
Radiatus: Strong User Isolation for Scalable Web Applications

Raymond Cheng†, Will Scott†, Paul Ellenbogen†, Jon Howell‡, Thomas Anderson†

†University of Washington, ‡Microsoft Research

Abstract

Web applications are a frequent target of successful at-
tacks. The damage is amplified by the fact that applica-
tion code is responsible for security enforcement in most
web frameworks. In this paper we design and imple-
ment Radiatus, a web framework where all application-
specific computation running on the server is executed
within a sandbox with the privileges of the end-user. By
strongly isolating users we protect user data and service
availability from application vulnerabilities.

To make Radiatus practical on modern web applica-
tions, we introduce a distributed capabilities system to
protect data at scale across the many distributed services
that compose a modern web application. We show how
this model protects applications from a large class of vul-
nerabilities, without compromising performance.

1 Introduction

Web sites are routinely broken into, resulting in fre-
quent service disruptions and massive leakage of pri-
vate information. In current web services, individual
bugs often lead to wide-scale compromise because the
server-side application logic is part of the trusted com-
puting base (TCB). Existing web applications are struc-
tured as monolithic controllers which must interpret user
permissions in order to dynamically assemble pages for
a user. Because a single process mediates sharing be-
tween users, compromises allow attackers nearly unim-
peded access to all of the information available to the
service. Data compromises of this nature have remained
the largest class of web application vulnerabilities for the
full decade of OWASP (Open Web Application Security
Project) vulnerability reports [11].

Because code is executed on behalf of the service,
rather than as the user, remote code execution vulnera-
bilities are particularly devastating. For example, attack-
ers in 2014 were able to write files and execute arbitrary
code on Flickr servers by exploiting an injection vulnera-
bility in a new photo books feature, allowing the attacker
to manipulate or steal data from any user [58].

In this paper, we propose structuring web applications
around user containers. A user’s container is a strongly
isolated sandbox that runs on behalf of a user. Barring
compromise of the user authentication mechanism, in-
trusions should be contained only to the subset of site
data already available to the malicious user. By execut-

ing web application code with reduced permissions, we
can minimize the exploitable surface of a web service,
even against unforeseen attacks.

Sandboxing users of a modern web application with
reasonable performance is challenging. Generating a sin-
gle page can span many layers of web servers, caches,
storage systems, and coordinators, across multiple ma-
chines and data centers. A user container must strongly
isolate users at every layer of the stack across the net-
work, while supporting high levels of cross-user data
sharing and application flexibility. Previous attempts to
bring process isolation to server-side code have only iso-
lated individual services (e.g. search, newsfeed, etc.) or
database views [19, 39]. Other work has used encryp-
tion [49, 50] and data policies [20, 31, 47] to protect user
data and guide data flows, but they typically provide no
guarantees for the execution integrity of the service and
limit the developer’s flexibility to evolve the application.
In industry, bug bounties, security audits, and monitoring
can improve defenses, but these solutions become less
tenable as applications grow in complexity [43].

Radiatus is a web framework for organizing server-
side application logic into user containers. The frame-
work routes incoming HTTP requests via an authoriza-
tion token to sandboxed processes that run code on be-
half of individual users. Developers write their applica-
tions in terms of mutually distrusting users, who can only
communicate through message passing protocols. Radia-
tus’s distributed runtime uses a capability-based security
system to protect access to private data, while being both
storage space-efficient and horizontally scalable.

Our goal with Radiatus is to show that we can im-
plement these changes in a way that is practical. The
changes to the server are completely transparent to the
user, who continue to access the site through an un-
modified web browser. With our framework, devel-
opers can continue to use existing programming lan-
guages, distributed databases, distributed caches, content
delivery networks, and infrastructure-as-a-service cloud
providers. Even with this developer flexibility, we show
that we can still effectively protect user data from exter-
nal attacks. We also show that in spite of strongly isolat-
ing users, we can scale and achieve performance close to
that of existing web frameworks. Finally, we show how
enforcing data protection using capabilities fits naturally
with the sharing access patterns in web applications and
scales with distributed storage systems.

We have implemented the Radiatus system in 8764

1

SQL
DB

NoSQL
DB

User
A

Memcache

Global
State

Load Balancer

Datacenter

. . . .

Web Service
Clients

User
B

User
C

User
D

User
E

Global
State

Global
State

Server 3Server 2Server 1

(a) Layout of a traditional web service.

Datacenter

. . . .

Web Service
Clients

User Router

NoSQL
DB

SQL
DB

Memcache

Radiatus API

Guard
Guard Guard

User
A

User
B

User
C

User
D

User
E

A B C D E F G H I

Radiatus API Radiatus API

Server 3Server 2Server 1

(b) Layout of a web service using Radiatus.

Figure 1: Current web applications provide little isolation within the context of the application runtime, leading to
a large attack surface. Application logic across all machines are treated as part of the trusted computing base with
access to global state. In Radiatus, applications are logically isolated into per-user containers, which run in isolated
sandboxes with de-escalated privileges. Server-side code executing on behalf of a user is limited to the user’s view of
the database and user containers communicate through restricted message passing interfaces.

lines on top of the Node.js runtime. We have imple-
mented three applications using Radiatus: an academic
social network, a file sharing tool, and a messaging ser-
vice. We have also ported Arc Forum1 to run on our
system.

While our framework can contain the damage caused
by many external intrusions and exploits, we do not pro-
tect against insider threats with administrative access to
site infrastructure. The framework also does not attempt
to protect individual users from targeted attacks.

In the rest of the paper, we will elaborate on the fol-
lowing contributions:
• We introduce user containers for strongly isolating

users in web applications and describe how existing
web applications can be written in this model (Section
3).

• We have built the Radiatus platform with a concise
API for implementing applications in the user con-
tainer model and illustrate the API with three appli-
cations written in the framework (Section 4).

• We show that sandboxing users is in fact practical.
Running the same application, a Radiatus web server
has throughput within 98% of Apache/PHP and 63%
of Node.js/Express. We also show our system can
scale to a a 20-node server deployment on Amazon
AWS. (Section 5).

1Arc Forum is the software that powers the popular Hacker News
web site.

2 Background

While there are many ways that web applications can be
constructed, this section attempts to characterize stan-
dard design patterns found across languages and frame-
works. We then discuss the threat model for web services
and why existing frameworks are susceptible to attack.

2.1 The Current Web Application Model

Figure 1a illustrates the architecture of a typical medium-
sized web application. When users navigate to the site in
their web browser, DNS routes the request to a nearby
data center running the application. A load balancer then
evenly distributes incoming requests across web servers
running identical copies of the application logic. Be-
cause web servers are stateless, physical resources can
be dynamically scaled up or down to meet the current
user demand. Each web server interacts with a variety of
relational databases, NoSQL databases, and caching ser-
vices to authenticate the user, fetch data, and assemble
the final page for the user.

