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ABSTRACT

A good test suite is one that detects real faults. Because the set of
faults in a program is unknowable, this definition is not useful to
practitioners who are creating test suites nor to researchers who are
creating and evaluating tools that generate test suites. In place of
real faults, testing research often uses mutants, which are artificial
faults — each one a simple syntactic variation — that are systemati-
cally seeded throughout the program under test. Mutation testing is
appealing because large numbers of mutants can be automatically
generated and used as a proxy for real faults.

Unfortunately, there is little experimental evidence to support the
use of mutants as a proxy for real faults. This paper investigates
whether mutants are indeed a valid substitute for real faults — that
is, whether a test suite’s ability to detect mutants is correlated with
its ability to detect real faults that developers have fixed.

Our experiments used 357 real faults in 5 open-source appli-
cations totalling 321,000 lines of source code. Furthermore, our
experiments used both developer-written and generated test suites.
We found a statistically significant correlation between mutant de-
tection and real fault detection, even when controlling for code
coverage.

1. INTRODUCTION

Both industrial software developers and software engineering
researchers are interested in measuring test suite quality: developers
want to know if their suites have a good chance of detecting faults,
while researchers want to be able to compare different testing or
debugging techniques. Ideally, one would directly measure the
number of faults a test suite can detect in a program. Unfortunately,
the faults in a program are unknown, so a proxy measurement must
be used instead.

A well-established proxy for test quality in testing research is the
mutation score, which measures a test suite’s ability to distinguish
a program under test (original version) from many small syntactic
variations, called mutants. The mutation score is the percentage of
mutants that a test suite can distinguish from the original version.
Mutants are created by systematically injecting small artificial faults
into the program under test, based on mutation operators. Examples
of such mutation operators are replacement of arithmetic operators
(e.g., x+y — x-y), modification of branch conditions, or deletion of
statements. A test suite that can detect (or kil/) more mutants — that
is, it has a higher mutation score — is considered to be a better suite
than one that detects fewer mutants.

This measurement is often used in software testing and debugging
research. More concretely, mutation analysis is commonly used in
the following use cases (e.g., [3,13,25,26] ):
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1. Test suite augmentation and generation
A test suite 7 is only augmented with a test ¢ if this test
increases the mutation score of 7. Likewise, a mutation-
based test generation approach generates and optimizes a test
suite towards its mutation score based on the assumption that
a higher mutation score indicates a better test suite.

2. Test suite selection and evaluation

Suppose we have two unrelated test suites 7; and 7,, that have
the same mutation score and |T}| < |T,|. In the context of
test suite selection, 7 is a preferable test suite as it has fewer
tests than 7, but the same mutation score. Generally in the
context of test suite evaluation, a test suite that has a higher
mutation score is assumed to be more effective with respect
to real faults.

3. Test suite minimization
In the context of test suite minimization, a test suite 7 is
reduced to 7'\ {r} for every test7 € T for which the reduction
does not decrease the mutation score of 7.

4. Fault localization
A fault localization technique that precisely identifies a muta-
tion location as the root cause of this artificial fault is assumed
to be equally effective for real faults.

These uses of mutation analysis rely on the fundamental assumption
that mutants are a valid substitute for real faults. Two test suites
with the same mutation score are assumed to be equally effective
— that is, they are assumed to have the same real fault detection
capability. However, there is surprisingly little experimental evi-
dence supporting this assumption, as discussed in greater detail in
Section 4.

To the best of our knowledge, only two previous studies have
explored the correlation between mutants and real faults [1,5]. These
studies used small programs — the largest had only 5,905 LOC. In
addition, one study investigated only 12 real faults [5] while the
other examined 38 real faults [1]. Due to the lack of real faults, the
latter study also used hand-seeded faults for 7 out of its 8 subject
programs. However, it is not clear that these hand-seeded faults are
equivalent to real inadvertently-introduced faults.

Besides, prior research also neglected the effect of structural code
coverage when studying the correlation between mutant detection
and real fault detection. A higher mutation score could simply be
caused by a higher code coverage. Therefore, it is not clear how
mutant detection is correlated with real fault detection independently
of code coverage — that is, whether this correlation exists even if
coverage is controlled for.

This paper extends previous work and explores the relationship
between mutants and real faults using 5 large Java programs and



Table 1: Investigated subject programs. LOC and number of (JUnit) tests applies to the most recent version.

Program KLOC! Test KLOC! Tests Coverage’ Source
Chart JFreeChart 96 50 2,205 73%+16% http://sourceforge.net/projects/jfreechart
Closure  Closure Compiler 90 83 7,927 90%=£15% http://code.google.com/p/closure-compiler
Math Commons Math 85 19 3,602 90%+10% http://git.apache.org/commons-math.git
Time Joda-Time 28 53 4,130 91%=+ 7% http://github.com/JodalOrg/joda-time
Lang Commons Lang 22 6 2,245 88%=+19% http://git.apache.org/commons-lang.git

! Non-comment, non-blank lines of code, as reported by sloccount (http://www.dwheeler.com/sloccount)

2 Statement coverage of developer-written test suite on files modified by the bug fix. Reported mean and standard deviation for the 357 analyzed faulty versions.

357 real faults. Specifically, this paper aims to confirm or refute
the hypothesis that mutants are a valid substitute for real faults in
software testing by answering the following research question:

RESEARCH QUESTION 1. Is mutant detection correlated with
real fault detection, independently of code coverage?

A fundamental assumption in mutation testing is the existence of
the coupling effect (cf. [20]). A complex fault is coupled to several
simple faults if a test that detects all those simple faults also detects
the complex fault. In other words, the coupling effect states that
for each complex fault there exists no test that can detect all simple
faults without detecting the complex one. Given the large number
of mutants (i.e., simple faults) generated for a program, then (if the
coupling effect holds) a test that detects a real fault (i.e., a complex
fault) should always kill one or more mutants. Therefore, results
derived from software testing experiments based on mutants only
generalize to real faults if the following research question can be
affirmed:

RESEARCH QUESTION 2. Does a higher fault detection score
imply a higher mutation score?

