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ABSTRACT

In a test suite, all the test cases should be independent:
no test should affect any other test’s result, and running
the tests in any order should produce the same test results.
Test independence is important so that tests behave consis-
tently as intended by the developers. In addition, techniques
such as test prioritization assume that the tests in a suite
are independent, but they do not justify that assumption.
Test dependence is a little-studied phenomenon. This paper
presents five results related to test dependence.

First, we characterize the test dependence that arises in
practice. We studied 96 real-world dependent tests from 5
issue tracking systems. Our study shows that test dependence
can be hard for programmers to identify. It also shows that
test dependence can cause non-trivial consequences, such as
masking program faults and leading to spurious bug reports.

Second, we formally define test dependence in terms of
test suites as ordered sequences of tests along with explicit
environments in which these tests are executed. We formulate
the problem of detecting dependent tests and prove that a
useful special case is NP-complete.

Third, guided by the study of real-world dependent tests,
we propose and compare three algorithms to detect dependent
tests in a test suite.

Fourth, we applied our dependent test detection algorithms
to 4 real-world programs and found dependent tests in each
human-written and automatically-generated test suite.

Fifth, we empirically assessed the impact of dependent
tests on five test prioritization techniques and found that
dependent tests affect the output of all five techniques.

1. INTRODUCTION

Consider a test suite containing two tests A and B, where
running A and then B leads to A passing, while running B and
then A leads to A failing. We call A an order-dependent test
(in the context of this test suite), since its result depends on
whether it runs after B or not.

In a test suite, all the test cases should be independent:
no test should affect any other test’s result, and running
the tests in any order should produce the same test results.
The assumption of test independence is important so that
tests behave consistently as designed. In addition, many
techniques assume test independence, including test prioriti-
zation [19,29,47,51], test selection [6,22,25,39,40,64], test
execution [36,37], test factoring [48, 60], test carving [18],
and experimental debugging techniques [52,62,65]. However,
this critical assumption is rarely questioned, investigated,
or even mentioned: none of the above papers mentions the
assumption as a limitation or a threat to validity. A total of

31 papers on test prioritization have been published in the
research track of five major software engineering conferences
(ICSE, FSE, ISSTA, ASE, and ICST) or in two major soft-
ware engineering journals (TOSEM and TSE) between 2000
and 2013 [68]. Of these, 27 papers explicitly or implicitly
assumed test independence, 3 papers acknowledged that the
potential dependences between tests may affect the prioriti-
zation output [35,42,45], and only 1 paper considered test
dependence in the design of test prioritization algorithms [16].
Anecdotally, researchers have told us that test dependence
is not a significant concern in practice. We wish to inves-
tigate the validity of this unverified conventional wisdom,
in order to understand whether test dependence arises in
practice, the repercussions of dependent tests, and how to
detect dependent tests.

1.1 Manifest Test Dependence

This paper focuses on test dependence that manifests as a
difference in test result (i.e., passing or failing) as determined
by the testing oracle. We adopt the results of the default
order of execution of a test suite as the expected results; these
are the results that a developer sees when running the suite
in the standard way. A test is dependent when there exists
a possibly reordered subsequence of the original test suite,
in which the test’s result (determined by its existing testing
oracles) differs from its expected result in the original test
suite. That is, manifest test dependence requires a concrete
order of the test suite that produces different results than
expected.

This paper uses dependent test as a shorthand for manifest
order-dependent test unless otherwise noted. A single test
may consist of setup and teardown code, multiple statements,
and multiple assertions distributed through the test.

1.2 Causes and Repercussions

Test dependence results from interactions with other tests,
as reflected in the execution environment. Tests may make
implicit assumptions about their execution environment —
values of global variables, contents of files, etc. A dependent
test manifests when another alters the execution environment
in a way that invalidates those assumptions.

Why does this happen? Each test ought to initialize (or
mock) the execution environment and/or any resources it
will use. Likewise, after test execution, it should reset the
execution environment and external resources to avoid affect-
ing other tests’ execution. However, developers sometimes
make mistakes when writing tests as when they are writing
other code. Even though frameworks such as JUnit provide
ways to set up the environment for a test execution and clean



up the environment afterward, they cannot ensure that it is
done properly. This means that tests, like other code, will
have unintended and unexpected behaviors in some cases.

Here are three consequences of the fact that a dependent
test gives different results depending on when it is executed
during testing.

(1) Dependent tests can mask faults in a program. Specif-
ically, executing a test suite in the default order does not
expose the fault, whereas executing the same test suite in
a different order does. One bug [9] in the Apache CLI li-
brary [8] was masked by two dependent tests for 3 years
(Section 2.2.2).

(2) Test dependences can lead to spurious bug reports.
When a dependent test fails, it usually represents a weakness
in the test suite (such as failure to perform proper initial-
ization) rather than a bug in the program. When a test
should pass but fails after reordering due to the dependence,
people who are not aware of the dependence can get confused
and might report bugs. As an example, the Eclipse develop-
ers investigated a bug report [17] in SWT for more than a
month before realizing that the bug report was invalid and
was caused by test dependences (i.e., a test should pass, but
it failed when a user ran tests in a different order).

(3) Dependent tests can interfere with downstream testing
techniques that change a test suite and thereby change a test’s
execution environment. Examples of such techniques include
test selection techniques (that identify a subset of the input
test suite to run during regression testing) [6,22,25,39, 40,
64], test prioritization techniques (that reorder the input to
discover defects sooner) [19,29,35,47,51], test parallelization
techniques (that schedule the input tests for execution across
multiple CPUs) [37], test execution techniques [36], test
factoring [48,60] and test carving [18] (which convert large
system tests into smaller unit tests), experimental debugging
techniques (such as Delta Debugging [52,62,65] and mutation
analysis [49, 63, 64], which run a set of tests repeatedly),
etc. Most of these downstream testing techniques implicitly
assume that there are no test dependences in the input test
suite. Violation of this assumption, as we show happens in
practice, can cause unexpected output. As an example, test
prioritization may produce a reordered sequence of tests that
do not return the same results as they do when executed in
the default order. Section 6.3.4 provides empirical evidence
to show that dependent tests do affect the output of five test
prioritization techniques.