Web applications are often written as scripts that are
fired in response to incoming requests. Web frameworks
provide a number of useful libraries for parsing HTTP
request headers and returning a page populated with con-
tent. Similarly, storage, caching, and even user authenti-
cation are implemented as libraries invoked by applica-

2

https://news.ycombinator.com/

CWE Description Percent
CWE-79 Cross-site Scripting 25.9%
CWE-89 SQL Injection 22.0%
CWE-264 Improper Access Controls 7.6%
CWE-119 Buffer Overflow 6.9%
CWE-94 Code Injection 6.8%
CWE-22 Path Traversal 6.8%
CWE-20 Improper Input Validation 6.7%
CWE-200 Information Exposure 3.9%
CWE-399 Resource Management Errors 3.5%
CWE-287 Improper Authentication 2.4%

Figure 2: Top 10 classes of vulnerabilities related to
web technology as reported by the National Vulnerabil-
ity Database [9]. We show the percentage of web-related
vulnerabilities with each classification as labeled using
the standard Common Weakness Enumeration (CWE).

tion logic.
The HTTP interface intermingles authentication, user

actions, and content fetches, forcing the developer to
properly handle requests, administer access control and
prevent leakage of information. For example, in the case
of a social network, one may store a list of users and
their permissions in a relational database. When a user
requests a feed of recent content, the web server assem-
bles the page by querying the database for recent content
and filters the content with access control policies in an-
other table. The web server then populates a web page
template with the retrieved content and return the page
back to the user.

Large services may break functionality into multi-
ple internal services in a service-oriented architecture
(SOA). For example, a scalable search service may be
written and maintained by a different product group from
the shopping cart service. In this case, each individual
service is typically written in the same model as above.
A front end web service interacts with multiple internal
services on behalf of a user request.

2.2 Threat Model

In this paper, we focus on preventing attacks aimed at
compromising the execution integrity of a web server
from an external vantage point. We assume a malicious
user can craft arbitrary network packets and send arbi-
trary HTTP requests to the web interface. Thus, attacks
include URL interpretation attacks, server-side includes,
code injection attacks, SQL injection, malicious file ex-
ecutions, and buffer overflows. The Web Hacking Inci-
dent database [15] reports that most attacks of this nature
have led to either information leakage, service disrup-
tion, defacement, malware distribution, or some combi-

nation, with the average cost of a data breach recovery in
the U.S. of around $5.4 million [48].

This defined scope represents a large portion of vul-
nerabilities. In Figure 2, we catalog the 31,380 vul-
nerabilities in the National Vulnerability Database that
are related to web technologies or the systems that
power them, such as SQL databases. Each vulnerabil-
ity is categorized by a Common Weakness Enumeration
(CWE) [5] label. The methodology likely under-reports
the frequency of server-side problems; the server-side
code, for most web applications, is not public, limiting
the ability for outside groups to diagnose precisely why
compromises occur.

In this data set, 28.1% are client-side attacks that
coerce a web browser client into performing unautho-
rized actions. An example is cross-site scripting. Our
techniques do not address these vulnerabilities, but our
implementation uses industry standard content security
policies [4] and CSRF tokens [11] to mitigate such at-
tacks.

Most vulnerabilities, 69.2% in this data set, involve
flaws in server-side logic, such as code injection. Our
goal is to address the broad sweep of server-side attacks
against server application code, to allow application code
to be developed quickly without worry that it might be in-
troducing a subtle security vulnerability. We should note
that prior work has shown progress at preventing specific
types of server-side attacks, such as SQL injection.

We do not address vulnerabilities involving server
misconfiguration, insider attacks, social engineering, and
weak cryptographic primitives, such as the backdoor in
the dual elliptic curve random number generator [23].
Each of these cases are more appropriately addressed by
other, complementary techniques [22, 24, 26, 30, 31, 49].

3 Radiatus Design

While introducing per-user isolation seems like an in-
tuitively simple idea, a number of challenges make
it uniquely difficult in web applications. Previous
work [19, 39, 40] had proposed the use of process iso-
lation in a single web server, but none have explored
the practical demands of per-user isolation in the context
of a modern web service with horizontally scaling web
servers and connecting to a variety of distributed storage
systems, caches, and content distribution networks.

How do you support database security for each user?
Different storage backends may support completely dif-
ferent user models, a problem sidestepped when applica-
tion code is trusted. How do you manage memory con-
sumption and storage costs? We can give each user their
own cache and storage silo, but many objects in mod-
ern web applications are shared across users, sometimes
across millions of users. How do you efficiently support

3

one-to-many communication patterns? Copying data be-
tween containers may not be feasible, and certainly adds
overhead. How do you perform distributed process man-
agement? User containers need to be placed to minimize
communication cost and maximize load balancing.

In this section, we describe the user container model
and the techniques in Radiatus that we use to make per-
user isolation practical. We have three high-level goals
for the system: First, the system should interoperate
with existing cloud infrastructure, storage systems, and
programming tools. Second, Radiatus should provide a
general framework for isolating users, such that a single
server-side application vulnerability, when exploited for
a single user, does not lead to compromises in data in-
tegrity or service availability for all other users. Third,
the performance and scale of applications written and
deployed on Radiatus should be comparable to that of
existing web frameworks.

3.1 Approach
Figure 1b shows the high-level model of a Radiatus ap-
plication.

User Sandbox: In Radiatus, we spawn a sandboxed pro-
cess, which we call a user container, for each active user.
All code written by the developer runs inside this protec-
tion domain with the privileges of the particular user that
the container is assigned. As such, the user container can
only read and modify the data owned by the user.

User Routing: Because different user containers may
exist on different web servers, we introduce a user router,
which routes incoming connections to the proper user
container.

Cross-Container Communication: We expose a thin
message passing interface between user containers which
allows them to communicate and pass data as necessary.
The framework limits which which containers can com-
municate with each other, bootstrapped off of existing
social networks. The developer writes strict interfaces, to
which all incoming messages must conform. The devel-
oper can also specify a priority level, which determines
whether the message wakes up the destination or queues
until the next time the user logs in.

Storage Guard: We implement a Storage Guard, which
controls access to user data including the database,
caches, and the content delivery network (CDN). Logi-
cally, each user has a storage partition, but physically the
underlying data is shared. The Storage Guard intermedi-
ates requests to any storage system, and implement a dis-
tributed capabilities system to manage shared data access
between users. Instances of the Storage Guard operate
with little to no coordination to prevent the framework
from becoming a performance bottleneck.

Distributed Process Manager: A user container needs
to be active in order to support an active user ses-
sion or to process incoming messages from other users.
The process manager uses server load, message priority,
and communication patterns to optimally determine the
placement of user containers, as well as to schedule when
they are suspended and resumed.

The user container model improves web security by
introducing a number of security properties unseen in
most web frameworks. First, we move developer’s code
into a protection domain that runs on behalf of the user,
instead of the service with full access to the web site.
Following the principle of least privilege, attackers that
exploit an application vulnerability are limited to the
user containers they have credentials to access. We re-
duce the trusted computing base of the web server to the
user router, login infrastructure, Storage Guard, and the
sandboxing mechanism (e.g. OS processes/hypervisor).
These components are written once and shared across all
Radiatus web applications.

In practice, many types of multi-user web applica-
tions, such as online banking, office productivity, and on-
line commerce, can be expressed in this model. Although
Radiatus imposes constraints on the execution environ-
ment, it does not prohibit developers from building ar-
bitrary applications. To the developer, Radiatus makes
sharing and communication patterns explicit, placing
logical boundaries between users.

