
Dynamic Analysis of Approximate Program Quality

Michael F. Ringenburg1 Adrian Sampson1 Isaac Ackerman2 Luis Ceze1 Dan Grossman1

University of Washington
{miker,asampson,luisceze,djg}@cs.washington.edu1 h2ccoch3@gmail.com2

Abstract
Energy efficiency is a key concern in the design of mod-
ern computer systems. One promising approach to energy-
efficient computation, approximate computing, trades off
output precision for energy efficiency. However, this trade-
off can have unexpected effects on computation quality. This
paper presents dynamic-analysis tools to debug and moni-
tor the quality of approximate computations. We propose
both offline tools that instrument code to determine the key
sources of error and online tools that monitor the quality of
deployed applications.

We present two offline and three online tools. The first
offline tool identifies correlations between output quality and
the total number of executions of, and errors in, individual
approximate operations. The second tracks the number of
approximate operations that flow into a particular value. Our
online tools comprise three low-cost approaches to dynamic
quality monitoring. They are designed to monitor quality in
deployed applications without spending more energy than is
saved by approximation.

We present prototype implementations of these tools and
describe their usage with seven applications. Our monitors
succeed in controlling output quality while still maintain-
ing significant energy efficiency gains, and our offline tools
succeed in providing new insights into the effects of approx-
imation on output quality.

1. Introduction
Energy efficiency has become a critical component of com-
puter system design. Battery life is a major concern in mo-
bile and embedded devices; power bills make up a large part
of the cost of running data centers and supercomputers; and
the dark silicon problem limits the amount of usable chip
area [9].

Approximate computing is a promising approach that al-
lows systems to trade accuracy for energy efficiency or per-
formance [2, 3, 8, 11, 12, 17, 21, 22]. These techniques ex-
ploit applications’ tolerance to occasional errors and provide
imprecise but efficient computation for certain parts of the
program. For example, a lossy image compression algorithm
can tolerate some small errors: users are unlikely to notice
minor image imperfections and lossy codecs already com-

promise on image fidelity. To exploit this tolerance, the al-
gorithm can selectively use unreliable hardware components
or unsound code transformations. For example, reducing the
DRAM refresh rate saves energy at the cost of occasional
memory errors [16] and loop perforation skips some loop
iterations [22].

Imprecise computation must be used carefully to avoid
compromising too much on software quality. Previous work
has given programmers control over the use of approxima-
tion [2, 3, 8, 17, 21]. In Relax [8], programmers mark regions
of code where hardware errors can safely go uncorrected. In
EnerJ [21], a type system distinguishes data that can tolerate
errors from data that requires full precision and typing rules
prevent approximate-to-precise information flow. Carbin et
al [3] propose a proof system for reasoning about acceptabil-
ity properties in the face of imprecision. The Rely system [4]
statically determines the probability that values produced by
an approximate computation are correct.

These static approaches are valuable and help bound the
negative effects of approximation. However, even with static
safety guarantees that prevent outright crashes and bound er-
ror margins (such as Relax’s spatial error bounding or En-
erJ’s noninterference), some approximations can be more
pernicious than others in terms of their effect on the pro-
gram’s quality of result (QoR). Hence dynamic tools are im-
portant too. This is analagous to conventional software de-
velopment, where static tools like Coverity [7] or Lint [13]
and dynamic tools like Valgrind [20] all play an important
role in ensuring software quality.

This paper proposes the use of dynamic tools in the con-
text of developing programs with approximation. Specifi-
cally, we design tools that can provide more precise un-
derstanding of, and control over, the QoR of approximate
applications. We first propose offline tools that instrument
programs to determine the critical data locations and code
points that have the most impact on QoR. We then propose
online tools that dynamically monitor quality and can let
programs self-heal by adjusting approximation levels or re-
executing code in response to quality degradations. We ar-
gue that both styles (online and offline tools) are important
pieces of an approximate programming ecosystem. The of-
fline tools, while too heavyweight for usage in deployment
(the costs would more than overwhelm the savings from ap-



proximation), are excellent tools for pre-deployment debug-
ging and understanding of quality issues in the application.
They help programmers better understand where they can
safely use approximation. The online monitoring tools, on
the other hand, are lightweight enough to run in deployed
code and constantly adjust approximation levels or correct
erroneous results when faced with quality issues that arise
post-deployment (due, for example, to unanticipated pro-
gram inputs or variations in approximate hardware). Our
contributions include:

• a tool for dynamically tracking approximate dataflow,
• a tool for determining correlations between approximate

operations and output quality,
• three approaches to online quality monitoring, and
• a framework for online monitoring and side effect man-

agement.

