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Abstract
Emerging sensor hubs for smartphones allow long-lived

sensing applications to run efficiently, but they require
applications to be developed to new APIs. We develop
MobileHub on Android to show how unmodified mobility
applications can be translated with bytecode rewriting
to use sensor hubs. The key to our approach is to use
data and control information flow tracking to learn how
applications use sensor values, and to map this usage to
a simple API we developed to use the sensor hub. In
experiments on three applications downloaded from the
Android marketplace, we achieved power gains of up to
80%.

1 Introduction

Smartphone applications that continuously sense the am-
bient environment are becoming popular for a diverse
range of uses, from providing context-aware services [8],
to monitoring the health of Parkinson patients, to encour-
aging users to be more social and active (BeWell [17]).
However, continuous sensing applications quickly drain
the battery of existing smartphones [20] because they pre-
vent the main processor from sleeping: to obtain each
sensor reading, not only the sensor, but most of the phone
circuitry and the main processor need to be powered up.

To efficiently support continuous sensing applications
in the future, dedicated low-power micro-controllers, of-
ten called sensor hubs, are being integrated into smart-
phones, e.g., Texas Instruments’s Tiva [9], Intel’s Merri-
field [5], and Apple’s A7 [2]. With this hardware support,
the low-power co-processor can collect, filter, and process
sensor data, while the main processor stays in the sleep
state.

While this architecture offers the potential for low-
power, continuous sensing, it complicates programming
by changing what was formerly a homogenous computing
platform into a heterogeneous one. Some systems expose

this heterogeneity directly to the application developer.
TI’s Syslink [7], for example, provides a facility to pro-
gram the micro-controller as well as a message passing
API between the host and sensor hub. While this approach
provides full functionality, it means that applications must
be developed specifically for this model (often using mul-
tiple languages). Research systems can ease this task
somewhat: Reflex [18] uses a distributed shared memory
abstraction so that developers do not need to manage com-
munication between the main processor and sensor hub,
but they must still specially code their applications.

A second approach is to sequester the sensor hub be-
hind system libraries that expose a set of commonly-used
functions that are optimized to run on the sensor hub.
Apple’s A7 processor uses this to approach to expose
IMU functionality via its M7 “motion coprocessor”. This
approach offers the benefits of portability and ease of ap-
plication development, but it still requires applications to
be coded (or recoded) to use the system libraries, and lim-
its power improvements to the functionality anticipated
by the library designers.

In this paper, we argue for a third approach: translating
existing applications to leverage the sensor hub for power
efficiency. The insight that makes this approach possible
is that mobility apps tend to use continuous sensing in
structured ways that are not deeply intertwined with appli-
cation processing. Typically, an “inner loop” of sensing
with a minimal computation gathers data at a high-rate
until a pre-defined condition is met, at which point sub-
stantial “outer loop” application processing on the data
may occur. By identifying and leveraging this structure,
we can extract the majority of the power gains enabled by
the sensor hub without re-coding applications.

To this end, we design MobileHub, a system that uses
binary rewriting of the application bytecode to offload
sensing and computation to the sensor hub. The transla-
tion is transparent to the developer and does not require
source code. The challenge, of course, is to determine
how to offload sensing tasks without delaying or altering
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the application behavior. For example, some applications
may gather fifty readings before processing them, allow-
ing us to buffer all fifty readings at the sensor hub. Other
applications may rely on the near-real time delivery of
sensor events, to detect motion for example, and any extra
delay would alter the user experience.

We use information flow tracking [16, 12] to learn how
an application uses sensor data. As we developed our
approach, we learned that it is essential to track control
flow as well as data flow, even though control flow is
seldom tracked in prior work because of the problem of
taint explosion. This is because sensing applications often
determine whether to perform further computation based
on the value of the sensor reading. Since the sensor value
itself is often not retained, tracking data flow alone is
insufficient.

We build MobileHub on Android, and implement in-
formation flow tracking by extending the TaintDroid [16]
data flow system to also track control flow. We then used
our system to study the sensor usage patterns of seven
mobility tracking applications that we download from
the Android Marketplace. The different apps use sensor
data in different ways. Nonethless, a simple sensor hub
API that allows applications to specify the sensing rate
and buffering policy is sufficient to capture the inner loop
behavior for offloading.

MobileHub learns the application’s sensor usage and
rewrites the application Dalvik [15] bytecode to use our
sensor hub API. We implement this API in the Android
OS framework, and prototype the sensor hub using an
8-bit Atmel AVR micro-controller, to which we attach
several sensors. We used our complete system to experi-
ment with three applications. Our evaluation shows that
the power consumption of these applications in the lab is
reduced by up 80% for stationary scenarios and by over
50% for mobile scenarios for 2 of the applications. We
then estimated power savings using traces of real user
behavior, and find that MobileHub can decrease power
consumption by up to 80%

Our contributions are as follows:

• the design and implementation of MobileHub, a sys-
tem that enables an application to use a sensor hub
without any re-coding by the developer

• an information flow tool that tracks data and control
flows to identify how applications use sensor data;
we present a technique that propagates taint to por-
tions of the application without suffering from taint
explosion in our structured setting.

• an evaluation that shows off-the-shelf sensor appli-
cations can be translated to use the sensor hub and
realize up to 80% power gains.
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Figure 1: Example sensor hub architecture.
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Figure 2: CPU activity timing diagram for a hypotheti-
cal application, with and without MobileHub. Figure 11
shows the power profile of a real application with and
without MobileHub, and the figure matches well with our
hypothetical example.

2 MobileHub Approach

The goal of MobileHub is to allow sensor applications
to seamlessly leverage low power sensor hub hardware.
Below, we describe the sensor hub architecture, provide
an example to illustrate how leveraging the sensor hub
can reduce power consumption. We then describe our
approach.

2.1 What is a sensor hub?
A sensor hub is dedicated hardware that serves as an in-
termediary between the main platform and the sensors.
Sensor hubs are ideally suited for reducing wakeup over-
head be- cause they allow sensing without waking the
host CPU.