3.2 Online Social Network Example
To illustrate the user container model, we have built
a number of applications on top of Radiatus. Blizi
(http://blizi.radiatus.io) is an academic social network
that allows authors to post papers and solicit reviews
from other users. The application also allows an author
to privately share paper drafts and reviews with certain
individuals. The intent is to allow limited dissemination
without violating anonymous conference reviewing, as
might occur when papers are posted to Facebook or the
Web. We have started to organize one of our seminars
around this tool.

Figure 3 shows the workflow of sharing a paper draft
to a peer for review. A user container acts as the server-
side agent for each user, in a shared-nothing architecture.
The container manages the user’s private data and capa-
bilities to access data that has been shared with that user.
When a user visits the site, the application code running
in the container retrieves the data necessary to assemble
the desired page.

Consider the scenario where Alice shares a paper with
Bob. When Alice uploads the PDF to her user container,
the application uses the storage interface to store the pa-
per contents into a MongoDB database. It also caches

4

User Router

review(“….”)

publish(“paper1”,
 cap)

MongoDB

Radiatus API

Web
Server

Web
Server

Core
Logic

Paper
Manager

Friend
Manager

Friend
Manager

Paper
Manager

Core
Logic

Alice's
Browser

Alice's
Container

Bob's
Container

Bob's
Browser

Storage Backend

Memcached Message
RouterGuardGuard

CDN Service

Guard

PDF

User Router

Radiatus API

Figure 3: Workflow of uploading and sharing a paper on
Blizi, an academic social network. Each user container
acts in isolation and stores data in a private location. Al-
ice and Bob communicate using a typed message passing
interface, through which they share papers, reviews, and
comments. User containers can privately share data, such
as reviews, to select individuals.

metadata in a Memcached cluster.
This request returns a capability giving Alice (and

only Alice) the ability to retrieve the paper. Using the
cross-container communication interface, Alice can send
the capability and an invitation to review the paper to
Bob. This transferable capability gives Bob read-only ac-
cess to that snapshot of the paper. If Alice makes changes
to the paper, she would need to send another capability
to Bob for him to see the revision. As we will see later,
that capabilities refer to immutable data is important for
system scalability. In a similar fashion, Bob can send re-
views and comments back to Alice, or share them with
other users on Alice’s distribution list.

To support a newsfeed of public papers, we have a spe-
cial service user to which other users can submit their
public papers. The service user stores the newsfeed of
recent papers and computes an index over all public pa-
pers. To search over the set of papers viewable by a par-
ticular user, Blizi code in the user’s container computes
a personal index over the papers to which it has access.

Using capabilities allows us to store each PDF only
once in the entire web application. User containers are
live when their respective user is online and when they
must process a critical message, such as to resend a
lost paper. Most messages, such as an invitation to re-
view, are queued until the next time a user comes on-

line. By isolating server-side application logic, an attack
that compromises a user container would only affect that
user’s data and data to which she has been granted ac-
cess.

3.3 Process Management

A process manager keeps track of the web server on
which each user container is running. The process man-
ager suspends any container when they become inactive.
When a user container needs to be initiated for a par-
ticular user, the process manager load balances across
servers with spare capacity. The process manager also at-
tempts to co-locate user containers that frequently com-
municate with each other.

In the common case, user containers are sandboxed
processes that share a kernel. For users with strong secu-
rity preferences, we can reserve an entire virtual machine
to their user container. Because each user container runs
the same application code, they can be created in advance
and dynamically assigned. Containers benefit from being
forked with copy-on-write memory semantics. Because
it takes 88.7ms to start a process in our implementation,
the system also maintains a pool of instantiated but un-
configured processes. In order to reduce the latency of
the first request by a new user, the process manager as-
signs new requests to one of these processes and spawns
new processes as the pool is depleted.

3.4 User Routing

The user router is analogous to a load balancer for exist-
ing websites. Current load balancers proxy connections
to servers with spare capacity, optionally also terminat-
ing the TLS connection. Likewise, the Radiatus user
router looks for a session cookie in the HTTP headers
of incoming requests. The cookie uniquely identifies the
user and his/her user container. This form of authentica-
tion is common in nearly all web applications today. We
use standard authentication techniques to verify users.
Once identified, the user router will route requests to the
proper user container.

3.5 Cross-Container Communications

Users can send messages to each other by addressing
messages with their unique user IDs. Message routers
forward these messages to the destination, where han-
dlers defined by the developer specify how to interpret
these messages. If a peer is not online, by default mes-
sages to that peer are put on a persistent queue. Radiatus
also supports wake-on message policies for high priority
messages (e.g. ones that impact user interfaces).

5

Radiatus maintains an access control list to limit which
user containers can communicate with which other con-
tainers to prevent an attacker from crawling the site and
to slow virus propagation. Communication is prohibited
by default, but the implementation allows the developer
to use existing social networks in place of the ACL; we
currently support Google, Facebook, and XMPP buddy
lists. The web application running in a container can also
request additions (with mutual consent) or deletions from
this list.

We introduced two optimizations to relieve stress on
our message router. First, messages between two user
containers on the same machine are directly routed to
each other, bypassing the network. Second, we batch
messages from (and to) different user containers on the
same node to reduce overhead. With these optimizations,
we were able to support our 20-node server deployment
with a single message router. We plan to add distributed
message queues, such as in Apache Kafka [2], as the
need for further scaling arises.

Our message-passing system fits the growing use of
event-driven programming for web development, similar
to channels in Go [6], event emitters in Node.js [10], and
Scala’s actor model [1]. As with these systems, event-
driven programming in Radiatus comes with a cost:
added complexity in managing long chains of actions.
We describe developer experiences more fully in Section
5.1.

There remains the risk of a developer introducing a
vulnerability in a message handler, which may lead to
wider compromises in the system. Radiatus provides a
defense-in-depth strategy to mitigate this risk. We al-
low developers to specify security policies that define
the required schema of messages, a rate limit, and prior-
ity level. Note that attacks must first compromise a user
container to even have access to this interface, which will
then be limited by the types and rate of messages it can
send. Because Radiatus can monitor and block any mes-
sages between users, we can effectively quarantine any
user by removing their communication ability when we
detect misbehavior.

3.6 Storage Access

The Storage Guard layer provides access control to pro-
tect back-end storage systems. In our shared-nothing ar-
chitecture, each user reads and writes into their own log-
ical partition. Regardless of the number of users that per-
sist the same content, or share the same content to their
friends, the physical storage system de-duplicates con-
tent to store a single copy of each unique data value.

A Storage Guard instance is co-located with each
database entry point, intercepts all requests, and tags
each record with the owner. For example in our Mon-

Key-Value Storage
Name Description
get(key) Get a key
set(key, value) Set a key/value
remove(key) Remove a key
enumerate() Return all keys
clear() Clear partition

Cross-Container Communication
Name Description
send(userId, message) Send a message
registerHandler(handler) Handles incoming messages

Figure 4: Radiatus APIs for interacting with storage and
other containers. The storage system exposes a logically
isolated user partition.

goDB deployment, an instance of the Storage Guard is
run in front of each mongos query router. As the Mon-
goDB cluster grows, there can be many Storage Guards
and query routers independently coordinating distributed
operations over the database, itself partitioned over many
mongod database shards.

3.6.1 Strawman Approach: Centralized ACLs

Database systems typically come with their own user
management and access control mechanisms. One ap-
proach would be to implement a global monitor that co-
ordinates between these disparate access control mecha-
nisms, creating user IDs for each database. Such a mon-
itor would translate Radiatus user storage requests into
reads, writes and access control list modifications in the
respective databases.