1.3 Contributions

This paper addresses and questions conventional wisdom
about the test independence assumption. This paper makes
the following contributions:

e Study. We describe a study of 96 real-world dependent
tests from 5 software issue tracking systems to characterize
dependent tests that arise in practice. Test dependence
can have potentially non-trivial repercussions and can be
hard to identify (Section 2).

e Formalization. We formalize test dependence in terms
of test suites as ordered sequences of tests and explicit
execution environments for test suites. The formalization
enables reasoning about test dependence as well as a proof
that finding manifest dependent tests is an NP-complete
problem (Section 3).

e Algorithms. We present three algorithms to detect de-
pendent tests: one randomized, one exhaustive bounded,

and one that prunes the search space using dynamic analy-
ses. All three algorithms are sound but incomplete: every
dependent test they identify is real, but the algorithms
do not guarantee to find all dependent tests (Section 4).

e Evaluation. We implemented our algorithms in a pro-
totype tool, called DTDetector (Section 5). DTDetec-
tor detected 27 previously-unknown dependent tests in
human-written unit tests in 4 real-world subject programs.
The developers confirmed all of these as undesired (Sec-
tion 6).

e Impact Assessment. We implemented five test pri-
oritization techniques and evaluated them on 4 subject
programs that contain dependent tests. The results show
that all five test prioritization techniques are affected by
dependent tests (Section 6).

2. REAL-WORLD DEPENDENT TESTS

Little is known about the characteristics of dependent tests.
This section qualitatively studies concrete examples of test
dependence found in well-known open source software.

2.1 Sources and Study Methodology

We examined five software issue tracking systems: Apache
[1], Eclipse [17], JBoss [28], Hibernate [23], and Codehaus [10].
Each issue tracking system serves tens of projects.

For each issue tracking system, we searched for four phrases
(“dependent test”, “test dependence”, “test execution order”,
“different test outcome”) and manually examined the matched
results. For each match, we read the description of the issue
report, the discussions between reporters and developers,
and the fixing patches (if available). This information helped
us understand whether the report is about test dependence.
Each dependent test candidate was examined by at least
two people and the whole process consisted of several rounds
of (re-)study and cross checking. We ignored reports that
are described vaguely, and we excluded tests whose results
are affected by non-determinism (e.g., multi-threading). In
total, we examined the first 450 matched reports, of which
53 reports are about test dependence (some reports contain
multiple dependent tests). All collected dependent tests are
publicly available at: http://homes.cs.washington.edu/
~szhang/dependent_tests.html

2.2 Findings

Table 1 summarizes the dependent tests.

2.2.1 Characteristics

We summarize three characteristics of dependent tests:
manifestation, root cause, and developer actions.

Manifestation: at least 82% of the dependent tests
in the study can be manifested by 2 or fewer tests.
A dependent test is manifested if there exists a possibly
reordered subsequence of the original test suite, such that the
test produces a different result than when run in the original
suite. We measure the size of the reported subsequence
in the issue report. If the test produces a different result
when run in isolation, the number of tests to manifest the
dependent test is 1. If the test produces a different result
when run after one other test (often, the subsequence is
running these two tests in the opposite order as the full
original test suite), then the number of tests to manifest
the dependent test is 2. Among the 96 studied dependent



Issue Dependent Tests # Involved Tests for Resolution Root Cause
Tracking|| Total Severity Manifestation Patch Location Static | File [Data-[Unknown
System |[Number[Major|[Minor|Trivial[[Self[1 test]2 tests[3 tests|[Unknown||Days|Code[Test]Doc|Unfixed[|Variable|System| base
Apache 26 22 3 1 0 5 18 1 2 93| 5 [20] 0 1 9 3 8 6
Eclipse 59 0 59 0 0 0 49 1 9 48 | 1 8 |49 1 49 0 0 10
JBoss 6 6 0 0 0 0 3 0 3 44 | 0 2|0 4 1 0 0 5
Hibernate 3 1 1 1 0 0 3 0 0 6 0 1 0 2 0 0 2 1
Codehaus 2 2 0 0 1 1 0 0 0 3 0 110 1 0 1 0 1
[ Total J] 96 [ 31 [ 63 ] 2 [[1] 6 [ 73 [ 2 | 14 [194] 6 [32]49] 9 [ 59 [ 4 J10 ] 23

Table 1: Real-world dependent tests. Column “Severity” is the developers’ assessment of the importance of the test dependence. Column
“# Involved Tests for Manifestation” is the number of tests needed to manifest the dependence. Column “Self” shows the number of tests
that depend on themselves. Column “Days” is the average days taken by developers to resolve a dependent test. Column “Patch Location”
shows how developers resolved the dependent tests: by modifying program code, by modifying test code, by adding code comments, or

not fixed.

tests, we found only 2 of them require 3 tests to manifest
the dependence. One other test depends on itself: running
the test twice produces different results than running it once,
because this test side-effects a database it reads. We count
this special case separately in the “Self” column of Table 1.

For the remaining 14 dependent tests, the number of in-
volved tests is unknown, since the relevant information is
missing or vaguely described in the issue tracking systems.
For example, some reports simply stated that “running all
tests in one class before test ¢ makes ¢ fail” or “randomizing
the test execution order makes test ¢ fail”.

Root cause: at least 61% of the dependent tests in
the study arise because of improper access to shared
static variables. Among 96 dependent tests, 59 (61%) of
them arise due to inappropriate access to shared static vari-
ables; 4 (4%) of them arise due to inappropriate access to the
file system, and 10 (10%) of them arise due to inappropriate
access to a database. The root cause for the remaining 23
(25%) tests is not apparent in the issue tracking system.

Developer actions: dependent tests often indicate
flaws in the test code, and developers usually mod-
ify the test code to remove them. Among 96 dependent
tests, developers considered 94 (98%) to be major or minor
problems, and the developers’ discussions showed that the
developers thought that the test dependence should be re-
moved. Nonetheless, developers fixed only 38 (40%) of the 96
dependent tests. Another 49 (51%) were “fixed” by adding
comments to the test code to document the existing depen-
dence. For the remaining 9 (9%) unfixed tests, developers
thought they were not important enough given the limited
development time, so they simply closed the issue report
without taking any action.

A dependent test usually reveals a flaw in the test code
rather than the program code: only 16% of the code fixes
(6 out of 38) are on the program code. In all 6 cases, the
developers changed code that performs static variable ini-
tialization, which ensures that each dependent test will not
read an undesired value. Section 2.2.2 gives an example.
The other 32 code fixes were in the test code: 28 (87%) of
the dependent tests were fixed by manually specifying the
test execution order in a test script or a configuration file, 3
(10%) of them were simply deleted by developers from the
test suite, and the remaining 1 (3%) test was merged with
its initializing test.

2.2.2  Manifestation of Dependent Tests

A dependent test may manifest as a false alarm or a missed
alarm (Table 2).

False alarm. Most of the dependent tests (94 out of 96)

Issue Tracking System || False Alarm | Missed Alarm
Apache 24 2
Eclipse 59 0
JBoss 6 0
Hibernate 3 0
Codehaus 2 0
| Total || 94 | 2

Table 2: Manifestation of the 96 dependent tests.

result in false alarms: the test should pass but fails after
reordering due to the dependence. The test dependence
arises due to incorrect initialization of program state by one
or more tests. Typically, one test initializes a global variable
or the execution environment, and another test does not
perform any initialization, but relies on the program state
after the first test’s execution. Such dependence in the test
code is often masked because the initializing test always
executes before other tests in the default execution order.
The dependent tests are not revealed until the initializing
test is reordered to execute after other tests.