Research question 2 studies the existence of the coupling effect
between real faults and mutants without considering the number
of coupled mutants. In addition, we also quantified the number of
mutants coupled to a real fault by answering the following research
question:

RESEARCH QUESTION 3. How many additional mutants does
a test suite detect if one stronger test is added that detects a single
real fault?

In a surprisingly high percentage (25%) of cases, a higher fault
detection score did not lead to a higher mutation score. Based on
this observation we addressed an additional research question:

RESEARCH QUESTION 4. Which real faults are detected by a
test that does not increase the mutation score of its test suite, i.e.,
for which real faults does the coupling effect not hold?

The contributions of this paper are as follows:

e A new set of 357 developer-fixed and manually-verified bugs
and test suites from 5 programs.

e The largest study to date of whether mutants are a valid substi-
tute for real faults. The results show a statistically significant
correlation, even when controlling for code coverage.

e Concrete suggestions for improving mutation analysis, and
identification of inherent limitations (faults not coupled to
mutants).

The paper is structured as follows: Section 2 describes how we
collected data to answer the research questions above. Section 3
presents our analysis of that data. Section 4 reviews related work
and Section 5 concludes.

2. DATA COLLECTION

Previous work assumes that mutant detection and real fault de-
tection are well-correlated — if a given suite has better mutant
detection, then it also has better real fault detection (and vice versa).
We tested this assumption by conducting a study with real faults,
using both developer-written test suites and automatically-generated
test suites.

We used the following high-level methodology to answer our
research questions:

1. Locate and isolate real faults that have been previously found
and fixed, by analyzing several projects’ version control and
bug tracking systems; see Section 2.2.

2. Obtain developer-written test suites for both a buggy and a
fixed program version for each fault. Obtain automatically-
generated test suites for the fixed version of the program. See
Section 2.3.

3. Generate mutants and perform mutation analysis for all fixed
program revisions; see Section 2.4.

4. Conduct experiments using the faults and the test suites to
answer our research questions; see Section 2.5.

2.1 Subject programs

Table 1 lists the 5 subject programs we used in our experiments.
These programs satisfy the following desiderata:

1. Each program has a version control repository and bug tracker,
enabling us to locate and isolate real defects.

2. Each program contains a comprehensive, developer-written
test suite, enabling us to experiment with real test suites as
well as generated ones.

3. Each program has been used in previous research, enabling
an evaluation of whether prior research results derived from
mutation analysis on those programs generalize to real faults.

2.2 Locating and isolating real faults

We obtained real faults from a project’s version control history
by identifying commits that corrected a failure in the program’s
source code. Ideally, we would like to have, for each real fault, two
source code versions V; and V, which differ by only the bug fix.
Unfortunately, developers do not always minimize their commits.
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Table 2: Number of candidate revisions, compilable revisions,
and reproducible and isolated faults for all subject programs.

Candidate = Compilable  Reproducible Isolated
revisions revisions faults faults
Chart 80 62 28 26
Closure 316 227 179 133
Math 435 304 132 106
Time 75 57 29 27
Lang 273 186 69 65
Total 1179 836 437 357

Therefore, we had to locate and isolate the real fault in a bug-fixing
commit.

We first examined the version control and bug tracking system of
each program for indications of a bug fix (Section 2.2.1). We refer
to a revision that indicates a bug fix as a candidate revision. For
each candidate revision, we tried to reproduce the fault by exposing
it with an existing test (Section 2.2.2). Finally, we isolated the fault
by pruning all irrelevant code changes from the bug-fixing commit
(Section 2.2.3). We discarded any fault that could not be reproduced
and isolated. Table 2 summarizes the results of each step in which
we discarded candidate revision pairs.

2.2.1 Candidate revisions for bug-fixing commits

We developed a script to determine revisions that a developer
marked as a bug fix. The script mines the version control system
for explicit mentions of a bug fix, such as a bug identifier of the
project’s bug tracking system.

Let revg, be a revision marked as a bug fix. We assume the
previous commit in the version control history, revy,,, to be faulty.
(Later steps will validate this assumption.) Overall, we identified
1,179 candidate revision pairs (revp,g.revsy).

2.2.2  Discarding non-reproducible faults

A candidate revision pair obtained in the previous step is not
suitable for our experiments if we cannot reproduce and expose the
real fault. Let V be the source code version of a revision rev and T
be the corresponding test suite. The fault of a candidate revision
pair (revp,q.revsy) is reproducible if a test exists in Ty that passes
on Vj, but fails on Vp,, due to the existence of the fault.

In some cases, test suite T, does not run on V. If necessary,
we fixed build system related issues and trivial errors such as im-
ports of non-existent classes. However, we did not attempt to fix
compilation errors if they were caused by semantic errors. This
required discarding revisions with unresolvable compilation errors
— 836 candidate revision pairs remained after this step.

After fixing trivial compilation errors, we discarded version pairs
for which the fault was not reproducible. A fault might not be repro-
ducible for three reasons. (1) The source code diff is empty — the
difference between revy,, and revg, was only to tests, configuration,
or documentation. (2) No test in Tﬁx passes on Vy;, but fails on V.
(3) No test in Tﬁx exposes the fault in Vj,,,. We manually inspected
each test of Tﬁx that failed on Vj,,, while passing on Vj, to determine
whether its failure is caused by the real fault. The overall number of
candidate revision pairs for which we could reproduce the fault was
437.

2.2.3 Isolating the real fault

Since developers do not always minimize their commits, the
source code of Vp,, and Vg, might differ by both features and the

source code diff

Vi -V
features & !

refactorings

V .
bug fix V2 ? fix

Figure 1: Obtaining source code versions V| and V, that differ
by only a bug fix. Vj,, and Vj, represent the source code ver-
sions of two consecutive commits in the project’s version con-
trol history.

bug fix. We isolated the bug fix for the purposes of our study. This
is important to ensure that a test failure or success in a generated
test is due to the bug or its fix, rather than other unrelated changes
that could affect test results for other reasons. Other benefits include
improved backward-compatibility of tests and the ability to focus
our experiments on a smaller amount of modified code.