A practical challenge to this approach is that many of
the NoSQL storage systems popular with web develop-
ers lack a consistent user model or only support access
control on a coarser-grain than per user. If a particu-
lar website uses multiple databases, e.g., one specialized
for photos, another for tweets, and a third for metadata,
the implementation complexity of managing user per-
missions in Radiatus would be immense.

Further, such a system would be fundamentally un-
scalable. When Alice shares a photo with Bob, she
would first contact the monitor and change the access
permissions for that photo to include read permission for
Bob. Because Bob can request the photo from any Mon-
goDB query router, the new ACL must be persisted at
all query routers to properly enforce this new access pat-
tern. As the rate of sharing increases, this mechanism
could quickly become a scalability bottleneck.

6

3.6.2 Distributed Capabilities

Instead, Radiatus uses distributed capabilities to encode
access control in the existing communication patterns of
the application. For example, when Alice notifies Bob
about a new photo, Alice can pass the capability that
gives Bob access to the photo. Any Storage Guard can
directly verify this capability, allowing the database and
application to scale independently.

We have implemented a Storage Guard for both Mon-
goDB and Memcached, key-value systems where a doc-
ument, record, or blob is the major unit that gets stored.
In Figure 4, we show the interface that is exposed to the
user container. In practice, the capability is a crypto-
graphic hash of the content itself, which acts as a self-
certifying name used for read-only access to a snapshot
of the data [29]. This mechanism affords us a num-
ber of desirable properties. User containers are a shared
nothing architecture, with automatic deduplication at the
Storage Guard. Regardless of the number of users that
persist the same content, or share the content with their
friends, the database only needs to store one copy of ev-
ery unique data value, deduplicated by content hash. Be-
cause the Storage Guards do not need to coordinate to
operate, the security system does not affect the scalabil-
ity of the underlying storage system.

Sharing an image with a friend is thus as simple as
sending a small capability, requiring negligible amounts
of communication or storage overhead as shown in Sec-
tion 5. When a user stores a value, set(k, v), the user
container first computes the hash of the value. The con-
tainer then sends a request to the Storage Guard to persist
the ownership metadata, (user, k) → H(v), as well as
the content, H(v) → v. Containers can then pass the
capability, H(v), to other containers, who can retrieve
it directly from the database. In Radiatus, we also use
Memcached to cache metadata, such as which keys a user
owns, to accelerate data fetches.

Because capabilities represent snapshots, rather than
the continuing right to read updates, we expect revoca-
tion to be rare. To support revocation, we allow own-
ers to delete data values from the blob store. For exam-
ple if Alice uploads a photograph and shares it with her
friends, she can delete the photo content; this invalidates
any outstanding capabilities to the photo and prevents fu-
ture retrieval. Of course, a corrupted friend’s account
could have already retrieved and leaked the photo to the
tabloids; our aim is only to prevent an attacker from gain-
ing access to everyone’s data.

MongoDB and Memcached have been sufficient for
the applications that we have built to date. Other NoSQL
and key-value systems can be supported similarly. We
next describe how capabilities would interact with other
types of storage systems; these are not part of our current

implementation.
Object-Relational Mapping (ORM) Object-relational
mapping (ORM) [18] is a common programming model
that allows developers to persist objects in relational
databases. For example, it is natural to write an object-
oriented program where an instance of an AddressBook
class stores an array of Record instances. ORM li-
braries provide synchronization primitives to convert
these objects into representations which are compatible
with a relational database. ORM is the default program-
ming model for many popular web frameworks including
Django, Ruby on Rails, and PHP. In this case, the Radia-
tus Storage Guard functions identically as when in front
of an SQL database, described next. Objects are serial-
ized and hashed before persisted to the database.
Relational Databases We want to allow the user con-
tainer access for any table (or object-relational) data for
which the user is either the owner or holds the matching
capability. To do this, we configure every table in the
database with two extra columns to store the owner of
the row and a hash of its contents (the capability). On
an INSERT operation, the Storage Guard automatically
populates the owner and capability columns. Subsequent
requests to UPDATE a row are allowed if the user is the
owner; this also modifies the hash value, ensuring that
each capability is valid only for a particular data snap-
shot.

For queries, the user container sends the Storage
Guard a list of its capabilities; these lists can be cached
for efficiency. The results of simple SELECT queries can
be post-processed to ensure only rows that the user has
permission to access are returned, with the owner and
hash value stripped off. More complex queries involving
JOIN need to be prepended with a SELECT operation to
check and strip off the owner/capability.
Content Distribution Networks (CDN) Many modern
CDNs provide a programming interface for adding and
removing content from the network. As such, we can
create a Storage Guard that uses similar techniques. We
treat the CDN as a blob store, which stores a single copy
of every published piece of content. A NoSQL database
is used to store user ownership metadata. Capabilities
can then be embedded in a unique URL to be linked from
HTML pages.

3.7 Analytics and Search

In order to support shared computation, we support the
notion of a service user. A service user encompasses a
unit of aggregate computation on behalf of the service.
For example, the developer may want to collect aggre-
gate statistics on page views or create a search index of
public content. Service users are addressable like nor-
mal users, but their containers run code on behalf of the

7

service.
We can use existing techniques to either limit leak-

age of information using differential privacy [40, 41] or
distribute computation over private information across
user containers where the data resides [33, 40]. These
systems outline how to build privacy-preserving applica-
tions, such as personalized advertising, in a way that is
compatible with Radiatus and limit how much informa-
tion is centralized by the developer.

4 Implementation

4.1 Radiatus Framework

We have implemented the Radiatus web framework as
a collection of various software components. A con-
tainer runtime hosts a number of user containers on a
server, each isolated in a sandboxed process. A user
router routes incoming requests to the appropriate server
and user container. A storage guard mediates calls to
the storage systems by checking capabilities and subse-
quently translates the request to the database-specific in-
terface. Lastly, cross-container messaging is supported
by a message queuing system and a distributed process
manager.

The source code for these projects can be found on
GitHub (https://github.com/freedomjs). Radiatus ex-
tends on freedom.js, an existing peer-to-peer JavaScript
framework. Both frameworks execute on the Node.js
JavaScript runtime [10]. We leverage built-in Node.js
support for process management and context isolation to
construct sandboxed, unprivileged JavaScript processes.
Each process runs its own instance of the V8 JavaScript
engine, which is used as the user container to handle in-
coming requests for a single user. We inject stubs for
each of the Radiatus APIs and block any other interfaces
normally provided by Node.js.

4.2 Applications

In order to explore the expressiveness of our Radiatus
framework, we used it to build a number of collabora-
tive applications. These applications demonstrate the ex-
pressiveness of the framework API and show that user
containers can serve as a form of modularity to organize
functionality.

Academic Social Network: (http://blizi.radiatus.io)
Blizi is an academic social network that serves as an ex-
ample of how various social interactions work in Radia-
tus. The application allows a user to share a paper pub-
licly or privately to specific individuals (Section 3.2).

File Sharing: (http://filedrop.radiatus.io) FileDrop al-
lows a user to upload files to their user container. When

a friend is granted access to the file, their user container
can retrieve the file using the cross-container messaging
system and then serve the file to the friend’s browser.