Figure 1 shows an example sensor hub architecture.
Sensor hub designs typically use of a micro-controller
in lieu of a microprocessor, because of its low cost and
power efficiency. For example, the AVR micro-controller
that we use in our prototype running at a speed of 2MHZ,
is designed to draw less than 1mA of current [4], an order
of magnitude less than smartphones. The micro-controller
has several standard buses (12C, SPY, UART) to connect
with sensors as well as connect with the phone. These
buses also draw very little power.
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2.2 How we leverage the sensor hub

Figure 2 illustrates how MobileHub uses a sensor hub
to improve the power consumption, using a hypothetical
example. The figure shows the CPU state of a stereo-
typical sensor application. This application periodically
wakes up, receives a sensor sample, performs a small
computational task over the sample, and goes back to
sleep.

More importantly, the application in this example pro-
duces user-perceivable output much less often than the
sensor collection frequency. This output could be an up-
date to the screen, data over the network, or writing data
to disk; i.e., any activity that has effect on the user. Re-
lated work [20, 18] show that several sensor applications
follow this pattern.

Given this application profile, the goal of MobileHub
is to leverage one specific feature of sensor hubs: its abil-
ity to buffer sensor data and allow the main processor
to stay idle. MobileHub modifies the rate at which sen-
sor samples are collected. As a result, the CPU is idle
for long periods of time, as shown in Figure 2), marked
MobileHub.

Of course, the sensor hub should be able to preempt
the application when it detects that the application needs
to process sensor data. The goal of MobileHub is to
buffer sensor samples, but not modify the timing of user-
perceivable outputs.

By allowing the CPU to be idle for longer, Mobile-
Hub can significantly improve the power consumption of
applications. Since the data processing on typical sen-
sor applications is small, processing a large number of
sensor samples can be performed without affecting appli-
cation performance. Further, buffering sensor data does
not affect the application’s expectation. Sensor events
are delivered asynchronously and include timestamp with
the sensor data. Our approach is to adjust the delivery
of these asynchronous events to arrive in power-efficient
bursts.

2.3 Approach

While MobileHub can potentially reduce the power con-
sumption, it is challenging to implement this. MobileHub
seeks to rewrite application binary without requiring de-
veloper support. This means, the application source code
is typically unavailable. However, MobileHub requires
knowledge of how application uses the sensor data. The
question is: how can MobileHub learn the application
usage patterns without source code?

MobileHub uses information flow tracking to track how
an application uses sensor data. Information flow tracking
(or taint tracking [16] or dynamic taint analysis [12])
allows us to systematically track the information flow

through a program at runtime and determine when an
input produces user-perceivable outputs.

For a given application, MobileHub tracks sensor us-
age under various usage scenarios. By understanding how
sensor data is used by the application under different con-
ditions, MobileHub infers an appropriate buffering policy
for the application. Next, MobileHub rewrites the applica-
tion binary based on the buffering policy inferred through
information flow tracking. Once re-written, the modified
application starts using the sensor hub to significantly
reduce its power consumption.

We designed and implemented MobileHub for Android
OS. Android is open source software is one of the most
popular OSes with over 70% market share. However,
MobileHub is built on top of a sensor API that is similar
in design to several popular mobile operating systems.
Therefore, our design itself is not specific to Android.

To rewrite the binary, MobileHub converts the Android
bytecode to an intermediate language using Soot. Soot
[25] is a Java optimization framework which provides a
translation bidirectionally between the Android Dalvik
bytecode and the Jimple intermediate language [26].

3 Information Flow Tracking

Information flow tracking has been primarily used for
security and privacy [16, 21, 27, 19].

In an information flow tracking system, there are two
kinds of flows that can be tracked: explicit and implicit.
Information which is explicitly passed from the right-hand
to left-hand is an explicit flow. A simple example is var
= sensordata which assigns the value in sensordata to a
variable var. If sensordata is tainted (i.e., contains the
information we are trying to track), then the assignment
operation passes this information to var, so var also needs
to be tainted. If var is now assigned to another variable,
the taint continues to propagate. This type of tracking
alone is sufficient for many usages – for example, to
detect if any confidential emails are sent over unencrypted
network connections.

More subtle, implicit tracking allows tainted informa-
tion to be tracked through control flow. For example, if
(sensordata > X) then{step++;} is an implicit flow. if
sensordata is tainted, then the variable step should be
tainted, since the value of step is affected by data with a
taint tag.

The MobileHub information flow tracking tools im-
plements both explicit and implicit flow tracking. For
explicit flow tracking, we build on TaintDroid [16], a tool
designed to detect privacy leaks in mobile phones. Unfor-
tunately, TaintDroid does not capture implicit flows; i.e.,
information flow through a control loop. Tainting control
flow is crucial for sensing applications, because these ap-
plications often perform computation by conditioning on
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a sensor value. For example, for all of the sensing appli-
cations we study in our evaluation (Section 5.1), we find
that explicit flow tracks only up to 13% of the information
flow, while remaining information flow is passed through
implicit flows.

We first describe how we adapt TaintDroid for the sens-
ing system. We then describe how we enable tracking
through control flow.

3.1 Explicit tracking using TaintDroid
TaintDroid is a privacy monitoring system designed to
track private information leaks over a network. It provides
variable-level tracking by associating a 32-bit taint tag
with each data unit. TaintDroid instruments the Dalvik
VM 1 interpreter to propagate the taint tag at each Dalvik
instruction [15]. It also provides message-level track-
ing for interprocess process communication (IPC), which
appears in the form of messages between applications.