In Section 2, we describe a simplistic strawman approach
to quality control and consider why it is too heavyweight
for the online setting and too weak for offline investiga-
tions. Section 3 discusses two styles of offline code instru-
mentation that can be used to identify critical code points
and data locations. Section 4 introduces three approaches
to low-overhead online monitoring and shows how they can
be viewed as lightweight relaxations of our strawman ap-
proach. Two of our approaches (precise sampling and veri-
fication functions) are similar to previous proposals, but we
believe the third (fuzzy memoization) is novel in the context
of online monitoring. Next, Section 5 describes the APIs and
usage of our prototype systems. Section 6 describes salient
implementation details of both systems. Finally, Section 7
describes our experiences using the prototypes to investigate
and control the QoR of approximate applications. Our tools
typically allow us to prevent 50–100% of the errors due to
approximation, and our online monitors retain 44–78% of
the original energy savings from approximation.

2. The Quality-Control Strawman
When writing code that trades off accuracy for resource
usage, it is essential to understand how this trade-off affects
computation quality. While resource usage—time or power,
for example—can be measured directly, quality must be
assessed using a program-specific metric. We refer to this
application-defined notion of output quality as the quality
of result or QoR. For example, in an object recognition
application the QoR metric may be the number of correct
classifications.

One way to measure QoR is to run the approximate por-
tion(s) of the application twice with identical inputs—once
approximately, and once precisely—and compare results. In
an offline setting, this could be done repeatedly in a con-
trolled test environment, using a variety of expected inputs.
We refer to this as approximation profiling. In an online set-

ting, we could do this in real time with every input seen “in
the wild.” We refer to this as complete online monitoring.
This section argues why these are inappropriate for the on-
line setting and insufficient for the offline setting. They thus
serve as “quality strawmen” to motivate the rest of our paper.

The high-level goal of any approximate QoR tool is to
measure the effects of approximation on a piece of approxi-
mate code or data. For instance, if the code contains approx-
imate arithmetic, we want to detect when arithmetic errors
cause the code’s output to differ too much from what the re-
sults would have been if only precise arithmetic had been
used. For example, consider a ray tracer, where we wish to
evaluate the approximate computation of each pixel:

evaluate { tracePx(x, y); }

The strawman would effectively execute this as:

approx = tracePx(x, y);
precise = runPrecise { tracePx(x, y); }
if (abs(approx - precise) > Threshold)

throw new FailedQoR();

This approach provides exactly what we would like in an
online tool: real-time updates (as each approximate compu-
tation completes) on the quality of the approximation. This
enables programs to respond immediately, e.g., by adjusting
parameters to improve future approximations, or by reex-
ecuting erroneous computations. Unfortunately, there are a
couple problems with this approach. First, the code assumes
idempotency of the monitored code block. Except in a purely
functional setting, approximate computations can and often
do have side effects. If we wish to run a non-idempotent
code block twice, we need to buffer or roll back side ef-
fects. Second, comparing numeric return values is insuffi-
cient for measuring the QoR of many applications. QoR is
inherently domain-specific, so we must support application-
specific metrics. For example, a video application may prefer
neighboring frames that are distorted in the same way (thus
preventing jitter) over neighboring frames with smaller av-
erage distortion but which are distorted in different ways.
Another example is a greedy algorithm that searches for lo-
cal optima. An approximate version that selects a different
optimum from the precise version can have equal—or pos-
sibly even superior—result quality. Lastly, and most impor-
tantly, an online monitoring scheme must not cost more than
the savings provided by the original approximation. By ex-
ecuting the code approximately, and then reexecuting it pre-
cisely, we spend strictly more energy than the original, non-
approximate code.

Section 4 presents solutions to the cost problem that each
work for different application scenarios by proposing three
relaxations of this complete monitoring scheme that make
it cheap enough to run “always-on” in production. Any ap-
proach to QoR monitoring will also need to address side ef-
fects and provide flexible QoR metrics. We address these
needs with a flexible monitoring API that provides hooks



for programmer-specified quality metrics (Section 5.2) and
transparent side effect isolation (Sections 4.4 and 6.2).

In the offline case, on the other hand, the cost of this
approach is not prohibitive. Offline tools are intended for
predeployment usage, during quality testing and debugging,
where spending extra time and energy to improve perfor-
mance in the field is wise. On the other hand, freed from
these cost constraints, there is much more that we could do
than a simple quality profiler to provide programmers more
information about the behavior of approximate programs.
The strawman tells us only what the final QoR was, and
does not indicate why it was high or low. It gives us no in-
dication of which approximate operations or data are critical
to QoR. Developers need more program introspection, espe-
cially when working with approximation.

