk|Z1:k).

The simple model above can be extended to handle the case of multiple spikes of the

same type (the cases where tιζ+1 − tιζ is small) by adding the mechanism of short-term

synaptic depression (STSD) to the model. STSD usually occurs in cortical neurons due

to depletion of synaptic vesicles (Zuker & Regehr 2002). The amplitude of the ζ̂-th

input in the presence of rapid STSD can be modeled by (Tsodyks & Markram 1997):

αι
ζ̂

= αιmax[1− exp(−(tι
ζ̂
− tι

ζ̂−1)/τm)]. Then the maximum response to two successive
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(a) (b)

Figure 5: Model LIF neuron. (a) LIF neuron receiving inputs from recurrent and

sensory synapses. (b) The black curve shows an example trajectory of the membrane

potential. Green and blue bars represent the arrival times of recurrent and sensory spikes

respectively.

EPSPs from the same synapse can be simplified as follows:

vi(t) = vi(tζ̂−1) + αι
ζ̂
ει(t− tι

ζ̂
)

≤ αιmaxε
ι(tι

ζ̂
− tι

ζ̂−1) + αι
ζ̂
ει(t− tι

ζ̂
)

≤ αιmax exp(−(tι
ζ̂
− tι

ζ̂−1)/τm) + αιmax[1− exp(−(tι
ζ̂
− tι

ζ̂−1)/τm)] = αιmax

(56)

As a result, even if a model neuron receives more than one input spikes from either

sensory or recurrent synapses in a short period of time, successive spikes will not fur-

ther depolarize the membrane potential due to short-term synaptic depression. Such a

voltage saturation effect has also been experimentally observed at pyramidal-pyramidal

cell connections in adult rat neocortex (e.g., figure 6 of (Thomson 1997)).

In figure 5, we show an example trajectory of the membrane potential vi(t). The

model parameters were chosen to be consistent with those reported in typical CNS

neurons (Gerstner & Kistler 2002, Shadlen & Newsome 1994): refractory time period

= 2.5ms, τm = 8.33ms, τR = τS = 1ms,R = 138.8 M Ω, αR = αS = 0.6nA and vth =

15mV. The model neuron fires only if the sensory and recurrent inputs arrive within a

time window ∆cd = 0.6ms. Note that short-term synaptic depression guarantees that

the neuron will not fire even when the interspike interval between two recurrent spikes
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is 1 ms. Thus we have an LIF model neuron that is equivalent to the binary neuron

described in section 2.2

In the following two sections, we illustrate how a network of such LIF neurons can

perform Bayesian inference for two different tasks and compare the simulation results

with biological data.

4.1 Static World State: An Example from Sensory Adaptation

We first consider the special case where the dynamics of the hidden state is static and

where Bayesian filtering reduces to Kalman filtering. We relate this abstract model to

neural data and show how the network introduced above for Bayesian inference can

expain the data.

Let Xk ∈ R be the mean light intensity (luminance) of a static visual stimulus,

Xk = x0, ∀ k, 1 ≤ k ≤ K0. The measurements Zk ∈ R are the intensities of the time-

varying noisy stimulus observed by the retina, with standard deviation (contrast) σZ :

(Zk −Xk) ∼ N(0, σ2
Z). The estimated mean and variance of the posterior distribution

over Xk, given past inputs, can be described using a Kalman filter (Russell & Norvig

2003):

E[Xk] =
E[Xk−1]× σ2

Z + Zk × Var[Xk−1]

Var[Xk−1] + σ2
Z

(57)

1

Var[Xk]
=

1

σ2
Z

+
1

Var[Xk−1]
(58)

Equation 57 has an intuitive explanation: the mean at time k is the weighted average of

the previous mean E[Xk−1] and the current observation Zk, each weight corresponding

to the variance of the other component. Thus, if there is more noise in the sensory input

(higher σ2
Z), more weight is given to the previous mean E[Xk−1], and vice versa. Also,

from equation 58, we have Var[Xk]
Var[Xk−1]

=
σ2
Z

σ2
Z+Var[Xk−1]

< 1. Thus, the variance of Xk

decreases with time k, and will eventually converge to zero as k →∞.