The tracking defines one or more taint sources and
sinks; the information is tainted at the source, tracked
through the program, until it gets to the sink. Since our
flow tracking goals are different from that of TaintDroid,
we make the following changes
• The original taint sources of TaintDroid are SMS,

IMEI code, Wifi status etc. Instead, we set the taint
sources as the different sensor sources in the phone
including accelerometer, gyroscope, magnetometer,
etc. Each taint source holds a bit in the 32-bit taint
tag.
• To track timeliness of data, MobileHub assigns a

unique tag for each sensor data; for example, the 7th
accelerometer reading has a different tag thanthe 8th
accelerometer reading.
• As our sinks we use any user-perceivable update

including: sending tainted data over the network,
saving tainted data to the disk, and printing tainted
data on the screen.

Table 1 shows how the taint gets propagated in Mobile-
Hub. Notice that we only store a single tag for a whole
array and we treat the array as a primitive variable. If the
array is tainted, all elements in this array are considered
tainted. When the Android application contains native
functions, if any input to the function is tainted, we taint
the output.

3.2 MobileHub Implicit flow tracking
Enabling flow tracking through control flow blocks is
not as straightforward as tracking via assignment and
can create a taint explosion. As a result, dynamic taint-
tracking systems do not support control-flow tracking,

1Dalvik is the virtual machine that runs Android applications.

1 tag1 = σ(sensorValue1);
2 i f ( sensorValue1 > T1) {
3 avg = ( sensorValue2+sensorValue3 ) / 2 ;
4 σ(avg) = σ(avg) ⊕ tag1;
5 tag2 = tag1 ⊕ σ(avg);
6 i f ( avg > T2) {
7 stepCounter++;
8 σ(stepCounter) = σ(stepCounter) ⊕ tag2;
9 }

10 }

Figure 3: An example instrumentation of a TaintBlock.

including the two taint tracking systems designed for
Android [16, 13]. Our approach is to use explicit flow
tracking to help with implicit flows. We identify the
control flow blocks that are likely to be tainted, that we
call TaintBlock. A TaintBlock is a control block, where
the control statement is conditioned on a tainted variable.
For example, a control block,

if (sensordata > X){ step++; }
is a TaintBlock. MobileHub instruments this TaintBlock
by adding a statement for each assignment operation. In
this example, MobileHub adds a statement that associates
the variable step with the variable sensordata. During
runtime, explicit flow control will automatically propagate
the taint from sensordata to step. If sensordata is not
tainted, then the additional instrumentation acts as a noop.

Instrumenting TaintBlock Figure 3 shows an example
of how we instrument a TaintBlock for a nested condition.
The lines marked in red are instrumentation code, and
the lines in black are the original code. (Note that while
we are showing high level Java code for ease of under-
standing, our system actually operates on a lower-level
intermediate language.)

The instrumentation is completely automatic. When
MobileHub identifies that a control block is a TaintBlock,
it adds the block tag before the start of the control block.
In Figure 3, Lines 1 and 5 are block tags. The block tags
contain the taint values of the two control variables (repre-
sented by σ). For each assignment within the TaintBlock,
MobileHub ors the value of the variable with the block
tag. Notice that if any one of the variables sensorValue1
and avg are tainted, then the taint will be propagated to
the variable StepCounter through implicit flow tracking.

Method calls within a TaintBlock are more compli-
cated to instrument. For each method call inside the
TaintBlock, MobileHub pushes the block tag into a global
program stack before the method call. At the beginning
of the callee method, MobileHub retrieves the tag from
the global stack. Each assignment within the method is
instrumented using the retrieved block tag. As before, if
the block tag is empty, there will be be no effect to the
assignments within the method call.
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Instruction Taint Propagation Description
x← C σ(x)← untainted Set taint status of x to untainted
x← y σ(x)← σ(y) Set taint status of x to status of y
x← y ⊗ z σ(x)← σ(y)⊕ σ(z) Set taint status of x to the union status of y and z
o.f ← x σ(A, f)← σ(x) Set taint status of field f to status of x
x← o.f σ(x)← σ(A, f) Set taint status of x to status of field f
x[t]← y σ(x)← σ(x)⊕ σ(y) Update taint status of array x with status of y
x← y[t] σ(x)← σ(y)⊕ σ(t) Set taint status of x to the union status of array y and index t

Table 1: Taint Propagation Logic. x, y, t refer to primitive variables. A refers to a Java class, f is a primitive field of
class A, and o is an instance of class A. C refers to constant. σ represents the function that maps variables and fields to
the taint tag.

3.3 Efficient instrumentation
To this point, we have described our system as dynami-
cally tracking taints through all control blocks. This is
unnecessary in many cases and inefficient since it causes
increased code size and slows down execution. Fortu-
nately many control block can be eliminated as Taint-
Blocks with static analysis. Since taints in our system
flow from a fixed number of known sensor callbacks, we
can perform a static program analysis to determine that
many control blocks can never be tainted. In this way, we
are able reduce the program growth of over 90% in the
case of complete block tainting to around 1% using static
analysis for certain applications (Section 5.1).

4 MobileHub design and implementation

There are two parts to the MobileHub design and im-
plementation: 1. Designing APIs and policies that lets
the application communicate with the sensor hub, and
2. Re-writing mobile binaries and re-architecting the OS
to benefit from the sensor hub. Finally we describe the
implementation of the sensor hub prototype.

4.1 Protocol, API, and Policies
Popular smartphone operating systems, including An-
droid, iOS, and Windows Mobile all use an event-driven
model to interface with the sensors. The application reg-
isters for a sensor event, and when the event occurs the
application is notified using a callback mechanism. The
goal of MobileHub is to modify the application’s sensor
interface so that the callbacks occur in bursts with length
delays in between.

The problem is that the callback API provided
by the OS is rather limited. Android provides the
following API to register a callback: registerLis-
tener(SensorEventListener listener, Sensor sensor, int
rate), where listener is the callback function, sensor is the
type of sensor, and rate is the sampling frequency. Using

this API, the listener function is notified whenever any
sensor data becomes available, and the sensor is sampled
at a certain rate. However, the API does not provide sup-
port for buffering sensor values or using the callback to
interrupt only under certain sensor events.