We propose approaches that let us track approximation
and errors at a much finer grain (individual operations or
variables) and to correlate them with output quality. These
tools thus help us find the source of the quality issue, rather
than merely to determine that an issue exists.

3. Offline QoR Instrumention
This section describes two offline tools for investigating the
QoR of approximate applications. The first, dataflow instru-
mention (Section 3.1), tracks the number of approximate op-
erations that flow into each approximate variable. Program-
mers can query these values via an API to determine how
much approximation has flowed into each result. The sec-
ond, correlation instrumentation (Section 3.2), tracks the
number of times each approximate operation executes, as
well as the number of times it produces an incorrect result. If
we run the instrumented program multiple times, we can cal-
culate which operations and errors are most correlated with
QoR.

3.1 Dataflow Instrumentation
In many approximate applications, there can be wide vari-
ance in how many approximate operations flow into the com-
putation of various values. This variance is not always pro-
portional to the savings provided by computing those val-
ues approximately, however. In these cases, the approximate
computation of values can have far greater impact on QoR
than would be justified by the amount of savings they pro-
vide. For example, an image transform may compute a scal-
ing factor for its output by traversing the input and determin-
ing the difference between the maximum and minimum pix-
els (c.f. the Sobel filter application in Section 7). If the input
image is approximate data, computing the min and max val-
ues will require a large number of approximate operations.
If any of these operations go wrong, then the scaling factor
and hence every output pixel will be incorrect. Thus, even
though this computation likely comprises only a small por-
tion of the energy usage of the program, it may have a very

large impact on QoR. We may thus be better off executing it
precisely.

This type of scenario motivates our dataflow instrumen-
tation tool. Given an approximate operation O1 and an oper-
ation O2 with inputs i1, ..., in and result R, we say that O1

flows into R if O1 = O2 or if O1 flows into one of i1, ..., in.
Our tool is built on a version of LLVM enhanced with ap-
proximate versions of the IR operations for arithmetic and
memory access. We use a compiler pass to add code after
every IR operation to compute the number of approximate
operations that flow into the result of the operation. For each
IR data location (e.g., user variable, memory address, SSA
name), we create a shadow counter that tracks the approxi-
mate flow into the result held in that location. For most oper-
ations (everything except loads, stores, and calls), we simply
sum the shadow counters associated with the operands, add
1 if the operation is approximate, and assign the result into
the shadow counter for the result of the operation. For store
operations, we add code that stores the counter associated
with the store’s value operand into a shadow memory. If the
store is approximate, we add one to the counter value that we
place in the shadow memory. For load operations, we look
up the load’s address in our shadow memory, retrieve the
associated counter, and add one if the load operation is ap-
proximate. Finally, for calls, we utilize a shadow parameter-
return stack to keep track of counts for function parameters
and returns.

We also provide an API for developers to access the
shadow counter values of user variables. This is described
in Section 5.1.

3.2 Correlation Instrumentation
In many approximate applications, particular approximate
code points (operations that are executed approximately) are
more likely to cause poor QoR than others. For example, a
code point that impacts every pixel may have much more
impact than one which impacts only a single pixel. Our sec-
ond offline approach, correlation instrumentation, helps de-
velopers identify these critical points by tracking the execu-
tion and error frequencies of every approximate code point
during multiple program executions with varied QoRs. The
result is a series of correlation vectors, where each vector
consists of a QoR and execution and error counts for every
approximate code point. Off-the-shelf tools can then deter-
mine which coordinates of the vector are most highly corre-
lated with QoR.

Our instrumentation proceeds by adding two counters
for every approximate code point (approximate LLVM bye-
codes in our implementation). The first counter simply
counts the number of times the code point executes. The
second counter is an error counter. We assume an approxi-
mation model where every approximate operation has some
probability of returning an incorrect result. For most approx-
imate operations (except memory references), we reexecute
the operation precisely and compare the precise and approxi-



mate results. For stores, we precisely store an identical value
into a shadow memory (e.g., a hash table keyed on mem-
ory addresses—see Section 6.1), as well as a pointer to the
store’s error counter. At loads, we look up the loaded address
in the shadow memory and compare the result stored there
with the approximately loaded value. If there is an error, we
can charge the error counters of either the store (obtained
from the shadow memory), the load, or both. This decision
can be programmer-driven or chosen by the tool implemen-
tation.1 We are assuming a model where approximate loads
and stores always access an approximate memory and all
accesses to approximate memory are approximate. If these
conditions do not hold, we would instead need to utilize the
shadow memory for every store, rather than just approximate
stores.