For each of the 437 candidate revision pairs (revp,g.revs,) for
which we could reproduce the fault, we minimized the source code
diff between Vo and Vj,.. For each revision pair, we manually re-
viewed the source code diff between V,,, and Vj, and divided it into
a diff that represents the bug fix part vs. one that represents features
and refactorings. At least two of this paper’s authors performed this
process for each pair, to ensure consistency.

The result of this process was two source code versions V| and V,
such that V| and V, differ by exactly a bug fix — that is, no features
were added and no refactoring was applied.

Figure 1 visualizes the relationship between the source code
versions Vi and V,, and how they are obtained from the source code
versions of a candidate revision pair. V; is equal to the version Vj,
and the difference between V; and V; is the bug fix. V] is obtained
by re-introducing the bug into V, — that is, applying the inverse
bug-fixing diff. We discarded a version pair if we could not isolate
the fault in the source code diff. Overall, we obtained 357 version
pairs (V1,V,) for which we could isolate the real fault.

2.3 Test suites

2.3.1 Developer-written test suites

This section describes how we obtained two related test suites
T,,45s and Tp, ;) made up of developer-written tests, where 7, passes
on V| and Tfail fails on V| because of the real fault. These test
suite pairs <Tpass’7}ail> reflect common and recommended practice.
The developer’s starting point is the source code version V| and a
corresponding test suite 7., which passes on V. Upon discovering
a previously-unknown fault in V}, a developer augments test suite
T,,455 to expose this fault. The resulting test suite Tp, ; fails on V;
but passes on the fixed source code version V;. 7, might be
augmented by modifying an existing test (e.g., adding stronger
assertions) or by adding a new test.

We cannot directly use the existing developer-written test suites
g and Ty, as T, and Tir» because not all tests pass on each
committed version and because the developer may have committed
changes to the tests that are irrelevant to the fault. Therefore, we built
the test suites 7, and Tt based on T}, " and T as subsequently
described.

Section 2.2 describes how we obtained 357 suitable version pairs
(V1,V2). For each pair, at least one test exposes the fault in V; while
passing on V,. We refer to such a test as a triggering test f. Let m
be the number of triggering tests for a version pair; then 7' denotes
the i-th triggering test (1 <i < m). Our goal was to obtain m pairs

of test suites <7};ias.w1}2i1> with the following properties:
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o All tests of Tfilﬂ pass on V;

o ilc f’;”.l is the only triggering test in Tf"m.l — that is, only #
exposes the fault in V;

o All tests of T, pass on V| and V2

o Tl _and 7}; ;; differ by exactly one modified or added test

pass

Figure 2 visualizes how the test suite pairs <’I}Jiass7’1}2il> are derived
from the developer-written test suites 7, " and T . In 80% of the
cases, T, contained exactly one triggering test: developers usually
augment a test suite by adding or strengthening one test to expose
the fault.

In order to fairly compare the effectiveness of T}fm and Tféil,
they must not contain irrelevant differences. In order to eliminate
irrelevant differences between Tpims and J}Zil’ Y;j'am is derived from
T, If ]:,,’Aass were derived from Tyq instead, two possible problems
could arise. First, V| might include features (compared to Vj,,,
as described in Section 2.2) and Tﬁx might include corresponding
feature tests. Second, tests unrelated to the real fault might have
been added, changed, or removed in T, .

In summary, we applied the following steps to obtain all pairs

(7},’(1_“,1}&» using the developer-written test suites 7,,, and T :

1. Manually fix all classpath- or configuration-related test fail-
ures in Tbug and T, so all failures indicate genuine faults.

2. Exclude all tests from T}, " that fail on Vj, and exclude all
tests from Y}ix that fail on V5.

3. Determine all triggering tests t"x in Ty

4. Create one test suite pair (J}ia‘ys,l}fm) for each f/’u € Tj;, such
that:

o T uss passes on'Vy and Vs.

Tqss includes all tests of 7, plus the predecessor of

the i-th triggering test f]’ﬁx if it exists. If fﬁx was modified
the previous version of the same test is added, otherwise
T! T,

pass = Lpase*
° Tf; i Jails on Vy but passes on'V;.
Tf;” includes all tests of 7, , plus the i-th triggering test

.

2.3.2 Generated suites

For our experiments, we used two test generation tools: EvoSuite
and Randoop. We attempted to use a third tool, DSDCrasher, but
found that it relies on the static analysis tool ESC/Java2. This tool
does not work with Java 1.5 and higher, making it impossible to use
DSDCrasher for this study. We plan to investigate an earlier version
of the tool that does not use the static analysis component, JCrasher,
in future work.

EvoSuite aims to satisfy one of several possible criteria. We se-
lected branch coverage, weak mutation testing, and strong mutation
testing. Randoop has no such bias. Therefore, we expected that
EvoSuite test suites would have higher mutation scores, on average,
than Randoop suites. If mutants are a good substitute for faults,
this further implies that EvoSuite test suites should have higher

i i
Tbug ’1;"153 I}Jase fail T X
1 v | [ T T a
tbug tfu tﬁx tﬁx tﬁx
S n n n n n
Jass | Tous ‘s [fx fx i || pass
. - - . - V;
n+1 Jj Y n+1 on vz
tbug "tbug tﬁx * tﬁx
: . fail
o—/ \\ .
n+k on Vi
tbug \\ - \:_
\ téug is empty if 7i, t]l'i1x mn
fail was introduced in T,
on Vi fail
on V,

Figure 2: Relationship between the i-th obtained test suite pair
<Tplass,7};il> and the developer-written test suites 7, , and T;,,
which are derived from the project’s version control system.

fault detection scores (on average) as well. For each fixed program
version V;, EvoSuite generated 30 test suites for each of the selected
criteria and Randoop generated 12 test suites.

Each test generation tool created tests only for classes in C,, the
classes modified in the isolated bug fix — that is, the classes that
differ between V| and V5.

Each of the test generation tools might produce uncompilable test
classes or tests that do not run without errors. Additionally, tests
might sporadically fail due to the use of non-deterministic APIs
such as time of day or random number generators. A test suite that
(sporadically) fails is not suitable for our study — we generally refer
to them as failing test suites. We repaired failing test suites in a
semi-automatic fashion using the following workflow:

1. Automatically remove test methods that cause compilation
errors.

2. Automatically fix test suites that compile but include failing
test methods: remove all individual test methods that fail
during execution on V5.