Application API MobileHub replaces the existing API
with: registerListener(SensorEventListener listener, Sen-
sor sensor, int rate, int bufferSize, Conditions cond). Us-
ing this API, the application can request the sensor hub
to trigger callback under two conditions: when a buffer-
Size number of sensor readings have been sampled, under
different conditions.

Policies MobileHub makes a decision on an application-
specific set of API parameters; i.e., how many samples
to buffer and what conditions to use to initiate callback.
The goal is to allow the sensor hub to buffer data as long
as possible without creating a user-perceivable delay in
output.

MobileHub uses information flow tracking to learn the
sensor usage of applications. In this work, we evalu-
ate MobileHub specifically to improve performance of
mobility-tracking applications. To this end, MobileHub
tracks application usage under two different scenarios that
affect mobility tracking applications: user mobility and
user’s application usage. User mobility is self evident.
We also track the user’s application usage because mobile
applications often change behavior according to whether
the application is in the background or foreground; i.e.,
whether or not the user has currently opened the applica-
tion.

The simplest policy will be to let the sensor hub buffer
the smallest number of samples that triggers a user-
perceivable event during information flow tracking. How-
ever, when we can correlate external events with sensor
usage patterns, we can do even better. In the case of
mobility-tracking applications, we know that applications
use two modalities–stationary and mobile. Most sensor
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hubs already contain libraries that track if the phone is
stationary or mobile [2]. Therefore, as an optimization,
we can use two different buffering policies for when the
phone is stationary and when the phone is mobile. This,
of course, may not be feasible for all applications. We
register different listeners and buffer sizes depending on
the condition.

Similarly, a policy could depend on whether the phone
is the foreground or background. However, this policy is
superfluous because there is no need for a buffering when
the phone is the foreground; the CPU is already active and
buffering will provide no energy benefit. In Section 4.2
we describe how we design MobileHub to not buffer data
when the CPU is active.

More generally, the set of usage scenarios that are
needed to learn how an application uses sensor data de-
pends on the type of application, the type of sensors used,
and the kinds of user interactions that are possible in the
application. For example, an application that only uses the
accelerometer sensor is very likely to be affected by mo-
bility, but less likely to be affected by location. Similarly,
applications that use the temperature sensor is affected
by varying heat conditions, but not the phone orientation,
etc.

In this work, we infer simple policies for the mobility-
tracking application, and show how these policies can
be used to rewrite application binaries to be more power
efficient. Other applications that use sensors such as GPS
likely require a more complex set of policies and a larger
set of usage scenarios to learn from. This is a limitation
and we discuss how we can address this in Section 7.

Sensor hub - OS protocol The sensor hub protocol
translates the application API into a set of actions for
the sensor hub to perform. We note that our goal is not
to innovate on a sensor hub design. Several sensor hub
implementations already exist in the market [5, 2, 9] in the
market. Since we cannot directly integrate these existing
sensor hubs in MobileHub, we design our own sensor hub
that replicate existing sensor hubs. We defer discussion
of the sensor hub implementation later in this section, but
here we describe the protocol between the sensor hub and
the phone.

Figure 4 is part of a protocol that the OS (Figure 5)
uses to translate the applications requirement. The jo-
bID uniquely identifies each request to the sensor hub; an
application can request the sensor hub to perform multi-
ple jobs. The taskID specifies what task the sensor hub
should perform: for example, buffer sensor readings, can-
cel the job, or to return the collected samples to the OS.
When the OS requests for the samples, the sensor hub
returns the samples according to the protocol marked
sensorhub to os. We also design protocols to specify
buffering under different conditions such as mobility.

struct os_to_sensorhub_{ 
 jobID::4; 
 taskID::4; //buffer, return, cancel etc 
 sensorID::4; // accelerometer, gyro, etc 
  
 //If taskID is buffer 
 persistent::1; //is sampling continuous?
  
 rate::6; //sampling frequency 
 bufferSize::4; //num of samples to buffer 

} 

struct sensorhub_to_os{ 
 jobID::4; 

 
 sensorID::4; 
 numSamples::4 
 sample1 
 sample2 
 … 

} 

Figure 4: Structures used to communicate between the
host and the sensor hub.

4.2 Rewriting applications
MobileHub re-architects the OS to support the sensor hub
protocol, and then rewrites the Android application to use
the modified API explained above.

Re-architecting the OS Android (and several popular
smartphone OSes including iOS and Windows Mobile)
bundle sensing tasks into a Sensor Manager. The Sensor
Manager communicates directly with the hardware sen-
sors2. Each application registers with a Sensor Manager
instance, creates an event listener with the Sensor Man-
ager instance, and listens for events. When the Sensor
Manager receives sensor data from the hardware sensors,
it notifies all the instances that are registered for the event.
Each of these instances provide the sensor data to the
application using the asynchronous callback mechanism.

Figure 5 shows how we modify the OS to leverage sen-
sor hubs (the figure is a modified version of the Android
OS stack [1]). MobileHub replaces the Sensor Manager
with a Sensor Hub Manager. The Sensor Hub Manager
communicates with the sensor hub using an appropriate
communication driver.

The Power Manager provides input to the sensor hub
regarding the state of the CPU and the screen; the Sensor
Hub Manager implements buffering only if the screen and
the CPU are inactive.

Rewriting application binary MobileHub rewrites the
application binaries to use the Sensor Hub Manager.
Rather than registering with the Sensor Manager, the
rewritten application registers with the Sensor Hub Man-
ager. The application replaces the existing API to register

2iOS uses a separate Sensor Manager for each sensor activity; for
example, a Motion Manager, a Location Manager, etc
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Figure 6: Bytecode translation in Android.

with the sensor hub with the API provided in Section 4.1.
The modified APIs are invoked using the buffering param-
eters based on the inferred policies.

MobileHub rewrites the Dalvik byte code by first con-
verting the binary into the Jimple intermediate language.
MobileHub identifies calls to the Sensor Manager and
replaces the call with the appropriate call the Sensor Hub
Manager.