Chat Messaging: (http://chat.radiatus.io) The chat ap-
plication uses the cross-container messaging system to
relay chat messages between people. In this particular
example, we wrote a custom authentication manager that
automatically assigns everyone a pseudonym and regis-
ters them on a global buddy list. When Alice sends a
message to Bob, it is delivered from Alice’s browser to
Alice’s user container, then to Bob’s user container, and
finally down to Bob’s browser.

Radiatus fits well with the wide range of web appli-
cations that involve interacting users, including produc-
tivity software, games, social networking, e-commerce,
and media. Because Radiatus is a server-side web frame-
work, developers are unrestricted in how they design
client-side user interfaces.

4.3 Porting Existing Applications

Not all applications can be easily ported to run Radia-
tus. We provide a simple build tool for compiling exist-
ing Node.js libraries to be used in Radiatus sandboxes.
Some functionality may be broken in this process, such
as in the case of filesystem access. While individual
components of an existing Node.js web application can
be ported using the same tool, any application logic that
requires global access to state must be rewritten to exist
within a restricted user container.

Arc Forum: Because the Radiatus process manager
works with operating systems processes, we can port
applications written in other languages, subject to the
same limitations above. We ported the Arc Language
Forum [32], the application behind the popular Hacker
News web application, to the user container model. The
forum is written in Arc, a dialect of the Lisp program-
ming language that includes a built-in web server and
libraries for generating HTML. The forum application
provides a social news web application using these lan-
guage primitives.

In Arc Forum, all data is persisted to disk using files
storing Lisp lists. There are three subdirectories that
store application state. ./profile/ stores a file for each user
profile. ./story/ stores a file for each submitted story or
comment. ./vote/ stores a file for each user’s voting his-
tory.

For implementation simplicity, we choose not to com-
pletely re-architect Arc Forum, aiming instead for pro-
viding most of the benefits of Radiatus with minimal
code changes. Instead of using an existing Storage
Guard, we set up separate subdirectories with different
permissions for each user container. We modified the

8

https://news.ycombinator.com
https://news.ycombinator.com

user router to change the HTTP request routing behavior.
Requests to render a page are directed to the proper user
container as expected. When a user posts a new story or
comment, it is replayed across all user containers. This
configuration provides strong guarantees for isolating at-
tacks against the code to render a page; this is especially
important as any anonymous user can request to render
a page. However, vulnerabilities in the handler for story
posts can still affect a wide range of users. Because the
application only allows authenticated users to post sto-
ries, we rely on manual detection to audit and disable
misbehaving accounts.

5 Evaluation

Our evaluation of Radiatus asks the following questions
to understand the security, performance, and ease of de-
velopment. What effort is required to develop an ap-
plication using this framework (Section 5.1)? How do
user containers prevent existing classes of attacks (Sec-
tion 5.2)? Does the Radiatus implementation provide ac-
ceptable performance with the added overhead of user
containers (Section 5.3)?

5.1 Developer Experiences
Figure 5 shows the number of lines of code for each
application. Server-side logic represents the portion of
code run within a user container, which is coded against
Radiatus APIs. Client-side user interfaces are writ-
ten using standard HTML5 and are reusable with any
web framework. In each of these cases, it took more
effort to define the user interface than the server-side
logic. For example in Blizi, our user interface included
dynamic data-driven rendering. Blizi user containers
simply persisted data uploaded from the user interface
and sent messages notifying other appropriate users of
changes. This complexity metric does not include the
Radiatus runtime, including the login infrastructure, stor-
age guard, and cross-container message router, which is
common across applications.

We asked seven undergraduate students to build soft-
ware on top of the framework, including Blizi, and de-
scribe their experiences and challenges. Most of the chal-

Application Blizi FileDrop Chat
Total LOC 2958 614 285
Server-side LOC 870 219 133
User Interface LOC 2088 395 152

Figure 5: Number of lines of code to implement each
application. For these applications, the majority of code
resided in user interfaces.

lenges they encountered were rooted in the complexity of
event-driven programming and handling distributed fail-
ures. One example was that the action of sharing a pa-
per with others involved uploading the paper to the user
container, persisting it to disk, and sending a message to
some set of peers. Failures anywhere on this chain of de-
pendent events needs to be properly logged and handled.
While many web frameworks are event-driven, Radiatus
requires more messages to be sent compared to a tradi-
tional framework. We provide a number of tools, such as
JavaScript promises, to structure some of this complex-
ity.

5.2 Security Analysis

To evaluate how Radiatus mitigates wide-scale exploita-
tion of web vulnerabilities, we constructed four worst-
case attack scenarios shown in Figure 6. For the attacks
where we have access to the software, we download the
vulnerable versions. For the others, we have to intro-
duce our own vulnerability in Blizi to fit the descrip-
tion. Because many web applications are proprietary
software running on managed infrastructure, the Com-
mon Weakness Enumeration [5] suspects that many vul-
nerabilities such as JavaScript code injection are heavily
under-reported.

For the database injection attack, the attacker sends a
malicious database command, which the web application
relays to the database. While this attack commonly oc-
curs in the wild as SQL injection, new NoSQL databases
are equally vulnerable with their own query languages.
In our evaluation, we use a vulnerable version of Mon-
goDB and inject code through our web application.

For the code injection attack, we inject JavaScript that
is evaluated by the web application itself. Various studies
have demonstrated the feasibility of this attack [53], and
in our evaluation, we introduce a vulnerability such that
our web application improperly uses eval(. . .).

For the buffer overflow attack, we link one of our ap-
plications to use a vulnerable LibYAML parser library.
Because Node.js applications commonly links against
native libraries to be used by JavaScript, these applica-
tions are still vulnerable to buffer overflow attacks.

For the access control attack, we send requests to ac-
cess content that a user should not have access to. This
vulnerability has been widely reported in the news (e.g.
Snapchat in 2013 [13]), but researchers typically do not
have access to the vulnerable source code. To facilitate
this attack, we introduce a vulnerability to improperly
check access control before sending content in our own
application.

For each of these attacks, we run the application with
100 legitimate users, each reading, writing, and sharing
content. We then introduce an attacker, who crafts ma-

9

Attack Type Reference Description Affected Containers
No Sandboxes Radiatus

Database Injection CVE-2013-1892 MongoDB does not properly validate requests to the All None
nativeHelper function in SpiderMonkey

Code Injection CWE-95 Software incorrectly neutralizes code syntax before All Attacker
using the input in a dynamic evaluation call (e.g. “eval”)

Buffer Overflow CVE-2013-6393 LibYAML executes arbitrary code via crafted tags in a All Attacker
YAML document, which triggers a heap-based buffer overflow

Improper Access Control CAPEC-58 Missing access control for certain HTTP commands, All Attacker
leading to RESTful privilege elevation

Figure 6: Security vulnerabilities constructed in our evaluation setup. For further details on specific software versions
affected, see the respective reference number. Without Radiatus sandboxing and database protections, exploiting any
one vulnerability would lead to compromised service integrity for any user. Radiatus effectively sanitizes commands
to the database and contains an attacker to their own user container.

licious requests to exploit each of the specified vulnera-
bilities from the network. For each vulnerability, we run
the attack once with no sandboxing or database protec-
tion, and once in Radiatus. In Figure 6 we show the reach
of each attack scenario.