3. Execute the generated test suites on V; to identify and elimi-
nate non-deterministic tests: we assumed that a test suite does
not include any further non-deterministic tests once it passed
5 times in a row.

The final output of this process is generated test suites that succeed
on V,. The workflow of repairing a test suite sometimes resulted in
an empty set, when all tests failed and had to be removed. Therefore,
for EvoSuite and Randoop the number of suitable test suites that
succeed on V; is smaller than the total number of generated test
suites. Table 3 summarizes the characteristics of all generated test
suites that succeed on V;.

We refer to a generated test suite as 7. We ran each T against
Vi. If T passed, it did not detect a fault. If 7 failed, we manually
verified that the failing tests are valid triggering tests — that is, we
verified that the failures were due to the fault in V; rather than issues
with the build system or configuration.

2.4 Mutation analysis

We employed the Major mutation framework [14, 16] and all
its available mutation operators to create the mutant versions and
to perform the mutation analysis. Major provides the following



Table 3: Characteristics of generated test suites. Test suites
gives the total number and Tt ratio for all test suites that suc-
ceeded on V>. KLOC and Tests report mean and standard de-
viation of lines of code and number of (JUnit) tests for all test
suites. Detected faults shows how many distinct real faults the
test suites detected altogether and for how many versions at
least one suitable test suite could be generated.

Test suites KLOC Tests Detected
Total Tfm-l faults
EvoSuite 28,318 22.3% 98+491 68+133 182/354
-branch 10,133 21.1% 25475 21424 156/352
-weak 9,420 21.8% 29+80 24427 158/352
-strong 8,765 24.1% 2594857 1714202 152/350
Randoop 3,387 18.0% 2,027+1,755  8,208+£14,053  90/326
Overall 31,705 21.8% 3354995 1,066+£5,599 198/357

mutation operators, which include the operators used in previous
studies (cf. [18]):

e Replace constants
e Replace operators
e Modify branch conditions

e Delete statements

We only mutated the source code version V;, consistent with the
fundamental assumption in mutation analysis that the program under
test is assumed to be defect-free.

For each of the developer-written and generated test suites, we
computed mutation coverage and mutation score. A test is said
to cover a mutant if it reaches and executes the mutated code. A
test kills a mutant if the test outcome indicates a fault — that is, a
test assertion fails or the test triggers an exception in the mutant.
Mutation coverage is a necessary but not sufficient condition to kill
a mutant.

Executing all tests on all mutants might be prohibitively expensive.
Therefore, we exploited two common optimizations, which are
supported by Major (cf. [15]): 1) a test is only executed on a mutant
if it covers the mutant and 2) no further test is executed on a mutant
once that mutant has been killed.

2.5 Experiments

This section describes our experiments to study the correlation
between mutant detection and real fault detection. Our experiments
use source code version V) (the faulty version).

The test suites 7,,,, and T},;; model how a developer usually
augments a test suite. T, ; is a better suite — it detects a fault that
T,,455 does not. If mutants are a valid substitute for real faults, then
Ty should have a higher mutation score than 7.

We also investigated whether mutant detection is correlated with

real fault detection for automatically-generated tests.

Controlling for coverage.

Structural code coverage is a widely-used measure of test suite
quality. Differences in coverage often dominate other aspects of test
suite generation, and a technique that creates larger test suites usually
detects more faults for that reason alone. More specifically, if test
suite 7, covers more code than 7}, then T, is likely to have a higher
overall mutation score and fault detection score, even if T, does a

better job testing a smaller portion of the program. Furthermore, no
developer would use a complex, time-consuming test suite metric
such as mutation analysis unless simpler ones such as structural
coverage had exhausted their usefulness.

To account for these facts, we performed our experiments in two
ways. First, we ignored coverage and simply determined the mutants
killed by each test suite. Second, we controlled for coverage and
only determined the mutants killed for test suites that cover the same
code.

We include the first, questionable methodology for comparison
with prior research that does not control for coverage. The second
methodology controls for coverage. It better answers whether use of
mutation analysis is profitable, under the assumption that a developer
is already using the industry-standard coverage metric.

Our experiments use Cobertura [4] to compute statement and
branch coverage over the classes modified by the bug fix.

2.5.1 Does a higher fault detection score imply a
higher mutation score, for developer-written
tests?

If mutants are a valid substitute for real faults, then any test suite
Tfail that has a higher fault detection score than T}, should have a
higher mutation score as well.

The fault detection scores sy for the test suites T,

ass

and Y}w‘l are:

] Sf(T ):0

pass
® sf(Y}ail) =1

Mutation analysis determined the mutants (obtained from pro-
gram version V;) covered and killed by the test suites. We also
computed structural coverage. Ultimately, this step determined for
each test suite 7, and Ty

pass il

e Statement and branch coverage
e Number of generated, covered, and killed mutants

e Real fault detection score

Using those values, we determined for every test suite pair (7,,, ssJ}ail>’

whether 7y, yields a higher mutation score than 7},;.

2.5.2 How many additional mutants does a test suite
detect if one stronger test is added that detects
a single real fault?

In this experiment we measured the sensitivity of the mutation
score for a single fault. Specifically, we determined the increase in
the number of detected mutants between 7}, and ]}ail' Since ]}ail
is formed by adding the triggering test to 7)., we considered the

following 4 cases:
1. The triggering test is added and increases statement coverage.

2. The triggering test is added but does not increase statement
coverage.

3. The triggering test is modified and increases statement cover-
age.

4. The triggering test is modified but does not increase statement
coverage.



2.5.3 Which real faults are not coupled to mutants?

The key assumption of mutation analysis is that real faults are
coupled to mutants. However, there exist real faults that are detected
by a test that does not increase the mutation score of its test suite.
The number of mutants detected by 7, is equal to the number of
mutants detected by T ;, and there is no mutant such that detecting
that mutant leads to djé:tecting the fault.