Now consider the situation where the hidden variable Xk is suddenly switched to

another state after time step K0: Xk = x1 for k > K0. Since Xk is hidden and the

system is unaware of this change, the system continues to apply equations 57 and 58

for k > K0. Thus, starting with mean E[XK0 ] and variance Var[XK0 ], and combining
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equations 57 and 58, we obtain :

E[Xk] = E[Xk−1]×
Var[Xk]

Var[Xk−1]
+ Zk ×

Var[Xk]

σ2
Z

= (E[Xk−2]
Var[Xk−1]

Var[Xk−2]
+ Zk−1

Var[Xk−1]

σ2
Z

)× Var[Xk]

Var[Xk−1]
+ Zk ×

Var[Xk]

σ2
Z

= E[Xk−2]×
Var[Xk]

Var[Xk−2]
+ (Zk−1 + Zk)×

Var[Xk]

σ2
Z

. . .

= E[XK0 ]×
Var[Xk]

Var[XK0 ]
+

k∑
s=K0+1

Zs ×
Var[Xk]

σ2
Z

(59)

1

Var[Xk]
=

k −K0

σ2
Z

+
1

Var[XK0 ]

Var[Xk] =
σ2
ZVar[XK0 ]

σ2
Z + (k −K0)Var[XK0 ]

(60)

We see that the mean E[Xk] is a weighted average of the prior mean E[XK0 ] and

the new observations {Zs}. If Var[XK0 ] is small, more weight is given to the prior

estimate E[XK0 ]. The prior estimates E[XK0 ] and Var[XK0 ] are determined by the

time of transition K0. For example, when the initial variance Var[X0] = ∞, we have
1

Var[X0]
= 0 and Var[Xk] = σ2

Z/k from equation 58 initial state x0, the lesser Var[XK0 ]

becomes as the system accumulates more evidence for x0. Thus, when the state is

changed at time step K0 + 1, it takes longer for E[Xk] to converge to the new state.

Figure 6(a) shows three examples of temporal evolutions of E[Xk] (red traces) for

different values for K0 (note the different scales on the time axis). All three trajectories

display a form of exponential-like dynamics after K0, with a half-life ≈ K0.

The phenomena discussed above can be interpreted as sensory adaptation, a key

property exhibited by the brain. Efficient coding of the sensory world requires that the

brain optimally estimate and adapt to the statistics of its sensory inputs (Barlow 1990).

In the example above, this corresponds to the estimation of Xk from noisy observations

Zk. A switch from x0 to x1 is equivalent to an abrupt change in luminance of the en-

vironment, e.g, a sudden exposure to bright daylight when coming out of a dark movie

theatre. The model above suggests that the time course of “adaptation” of E[Xk] to the

new state x1 is determined by the duration of the prior state x0. This is consistent with

previous observations that the dynamics of the adaptation process could be dependent

on stimulus history (Fairhall et al. 2001, Wark et al. 2009). Figure 6(b) shows the mean
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(a)

(b)

Figure 6: Sensory Adaptation and Bayesian Filtering. (a) The hidden state (lumi-

nance) was switched from one value to another at specific time instants (time step 15,

25, and 50 respectively in the plots). The green curve represents the noisy stimuli Zt

available to the system, the red curve shows the estimation of Xt using the Kalman

filter equation 57, and the blue curve displays the posterior mean
∑X

i=1 x
ip̂ik computed

from the spiking LIF network model. Note the similarity in the time course of adapta-

tion across different time scales (different scales on time axis for the three plots). (b)

Above: Time course of excitatory synaptic input to a retinal ganglion cell (black trace)

in response to a single cycle of stimulus (red trace). Below: Mean synaptic current over

approximately 50 trials as above. The embedded red curve is the exponential fit to the

adaptation. Compare with the red and blue curves in (a). (Plots in (b) are from (Wark

et al. 2009))
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synaptic current to an ON retinal ganglion cell (RGC) elicited by periodic switches

between low luminance and high luminance stimuli. The time course of adaptation is

dependent on the switching period K. The longer the retina is exposed to the low lu-

minance environment, the slower the time course of adaptation to the high luminance.