For the database injection and access control attacks,
an attacker could steal arbitrary data from the database.
With Radiatus, the storage guard filters JavaScript from
all commands going into the database and similarly fil-
ters all outgoing data for values not belonging to the au-
thenticated user. For the code injection and buffer over-
flow attacks without sandboxing, an attacker has access
to global state and could manipulate arbitrary user ses-
sions. With Radiatus, our sandboxed user containers pre-
vent the injected code from touching any state not be-
longing to the user.

Vulnerabilities can also arise on the cross-container
messaging interface. In order to exploit these vulnerabil-
ities, an attacker would first need to compromise an ac-
cessible user container from the network interface. The
attack would then need to spread through the social graph
of user containers in order to affect all users. As part of
a defense-in-depth strategy, we can specify strict mes-
sage formats, blacklisted regular expressions, rate limit,
and alert systems for these messages. Compromised
user containers can be reset without affecting other users.
Combined with suspending misbehaving users, Radiatus
represents a substantial improvement over existing web
frameworks, where a single exploit can immediately af-
fect all users. We also benefit from the fact that attacks
along the cross-container messaging interface occur in
a controlled data center environment. We leave to fu-
ture work how information flow control, encryption, and
stricter data policies can layer additional security guar-
antees on the system.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

)

Radiatus Container Runtime Servers

100% read
90% read/10% write

100% write

Figure 7: Aggregate throughput with different work-
loads across a 20-node cluster. We scale the number
of servers running the container runtime with a single
message router and storage guard. At around 5 runtime
servers, the system is bottlenecked by the message router
and storage guard.

5.3 Performance

We evaluated the performance of user containers on
Amazon Web Services, with r3.large EC2 instances (2
CPU cores, 15GB memory, 32GB SSD, $0.175/hr in
2014). We stress test the performance of a single web
server, as well as the overall throughput of a web service
consisting of 20 servers.

Distributed Performance:
We set up a cluster of 20 virtual machines (VMs) on

Amazon AWS to evaluate the performance of a coordi-
nated deployment. Up to 19 VMs were used to host con-
tainer runtimes and 1 VM was dedicated to running the
message router, storage guard, and database. Figure 7
shows the aggregate throughput of the system with var-
ious simulated workloads. A read request consisted of
a request to the storage guard and a response containing

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Time to Complete 10K Requests (s)

Figure 8: Cumulative distribution of completion times
for 10,000 requests in each of 1900 user containers. The
median completion time of 248 seconds represents 40.32
requests per second per container.

an item from the user’s personal storage. A write re-
quest consisted of sending a message to a peer container
through the message router, which then stores the value
to their partition. In each of the data points, each server
simulated 1000 user containers, each making back-to-
back requests.

The graph grows linearly until around 5 container run-
times simulating 5000 active users. At this point, the
message router and storage guard quickly become the
bottleneck. This setup represented sufficient capacity for
our medium-sized website deployments. As a point of
comparison, Wikipedia in 2010 had 205 Apache web
servers to support 414 million readers and 100 thou-
sand active editors per month, as well as averaging 2000
HTTP requests per second [16]. We leave to future work
the effort of scaling the message router and storage guard
to support larger deployments.

Figure 8 shows the breakdown of completion time for
user containers across 19 servers to finish 10,000 re-
quests at a 9:1 read/write ratio. The graph shows min-
imal spread with a median completion time of 248 sec-
onds or 40.32 requests per second per container. As most
applications will likely require far fewer than 40 requests
per second per user, we should be able to support more
servers and active users as long as it fits the capacity of
the message router and storage guard. Note that these
numbers do not account for inactive users.

Single Machine Performance:
We profiled the performance of a single machine under

load to determine how Radiatus restricts performance.
In Radiatus, each user container is a sandboxed process
running application logic with its own Node.js context.
When scaling the number of active users on a single ma-
chine, memory quickly becomes a bottleneck in the con-
text of a single server. We measured the average memory

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

R
uby O

n R
ails

C
herryPy

R
a
d
ia

tu
s

Apache+PH
P

Tornado

N
ode.js

Python-gevent

JavaH
TTP

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

Web Framework

Figure 9: Comparison of single web server performance
using the Siege Benchmark to make 1000 parallel con-
nections at a time. Radiatus remains competitive with
other frameworks despite handling requests in isolated
user containers.

consumption of each process across 100 user containers
to be 10.6MB. As such, each memory-optimized r3.large
EC2 instance was able to support around 1400 processes
before swapping.

Figure 9 shows the serving performance of a number
of web frameworks for generating simple dynamic web
pages. The serving performance data was collected us-
ing the Siege load testing tool, which simulates 100 users
making HTTP requests in parallel. The page response in
all cases was chosen to be a simple counter of how many
requests had been made so far. This experiment prevents
caching, while stress testing the HTTP request handler.
Radiatus performs comparably to existing frameworks
and better than some very popular frameworks, such as
Ruby on Rails. We expect the practical overhead of Ra-
diatus over Node.js to be much less when the response is
backed by an actual web application.

6 Related Work

Radiatus is not the first attempt at strengthening secu-
rity in web apps, and is inspired by the existing corpus
of web security research. A number of prior techniques
can be used in conjunction with Radiatus to further layer
defense in depth.

Server-side Web Security: There have been a num-
ber of proposals to secure data integrity in the server.
CryptDB [49], Mylar [50] and homomorphic encryp-
tion [30] have been proposed as ways to encrypt data and
perform certain computations over encrypted data. Con-
sequently even if a service gets compromised, users can
rest assured that their data is safe.

A few projects have also explored variants of partition-
ing server-side application logic. BStore [21], Lockr [55]
and RemoteStorage [12] provide mechanisms for appli-
cation logic to be detached from storage, allowing stor-

11

age primitives for a web application to be fulfilled by a
third party.

Denali [59] and Xen [17] are paravirtualization tech-
niques that can be used to isolate different web services
on the same host with reasonable performance. Apache
virtual host isolation [3] allows an Apache installation to
host different web services.

OKWS [39] and Passe [19] introduce process isola-
tion within an individual web application, providing pro-
tection boundaries between naturally isolated services
(e.g. search), but stops short of per-user isolation. In
fact, many web services now use a service-oriented ar-
chitecture [14] for a variety of reasons beyond security.
πBox [40] introduces a per-user sandbox that spans a
mobile app and web server that interposes on all com-
munication between users to enable fine-grained privacy
management. Radiatus expands on these works to make
per-user isolation practical at scale, supporting database
security, data deduplication, 1-to-many communications
patterns, and distributed process management.

Information flow control (IFC) can be used to limit
the ability of a corrupted application to exfiltrate infor-
mation. These techniques have also been applied to web
frameworks to track malicious data flows. Hails [31]
used IFC to track privacy violations when third-party
applications run on data provided by a web service.
PHP Aspis [47] used IFC to guard against injection at-
tacks and DBTaint [25] introduced mechanisms to per-
form IFC across different applications. HiStar [61] and
Flume [38] are operating systems that similarly use IFC
to police data flows.

Other web frameworks, such as Excalibur [52] and
GuardRails [20], have been introduced to attach fine-
grained security policies on data. These frameworks
help manage the complexity of managing access control,
but under the exiting centralized model of web devel-
opment. Logging techniques have also been applied to
databases [22], allowing administrators to restore state
to a point of known integrity after an intrusion.