To better understand these real faults that are not coupled to mu-
tants, we manually investigated each such fault. This qualitative
study sheds light on which types of real faults are not coupled to mu-
tants generated by commonly used mutation operators. Moreover,
this study reveals general limitations of mutation analysis and sug-
gests new and stronger mutation operators taking the application
domain into account.

2.5.4 Is mutation score correlated with fault detec-
tion, for automatically-generated tests?

In this experiment, we used the automatically-generated test suites
T and determined for each suite its mutation score and fault detec-
tion score. We only considered version pairs (V},V») for which at
least one generated test suite detects the real fault as we aimed at
comparing the mutation adequacy of generated test suites that detect
the real fault with test suites that do not.

Every generated test suite 7 succeeds on V> by definition. If
T fails on V|, we denote it as T}a[l, otherwise as T},am. The fault
detection scores sy for those a generated test suites are:

d sf(Tpass) =0
M sf(j}ail) =1

We computed the correlation between mutation score and fault
detection score.

We first analyzed the entire pool of test suites derived from all
generation tools to investigate whether mutation is generally a good
metric to compare the effectiveness of arbitrary test suites.

Then, we applied the same analysis on a per-generation-tool basis
to determine whether mutation is a good metric for the comparison
of test suites derived from a specific source. Since the analysis needs
at least one test suite that detects the fault, the numbers of version
pairs differ for different test generation tools.

3. ANALYSIS

Section 2 described our data collection procedure. This section
describes the results of our analyses. Recall that for each injected
fault we have the following test suites and their mutation scores: a
developer-written test suite that does not detect the injected fault
(T,455)> a developer-written test suite that detects the injected fault
(7}‘”.[), and a large number of automatically-generated test suites
().

Studying the relationship between real fault detection and mutant
detection, our goal was twofold. 1) We wanted to determine whether
a test suite augmentation that led to the detection of a real fault
increases the mutation score. 2) We wanted to determine whether a
higher mutation score indicates a stronger test suite. For the latter,
we were interested whether this relationship existed for developer-
written test suites and whether it would hold for automatically-
generated test suites.

3.1 Developer-written test suites

Recall that the developer-written test suites contained more than
one triggering test for 20% of the faults. Since we created a test
suite pair <Tpass’ngil> for each triggering test, there are 480 pairs

Table 4: Wilcoxon signed-rank tests for developer-written test
suites. All differences are significant at p < .001.

Test suites N M;,SD; M,,SD, Z r

Coverage constant 258 67.5,14.3 68.2,14.0 -10.7 .67
Coverage increased 222 54.7,23.0 60.3,194 -12.5 .84

Test added 431 609,203 64.1,17.5 -15.7 .76
Test modified 49 674,143 68.1,140 -49 .70
All 480 61.6,199 655,172 -16.5 .75

40% |- ’ [] Test modified [ | Test added ‘

20% |- N

0%,|:| O DD:D,D,D,D,D,E,:_D,
T T T T T T T T T T T
0o 1 2 3 4 5 6 7 8 9>10

Number of additionally killed mutants

Percentage of triggering tests

Figure 3: Number of mutants additionally killed by triggering
tests that do not increase statement coverage. Total number of
triggering tests (Test modified + Test added) is 258.

for the 357 faults. Of these 480 pairs, the mutation score of T ;
increased compared to 7, for 362 of them (75%). Statement
coverage increased only for 222 out of 480 (46%) pairs.

The mutation scores for the developer-written test suites were not
normally distributed (evaluated by the Kolmogorov-Smirnov test),
s0 a non-parametric statistical test is required. We ran the Wilcoxon
signed-rank test over the 480 test suite pairs to determine whether the
mutation score is significantly different between 7}, and Tp,,;,. Ho
for this analysis is that there is no difference between the mutation
scores between T}, , and T, . Table 4 summarizes the results
of the statistical analysis. The test suite augmentation (T}, —
T},,;)) significantly increased the mean mutation score of Tt The
mean difference in mutation score was statistically significant when
coverage increased and when coverage did not increase. Coverage
increased for 222 pairs and the mutation score increased for 209 out
of those 222 pairs (94%). In contrast, the mutation score increased

for 153 out of 258 pairs (59%) for which coverage did not increase.

3.1.1 How many additional mutants does a test suite
detect if one stronger test is added that detects
a single real fault?

In addition to determining whether the mutation score increased,
we also measured the sensitivity of the mutation score with respect
to a single real fault. This means that we measured the number of
mutants that were additionally killed by the triggering test. Given the
findings of the previous section, we again considered the influence of
statement coverage. Figure 3 visualizes the number of additionally
killed mutants if coverage did not increase and Figure 4 visualize
the results when it did.

Overall, 118 out of 480 (25%) triggering tests did not detect any
additional mutants while detecting a real fault. Considering that mu-
tation analysis is used for test suite minimization, this result implies
serious consequences. For 25% of all cases, test suite minimization
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Figure 4: Number of mutants additionally killed by triggering
tests that do increase statement coverage. Total number of trig-
gering tests (Test modified + Test added) is 222.

(performed based on mutation results) would remove the triggering
test as its removal does not affect the mutation score. Yet, removing
the triggering test does decrease the real fault detection.

3.1.2  Which real faults are not coupled to mutants?

Given the findings of the previous section, we performed a qual-
itative study to investigate whether the results indicate a general
limitation of mutation analysis for certain types of real faults.

We manually investigated all 95 real faults for which none of the
corresponding 118 triggering tests increased the mutation score of
its test suite. This means that for each of the 95 faults the mutation
scores of T}, and T,y were equal for all triggering tests.

Table 5 summarizes the results of our manual analysis. We now
discuss the three categories: cases where a mutation operator should
be strengthened, cases where a new mutation operator should be
introduced, and cases where no obvious mutation operator can gen-
erate mutants that are coupled to the real fault. In the latter case,
results derived from mutation analysis do not generalize to those
real faults.