Wark et al. (2009) argued that the neural response in RGC encodes the mean of the

posterior distribution of the visual stimulus Xk. They hypothesized that sensory adap-

tation involves Bayesian inference of stimulus parameters and suggested that the visual

system may employ a form of Kalman filter.

The spiking network model we have proposed can be used to model sensory adap-

tation phenomena such as those reported by Wark et al. (2009). Sensory neurons in the

model measure the noisy light intensity Zk. The inference layer LIF neurons combine

this sensory likelihood information with recurrent inputs to obtain a grid-based approx-

imation {P̂ i
k} of the posterior distribution of luminance Xk. If the model network cor-

rectly implements Bayesian filtering, one would expect the posterior mean
∑X

i=1 x
ip̂ik

approximates the predictions from a Kalman filter. This is indeed the case which can

be seen in figure 6(a) (blue trace).

4.2 Dynamic World State: Adaptation in Hippocampal Place Cells

Consider an experiment where a rat moves along a linear track. Let Xt ∈ Ω = 1, . . . N

be the position of the rat along the track. The motion is deterministic such that the

transition probability matrix f defined by δ(i, i+ 1) for 1 ≤ i < N , with a reset to

the start position upon reaching the end of the track. The matrix f is unknown and

the measurement of position Xt is noisy: Zt = Xt + ηt, where Zt is the observable

input to the sensory system and ηt is white noise with variance σ2
Z . The initial recurrent

weights (at time 0) are set to be zero mean Gaussian with width σprior, i.e., Wij(0) =

exp(−(i− j)2/(2σ2
prior)), a biased estimator of f .

Figure 7(a) shows the recurrent weights W (t) learned using equation 51 after 10

laps. The synaptic weights Wj become asymmetric and their centers show a backward

shift after learning.1 A similar backward shift has been reported in rat hippocampal

1The recurrent weights W in the model need not necessarily correspond to a single set of synaptic

weights in the hippocampus but could instead capture the effect of a larger multi-synaptic loop such as

the hippocampal-entorhinal network.
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(a) (b)

Figure 7: Adaptation in Hippocampal Place Cells. (a) Upper left: estimated Xk,

noisy observation Zk and the prediction from Kalman filter are shown in blue, green

and red, respectively. Upper right: comparison between the learned W3(T ) with the

initial W3(0) after 10 laps. Bottom left: true transition matrix f. Bottom middle:

learned recurrent weight matrix W (T ). Bottom right: Normalized firing rate during the

first and the last lap. Model parameters: N = 9, σZ = 0.1×N and σprior = 0.1×N (b)

Top: (Figure from (Mehta et al. 2000)) Computational Model of CA3→CA1 network.

The synaptic weight matrix shifts backward as the rat moves forward. Bottom: (Figure

from (Mehta et al. 1997)) Histograms of firing rates in place cells recorded from rats

during the first and the last lap. The center of the place field shifted backwards after

learning.
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place cells (Mehta et al. 2000), as shown in figure 7(b).

5 Related Work

This article makes contributions to two areas: neural models of Bayesian inference and

learning models for online parameter estimation. We review previous work in theses

two areas below.

There have been a number of models of probabilistic inference in biological neural

networks. The Boltzmann machine (Hinton & Sejnowski 1983, Sejnowski 1986) is per-

haps the earliest example of a neural network capable of probabilistic inference. Similar

to our model, Boltzmann machines employ a sampling based inference technique that

allows them to learn an internal probabilistic model from the observations. Our model

differs from the Boltzmann machine in the underlying generative model. Our model can

represent probabilistic state transitions and can implement the state-space dynamics of

arbitrary hidden Markov models. A recurrent neural network capable of statistical in-

ference in hidden Markov models was first suggested by Bridle (1990). One limitation

of Bridle’s model, known as the Alpha-net, was the assumption that the network could

multiply arbitrary probabilities. In contrast, the inference performed in our model re-

quires binary AND operations, which can be more easily implemented in a population

of neurons.

The idea of representing probability distributions using populations of neurons orig-

inated in early work on basis function networks (Anderson & Essen 1990, Deneve &

Pouget 2001) and distributional population coding (Zhang et al. 1998, Zemel et al.