Figure 6 shows how MobileHub rewrites the binary of
an application. This rewriting is used both for instrument-
ing the Android app for tracking, and for rewriting the
application binary to use the sensor hub. In Android, the
application binary is packaged as an application package
file, or an apk; for instance, the applications downloaded
from the Android Marketplace use the apk format. The
apk consists of dex, the Dalvik executable, and other
supporting resources. MobileHub converts the Dalvik
executable to the intermediate Jimple program, modifies
the intermediate program, and converts it back to dex.
MobileHub then combines all the supporting resources
with the new dex and signs the apk.

Figure 7: Sensor hub prototype.

4.3 Prototype

We prototype the sensor hub using an 8-bit Atmel
AVR micro-controller, XMega-A3BU Xplained [10].
To the micro-controller, we add several sensors: a
ITG3200/ADXL345 IMU (a combined tri-axis accelerom-
eter and gyro sensor) through I2C interconnect, an analog
Electret microphone through ADC, and a 12 Channel
Copernicus II GPS Receiver through UART. The micro-
controller itself has in-built temperature sensor.

Commercial sensor hubs are integrated into the
phone [2, 9] and communicate using internal buses. Since
we are unable to integrate our sensor hub prototype into
the phone, we use the common USB interface to intercon-
nect between the sensor hub and the phone.

Figure 7 shows our prototype setup. The AVR micro-
controller communicates with the USB host device by
tunneling serial communication through USB [3]. (Like
most modern smartphones, our Galaxy Nexus is capable
of acting as a USB host when used with a special USB
OTG (On The Go) cable).

5 Evaluation

Our goal is to evaluate MobileHub in terms of the energy
benefits it can provide to mobile applications. To this
end, we first study the sensor usage of seven off-the-shelf
mobile-tracking applications using the MobileHub infor-
mation flow tracking tool. We find that three of the seven
applications can benefit from the sensor hub. We modify
the application binaries for the three applications using
MobileHub. Our laboratory experiments on the three
modified applications show that MobileHub can improve
power consumption by up to 83%, with no effort from
the developer. Finally, we conduct a trace-driven evalua-
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Name Android playstore ID Rate What
effects
sensor
usage

nWalk levente.pedometer-1.apk 20ms Mobility,
App usage

Walking cha.health.walking 35ms Periodic
Pedometer bagi.levente.pedometer 20ms Mobility,

App usage
Pedometer
Pro

oodot.pedometer 20ms Periodic

Universal kr.still.universalpassometer 20ms Periodic
StepCounter Stepcounter.Step 20ms Mobility,

App usage
Simple Steps cc.mannam.steps 20ms App usage

Table 2: Application usage characteristics.

Name Stationary Mobile
nWalk 400 340

Walking None None
Pedometer 400 30

Pedometer Pro 5 5
Universal 20 20

StepCounter 400 350
Simple Steps 400 400

Table 3: Application policies. The table shows
that number of sensor samples that can be
buffered for each application under different
settings.

tion to quantify the energy benefits of MobileHub on real
users. We find under real user mobility and application
usage, MobileHub improves energy consumption by 50%
to 80% for all three applications.

We do all our energy evaluation on Galaxy Nexus
phones, Android version 4.2.2. The information flow
tracking experiments were done on Nexus S phone.

5.1 Tracking off-the-shelf applications
We instrument information flow tracking to track seven
off-the-shelf mobility-tracking applications (shown in Ta-
ble 4). All the applications are free for download from the
Android Marketplace. The instrumentation is completely
automatic and can be performed at scale.

We chose the mobility-tracking applications because
this is the most popular class of sensor driven applica-
tions. Many commercial sensor hubs specifically target
the mobility-tracking applications [2]. Further, this is the
most commonly studied applications in mobile sensing
power optimization studies [20, 18, 22].

Information flow tracking meta evaluation Table 4
shows details from the instrumentation. The first column
represents the total number of variables in each applica-
tion. MobileHub marks less than 13% of the fields as
tainted. Importantly, a larger fraction of the fields are
tainted through the control flow tracking. The column
marked % Code added shows the lines of code Mobile-
Hub adds to the intermediate language for instrumentation.
The column marked % code if inefficient shows the lines
of code we would have added if we blindly instrument
every control flow loop. MobileHub uses static analysis to
only instrument control flows that are likely to be tainted
(Section 3.3). Blindly instrumenting every control flow

loop can significantly blow up the program size, in some
cases even more than double the original program.

Methodology As described in Section 4.1, we vary two
factors that affect the behavior of mobility-tracking appli-
cations: the user’s mobility and user’s application usage.
The user’s application usage refers to how often the appli-
cation is brought to the foreground by the user.

To learn sensor usage and infer buffering policies, we
track the application in controlled settings. We use the
following settings: (i) No mobility, 1 min screen: The
phone is placed on a flat surface with no mobility, and the
application is bought to foreground once every 1 minute
for a 10 second duration. (ii) No mobility, 2 min screen:
Similar to the previous setting, the application is bought to
foreground once every 2 minutes for 20 second duration.
(iii) Mobility, 1 min screen: The phone position varies
constantly, the application is bought to foreground once
every 2 minutes for 20 second duration.

These settings let us figure out if the screen time and
mobility makes a difference in when sensor applications
generate output. We vary the speed at which the phone
moves, but do not find difference in sensor usage. How-
ever, changing the rate at which the application is bought
to the foreground did change the sensor usage. We capture
this in our controlled setting.

We run each of the 7 applications under the three set-
tings for 5 runs. Each experiment lasted 15 minutes. For
all the experiments, the application remain in the fore-
ground for 10% of the total experiment time. Recall that
when the application is in the foreground, or more gener-
ally, when the CPU is active, MobileHub does not buffer
packets. As shown in Figure 5, the PowerManager lets
the SensorHubManager know that the phone is in the ac-
tive mode. We only infer the buffering policies for cases
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Figure 8: Sensor usage across the apps.

when the CPU is not active. To facilitate repeatability,
we use a helper application that brings a given app to the
foreground at a specific time and for specific length of
time.