Our focus in this paper is to create a sandboxing
mechanism that scales well in modern web applications.
These mechanisms are compatible with Radiatus and
represent layers in a defense-in-depth strategy. We leave
it to future work to explore how encryption, differential
privacy, logging, IFC, and fine-grained data policies af-
fect Radiatus’s performance and security guarantees.

Client-side Browser Security: Weak isolation has long
been recognized as an important security problem in web
browsers. Improper isolation between different applica-
tions and principles can lead to data leaks, poor user ex-
perience, and unstable browser runtimes.

A variety of browsers [7, 8, 35, 36, 42, 57] and client-
side JavaScript libraries [37, 54] have explored various
isolation techniques for web applications and were in-

fluential in the Radiatus design. Because Radiatus is a
server-side framework, it is complementary to the secu-
rity provided by client-side isolation.

Distributed Operating Systems: While we address new
challenges in providing security in web apps, we must
recognize the decades of research in building distributed
operating systems. Many prior efforts have recognized
the need to isolate users and applications [27,28,34,44–
46, 51, 56, 60]

7 Conclusion

Radiatus provides an alternative model for web appli-
cation design offering increased security over existing
frameworks. In this paper, we have presented the user
container abstraction as a lightweight mechanism to
strongly isolate users within a web application. Test-
ing our implementation of Radiatus, we find that it of-
fers performance competitive with existing web frame-
works, while adding an important layer of isolation be-
tween users. While the design of Radiatus applications
is different from those in a monolithic controller, we
present a set of APIs in our implementation which are
expressive enough to support many of the classes of ap-
plications in use today. Finally, we present and evaluate
our implementation of Radiatus and offer guidance on
how processes can be leveraged for efficient isolated user
containers.

The web platform already treats the browser as a
per-user isolated container running potentially untrusted
code. This abstraction has developed into a growing and
powerful runtime for a growing diversity of applications.
Leveraging these same design patterns on the server pro-
vides a structured approach to isolation, offering the
same containment we would expect from our own ma-
chines, mobile applications, and multi-tenant data cen-
ters.

References

[1] Akka Actor Model. http://akka.io/

[2] Apache Kafka. https://kafka.apache.org/

[3] Apache Virtual Host. https://httpd.apache.
org/docs/2.2/vhosts/

[4] Content Security Policy 1.0. http://www.w3.org/
TR/CSP/

[5] CWE/SANS Top 25 Most Dangerous Software Errors.
http://cwe.mitre.org/top25/

[6] Go Language Specification. http://golang.org/
ref/spec

[7] Google Chrome Multi-process Architecture.
http://blog.chromium.org/2008/09/
multi-process-architecture.html

12

http://akka.io/
https://kafka.apache.org/
https://httpd.apache.org/docs/2.2/vhosts/
https://httpd.apache.org/docs/2.2/vhosts/
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/CSP/
http://cwe.mitre.org/top25/
http://golang.org/ref/spec
http://golang.org/ref/spec
http://blog.chromium.org/2008/09/multi-process-architecture.html
http://blog.chromium.org/2008/09/multi-process-architecture.html

[8] IE8 and Loosely-Coupled IE (LCIE). http://blogs.
msdn.com/b/ie/archive/2008/03/11/
ie8-and-loosely-coupled-ie-lcie.aspx

[9] National Vulnerability Database. https://nvd.
nist.gov/

[10] Node.js. http://nodejs.org/

[11] Open Web Application Security Project. https://
www.owasp.org

[12] RemoteStorage. http://remotestorage.io/

[13] Snapchat Security Advisory. http://gibsonsec.
org/snapchat/

[14] Understanding Service-Oriented Architecture.
http://msdn.microsoft.com/en-us/
library/aa480021.aspx

[15] Web hacking incident database. http://projects.
webappsec.org/w/page/13246995/
Web-Hacking-Incident-Database

[16] Wikimedia Foundation Annual Report. http:
//upload.wikimedia.org/wikipedia/
commons/4/48/WMF_AR11_SHIP_spreads_
15dec11_72dpi.pdf 2011.

[17] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I.,
AND WARFIELD, A. Xen and the art of virtualization.
ACM SIGOPS Operating Systems Review 37, 5 (2003),
164–177.

[18] BARRY, D., AND STANIENDA, T. Solving the Java object
storage problem. Computer 31, 11 (1998), 33–40.

[19] BLANKSTEIN, A., AND FREEDMAN, M. J. Automat-
ing isolation and least privilege in web services. In IEEE
Symposium on Security and Privacy (SP) (2014).

[20] BURKET, J., MUTCHLER, P., WEAVER, M., ZAVERI,
M., AND EVANS, D. GuardRails: A data-centric web
application security framework. In Proceedings of the
2nd USENIX Conference on Web Application Develop-
ment (2011).

[21] CHANDRA, R., GUPTA, P., AND ZELDOVICH, N. Sep-
arating web applications from user data storage with
bstore.

[22] CHANDRA, R., KIM, T., SHAH, M., NARULA, N.,
AND ZELDOVICH, N. Intrusion recovery for database-
backed web applications. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles
(2011), ACM, pp. 101–114.

[23] CHECKOWAY, S., FREDRIKSON, M., NIEDERHAGEN,
R., GREEN, M., LANGE, T., RISTENPART, T., BERN-
STEIN, D. J., MASKIEWICZ, J., AND SHACHAM, H. On
the practical exploitability of dual ec drbg in tls imple-
mentations.

[24] CHEN, E. Y., BAU, J., REIS, C., BARTH, A., AND

JACKSON, C. App isolation: get the security of multiple
browsers with just one. In Proceedings of the 18th ACM
Conference on Computer and Communications Security
(2011), ACM, pp. 227–238.

[25] DAVIS, B., AND CHEN, H. Dbtaint: cross-application
information flow tracking via databases. In 2010 USENIX
Conference on Web Application Development (2010).

[26] DIXON, C., ANDERSON, T. E., AND KRISHNA-
MURTHY, A. Phalanx: Withstanding multimillion-node
botnets. In NSDI (2008), vol. 8, pp. 45–58.

[27] DOUGLIS, F., AND OUSTERHOUT, J. Transparent pro-
cess migration: Design alternatives and the Sprite im-
plementation. Software: Practice and Experience 21, 8
(1991), 757–785.

[28] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE

JR., J. Exokernel: an operating system architecture for
application-level resource management. In Proceedings
of the 15th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’95) (December 1995), pp. 251–266.

[29] FU, K., KAASHOEK, M. F., AND MAZIERES, D. Fast
and secure distributed read-only file system. In OSDI
(2000), USENIX Association, pp. 13–13.

[30] GENTRY, C. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009. crypto.
stanford.edu/craig.

[31] GIFFIN, D. B., LEVY, A., STEFAN, D., TEREI, D.,
MAZIÈRES, D., MITCHELL, J. C., AND RUSSO, A.
Hails: protecting data privacy in untrusted web applica-
tions. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (2012),
pp. 47–60.

[32] GRAHAM, P., AND MORRIS, R. Arc forum. http:
//arclanguage.org/forum 2008.

[33] GUHA, S., CHENG, B., AND FRANCIS, P. Privad: prac-
tical privacy in online advertising. In Proceedings of
the 8th USENIX Conference on Networked Systems De-
sign and Implementation (2011), USENIX Association,
pp. 13–13.