Real faults requiring stronger mutation operators (25)

o Statement deletion (12): The statement deletion operator
is usually not implemented for statements that manipulate
the control flow. We surmise that this is due to technical
challenges in the context of Java — removing return or
break/continue statements changes the control flow and may
lead to uninitialized variables or unreachable code errors.
Figure 5a gives an example.

o Argument swapping (6): Arguments to a method call that
have the same type can be swapped without causing type-
checking errors. Argument swapping represents a special
case of swapping identifiers, which is not a commonly-used
mutation operator [21]. Figure 5b shows an example.

o Argument omission (5): Method overloading is error-prone
when two methods differ in one extra argument — a developer
might inadvertently call the method that requires fewer argu-
ments. Figure 5c gives an example. Generating mutants for
this type of fault requires a generalization of a suggested class-
based mutation operator, which addresses method overloading
to a certain extent [17].

o Similar method called (2): Existing mutation operators re-
place one method call by another only for calls to getter and
setter methods. It would be both unfeasible and largely un-
productive to replace every method call with every possible

Table 5: Number of real faults not coupled to mutants gener-
ated by Major, categorized by the reason: a weak implementa-
tion of a mutation operator, a missing mutation operator, or no
appropriate mutation operator exists.

Weak Missing  No such

Total
operator operator operator
Chart 5 (19%) 1 (4%) 2 (8%) 8 (31%)
Closure 11 (8%) 2 (2%) 18 (14%) | 31 (23%)
Math 4 (4%) 4 (4%) 30 (28%) | 38 (36%)
Time 2 (7%) 0 (0%) 5 (19%) 7 (26%)
Lang 3(5%) 0 (0%) 8(12%) | 11 (17%)
Total 25 (7%) 7 (2%) 63 (18%) | 95 (27%)

}
+ return false;
}
case 4: {
char ch = str.charAt (0);

(a) LANG-365 fix

- Partial newPartial = new Partial (iChronology, newTypes,
newValues);

+ Partial newPartial = new Partial (newTypes, newValues,
iChronology);

(b) JodaTime-88 fix

- return solve (min, max);
+ return solve(f, min, max);

(c) MATH-369 fix

- int indexOfDot
+ int indexOfDot

namespace.indexOf ('.");
namespace.lastIndexOf (’'.");

(d) Closure-747 fix

- return ...
+ return ...
+ .o

+ toolTipText + ...;
+ ImageMapUtilities.htmlEscape (toolTipText)

(e) JFreeChart-591 fix

- return chromosomes.iterator();
+ return getChromosomes () .iterator ();

(f) MATH-779 fix

- FastMath.pow (2 * FastMath.PI, -dim / 2)
+ FastMath.pow (2 * FastMath.PI, -0.5 * dim)

(g) MATH-929 fix

Figure 5: Snippets of real faults that require stronger or new
mutation operators.

alternative that type-checks. Nonetheless, the method call re-
placement operator should be extended to substitute methods
with related semantics. Figure 5d shows an example in which
the fault is caused by using the wrong one of two similar
methods (indexof instead of lastIndex0f).

Real faults requiring new mutation operators (7)

o Omit chaining method call (4): A developer might forget to
call a method whose return type is equal to (or a subtype of)
its argument type. Figure 5e gives an example in which a
string needs to be escaped. A new mutation operator could
replace such a method call with its argument, provided that
the mutated code type-checks.



e Direct access of field (2): In case a class includes non-trivial
getter or setter methods for a field (e.g., further side effects
or post-processing), an object that accesses this field directly
might cause an error. Figure 5f shows an example in which
post-processing of the field chromosomes is required before
the method iterator () should be invoked. A new mutation
operator could replace calls to non-trivial getter and setter
methods with a direct access to the field.

o Type conversions (1): Wrong assumptions about implicit type
conversions and missing casts in arithmetic expressions can
cause unexpected behavior. Figure 5g shows an example
where the division should be performed on floating point
numbers rather than integers (the replacement of the divi-
sion by multiplication is unrelated to the real fault). A new
mutation operator could replace a floating-point constant by
an exact integer equivalent (e.g., replace 2.0 by 2), remove
explicit casts, or remove parentheses to manipulate operator
precedence.

Real faults not coupled to mutants (63)

o Algorithm modification or simplification (44): Most of the real
faults not coupled to mutants were due to incorrect algorithms.
The bug fix was to re-implement or modify the algorithm. A
bug fix that only removes special handling code also falls into
this category.

o Wrong method called (5):

Another common mistake is using a wrong method, which
might either return wrong data or omit side-effects (e.g.,
method delegation with pre- or post-processing). Figure 6a
shows an example for calling a wrong method. Note that
this type of fault can be represented by mutants in theory.
However, without deeper knowledge about the relation be-
tween methods in a program, replacing every identifier and
method call with all alternatives would result in an unmanage-
able number of mutants.

e Extraction of common code (4): Suppose the access of a
field that might be null is extracted to a utility method that
includes a null check. A developer might forget to replace an
instance of the field access with a call to this utility method.
This rather subtle fault cannot be represented with mutants
since it would require to inline the utility method (without
the null check) for for every call. Figure 6b gives an example
for this type of fault. The fault is that this.startData might
be null — this condition is checked in getcCategoryCount ().
However, other tests directly or indirectly kill all mutants in
getCategoryCount (), hence a test that exposes the fault does
not kill any additional mutants.

e Violation of pre/post conditions or invariants (3): Some real
faults were caused by the misuse of libraries. For example,
the Java library makes assumptions about hashCode and equals
methods of objects used as keys to a HashMap. Yet, a violation
of this assumption cannot be generally simulated with mutants.
Figure 6¢ gives an example for such a fault.

o Numerical analysis errors (4): Real faults caused by over-
flows, underflows, and improper handling of NaN values is
poorly suited to be simulated by mutants, and hence also rep-
resents a general limitation. Figure 6d shows an example for
a non-trivial case of this type of fault.

- return getPct ((Comparable<?>) v);
+ return getCumPct ((Comparable<?>) v);

(a) Math-337 fix

- if (categoryKeys.length != this.startData[0].length)
+ if (categoryKeys.length != getCategoryCount ())

(b) JFreeChart-834 fix

- lookupMap
+ lookupMap

new HashMap<CharSequence, CharSequence>();
new HashMap<String, CharSequence>();

(c) LANG-882 fix“

“The result of comparing two CharSequence objects is undefined — the bug fix uses
string to alleviate this issue.