Sometimes developers introduce dependent tests intention-
ally because it is more efficient or convenient [33,58]. Even
though the developers are aware of these dependences when
they create tests, this knowledge can get lost. Other people
who are not aware of these dependences can get confused
when they run a subset of the test suite that manifests the
dependent tests, and might report bugs about the failing
tests, even though this is exactly the intended behavior. If
the dependence is not documented clearly and correctly, it
can take a considerable amount of time to work out that
these reported failures are spurious. The Eclipse issue track-
ing system contains at least 49 such dependent tests. In
September 2003, a user filed a bug report in SWT [53] [17],
stating that 49 tests were failing unexpectedly if she ran
any other test before TestDisplay — a test suite that cre-
ates a new Display object and tests it. However, this bug
report was spurious and was caused by undocumented test
dependence. All 49 failing tests are dependent tests with the
same root cause: in SWT, only one global Display object is
allowed; the user ran tests that create but do not dispose of
a Display object, while the tests in TestDisplay attempt to
create a new Display object, which fails, as one is already
created. This is the desired behavior of SWT, and points to
a weakness in the test suite.

Missed alarm. In rare cases, dependent tests can hide a
fault in the program, ezractly when the test suite is executed
in its default order. Masking occurs when a test case t should
reveal a fault, but tests executed before ¢ in a test suite




public final class OptionBuilder {
private static String argName = null;
private static void reset() {

argName = "arg";

L
}

Figure 1: Simplified fault-related code in CLI [8] (revision 661513).
The fault was masked by two dependent tests for over 3 years.

always generate environments in which ¢ passes accidently
and does not reveal the fault. Tests in this category result
in missed alarms — a test should fail but passes due to the
dependence.

We found two such dependent tests in the Apache CLI
library [8]. Figure 1 shows the simplified fault-related code.
The fault is due to improper initialization of the static vari-
able argName. The static variable argName should be set to
its default value "arg" by CLI’s clients via calling method
reset(). Otherwise, argName’s default value remains null
and should not be used in creating an OptionBuilder ob-
ject. In CLI, two test cases BugsTest.test13666 and Bugs-
Test.test27635 can reveal this potential fault by directly
initializing a OptionBuilder object without calling reset().
These two tests fail when run in isolation, but both pass
when run in the default order. This is because in the default
order, tests running before these two tests call reset() at
least once, which sets the value of argName and masks the
fault.

Such dependent tests have a non-trivial impact in practice.
This fault was reported in the bug database several times [9],
starting on March 13, 2004 (CLI-26). The report was marked
as resolved three years later on March 15, 2007 when devel-
opers realized the test dependence. The developers fixed
this fault by adding a static initialization block which calls
reset() in class OptionBuilder.

2.2.3 Implications for Dependent Test Detection

We summarize the main implications of our findings.
Dependent tests exist in practice, but they are not
easy to identify. None of the dependent tests we studied
can be identified by running the existing test suite in the
default order. Every dependent test was reported when the
test suite was reordered, either accidentally by a user or by
a testing tool. This indicates the need for a tool to detect
dependent tests.

Dependent test detection techniques can bound the
search space to a small number of tests. In theory, a
technique needs to exhaustively execute all n! permutations
of a n-sized test suite to detect all dependent tests. This
is not feasible for realistic n. Our study shows that most
dependent tests can be manifested by executing no more than
2 tests together. Thus, a practical technique can focus on
running only short subsequences (whose length is bounded by
a parameter k) of a test suite. This will reduce the number
of permutations to O(n*), which is tractable for small k and
n.

Dependent test detection techniques should focus on
analyzing accesses to global variables. Dependent tests
can result from many interactions with the execution envi-
ronment, including global variables, file systems, databases,
network, etc. However, as reflected by our study, more than
half of the real-world dependent tests are caused by improper
static variable accesses. This implies that a technique may
achieve a high return by focusing on global variables.

2.3 Threats to validity

Our findings apply in the context of our study and method-
ology and may not apply to arbitrary programs. The appli-
cations we studied are all written in Java and have JUnit
test suites.

We accepted the developers’ judgment regarding which
tests are dependent, the severity of each dependent test, and
how many tests are needed to manifest the dependence. We
did not intentionally ignore any test dependence in the issue
tracking system. However, a limitation is that the developers
might have made a mistake, might not have marked a test
dependence in a way we found it (different search terms
might discover additional dependent tests), and are unlikely
to have found all the dependent tests in those projects.

3. FORMALIZING TEST DEPENDENCE

The result of a test not only depends on its input data but
also its ezxecution conditions. To characterize the relevant
execution conditions, our formalism represents (a) the order
in which test cases are executed and (b) the environment in
which a test suite is executed.

3.1 Definitions

We express test dependences through the results of exe-
cuting ordered sequences of tests in a given environment.

DEFINITION 1 (ENVIRONMENT). An environment E for
the execution of a test consists of all values of global variables,
files, operating system services, etc. that can be accessed by
the test and program code exercised by the test case.

We use Eg to represent the initial environment, such as
a fresh JVM initialized by frameworks like JUnit before
executing any test.

DEFINITION 2 (TEST). A testis a sequence of executable
program statements, and an oracle — a Boolean predicate
that decides whether the test passes or fails.

For simplicity, our definition does not consider non-deter-
ministic tests, non-terminating tests, and tests aborting the
JVM.

DEFINITION 3 (TEST SUITE). A test suite T is an n-
tuple (i.e., ordered sequence) of tests (t1,t2,...,tn).

DEFINITION 4  (TEST EXECUTION). Let T be the set of
all possible tests and £ the set of all possible environments.
The function exec : T x € — & represents test execution.
exec maps the execution of a test t € T and an environment
E € € to a new (potentially updated) environment E' € £.

Given a test suite T = (t1,t2,...,tn), we use the short-
hand exec(T,E) for exec(tn,exec(tn-1,...exec(t1,E)...)),
to represent its execution.

DEFINITION 5 (TEST RESULT). The result of a test t
executed in an environment E, denoted R(t|E), is defined by
the test’s oracle and is either PASS or FAIL.

The result of a test suite T = (t1,...,tn), executed in
an environment B, denoted R({(t1,...,tn)|E), is a sequence
of results (01,...,0n) with o; € {PASS, FAIL}. We use
R(T|E)[t] to denote the result of a testt € T

For example, R({t1,t2)|E1) = (FAIL, PASS) represents
that if t1 then t2 are run, starting with the environment Ei,
then t1 fails and t2 passes.



A manifest order-dependent test (for short, dependent test)
is one that can be exposed by reordering existing test cases.
A dependent test ¢t manifests only if there are two test suites
S1 and Sz which are two permutations of the original test
suite T, in which ¢ exhibits a different result in the execution
exec(S1, Eo) than in the execution exec(S2,Ep).