1998, Zemel & Dayan 1999, Wu et al. 2003) models. In the basis function approach,

probability distributions are decomposed into linear combinations of basis functions,

which are proportional to the measurable tuning functions of neurons. Due to its addi-

tive nature, the probability distributions that can be represented by this approach cannot

be sharper than the component distributions. In contrast, the model proposed in this

article can approximate probability distributions of any shape as a sampled distribution.

Distributional population coding (DPC) uses a generative model to encode a probabil-

ity distribution in a population of neurons. DPC requires a sophisticated non-neural

decoding mechanism to recover the distribution from the neural population response,
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compared to the straightforward readout of the distribution from the spiking network

proposed in this article.

A number of neural models for Bayesian inference of hidden world state have been

proposed in recent years. Rao (2004) proposed a model in which the firing rates of a

population of neurons approximate the log probabilities of the time-varying posterior

distribution of hidden states, given noisy observations, for an arbitrary hidden Markov

model. Beck & Pouget (2007) extended Rao’s work using nonlinear recurrent networks

for exact inference, with firing rates in a population directly proportional to posterior

probabilities. Rao (2005) proposed a nonlinear network model for implementing be-

lief propagation for Bayesian inference in arbitrary graphical models. Models based on

predictive coding (Rao & Ballard 1997, Rao 1999), basis function networks (Deneve

et al. 2007) and line attractor networks (Wilson & Finkel 2009) have been proposed for

implementing the Kalman filter, which assumes all distributions are Gaussian and the

dynamics is linear. More recently, Bobrowski et al. (2008, 2009) proposed a spiking

network model that can compute the optimal posterior distribution in continuous time.

One limitation of these models is that the model parameters (the emission probabil-

ity and transition probability matrix) are assumed to be known a priori, whereas those

model parameters are learned using a form of Hebbian learning in the model proposed

here. Probabilistic population codes (Ma et al. 2006, Beck et al. 2008) (PPC) provide an

alternative way to estimating the probability distribution of the hidden state in popula-

tions of neurons. The PPC model exploits neural variability to turn products in Bayesian

computations into sums without the need for a log likelihood representation. However,

the PPC approach assumes a static world state X . Deneve (2008a,b) proposed a model

for inference and learning based on the dynamics of a single neuron but assuming a

binary world state.

The model for learning we have proposed builds on prior work by Andrieu et al.

(2005), Mongillo & Deneve (2008), and Cappe & Moulines (2009), Cappe (2009).

The online algorithm used in our model for estimating HMM parameters involves three

levels of approximation. The first level involves performing a stochastic approximation

to estimate the expected complete-data sufficient statistics over the joint distribution of

all hidden states and observations. Cappe & Moulines (2009) showed that under some

mild conditions, such an approximation produces a consistent, asymptotically efficient
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estimator of the true parameters. The second approximation comes from the use of

filtered rather than smoothed posterior distributions in equation (40). Although the

convergence reported in section 3.3 is encouraging, a rigorous proof of convergence

remains to be shown. The asymptotic convergence rate using only the filtered distri-

bution is about one third the convergence rate obtained from the algorithms described

by Mongillo & Deneve (2008) and Cappe & Moulines (2009), where the smoothed

distribution is used. The third approximation results from Monte-Carlo sampling of the

posterior distribution in equation (42). As discussed in section 2.3, the Monte Carlo

approximation converges in the limit of large numbers of spikes.

6 Discussion

We have proposed a two-layer spiking network model that implements Bayesian infer-

ence and learning. The model encodes the posterior distribution of hidden world states

as a sampled distribution represented by spikes across a neural population. Neural vari-

ability in spiking arises naturally as a consequence of sampling necessary for inference.

Our model embraces many biological properties that are frequently observed in CNS

neurons, such as leaky integrate-and-fire dynamics, short-term synaptic depression, and

spike-time dependent Hebbian plasticity.