- if (u * v == 0)
+ if ((u == 0) |l (v == 0))
(d) MATH-238 fix
- {"\uOOCB", "&Ecirc;"},
+ {"\u00CA", "gEcirc;"},
+ {"\u00CB", "&Euml;"},

(e) LANG-658 fix

Figure 6: Snippets of real faults not coupled to mutants.

e Specific literal replacements (3): Literal replacement is a
commonly used mutation operator that replaces a literal with
a well-defined default (e.g., an integer with O or a string with
the empty string). However, sometimes the real fault can only
be exposed with a very specific replacement, which is not ob-
vious. The literal replacement operator cannot simulate such
a specific replacement. Figure 6e demonstrates an example
that involves Unicode characters.

3.2 Automatically-generated test suites

The most common use of mutation testing is to compare automatically-
generated test suites. We conducted an experiment to assess whether
mutant detection of generated test suites is correlated with their
real fault detection independent of coverage. In other words, is the
mutation score generally a good proxy for test suite quality?

For the generated test suites we compared each Tpum against every

Tfail for each program version. This means that if we have one 7},
and four T, il S» We obtained four data points for our analysis. This

within-subjects analysis focuses on differences between Tpm and

Y}aﬂ while controlling for the subject program version.
In contrast to the first experiment where 7, C Tfaﬂ, this property

does not necessarily hold for two generated test suites T;,m and ]}ai,.
Therefore, we had to control for coverage in this experiment as this
was not a property that could be naturally observed in the sample;
we did this by only considering the intersection of mutants covered
by both test suites.

The difference between mutation score in suites that detect real
faults was significant for both EvoSuite and Randoop. The rela-
tionship held whether coverage was ignored (Table 6) or was held
constant (Table 7). When controlling for coverage, the magnitude
of the difference was smaller for EvoSuite, but not for Randoop.

3.3 Threats to validity

Our evaluation uses only 5 subject programs, all written in Java.
Other programs might have different characteristics. Of specific
note, all 5 subject programs are well-tested (see Table 1). This
may limit the applicability of the results to programs that are not
well-tested (e.g., programs under development).



Table 6: Paired t-test for generated test suites when coverage is
ignored. All differences significant at p < .001.

Test suites N M;,SE; M,, SE, t r
EvoSuite
-branch 14,019 40.3,.19 445,.19 403 .19
-weak 10,278 40.7,.22 443,22 299 .16
-strong 10,153 42.7,.25 484,27 462 .22
Randoop 1,263 43.0,.67 46.8, .66 10.2 .16
All 175,163 37.4,.06 47.3,.06 2009 .40

Table 7: Paired t-test for generated test suites when coverage is
controlled for. All differences significant at p < .001.

Test suites N M;,SE; M,, SE, t r
EvoSuite
-branch 14,018 52.3,.14 559, .14 36.7 22
-weak 10,276 54.6,.16 57.3,.16 254 17
-strong 10,109 57.7,.19 62.4,.18 406 .25
Randoop 1,137 58.5,.58 63.0,.55 104 24
All 168,604 53.3,.05 60.5,.04 1673 .39

We evaluated only bug fix commits that span a single revision in
the version control history. Our data collection methodology would
miss bugs whose fixes and/or tests span multiple revisions, bug fixes
that are not marked as such in the version control history, etc.

We could have considered every pair of consecutive commits or
pairs across several commits to increase the number of reproducible
faults. However, our methodology yielded a large number of faults
nonetheless, and we have no reason to believe that our sample is
biased.

When evaluating developer-written tests, our data contains only
pairs (T, Tp,;;) Where s¢(T,45,) =0 and s¢(T,,;) = 1. In other
words, we did not consider the ways in which a developer might
augment a test without increasing fault detection. When deciding
whether to use mutation analysis, a developer wants to know, for an
arbitrary addition to a test suite, whether an increased mutation score
indicates increased quality (in terms of fault detection). We were
not able to compute this because it is infeasible for us to determine,
for an arbitrary change, whether there is any program fault that it
detects. Our evaluation on automatically-generated test suites does
consider ones that do and do not detect a single real fault.

4. RELATED WORK

This section discusses prior research related to our study on
whether mutants are a valid substitute for real faults in software
testing research. Moreover, it discusses research areas that rely on
this assumption and the implications of our results.

4.1 Studies on the relationship between mu-
tants and real faults

We are only aware of two previous studies that investigated the
relationship of mutants and real faults — Table 8§ summarizes these
two studies.

Duran and Theévenod-Fosse [5] performed a study to determine
whether mutations were similar to real faults. Test cases were ran-
domly generated using information about the input domain, the

Table 8: Summary of the previous studies. All subjects investi-
gated in both studies were written in C.

Real Real Mutation Mutants
programs faults operators evaluated
[5] 1 1,000 12 Change constant 1%
Replace identifier
Replace operator
[1] 1 5,905 38 Replace constant 10%

Replace operator
Negate branch condition
Delete statement

program structure, and finite-state machine models of program and
environment specifications. They found that errors (incorrect in-
ternal state) and failures (incorrect output) produced by programs
containing mutants are similar to those produced by real faults. Of
the 209 distinct errors and failures produced by mutants, 60% were
among the 255 distinct errors and failures produced by real faults.

This study is limited in scope as it only involved one subject
program with 1,000 lines of code, written in C. In addition, the study
only employed three mutation operators and among the generated
mutants, only 1% were arbitrarily chosen for evaluation.

Finally, the authors only compared the errors and incorrect inter-
nal states created by real faults and mutants; they did not compare
the resulting failures. Testing research tends to focus on observed
failures rather than internal program state. Therefore, while this
study supports the idea that mutants are representative of real faults,
the analysis cannot be directly used to draw conclusions about the
correlation between real fault detection and mutant detection.

Andrews et al. [1] explored the relationship between mutants,
seeded faults, and real faults. To test their subjects, the authors
selected 5,000 test suites, each containing 100 tests, by randomly
sampling a given test pool. The test pools were generated by cre-
ating random inputs and were augmented by control-flow graph
coverage [10].