DEFINITION 6  (MANIFEST ORDER-DEPENDENT TEST).
Given a test suite T, a test t € T is a manifest order-

dependent test in T if 3 two test suites S1, S2 € permutations(T):

R(S1|Eo) [t] # R(S2|Eo)ft].

It would be possible to consider a test dependent if re-
ordering could affect any internal computation or heap value
(non-manifest dependence); but these internal details, such
as order of elements in a hash table, might never affect any
test result: they could be false dependences. Another alter-
native would be to ask whether it is possible to write a new
dependent test for an existing test suite; but the answer to
this question is trivially “yes”. This paper focuses on mani-
fest dependence and works with real, existing test suites to
determine the practical impact and prevalence of dependent
tests.

3.2 The Dependent Test Detection Problem

We prove that the problem of detecting dependent tests is
NP-complete.

DEFINITION 7
Given a set suite T = (t1,...,t,) and an initial environment
Eo, ist € T a dependent test for T'?

We prove that this problem is NP-hard by reducing the
NP-complete Exact Cover problem to the Dependent Test
Detection problem [34]. Then we provide a linear-time algo-
rithm to verify any answer to the question. Together these
two parts prove that the Dependent Test Detection Problem
is NP-complete.

THEOREM 1. The problem of determining whether a test
is a dependent test for a test suite is NP-complete.

Proor. In the Exact Cover problem, we are given a set
X = {z1,22,23,...,2m} and a collection S of subsets of X.
The goal is to identify a sub-collection S* of S such that
each element in X is contained in ezactly one subset in S™*.

Assume a set V = {v1,v2,v3,...,0n} of variables, and a
set S ={S1,52,...,5.} with S; CV for 1 <i<n.

We now construct a tested program P, and a test suite
T = (t1,t2,...tn,tny1) as follows:

e P consists of m global variables v1,ve, ..., v, each with
initial value 1.

e For 1 < i < n,t; is constructed as follows: for 1 < j < m,
if v; € Si, then add a single assignment statement v; =
v; -1 to t;.

tn+1 consists only of the oracle assert(vy !'= 0 || vg !=
0 ...1l vy !=0).

In the above construction, the tests ¢; for 1 < i < n will
always pass. The only test that may fail and thus exhibit
different behavior is 41, which only fails when each variable
v; appears exactly once in a test case.

For the given test t,+41, if we can find a sequence (t;,, tiy, . . .
that makes t,41 fail, the subsets S* corresponding to each

t;; are an exact cover of V.

(DEPENDENT TEST DETECTION PROBLEM).

Input: a test suite T'

Output: a set of dependent tests dependentTests
1: dependentTests < ()

2: ezpectedResults < R(T|Eo)

3: for each ts in getPossibleExecOrder(7") do

4:  execResults + R(ts|Eo)

5.  for each test ¢ in ts do

6: if execResults[t] # expectedResultst] then
7 dependentTests < dependentTests U t
8: end if

9:  end for

10: end for

11: return dependentTests

Figure 2: The base algorithm to detect dependent tests. The get-
PossibleExecOrder function is instantiated by different algorithms
in Figures 3, 4, and 5.

In practice, the structure of the proof directly translates
to the structure of test suites. t,+1 is the dependent test, S
is defined by the tests that write variables used by t,+1, and
every exact cover of S represents an independent shortest
test suite that is a manifest dependency of t,4+1. [

To complete the proof that Dependent Test Detection is
NP-complete, we provide an algorithm to verify a solution
to the problem, that is linear in the size of the test suite.
Given a test suite T, a test ¢ € T and a sequence S C T
that manifests a dependency on t, we first execute 7', then
S, and compare the result for ¢ in both executions. If the
results differ the solution is correct; if they do not differ,
the solution is rejected. Since in the worst case we have to
execute 2n tests, the complexity of this algorithm is linear.

3.3 Discussion

For the sake of simplicity, our formalism only considers
deterministic tests, and excludes tests whose results might
be affected by non-determinism such as thread scheduling
and timing issues. Our formalism excludes self-dependence,
when executing the same test twice may lead to different
results. Our empirical study indicates that self-dependent
tests are rare in practice. In addition, typical downstream
testing techniques such as test selection and prioritization
do not usually execute a test twice within the same JVM.

4. DETECTING DEPENDENT TESTS

Since the general form of the dependent test detection
problem is NP-complete, we do not expect to find an efficient
algorithm for it.

To approximate the exact solution, this section presents
three approximate algorithms that find a subset of all de-
pendent tests. Section 4.1 describes a randomized algorithm
that repeatedly executes all the tests of a suite in random
order. Section 4.2 describes an exhaustive bounded algo-
rithm that executes all possible sequences of k tests for a
bounding parameter k (specified by the user). Section 4.3
describes a dependence-aware k-bounded algorithm. The
dependence-aware algorithm dynamically collects the static
fields that each test reads or writes, and uses the collected
information to reduce the search space. All three algorithms
are sound but incomplete: every dependent test they find is
real, but they do not guarantee to find every dependent test

i) (unless the bound is n, the size of the test suite).

4.1 Randomized Algorithm



getPossibleExecOrder(T):
1: for i in 1..numtrials do

2:  yield shuffle(T)

3: end for
Figure 3: The randomized algorithm to detect dependent tests. It
instantiates the algorithm of Figure 2, defining the getPossibleEx-
ecOrder function. Our experiments use numtrials = 10, 100, 1000.

Auxiliary methods:
kPermutations(7', k): returns all k-permutations of T; that
is, all sequences of k distinct elements selected from T

getPossibleExecOrder(T):
1: return kPermutations(7T’, k)

Figure 4: The exhaustive k-bounded algorithm to detect dependent
tests. It instantiates the algorithm of Figure 2, defining the
getPossibleExecOrder function.

Figure 2 shows the base algorithm. Given a test suite
T = (t1,t2,...,tn), the base algorithm first executes T" with
its default order to obtain the expected result of each test
(line 2). It chooses some set of test suites (line 3), and then
executes each test suite to observe its results (line 4). The
algorithm checks whether the result of any test differs from
the expected result (lines 5-9).

Figure 3 instantiates it for the randomized algorithm by
randomizing the original test execution order (line 2).

4.2 Exhaustive Bounded Algorithm

This algorithm uses the findings of our study (Section 2)
that most dependent tests can be found by running only short
subsequences of test suites. For example, in our study, 82%
of the real-world dependent tests can be found by running
no more than 2 tests together. Instead of executing all
permutations of the whole test suite, our algorithm (Figure 4)
executes all k-permutations for a bounding parameter k. By
doing so, the algorithm reduces the number of permutations
to execute to O(n”), which is tractable for small k and n.

Figure 4 shows the algorithm.