Metric For each application, we measure the number
of sensor samples that are collected until the application
generates a tainted output. As before, generating an out-
put refers to updating the screen, sending data over the
network, or writing to disk. We verify that the seven
applications only update the screen; they do not use the
network or the disk to record outputs.

App characteristics Table 2 shows the application char-
acteristics. The sensor sampling rate is 20ms for all appli-
cations except Walking. The Walking application uses a
lower frequency of 35ms.

The last column refers to the factors that determine
sensor usage. Specifically, if the application generates
output based on user mobility or if the application is open.

For the apps, nWalk, Pedometer, and StepCounter, the
sensor usage depends on both mobility and application
use. On the other hand, the Simple Steps app only up-
dates the screen when the application is bought to the
foreground. In other words, even if the user is moving,
Simple Steps only updates the number of steps taken by
the user, when the user opens the application.

The apps Pedometer Pro, Walking, and Universal, are
completely user agnostic. These apps generate an output
after a fixed number of sensor samples, irrespective of
what the user does. For example, the Walking app updates

the screen after collecting each sensor sample. Clearly,
MobileHub cannot benefit applications such as Walking.

Policies To infer the sensor hub policies, we plot the
CDF of sensor usage of 6 apps over all the runs. We
ignore the Walking app since the usage frequency is 1.
Figure 8 shows how often the sampled sensor data is used
by the application. The x axis is the number of sensor
samples that are collected until the application generates
a user-perceivable output. We ignore the sensor usage
when the phone is in the foreground and only plot the data
for the remaining 90% of the time.

Lets look at a single application. Figure 8(a) shows
that, when the application is bought to the foreground
once every minute without mobility, Pedometer generates
an output after collecting 3000 samples. It takes 1 minute
to sample 3000 sensor readings at a 20ms frequency. For
No mobility, 2 min screen setting, Pedometer generates
an output after around 6000 samples; i.e., after 2 minutes.
In other words, when phone is not moving, Pedometer
does not generate output unless the application is in the
foreground.

On the other hand, when the user is moving, Pedometer
generates an output much more often. Figure 9 is a mag-
nified version of Figure 8, showing all of the applications
under the mobility setting. It shows that, under mobility,
Pedometer uses sensor data after 30 samples.

We infer the policies for MobileHub sensor hub from
Figure 8, under idle and mobility condition. If the ap-
plication only generates output when the application is
bought to the foreground, then we buffer a default of 400
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Figure 9: Sensor usage across
applications under mobility.
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Figure 10: Energy consumption
of applications.

(a) nWalk without sensor hub

(b) Translated nWalk using the sensor hub
Time (ms granularity)

Figure 11: Snapshot of the nWalk application’s en-
ergy consumption captured on the Monsoon power
monitor.

Name Total
fields

Data
flow
taint

Control
flow
taint

%
Code
added

%
code
if in-
effi-
cient

nWalk 506 3 28 15 69
Walking 497 7 8 0.9 95
Pedometer 304 3 27 28 81
Pedometer
Pro

689 12 18 3 93.8

Universal 440 1 7 1.3 95.7
StepCounter 685 1 5 0.8 95.2
Simple
Steps

125 7 11 8.6 114.8

Table 4: MobileHub information flow tracking meta eval-
uation.

samples. We choose 400 because it takes less than 200ms
for the application to read the 400 buffered samples. The
number of samples is a trade-off between energy savings
and latency.

5.2 Quantifying MobileHub energy bene-
fits

Next, we quantify the energy benefits of MobileHub using
lab experiments. We rewrite 3 of the 7 applications we
experiment with: nWalk, Pedometer, and StepCounter.
We do not rewrite Universal, Walking, and PedometerPro
because of the small buffering opportunity. We chose not
to rewrite the SimpleSteps application due to its incorrect
use of the system clock to determine the sensor data times-
tamps. (We discovered this using static analysis of the
bytecodes.) This actually breaks the asynchrony assump-
tion about sensor events, and inducing delays in reading
deliveries would cause the application to infer different
mobility results. We discuss this further in Section 7.

Methodology We measure the power drain with and
without the MobileHub translation, using the Monsoon
power monitor [6]. The power monitor provides accu-
rate energy measurements by sampling the current drawn
from the battery with a frequency of 5000 Hz. While a
proper, integrated sensor-hub would communicate with
the host using an on-die or on-chip bus or network, our
prototype makes use on an external sensor-hub connected
via USB using an OTG cable. Accordingly, we subtract
the (non-trivial) power overhead the OTG cable adds from
our energy measurements to more accurately model an
integrated sensor hub.

In the lab experiments, we run each of the application
in two settings: Mobile and Stationary. In the mobile
setting, the phone in stationary for 30 seconds, moving
for 30 seconds, and so on for a total of 2 seconds. In the
stationary setting, the phone is stationary for 2 minutes.
MobileHub uses the buffering policy from Table 3. We
use a static buffering policy for the mobility and stationary
scenarios.

Results Figure 10 shows the results of the lab experi-
ments under mobility and stationary setting. Under sta-
tionary settings, the sensor reduces energy by over 80%
for Pedometer and StepCounter and reduces energy con-
sumption of the nWalk application by 74%. For Step-
Counter, MobileHub improves energy consumption by
76% and for nWalk, MobileHub improves energy con-
sumption by 54%, because MobileHub buffers 350 and
340 samples respectively. The energy benefits under mo-
bility is lower because the applications perform more com-
putation under mobility. For example, we find that, for
the MobileHub translated nWalk, computation increases
linearly with buffer size. This suggests that there is a
trade-off between the energy saved by buffering and the
energy spent on computation; we plan to pursue this as
part of future work.

On the other hand, under mobile settings, the Pedome-
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ter application does not show reduced energy consump-
tion. Our experiments show that buffering 30 sample
or less does not provide energy benefits because of the
overhead of the sensor hub. There is overhead is sending
and receiving commands to and from the sensor hub that
offsets the benefits of buffering, for small buffer sizes.
We believe this overhead can be eliminated if the sensor
hub were integrated into the phone using a faster, more
efficient interconnect.