The model we have proposed assumes an underlying hidden Markov model (HMM)

for processing sensory information. This assumption implies that the sensory system

makes noisy observations Z of the external world at discrete time steps (corresponding

to the time steps of the HMM), and updates its belief over hidden world state X each

time a new observation is made. The mechanism of coincidence detection in inference

neurons provides a way of bridging the gap between the discrete time steps in the HMM

and continuous time in a neural network. The arrival of sensory EPSPs at time ti mark

the onset of the i-th HMM epoch. The inference neurons then compute the posterior

belief by combining the current observation and prior belief before time step ti+1. This

implies that the coincidence detection window should be less than the length of one

HMM epoch, requiring relatively precise timing and low temporal variability in the

sensory observations. The brain’s ability to transmit temporal information with high

precision and low variability has been studied by a number of researchers Kara et al.
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(2000), Wang et al. (2010). In particular, Wang et al. (2010) found that the output firing

rate is a highly nonlinear function of the number of synchronous synaptic events. This

supports the assumption in the model that recurrent or feed-forward inputs alone are

not sufficient to cause an inference neuron to spike: the coincidence of the two inputs

is required to make spiking highly likely.

The model suggests that, contrary to the commonly held view, variability in spiking

does not reflect “noise” in the nervous system but captures the animal’s uncertainty

about the outside world. This suggestion is similar to previous models linking firing rate

variability to probabilistic representations (Hoyer et al. 2002, Ma et al. 2006) but differs

in the emphasis on spike-based representations and time-varying inputs. In our model,

a probability distribution over a finite sample space is represented by spike counts in

neural sub-populations. Treating spikes as random samples requires that neurons in

a pool of identical cells fire independently. This hypothesis is supported by a recent

experimental finding by Ecker et al. (2010), who report that nearby neurons with similar

orientation tuning and common inputs show little or no correlation in activity. Our

model offers a functional explanation for the existence of such decorrelated neuronal

activity in the cortex.

We showed that spike counts of neuronal subpopulations in the model are unbiased

estimators of the desired posterior probabilities, with variance that is linear with respect

to the mean when plotted on a log-log plot. Since neurons in the same sub-population

fire independently, the spike count nik|k can be viewed as the firing rate of a single

cell averaged over multiple independent trials. Thus, our model can account for the

Poisson variability observed in cortical cells (Dean 1981, Tolhurst et al. 1983). One

can also interpret nik|k as the temporal firing rate. Instead of considering L neurons in

X different sub-populations, we could consider only X neurons but divide the HMM

time step of size ∆) into L time bins, each having size ∆/L. In such a model, a neuron

spikes if and only if it receives both sensory and recurrent inputs in the same time bin,

with the duration of a spike being less than ∆/L. nik|k then becomes the spike count

of neuron i in HMM time step k, and spikes are propagated as before, with the same

recurrent weights Wij and feedforward weights Mij . Such a neural implementation

requires much less neurons, but demands a long period of time to compute the spike

count nik|k. However, the temporal versus spatial representations are not necessarily
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mutually exclusive because both temporal and spatial spike variability provide the trial-

to-trial variability required by Monte Carlo sampling.

Unlike many previous models of cortical computation, our model treats synaptic

transmission between neurons as a stochastic process rather than a deterministic event.

This acknowledges the inherent stochastic nature of neurotransmitter releases and bind-

ings. Synapses between neurons usually have only a small number of vesicles available

and a limited number of post-synaptic receptors near the release sites. Recent phys-

iological studies (Nimchinsky et al. 2004) have shown that only 3 NMDA receptors

open on average per release during synaptic transmission. These observations lend sup-

port to the view espoused by the model that synapses should be treated as probabilistic

computational units rather than as simple scalar parameters.
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A Probability Distribution of the Synaptic Inputs ajl
The synaptic input ajl is the number of EPSPs received by the l-th posterior neuron in

the j-th sub-population. Since the recurrent network in the posterior population is fully

connected, each spiking neuron that fired in the previous time step will attempt to send

an EPSP to its neighbors with success probabilityWij . Therefore, ajl (k+1) can be view

as the sum of Nk independent, but not identically distributed Bernoulli trials. Dropping

all unnecessary indices, we have

a =
N∑
m=1

εm (61)

where each binary random variable εm has a success probability P (εm = 1) = Pm.