4.3 Dependence-Aware Bounded Algorithm

The dependence-aware k-bounded algorithm detects the
same number of dependent tests as the exhaustive k-bounded
algorithm does (when using the same k), but it uses dynamic
analyses to prune the search space.

Its key idea is to estimate which tests can interact through
which fields and to only run permutations in which the in-
teractions may be different. The algorithm determines, for
every field read by a test, which test previously wrote that
field. If, in a permutation, all of those relationships are un-
changed from the default test order, then all the tests in that
permutation give the same result as in the default order (and,
therefore, that permutation need not be run). As a special
case, suppose that for each test, every global field (and other
resources from the execution environment) it reads is not
written by any test executed before it; then each test in the
permutation produces the same result as when executed in
isolation. Dependent tests whose isolation execution results
are different from the results in the default execution order
can be cheaply detected. Thus, the permutation can be
safely ignored.

We give two cases for the algorithm: an optimized version
for k=1, and a general version for k>2.

In the case of k=1, the algorithm executes all tests in the
default order within the same JVM. Any test that does not
access (including read and write) any global fields or other

Auxiliary methods:
recordFieldAccess(t): executes test ¢ in a fresh JVM and
returns the fields it reads and writes.

getPossibleExecOrder(T):

1: for each tin T do

2:  (reads:, writes;) < recordFieldAccess(t)
3: end for

4: result < 0

5: for each ts in kPermutations(7, k) do

6: for each ¢; in ¢s { 7 is the index of ¢; in ts } do
7: previous Writes < Uj<i wm’testj

8: if previousWrites N reads,, # ? then
9: result < results U ts

10: end if

11:  end for

12: end for

13: return result

Figure 5: The dependence-aware k-bounded algorithm to detect
dependent tests, for k>2. It instantiates the algorithm of Fig-
ure 2, defining the getPossibleExecOrder function. For k=1, see
Section 4.3.

external resources such as a file is not a dependent test. The
algorithm executes each of the remaining tests in isolation
(i-e., in a fresh JVM) and reports the tests whose results are
different than when executed in the default order.

In the case of k>2, the algorithm first runs the case of k=1
(described above) to find all dependent tests that exhibit
different results when executed in the default order and when
executed in isolation. Then, it runs the algorithm shown in
Figure 5. The defined getPossibleExecOrder function first
executes each test in isolation, and records the fields that
each test reads and writes (lines 1-3). It uses the isolation
execution result of each test as a comparison baseline. When
generating all possible test permutations of length k, the
algorithm checks whether all global fields that each test (in
the generated permutation) may read are not written by any
test executed before it (lines 6-10). If so, all tests in the
permutation must produce the same results as executed in
isolation, and the algorithm can safely discard this permu-
tation without executing it. Otherwise, the algorithm adds
the generated permutation to the result set (line 9), and the
algorithm in Figure 2 identifies dependent tests.

We have proved the dependence-aware k-bounded algo-
rithm to be correct. Interested readers can refer to [66] for
the proof.

The given algorithm uses isolated execution results as a
baseline and avoids executing permutations that are redun-
dant with them. It would be possible to optimize the algo-
rithm by adding each executed permutation to the baseline
and avoiding all redundant executions. Such an algorithm is
more complex and we do not show it.

The dependence-aware k-bounded algorithm has two major
benefits. First, it clusters tests by the fields they read and
write. Only tests reading or writing the same global field(s),
rather than all tests in a suite, are treated as potentially
dependent. Second, for tests reading or writing the same
global field(s), some permutations can be ignored by checking
the global fields each test may access.

5. TOOL IMPLEMENTATION

We implemented our three dependent test detection algo-
rithms in a prototype tool, called DTDetector. DTDetector
supports JUnit 3.x/4.x tests.



Program LOC |#Tests|#Auto Tests|Revision

Joda-Time 27183| 3875 — b609d7d66d

XML Security|18302| 108 665 version 1.0.4
Crystal 4676 75 3198 trunk version
Synoptic 28872 118 2467 trunk version

Table 3: Subject programs used in our evaluation. Column
“#Tests” shows the number of human-written unit tests. Col-
umn “#Auto Tests” shows the number of unit tests generated by
Randoop [41].

To ensure there is no interaction between different runs,
DTDetector launches a fresh JVM when executing a test per-
mutation, and after a run it resets resources, such as deleting
any temporary files that were created. When comparing the
observed result of a test in a permutation with its expected
result, DTDetector considers two JUnit test results to be
the same when the tests either both pass, or exhibit exactly
the same exception (from the same line of code) or assertion
violation.

To implement the dependence-aware k-bounded algorithm,
DTDetector uses ASM [3] to perform load-time bytecode
instrumentation. DTDetector inserts code to monitor each
static field access (including read and write), and monitors
each file access by installing a Java SecurityManager which
provides file-level read /write information. Each test produces
a trace file containing both field and file access information,
after being executed on a DTDetector-instrumented program.

DTDetector conservatively treats both read and write to
a mutable static field as a write effect, since a read access
to a static field may mutate objects reachable from the
field in the heap. DTDetector assumes that the JDK is
stateless, and thus does not track field access in JDK classes.
DTDetector does not perform any sophisticated points-to or
shape analyses. It uses the side-effect annotations provided
by Javari [43] to determine the immutable classes.

Optionally, users can also specify a list of “dependence-
free” fields (e.g., a static field for logging or counting), which
can never be the root cause of manifest test dependence.
DTDetector ignores accesses to these fields.

The source code of DTDetector is available at:
http://testisolation.googlecode. com.

6. EMPIRICAL EVALUATION

Our evaluation answers the following research questions:

1. How many dependent tests can each detection algorithm
detect in real-world programs (Section 6.3.1)7

2. How long does each algorithm in DTDetector take to
detect dependent tests (Section 6.3.2)7

3. Which algorithm is the most cost-effective in detecting
dependent tests (Section 6.3.3)7

4. Can dependent tests interfere with downstream testing
techniques such as test prioritization (Section 6.3.4)7

6.1 Subject Programs

Table 3 lists the programs and tests used in our evaluation.
We used these subject programs because they have been
developed for a considerable amount of time (3-10 years)
and each of them includes a well-written unit test suite.

Joda-Time [30] is an open source date and time library. It
is a mature project that has been under active development

for ten years. XML Security [61] is a component library im-
plementing XML signature and encryption standards. XML
Security is included in the SIR repository [50] and has been
used widely as a subject program in the software testing
community. Crystal [11] is a tool that pro-actively examines
developers’ code and identifies textual, compilation, and be-
havioral conflicts. Synoptic [54] is a tool to mine a finite
state machine model representation of a system from logs.
All of the subject programs’ test suites are designed to be
executed in a single JVM, rather than requiring separate
processes per test case [4].