This study is also limited in scope. Among the eight subject
programs, only one has any real faults. This program (Space) is
written in C, contains roughly 5,900 lines of code and originates
from a scientific domain (avionics). Furthermore, only 10% of the
mutants produced were evaluated.

The authors found that for Space, there was no practically signif-
icant difference between the fault detection rate and the mutation
score. However, for the seven programs with hand-seeded faults,
the fault detection rate was lower than the mutation score — that
is, mutants were easier to detect. After statistically ruling out other
possible causes, the authors concluded that hand-seeded faults are
not representative of real faults, but mutants are.

To the best of our knowledge, this paper is the first to undertake
experimental evaluation of the relationship between mutants and
real faults at such a scale in terms of number of real faults, number
of mutants, subject size, and subject diversity. Moreover, previous
work did not consider the impact of code coverage on the mutation
score. While [1] considers program size, we believe that our study
is the first to directly evaluate the effects of code coverage on the
mutation score.

Another unique aspect of the study in this paper is dealing with
Java, an object-oriented language. We are not aware of previous
work evaluating the assumption that mutants are a valid substitute
for real faults in the context of object-oriented programs. While
previous work [17,19] suggested class level mutation operators, they



are neither implemented in modern mutation tools that have been
shown to work on large code bases (Major, Javalanche, PIT) nor
are they commonly used in experiments. Even though we did not
include class level operators when performing mutation analysis, our
study addresses whether and how mutation analysis could benefit
from adding specialized versions of those operators.

4.2 Software testing research using mutation
analysis

The fundamental assumption that mutant detection and real fault
detection are well correlated is widely accepted in software testing
research. This can be witnessed in hundreds of research papers that
used mutants or hand-seeded faults in their evaluations. This section
discusses the subjects and type of faults that were commonly used
in previous studies. It also discusses the research areas in which
those subjects and faults were used.

4.2.1 Commonly used subjects

Google scholar lists approximately 1,400 papers that used the
subjects of the Siemens benchmark suite [12] for their evaluations.
This suite consists of 7 C programs, whose sizes vary between 141
and 512 LOC. Faulty versions of the subjects were obtained by
manually seeding faults. The authors described these seeded faults
in the subjects as follows: “The faults are mostly changes to single
lines of code, but a few involve multiple changes. Many of the faults
take the form of simple mutations or missing code.” [12] Since the
seeded faults mostly represent ordinary mutants, our study directly
confirms or refutes whether the results derived from using this suite
generalize to real faults.

The publication summary of the software-artifact infrastructure
repository (SIR) [24] lists more than 500 papers that reference it.
SIR provides 81 subjects written in Java, C, C++, and C# and 36
of the subjects come with real faults. The median size of those 36
subjects is 120 LOC, ranging between 24 and 8,570. 35 out of the
36 subjects with real faults are written in Java. Unfortunately, the
number of faults was not available to us. Compared to the subjects
available in SIR, we developed a fault database for 5 real-world
programs considering several years of development. Moreover, all 5
subjects feature comprehensive test suites.

4.2.2 Test generation

The core idea of mutation-based test input generation goes back
to DeMillo et al. [6], who used constraints to capture under which
conditions the execution state differs between test execution on a
mutant and the original program. Solving these constraints together
with symbolic path conditions leads to mutant killing test inputs.
More recently this approach has been enhanced using dynamic sym-
bolic execution (e.g., [22,27]). Bottaci proposed a variation of the
constraint-based approach where the constraints are re-interpreted
to guide search-based test generation. This was implemented by
Ayari et al. [2] using the ant colony optimization meta-heuristic, and
by Fraser et al. [8, 9] using genetic algorithms. Fraser and Zeller [9]
use the mutants not only to guide test generation, but also to guide
generation of test assertions and to minimize test suites. Harman et
al. [11] use a hybrid approach where dynamic symbolic execution is
used to derive test inputs that reach mutants and infect the execution
state, whereas search-based techniques similar to [9] are used to
propagate the state changes to observable outputs.

However, none of the studies evaluated the effectiveness of the
generated test suites with respect to real faults. Hence, all previ-
ous studies left open the question whether test suites derived from
mutants are effective in practice.

4.2.3 Test prioritization and minimization

Prior research on test suite prioritization and minimization com-
monly used the hand-seeded faults of the Siemens suite to evaluate
the effectiveness of prioritized or minimized test suites (e.g., [7,23]).
Given the nature of faults in the Siemens test suite, which are essen-
tially mutants, our study sheds light on whether the results of prior
studies generalize to real faults.

4.2.4  Fault localization

Seeded faults and mutants are indispensable when evaluating a
fault localization technique (e.g., [13]) since real faults are rare. Yet,
given the findings of our qualitative study, which showed that a
substantial number of real faults are not coupled to commonly used
mutants, it is not clear whether a fault localization technique per-
forms equally well on real faults and simple faults such as mutants
or hand-seeded ones.

S. CONCLUSION

Mutants are intended to be used as practical replacements for
real faults in software testing research and in practice by developers.
This is valid only if mutation score is correlated with fault detection.
Our study confirms this relationship empirically by examining 357
real faults on five large, mature, actively-maintained, open-source
projects.

By examining mutants and real faults using developer-written
tests, a statistically significant correlation was observed. This con-
firms that techniques such as test selection and prioritization can use
mutants to evaluate developer-written tests. The data indicate that
this is not only due to the increase of coverage, but also suggest a
deeper, statistical coupling between mutants and real faults.

Our work also reveals cases in which a developer-written test
could detect a fault without increasing mutation score. We identified
ways to improve mutation testing by strengthening mutation opera-
tors or introducing new ones. We also discovered that almost 20%
of faults cannot be simulated by mutations, which is a significant
limitation of mutation testing. These results have practical impli-
cations for test selection or minimization techniques — a test suite
that is minimized based on mutants might have a reduced real fault
detection, even if the mutation score does not decrease.

Examining mutants and real faults on automatically generated
tests by state of the art tools, EvoSuite and Randoop, also confirmed
a statistically significant correlation. This implies that mutation
score can be used as a proxy for test quality when comparing test
generation techniques. This significance holds even if coverage is
controlled for.
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