Pm = Wij when εm represents neurotransmitter release from cells in sub-population i

to sub-population j. a has the so-called “Poisson binomial” distribution. P (a) can be

approximated by a Poisson distribution Pλ where λ =
∑

m pm. In the familiar case εm

are i.i.d, Pm = p for all m, and a will have the exact Pλ distribution with λ = Np.

Let Y be a random variable that follows the Poisson distribution with E(Y ) =∑
m Pm and let

D = sup
u
|P (a ≥ u)− P (Y ≥ U)| (62)

be the maximum absolute different between the two cumulative probability distribu-

tions. Hodges et al. (Hodges & Cam 1960) showed that D ≤ 2
∑
p2m and D ≥ 3 3

√
α

where α = maxm Pm.

In our network implementation, Pm = 1
CW

fij . Therefore
∑
P 2
m ≤ Nk

C2
W
α. Since CW

should have the same order as the network size L, the approximation becomes exact as
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Nk

C2
W
→ 0, which corresponds to a sparse spiking network (large CW and L) with finite

energy budget (finite Nk). In this case, a has the distribution

P (a = u) =
uλ

u!
exp(−λ) (63)

λ =
∑
Pm ≤ Nk

CW
α. Since Nk is finite, we have λ2 → 0. P (a ≥ 1) = 1− exp(−λ)→

λ. This corresponds to equation 16 in the text. λ2 → 0 also implies that P (a > 1)→ 0.

The probability that the neuron receives more than one EPSP vanishes in the sparse

network. This mechanism is similar to a winner-take-all (WTA) (Maass 2000) network,

where multiple pre-synaptic neurons compete to activate one post-synaptic neuron.

B Sensory neurons

The noisy measurement Zk+1 is not directly observed by the inference neurons, but

sensed through another array of Z sensory neurons, whose receptive fields are centered

at zi ∈ Z, i = 1, . . . ,Z . Each sensory neuron i generates a Poisson spike train, with

intensity proptional to hi(Zk+1). The probability that the i-th sensory neuron fires at

time k+ 1 is proportional to hi(Zk+1), if the window of coincidence detection is small.

Again we define the feedforward weight Mij to be the neurotransmitter release prob-

ability between sensory neuron i and inference neurons in the j-th sub-population. A

spiking sensory neuron i sends an EPSP to inference neurons in the j-th sub-population

with probaility Mij . Therefore, as in equation 16, the probability that neurons in the

j-th sub-population receive feedforward inputs at time k + 1 can be approximated by

P (bjl (k + 1) ≥ 1) '
Y∑
i=1

Mijhi(Zk+1) = g(Zk+1 = zi
′ |xj) (64)

Let G = {Gij = g(Zk+1 = zi
′ |xj)} be a Y by X matrix, and H = {Hii′ = hi(Zk+1 =

zii
′
)} be a Y by Y matrix. Equation 64 implies G ∝ H ×M . Therefore, the Y by X

feedforward weight matrix M ∝ H−1 ×G.

Typical choices of the “tuning curve” function hi for sensory neurons are radial

basis functions with a peak value at the center of the receptive field zi, e.g., Gaussian

hi(Zk+1) = h(Zk+1 − zi) = exp[−(Zk+1 − zi)2/σ2
Z ] or cosine tuning functions. How-

ever, for simplicity, we may require only one sensory neuron responds exclusively to

Zk+1 at time k + 1 such that hi(Zk+1) = χ( z
i+zi+1

2
≤ Zk+1 ≤ zi+zi+1

2
), where χ(.)
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denotes the indicator function. In this case, receptive fields of sensory neurons do not

overlap with each other,H is an identity matrix, andM ∝ G. Moreover, the approxima-

tion in equation 64 becomes exact. When Zk+1 ≈ zi arrives, only one sensory neuron

centered at zi is activated and fires one spike at time k. This pre-synaptic neuron then

sends one feedforward EPSP randomly to every post-synaptic inference neuron with

probability proportional to the likelihood:

P (bil(k + 1) = 1) = g((Zk+1|xi)/CM (65)

where CM is another scaling constant such that Mij = g((Zk+1 = zi|xj)/CM .
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