Given the increasing importance of automated test genera-
tion tools [13,20,41,69], we also want to investigate dependent
tests in automatically-generated test suites. For each subject
program, we use Randoop [41], a state-of-the-art automated
test generation tool, to create a suite of 5,000 tests. Randoop
automatically drops textually-redundant tests and outputs a
subset of the generated tests as shown in Table 3.

We discarded the automatically-generated test suite of
Joda-Time, since many tests in it are non-deterministic —
they depend on the current time.

6.2 Evaluation Procedure

We evaluated each algorithm on both the human-written
test suite and the automatically-generated test suite of each
subject program in Table 3.

We ran the randomized algorithm 10, 100, and 1000 times
on each test suite, and recorded the total number of detected
dependent tests and time cost for each setting. The choice of
1000 times is based on a practical guideline for using random-
ized algorithms in software engineering, as summarized in [2].
For the exhaustive k-bounded algorithm and the depend-
ence-aware k-bounded algorithm, we use isolated execution
(k = 1) and pairwise execution (k = 2). The choice of k is
based on the results of our empirical study (Section 2) that
a small k£ can find most realistic dependent tests.

We provided DTDetector with a list of 39 “dependence-
free” fields for the 4 subject programs. This manual step
cost about 30 minutes in total.

We examined each output dependent test manually to
make sure the test dependence is not caused by non-deter-
ministic factors, such as multi-threading.

Our experiments were run on a 2.67GHz Intel Core PC
with 4GB physical memory (2GB was allocated for the JVM),
running Windows 7.

6.3 Results

Table 4 summarizes the number of detected dependent
tests and the time cost for each algorithm in DTDetector.

6.3.1 Detected Dependent Tests

DTDetector detected 29 human-written dependent tests
(among which 27 dependent tests were previously unknown)
and 1311 automatically-generated dependent tests. A larger
percentage (15%) of automatically-generated tests are de-
pendent. Developers’ understanding of the code, and their
goals when writing the tests, help them build well-structured
tests that carefully initialize and destroy the shared objects
they may use. By contrast, most automated test generation
tools are not “state-aware”: the generated tests often “mis-
use” APIs, such as not setting up the environment correctly.
This misuse may indicate that the tests are invalid; it may
indicate weaknesses, poor design, or fragility of the APIs; or
it may indicate that the human-written tests have failed to



Subject # #Detected Dependent Tests Analysis Cost (seconds)
Programs |Tests|Randomized|Exhaustive|Dependence-Aware[Randomized| Exhaustive [Dependence-Aware
10 |100|1000 k::1| k=2 k=1 | k=2 1()|1()0| 1000 k:1| k=2 k=1 | k=2
Human-written unit tests
Joda-Time 3875 | 1 1|6 2 | >2%* 2 >2 % 57 (528 55381265 [4x10° *| 291 5x10° *
XML Security| 108 | 1 | 4 | 4 4 4 4 4 65594 | 5977 | 106 | 11927 93 3322
Crystal 75 | 18 | 18 | 18 | 17 18 17 18 1411311304 | 166 | 7323 95 4155
Synoptic 118 | 1 1 1 0 1 0 1 767|760 | 25 | 3372 24 1797
Total 4176 21 [ 24 [ 29| 23 | >24 23 >25  [143[132013579] 1562 [4x10° *| 503 5x10° *
Automatically-generated unit tests
Joda-Time 2639 | — | — | — | — — — — — — | — | — — — —
XML Security| 665 | 167|171 |171| 129 |>129 *| 128 >128 * |50[430|4174| 133 |1x10° *| 128 5x10% *
Crystal 3198 (159|162 |164| 55 |>55* 55 >55 % 103|949 | 9436 | 2477 [8x10° *| 2297 1x10° *
Synoptic 2467 3 | 7T | 10| 2 | >2% 2 >2 % 81|770|6311| 454 |1x10° *| 454 2x10% *
Total 8969 | 329 | 340 |345| 186 | >186 185 >185 234[2149(19921| 3064 [1x 107 *| 2879 1x10° *

Table 4: Experimental results. Column “#Tests” shows the total number of tests, taken from Table 3. Column “#Detected Dependent
Tests” shows the number of detected dependent tests in each test suite. k-bounded algorithm, respectively. When evaluating the randomized
algorithm, we used numtrials = 10,100,1000 (Figure 3). “—” means the test suite is not evaluated due to its non-determinism. An
asterisk (*) means the algorithm did not finish (i.e., requiring more than 1 day to execute all test permutations): the number of dependent
tests is those discovered before timing out, and the time estimation methodology is described in Section 6.3.2.

exercise some functionality.

The root cause of all the detected dependent tests is im-
proper access to static fields. The XML Security and Crystal
developers use more static fields in the test code, so there
are relatively more dependent tests detected in them.

The randomized algorithm is surprisingly effective in de-
tecting dependent tests. In our experiments, when run 1000
times, it identifies more dependent tests and found all de-
pendent tests identified by the other two algorithms. For
the human-written test suites, the randomized algorithm
detects 4 more dependent tests in Joda-Time. These tests
only manifest when a sequence of three tests are run in a
specified, non-default order. Both exhaustive and depend-
ence-aware k-bounded algorithms fail to detect these tests,
because they cannot scale to k=3 for Joda-Time. Related,
the randomized algorithm detects more dependent tests in
the automatically-generated test suites, because both the
exhaustive and dependence-aware k-bounded failed to scale
to k=2 for all automatically-generated test suites.

The dependence-aware bounded algorithm found the same
number of dependent tests as the exhaustive bounded al-
gorithm, except that it missed one dependent test in XML
Security’s automatically-generated test suite. The dependent
test was missed because DTDetector did not track static
field access in the java.security package of the JDK, and
Javari did not provide annotations for APIs in that package.

6.3.2 Performance of DTDetector

The time cost of the randomized algorithm is proportional
to the run time of the suite and the number of runs. Overall,
the time cost is acceptable for practical use. For example,
the randomized algorithm took around 1.5 hours to finish
1000 runs, for Joda-Time’s human-written test suite (3875
tests).

The time cost of running the exhaustive k-bounded algo-
rithm is prohibitive. The JVM initialization time is the main
cost. The exhaustive algorithm failed to scale to one human-
written test suite and all four automatically-generated test
suites when k=2, and failed to scale to all test suites when
k=3. The primary reason is the large number of possible

test permutations. For example, there are 15,011,750 size-2
permutations for Joda-Time’s human-written test suite (3875
tests), which would take approximately 58 days to finish.

Table 4 gives an estimated time cost for each test suite
that an algorithm failed to scale to. For each test suite, we
randomly chose 1000 permutations from all test permutations,
executed them, and measured the average time cost per
permutation. Then, we multiple the average cost by the
total number of permutations to estimate the time cost.

The dependence-aware k-bounded algorithm ran about an
order of magnitude faster than the exhaustive k-bounded
algorithm, when k=2. The dependence-aware algorithm
helps most when there are relatively many tests, each one of
them relatively small.