Finally, Figure 11 is a snapshot of the energy consump-
tion of the nWalk application with and without Mobile-
Hub, captured by the Monsoon power monitor. The un-
modified nWalk application continually draws power due
to sensing. On the other hand, the MobileHub modified
nWalk buffers packets for a long time before waking the
CPU. Thus the CPU is idle for longer periods of time. We
note that this figure is similar to the hypothetical example
we presented in Figure 2 as motivation for this work.

5.3 Trace-driven study under real user be-
havior

Methodology Recall that the energy consumption of
the 7 apps depends on how often users move and how
often users open the application. Our goal is to quantify
the energy benefits of MobileHub for a real mobility and
application usage characteristics.

We provide phones to three users, and each phone
runs the three applications, Pedometer, nWalk, and Step-
Counter. The users carry the phone around according to
their daily routine.

This only captures user movement. We ask that the
our users not operate the phones, but instead rely on our
helper application to brings the application to the fore-
ground periodically. To do this, we obtain data from the
reality mining project [14] at MIT. The data set captures
when users switch their screen on. We conservatively
assume that the user opens the application every time she
switches her phone on.

We randomly pick three users from this dataset, with
high medium and low refresh rates. The mean number
of screen refresh events from the data set was 23.7 times
per day. We pick users with an average rate of 10, 20,
and 33 screen refreshes per day. We run MobileHub’s
information-tracking tool in the background to capture
the sensor usage in the phones by running. We conduct
this experiment for 3 days.

Finally, we build a model of energy consumption of
the phone. We specifically model the energy consump-
tion when each application is running and: the phone is
stationary, the phone is idle, the screen is on. We build
the model using the energy traces we collect using the
Monsoon power monitor.
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Figure 12: Trace driven simulation results.

Trace-driven study results Figure 12 shows that en-
ergy benefits for each user under the three applications.
All three MobileHub translated applications reduce en-
ergy consumption by over 50% for all three users. Further
MobileHub translated StepCounter and nWalk improve
energy consumption by over 80% for certain users.

6 Related Work

Power efficiency is paramount for mobile devices and a
variety of approaches have been applied to helping im-
prove the efficiency of sensor-driven application.

Sensor Hubs Dedicated co-processors for sensors are a
natural way to support always-on sensing efficiently and
many commercial mobile processors now include sensor
hubs. Priyantha et. al [20] have shown that careful coding
of a pedometer application to make use of a sensor hub
reduces power consumption by up to 95%. Going fur-
ther, Ra et. al [22] analyze different design choices that
the developer can use to partition a mobile application
between the phone and the sensor hub. As we have previ-
ously discussed, making use of the sensor hub creates a
trade-off in which the largest efficiency gains require the
most effort by the application developer. At one extreme,
the system is exposed to the developer as a heterogeneous
multiprocessor platform that supports either a message
passing [7], or shared memory [18] IPC model. At the
other extreme, some new platforms reimplement existing
system functions to make use of the sensor hub, offering
limited, but application transparent performance optimiza-
tions [2]. Our system seeks the middle ground in which
significant efficiency gains can be achieved without any
application redesign by the developer.

Heterogeneous architectures The sensor hub itself is
not a new idea and the approach of using a tiered system
for energy efficiency has been used in several settings
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before. For increasing the idle time of expensive NICs,
Somniliquy [11] relies on a secondary embedded con-
troller. Similarly, Wake on wireless [23] uses a lower
energy Bluetooth communication link to wake up the
main network interface. Sorber et. al [24] use a tiered
system, with a sensor node embedded in a PDA embedded
in a laptop [24].

Non-centralized hardware support The sensor hub
design integrates all of the sensors into a single centralized
resource that serves as the hosts single point of contact
for sensor data. An alternative to a sensor hub design is to
embed buffering and simple programmable logic into the
sensors themselves. Such an approach is referred to as
”smart sensing” and commercial versions exist (e.g.: The
Micronas Hall-effect sensors) This approach work well
for special-purpose devices, but scales poorly and suffers
from not being as programmable as a sensor hub.

7 Discussion

Correct use of timestamps: Our technique optimizes ap-
plications that use an asynchronous event-based API. This
asynchrony gives us the flexibility to adjust sensor sample
deliveries and achieve power gains.One way in which an
application might be incorrectly written would be to use
the host’s clock value at the time of sensor data arrival
rather than the timestamp included in the sensor event.
Doing so would result in the application observing out-
of-date and seemingly non-uniform streams of readings.
MobileHub is not able to modify applications that use the
host’s clock. We in fact saw this behavior in one of our
seven motion monitoring applications.

A buffering API as a better solution?: Our system opti-
mizes applications that use a simple sensor API in which
the rate at which the sensor should be read is the only
parameter. An obvious extension would be to extend the
system API to include an explicit buffering parameter.
This would allow applications to realize the performance
gains of batch-processing readings without any informa-
tion flow tracking or binary rewriting. This would, how-
ever, add to the developer’s burden in that they would
have to understand the nature of their application’s use of
sensor data. So, even in the presence of an API support-
ing buffering, the information flow tracking tool can be
used to make automatic buffering decisions or can even
be useful for developers to infer the largest safe buffer
size.

Information flow tracking as a developer’s tool Track-
ing of sensor data usage itself can be a valuable developer
tool. Much as existing tools allow a developer to see how
memory or processor resources are used by their applica-
tion, our tool would allow developers to see how much

sensor data (and of what age) is actually being used. This
has the potential to reveal sensors that are being polled too
often or whose data is never used in a certain application
context.