[34] HERDER, J. N., BOS, H., GRAS, B., HOMBURG, P.,
AND TANENBAUM, A. S. MINIX 3: a highly reliable,
self-repairing operating system. SIGOPS Oper. Syst. Rev.
40, 3 (July 2006), 80–89.

[35] HOWELL, J., JACKSON, C., WANG, H. J., AND FAN,
X. MashupOS: Operating system abstractions for client
mashups. In HotOS (2007), vol. 7, pp. 1–7.

[36] HOWELL, J., PARNO, B., AND DOUCEUR, J. Em-
bassies: Radically refactoring the web. NSDI (2013).

[37] INGRAM, L., AND WALFISH, M. Tin-
gram2012treehousoreehouse: Javascript sandboxes
to help web developers help themselves. In Proceedings
of the USENIX Annual Technical Conference (2012).

[38] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. In-
formation flow control for standard OS abstractions. In
ACM SIGOPS Operating Systems Review (2007), vol. 41,
pp. 321–334.

[39] KROHN, M. N. Building secure high-performance web
services with OKWS. In USENIX Annual Technical Con-
ference, General Track (2004), pp. 185–198.

13

http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
https://nvd.nist.gov/
https://nvd.nist.gov/
http://nodejs.org/
https://www.owasp.org
https://www.owasp.org
http://remotestorage.io/
http://gibsonsec.org/snapchat/
http://gibsonsec.org/snapchat/
http://msdn.microsoft.com/en-us/library/aa480021.aspx
http://msdn.microsoft.com/en-us/library/aa480021.aspx
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://upload.wikimedia.org/wikipedia/commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf
http://upload.wikimedia.org/wikipedia/commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf
http://upload.wikimedia.org/wikipedia/commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf
http://upload.wikimedia.org/wikipedia/commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf
crypto.stanford.edu/craig
crypto.stanford.edu/craig
http://arclanguage.org/forum
http://arclanguage.org/forum

[40] LEE, S., WONG, E. L., GOEL, D., DAHLIN, M., AND

SHMATIKOV, V. πbox: A platform for privacy-preserving
apps. In NSDI (2013), pp. 501–514.

[41] MCSHERRY, F. D. Privacy integrated queries: an ex-
tensible platform for privacy-preserving data analysis. In
Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (2009), ACM, pp. 19–30.

[42] MICKENS, J., AND DHAWAN, M. Atlantis: robust, ex-
tensible execution environments for web applications. In
Proceedings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles (2011), ACM, pp. 217–231.

[43] MICROSOFT PATTERNS AND PRACTICES. Code Review.
http://msdn.microsoft.com/en-us/library/ff648637.aspx.

[44] MULLENDER, S. J., VAN ROSSUM, G., TANANBAUM,
A., VAN RENESSE, R., AND VAN STAVEREN, H.
Amoeba: A distributed operating system for the 1990s.
Computer 23, 5 (1990), 44–53.

[45] NIGHTINGALE, E. B., HODSON, O., MCILROY, R.,
HAWBLITZEL, C., AND HUNT, G. Helios: Heteroge-
neous multiprocessing with satellite kernels. In Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating
systems principles (2009), ACM, pp. 221–234.

[46] OUSTERHOUT, J. K., CHERENSON, A. R., DOUGLIS,
F., NELSON, M. N., AND WELCH, B. B. The Sprite
network operating system. Computer 21, 2 (1988), 23–
36.

[47] PAPAGIANNIS, I., MIGLIAVACCA, M., AND PIETZUCH,
P. PHP Aspis: using partial taint tracking to protect
against injection attacks. In 2nd USENIX Conference on
Web Application Development (2011), p. 13.

[48] PONEMON INSTITUTE. 2013 Cost of a Data Breach
Study: Global Analysis. http://www.ponemon.
org/

[49] POPA, R. A., REDFIELD, C., ZELDOVICH, N., AND

BALAKRISHNAN, H. CryptDB: protecting confidential-
ity with encrypted query processing. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems
Principles (2011), ACM, pp. 85–100.

[50] POPA, R. A., STARK, E., HELFER, J., VALDEZ, S.,
ZELDOVICH, N., KAASHOEK, F., AND BALAKRISH-
NAN, H. Building web applications on top of encrypted
data using Mylar. In USENIX Symposium of Networked
Systems Design and Implementation (2014).

[51] RAMESH, K. Design and development of minix
distributed operating system. In Proceedings of the
ACM Sixteenth Annual Conference on Computer Science
(1988), ACM, p. 685.

[52] SANTOS, N., RODRIGUES, R., GUMMADI, K. P., AND

SAROIU, S. Policy-sealed data: A new abstraction
for building trusted cloud services. In Usenix Security
(2012).

[53] SULLIVAN, B. Server-side JavaScript injection. Black
Hat USA (2011).

[54] TERRACE, J., BEARD, S., AND KATTA, N. P. K.
JavaScript in JavaScript (js.js): Sandboxing third-party
scripts.

[55] TOOTOONCHIAN, A., SAROIU, S., GANJALI, Y., AND

WOLMAN, A. Lockr: better privacy for social net-
works. In Proceedings of the 5th International Con-
ference on Emerging Networking Experiments and Tech-
nologies (2009), ACM, pp. 169–180.

[56] VINTER, S. T., AND SCHANTZ, R. E. The cronus dis-
tributed operating system. In Proceedings of the 2nd
Workshop on Making Distributed Systems Work (New
York, NY, USA, 1986), EW 2, ACM, pp. 1–3.

[57] WANG, H. J., FAN, X., HOWELL, J., AND JACKSON,
C. Protection and communication abstractions for web
browsers in MashupOS. In ACM SIGOPS Operating Sys-
tems Review (2007), vol. 41, ACM, pp. 1–16.

[58] WEI, W. Flickr vulnerable to SQL In-
jection and Remote Code Execution Flaws.
http://thehackernews.com/2014/04/
flickr-vulnerable-to-sql-injection-and.
html?m=1

[59] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale
and performance in the Denali isolation kernel. ACM
SIGOPS Operating Systems Review 36, SI (2002), 195–
209.

[60] WOBBER, E., ABADI, M., BURROWS, M., AND LAMP-
SON, B. Authentication in the Taos operating system.
ACM Transactions on Computer Systems (TOCS) 12, 1
(1994), 3–32.

[61] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E.,
AND MAZIÈRES, D. Making information flow explicit in
HiStar. In Proceedings of the 7th Symposium on Operat-
ing Systems Design and Implementation (OSDI) (2006),
pp. 263–278.

14

http://www.ponemon.org/
http://www.ponemon.org/
http://thehackernews.com/2014/04/flickr-vulnerable-to-sql-injection-and.html?m=1
http://thehackernews.com/2014/04/flickr-vulnerable-to-sql-injection-and.html?m=1
http://thehackernews.com/2014/04/flickr-vulnerable-to-sql-injection-and.html?m=1

	Introduction
	Background
	The Current Web Application Model
	Threat Model

	Radiatus Design
	Approach
	Online Social Network Example
	Process Management
	User Routing
	Cross-Container Communications
	Storage Access
	Strawman Approach: Centralized ACLs
	Distributed Capabilities

	Analytics and Search

	Implementation
	Radiatus Framework
	Applications
	Porting Existing Applications

	Evaluation
	Developer Experiences
	Security Analysis
	Performance

	Related Work
	Conclusion