6.3.3 Comparison of Algorithms

We next discuss the tradeoffs between choosing different de-
tection algorithms in DTDetector. Although the randomized
algorithm detects the most dependent tests in our subject
programs, it has several limitations. First, there is no guaran-
tee of how many dependent tests the randomized algorithm
can detect. A randomized algorithm might even produce
different results across different runs. Second, there is no
clear stopping criterion for running the randomized algo-
rithm in practice. Thus, it can be hard for users to know
how many runs would be enough to find all dependent tests
in a test suite. Third, given an identified dependent test,
users need to inspect the tests executed before it and isolate
a minimized subsequence of tests (either manually or using
an assisting tool [62]) to understand the dependence root
cause.

By contrast, both the exhaustive k-bounded and the depend-
ence-aware k-bounded algorithms systematically search for
dependent tests of a given size and do not suffer from the
above limitations. However, the major limitation that pre-
vents them being applied to a large test suite is the time cost
to explore all possible test permutations.

6.3.4 The Impact on Test Prioritization
We implemented five test prioritization techniques [19]



Label|Technique Description

T1 Randomized ordering

T3 Prioritize on coverage of statements

T4 Prioritize on coverage of statements not yet covered
T5 Prioritize on coverage of methods

T7 Prioritize on coverage of functions not yet covered

Table 5: Five test prioritization techniques used to assess the
impact of dependent tests. These five techniques are introduced
in Table 1 of [19]. (We use the same labels as in [19]. We did not
implement the other 9 test prioritization techniques introduced
in [19], since they require a fault history that is not available for
our subject programs.)

Subject Program | T1 | T3 | T4 | T5 | T7

Joda-Time 0 0 0 0 0
XML Security 0 0 0 0 0
Crystal 6 0 2 1 1
Synoptic 0 1 0 0 0
Total 6 1 2 1 1

Table 6: Results of evaluating the five test prioritization techniques
in Table 5 on four human-written unit test suites. Each cell shows
the number of dependent tests that do not return the same results
as they do when executed in the default, unprioritized order.

(summarized in Table 5) and evaluated them on the human-
written test suites of our subject programs.

For each test prioritization algorithm, we counted the num-
ber of dependent tests that return different results in the
prioritized order as they do when executed in the unpriori-
tized order. Table 6 summarizes the results.

The dependent tests in our subject programs interfere with
all the five test prioritization techniques in Table 5. This
is because all these techniques implicitly assume that there
are no test dependences in the input test suite. Violation of
this assumption, as happened in real-world unit test suites,
causes undesired output.

6.4 Discussion

Developers’ Reactions to Dependent Tests. We sent
the identified human-written dependent tests to the subject
program developers, asking for their feedback.

One dependent test in Joda-Time was previously known
and had already been fixed. Joda-Time’s developers con-
firmed the other new dependent tests, and thought that they
are due to unintended interactions in the design of the library.
The Crystal developers confirmed that all dependent tests
found in Crystal were not intentional and happened because
of dependence through global variables. The developers con-
sidered the dependent tests undesirable and opened a bug
report for this issue [12]. The dependent test in Synoptic
was previously known. The developers merged two related
tests to fix the dependent test. The SIR [50] maintainers con-
firmed our reported dependent tests in XML-Security, and
accepted our suggested patch to fix them. They also high-
lighted the practice that tests should always “stand alone”
without dependency on other tests, and characterized that
as “test engineering 101”.

Threats to Validity There are several threats to the valid-
ity of our evaluation. First, the 4 open-source programs and
their test suites may not be representative enough. Thus, we
cannot claim the results can be generalized to an arbitrary
program. However, these are the first 4 subject programs we
tried, and the fact that we found dependent tests in all of

them is suggestive. Second, in this evaluation, we focus specif-
ically on the manifest dependence between unit tests. We
did not investigate possible test dependence that may arise
in other types of tests, such as integration tests. Third, due
to the computational complexity of the general dependent
test detection problem, we do not yet have empirical data
regarding DTDetector’s recall and how many dependent tests
exist in a test suite. Fourth, we only assessed the impact of
dependent tests on five test prioritization techniques. Using
other test prioritization techniques might achieve different
results.

Experimental Conclusions We have four chief findings.
(1) Dependent tests do exist in practice, both in human-
written and automatically-generated test suites. (2) Like
the dependent tests studied in Section 2, the identified depen-
dent tests in our subject programs generally reveal weakness
in a test suite rather than defects in the tested code. (3)
Dependent tests can interfere with test prioritization tech-
niques and cause unexpected output. (4) The randomized
algorithm is the most cost-effective in detecting dependent
tests, but it has no guarantee of the number of dependent
tests it can detect.

7. RELATED WORK

Treating test suites explicitly as mathematical sets of tests
dates at least to Howden [24, p. 554] and remains common
in the literature. The execution order of tests in a suite is
usually not considered: that is, test independence is assumed.
Nonetheless, some research has considered it. We next discuss
some existing definitions of test dependence, techniques that
assume test dependence, and tools that support specifying
test dependence.

7.1 Test Dependence

Definitions in the testing literature are generally clear that
the conditions under which a test is executed may affect its re-
sult. The importance of context in testing has been explored
in databases [7,21,33], with results about test generation,
test adequacy criteria, etc., and mobile applications [57]. For
the database domain, Kapthammer and Soffa formally de-
fine independent test suites and distinguish them from other
suites that “can capture more of an application’s interaction
with a database while requiring the constant monitoring of
database state and the potentially frequent re-computations
of test adequacy” [33, p. 101]. By contrast, our definition
differs from that of Kapfhammer and Soffa by considering
test results rather than program and database states (which
may not affect the test results).

The IEEE Standard for Software and System Test Docu-
mentation (829-1998) §11.2.7, “Intercase Dependencies,” says
in its entirety: “List the identifiers of test cases that must
be executed prior to this test case. Summarize the nature
of the dependences” [26]. The succeeding version of this
standard (829-2008) adds a single sentence: “If test cases are
documented (in a tool or otherwise) in the order in which
they need to be executed, the Intercase Dependencies for
most or all of the cases may not be needed” [27].

Bergelson and Exman characterize a form of test depen-
dence informally: given two tests that each pass, the compos-
ite execution of these tests may still fail [5, p. 38]. That is, if
t1 executed by itself passes and t2 executed by itself passes,
executing the sequence (t1,t2) in the same context may fail.
However, they do not provide any empirical evidence of test



dependence nor any detection algorithms.
The C2 wiki acknowledges test dependence as undesir-
able [56]:
Unit testing . ..requires that we test the unit in isola-
tion. That is, we want to be able to say, to a very high
degree of confidence [emphasis added], that any actual
results obtained from the execution of test cases are
purely the result of the unit under test. The introduc-
tion of other units may color our results.