Determining when and how long to monitor: Our ap-
proach relies on tracking sensor data through an applica-
tion for a period of time to understand how timely its use
of sensor data is. One challenge is knowing when and
for how long to do the sensor flow tracking to build the
application’s buffering policy. In our evaluation, we knew
we were executing motion-tracking applications, so we
performed our information flow tracking while a test user
was walking. Determining when to track sensor usage for
an unknown application is hard. One possible solution
would be to perform continuous, periodic observations of
an application’s behavior over a long period of time with
the hope of observing the user in all of the meaningful us-
age modes. Another would be to try to explicitly measure
this by looking at code coverage or path execution. None
of this, however, would allow our profiles to perfectly
capture the sensor usage of applications that watch for
rare events.

We can largely mitigate this issue of the rare event
by putting a sensible cap on the amount of sensor data
we would buffer. Say perhaps, five seconds worth. This
still does not work, however, for the application watching
for rare and latency-critical events. In such cases, our
system would induce a user-observable latency based on
the buffer size.

8 Conclusions

For sensor hubs to realize their potential to efficiently run
long-lived sensing tasks on smartphones, we must work
out how application developers will use them. We have
presented a translation-based approach that offers both
convenience and power savings: MobileHub rewrites the
bytecode of Android applications to use a simple sensor
hub API, with no developer effort and without access to
source code. The key to our approach is an information
flow analysis of applications to learn how they use sensor
values. We show how to implement the control flow track-
ing needed for this use case, as well as data flow tracking,
by extending TaintDroid. We prototyped MobileHub with
a sensor hub comprised of an 8-bit AVR micro-controller
attached to sensors, and by extending the Android OS to
use this sensor hub. Lab experiments show power savings
of up to 80% in our test scenarios, and a trace-driven
evaluation using real user data shows power savings of
up to 60%. These results are good enough that we con-
sider our approach to be promising, and plan to extend
the sensing and computation tasks that it can recognize
and automatically offload.

12



References

[1] Android os stack: http://www.eventmoderna.
com/?p=208.

[2] Apple m7: http://en.wikipedia.org/wiki/
Apple_M7.

[3] Atmel: Usb device cdc application: http://www.
atmel.com/Images/doc8447.pdf.

[4] Avr datasheet: http://www.atmel.com/Images/
doc8161.pdf.

[5] Intel merrifield: http://blog.laptopmag.com/
intel-merrifield-smartphone-chip.

[6] Monsoon power monitor.: http://www.msoon.
com/.

[7] Syslink overview: http://processors.wiki.ti.
com/index.php/SysLink_Overview.

[8] Tasker for android : http://tasker.dinglisch.
net/.

[9] Ti tiva: http://www.ti.com/lit/sg/
spmt285a/spmt285a.pdf.

[10] Xmega-a3bu xplained: http://www.atmel.com/
tools/XMEGA-A3BUXPLAINED.aspx.

[11] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and
R. Gupta. Somniloquy: augmenting network interfaces
to reduce pc energy usage. In Proceedings of the 6th
USENIX symposium on Networked systems design and
implementation, NSDI’09, pages 365–380, Berkeley, CA,
USA, 2009. USENIX Association.

[12] T. H. Austin and C. Flanagan. Permissive dynamic infor-
mation flow analysis. In Proceedings of the 5th ACM SIG-
PLAN Workshop on Programming Languages and Analysis
for Security, PLAS ’10, pages 3:1–3:12, New York, NY,
USA, 2010. ACM.

[13] S. A. Christian Fritz, S. Rasthofer, E. Bodden, A. Bartel,
J. Klein, Y. le Traon, D. Octeau, and P. McDanie. Highly
precise taint analysis for android applications. In EC
SPRIDE Technical Report TUD-CS-2013-0113, 2013.

[14] N. Eagle and A. (Sandy) Pentland. Reality mining: sensing
complex social systems. Personal Ubiquitous Comput.,
10(4):255–268, Mar. 2006.

[15] D. Ehringer. The dalvik virtual machine architecture.
Techn. report (March 2010), 2010.

[16] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smart-
phones. In OSDI, 2010.

[17] N. D. Lane, T. Choudhury, A. Campbell, M. Mohammod,
M. Lin, X. Yang, A. Doryab, H. Lu, S. Ali, and E. Berke.
BeWell: A Smartphone Application to Monitor, Model
and Promote Wellbeing. In Pervasive Health, May 2011.

[18] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong. Reflex:
using low-power processors in smartphones without know-
ing them. In Proceedings of the seventeenth international

conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’12, pages
13–24, New York, NY, USA, 2012. ACM.

[19] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. 2005.

[20] B. Priyantha, D. Lymberopoulos, and J. Liu. Littlerock:
Enabling energy-efficient continuous sensing on mobile
phones. In IEEE Pervasive, 2011.

[21] F. Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and Y. Wu.
Lift: A low-overhead practical information flow tracking
system for detecting security attacks. In MICRO, pages
135–148. IEEE Computer Society, 2006.

[22] M.-R. Ra, B. Priyantha, A. Kansal, and J. Liu. Improving
energy efficiency of personal sensing applications with het-
erogeneous multi-processors. In Proceedings of the 2012
ACM Conference on Ubiquitous Computing, UbiComp
’12, pages 1–10, New York, NY, USA, 2012. ACM.

[23] E. Shih, P. Bahl, and M. J. Sinclair. Wake on wireless: an
event driven energy saving strategy for battery operated
devices. In Proceedings of the 8th annual international
conference on Mobile computing and networking, Mobi-
Com ’02, pages 160–171, New York, NY, USA, 2002.
ACM.

[24] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Tur-
ducken: hierarchical power management for mobile de-
vices. In Proceedings of the 3rd international conference
on Mobile systems, applications, and services, MobiSys
’05, pages 261–274, New York, NY, USA, 2005. ACM.

[25] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot: A java bytecode optimization
framework. In CASCON First Decade High Impact Papers,
pages 214–224. IBM Corp., 2010.

[26] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying java
bytecode for analyses and transformations. 1998.

[27] Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. Pri-
vacy scope: A precise information flow tracking system for
finding application leaks. Technical Report UCB/EECS-
2009-145, EECS Department, University of California,
Berkeley, Oct 2009.

13