They further note that other tests, as well as stubs and
drivers, may “interfere with the straightforward execution of
one or more test cases.”

Compared with these informal definitions, we formalize
test dependence and characterize test dependence in practice.

7.2 Techniques Assuming Test Independence

The assumption of test independence lies at the heart of
most techniques for automated regression test selection [6,
22,39,40,64], test case prioritization [19,29,35,47,51], and
coverage-based fault localization [31,52,65], etc.

Test prioritization seeks to reorder a test suite to detect
software defects more quickly. Early work in test prioritiza-
tion [46,59] laid the foundation for the most commonly used
problem definition: consider the set of all permutations of
a test suite and find the best award value for an objective
function over that set [19]. The most common objective
functions favor permutations where higher code coverage
is achieved and more faults in the underlying program are
found with running fewer tests. Test independence is a re-
quirement for most test selection and prioritization work
(e.g., [47, p. 1500]). Evaluations of selection and prioritiza-
tion techniques [15,46, et alia] are based in part on the test
independence assumption as well as the assumption that the
set of faults in the underlying program is known beforehand;
the possibility that test dependence may interfere with these
techniques is not studied.

Coverage-based fault localization techniques [31] often
treat a test suite as a collection of test cases whose result is
independent of the order of their execution. They can also
be impacted by test dependence. In a recent evaluation of
several coverage-based fault locators, Steimann et al. found
fault locators’ accuracy has been affected by tests failed due
to the violation of the test independence assumption [52].
Compared to our work, Steimann et al’s work focuses on
identifying possible threats to validity in evaluating coverage-
based fault locators, and does not present any formalism,
study, or detection algorithms for dependent tests.

As shown in Sections 2 and 6, the test independence as-
sumption often does not hold for either human-written or
automatically-generated tests; and the dependent tests iden-
tified in our subject programs interfere with existing test
prioritization techniques. Thus, techniques that rely on this
assumption may need to be reformulated.

Most automated test generation techniques [41,57,69] do
not take test dependence into consideration. As shown in
our experiments (Section 6) and previous work [44], a large
number of tests generated by Randoop are dependent. We
speculate that these dependences arise because automated
test generators generally create new tests based on the pro-
gram state after executing the previous test, for the sake
of test diversity and efficiency. When Randoop generates
a nondeterministic test, it can disable the test but leave it
in the suite where it is executed in order to prevent other
tests that are dependent on it from beginning to fail [44].

Exploring how to incorporate test dependence into the design
of an automated test generator is future work.

7.3 Tools Supporting Test Dependence

Testing frameworks provide mechanisms for developers
to define the context for tests. JUnit, for example, pro-
vides means to automatically execute setup and clean-up
tasks (setUp() and tearDown() in JUnit 3.x, and annotations
@Before and @After in JUnit 4.x). The latest release 4.11 of
JUnit supports executing tests in lexicographic order by test
method name [32]. However, ensuring that these mechanisms
are used properly is beyond the scope and capability of any
framework. Further, our empirical study and experimental
results indicate that programmers often do not use them
properly and introduce dependent tests.

Only a few tools explicitly allow developers to annotate de-
pendent tests and provides supporting mechanisms to ensure
that the test execution framework respects those annotations.
DepUnit [14] allows developers to define soft and hard depen-
dences. Soft dependences control test ordering, while hard
dependences in addition control whether specific tests are
run at all. TestNG [55] allows dependence annotations and
supports a variety of execution policies that respect these
dependences such as sequential execution in a single thread,
execution of a single test class per thread, etc. What distin-
guishes our work from these approaches is that, while they
allow dependences to be made explicit and respected during
execution, they do not help developers identify dependences.
A tool that finds dependences (Section 5) could co-exist with
such frameworks by generating annotations for them.

Haidry and Miller [16] proposed a set of test prioritization
techniques that consider test dependence. Their work aims
to improve existing test prioritization techniques to make
them produce a test ordering that preserves the test depen-
dencies. Their work assumes that dependencies between tests
are known (and are represented as partial orderings, such
as that one test should be executed before another) without
providing any empirical evidence of whether dependent tests
exist in practice. By contrast, our work formally defines
test dependence, studies the characteristics of real-world test
dependence, shows how to detect dependent tests, and empir-
ically evaluates whether dependent tests exist in real-world
programs and their impact on existing test prioritization
techniques.

Our previous work [38] proposed an algorithm to find bugs
by executing each unit test in isolation. With a different
focus, this work investigates the validity of the test indepen-
dence assumption rather than finding new bugs, and presents
five new results. Further, as indicated by our study and ex-
periments, most dependent tests reveal weakness in the test
code rather than bugs in the program. Thus, using test
dependence may not achieve a high return in bug finding.

A simple way to eliminate test dependence is starting a
new process or otherwise completely re-initializing the envi-
ronment (variables, heap, files, etc.) before executing each
test; JCrasher [13] does this, as do some SIR applications [50]
and some database or GUI testing tools [7,21,33]. However,
such an approach is computationally expensive: Table 4
shows that executing each test in a separate JVM introduces
16-240x slowdown (compare the “Exhaustive kK = 1” column
to 1/10 of the “Randomized 10” column).

8. CONCLUSION AND FUTURE WORK

Test independence is broadly assumed but rarely addressed,



and test dependence has largely been ignored in previous
research on software testing. To understand dependent tests,
we described one of the first studies on real-world dependent
tests. We showed that test dependence does arise in practice,
and could have non-trivial repercussions. We also formalized
the dependent test detection problem. To detect dependent
tests, we designed and implemented three algorithms to iden-
tify manifest test dependence in a test suite. Our experiments
revealed dependent tests in every subject program we stud-
ied, from both human-written and automatically-generated
test suites. The revealed dependent tests interfere with five
existing test prioritization techniques. Our tool is publicly
available at https://testisolation.googlecode.com/.

Our findings are of utility to practitioners and researchers.
Both can learn that test dependence is a real problem that
should not be ignored any longer, because it leads to false
positive and false negative test results. Practitioners can
adjust their practice based on what code patterns most
often lead to test dependence, and they can use our tool
to find dependent tests. Researchers are posed important
but challenging new problems, such as how to adapt testing
methodologies to account for dependent tests how to detect
and correct all dependent tests.

As future work, we plan to study the impact of dependent
tests on other downstream testing techniques, such as test
selection and test parallelization. We also plan to develop
a general methodology to eliminate dependent tests. In
addition, we are interested in investigating how to prevent
dependent tests. One possible way is encouraging developers
to use advanced testing frameworks that support test de-
pendence [55], so that developers can explicitly specify test
dependence when writing tests. Stylized coding patterns may
also be useful. Developers should be encouraged to write
tests “defensively” by specifying necessary test execution
pre-conditions and using less (or properly mocking) global
variables or shared resources.
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