This approach is not context-senstive—we are merely
tracking correlations to individual program counters. Noth-
ing conceptually prevents us from adding context sensitivity,
but we have not yet found it necessary for any of the appli-
cations we studied. In addition, it would greatly increase the
number of counters and could obscure some correlations.

We also provide APIs that let developers create and store
execution and error vectors along with associated QoR val-
ues. This can be done for the computation as a whole or for
subcomputations. These APIs are described in Section 5.1.

4. Online QoR Monitoring
Next, we turn our attention to online quality monitoring. In
contrast with offline tools, online monitors are designed to
detect and compensate for QoR problems in the field. As
code that is deployed with the application, these tools must
have very low overheads. If the cost of monitoring outweighs
the savings from approximation, developers would be better
off running precise code rather than monitored approximate
code.

As we have seen, the “strawman” approach to monitoring
(Section 2) is too expensive. This section presents three more
realistic approaches that limit generality to achieve tenable
overheads. They can all be viewed as low cost relaxations of
the strawman.

4.1 Precise Sampling
The first approach we consider is precise sampling. Like our
strawman, precise sampling compares the results of the pre-
cise and approximate versions of the monitored code. Un-
like the strawman, this strategy checks only a random subset
of the executions. In the sampled executions, a developer-
provided function compares the output of the two execu-
tions. The developer can tune the sampling frequency to
manage the trade-off between overhead and monitoring pre-
cision. Higher rates detect bad approximations with higher
probability but approach the overhead of the strawman.

1 Note our design assumes that the only side effecting approximate opera-
tions are stores, but this can easily be adapted to other models.

In a ray tracer, a sampling monitor might execute as
follows:

result = tracePx(x, y);
if (random() < sampleFreq) {

precise = runPrecise {tracePx(x, y);}
if (!compare(result, precise,

approxOutput,
preciseOutput))

throw new FailedQoR();
}
image[x][y] = result;

Here compare is a developer-supplied function that returns
true if the comparison between precise and approximate re-
sults indicates acceptable QoR. The approxOutput and
preciseOutput arguments capture any memory side ef-
fects of the approximate and precise executions. This is left
intentionally vague here; side effects are an orthogonal issue
discussed in Section 4.4.

Precise sampling is appropriate for applications where
quality properties can be checked by looking at a random
subset of the output. We can monitor—with probabilistic
guarantees—the fraction of correct executions of a code
block or its average error. We cannot use precise sampling
for applications that require a bound on the worst-case error.
For example, in an asteroid dodging game (Section 7), pre-
cise sampling could not guarantee that asteroids never jump
across the screen.

4.2 Verification Functions
Our second approach to quality monitoring is verification
functions. Verification functions are routines supplied by
the developer that can check the QoR of a computation.
Verification functions are useful whenever we can check a
result at significantly lower cost than computing the result. In
contrast to precise sampling, this approach lowers the cost of
the strawman by reducing the cost of each check rather than
reducing the number of checks.

We consider three forms of verifier functions, each of
which requires different inputs. The first form, traditional
verification, verifies the outputs of the current execution
based on its inputs. For example, a 3-SAT verifier could
check that the outputs (the variable assignments) satisfy the
input (the formula clauses). The second form, streaming ver-
ification, verifies the output of the current execution based
on the output of past executions. For example, a video de-
coder could check that the current frame bears a sufficient
resemblance to past frames (possibly modulo motion esti-
mation). The final form, consistent output verification, looks
only at the output of the current computation and verifies
that it holds some desired property: for example, that a com-
puted probability distribution sums to 1.0 or that a number
lies within an expected range.

For example, a verification function monitor running our
ray tracer might utilize a consistent output verification func-



tion that checks properties such as whether the pixel bright-
ness is within an expected range. Alternatively, an animated
application could use streaming verification to check that a
pixel’s value is similar to its value in a previous frame.

4.3 Fuzzy Memoization
Our third approach to quality monitoring is fuzzy memoiza-
tion. Fuzzy memoization records previous inputs and outputs
of the checked code and predicts the output of the current ex-
ecution from past executions with similar inputs. Analogous
ideas were previously used by Chaudhuri et al. [6] and Al-
varez et al. [1] to provide approximate execution rather than
to check the quality of the execution. We estimate the QoR
by checking how different the current output is from the pre-
dicted output.

We identify several variations distinguished by their pre-
diction mechanisms. The simplest predicts the previously
recorded output with the most similar input. We call this
approach simple fuzzy memoization. Another variation per-
forms interpolation between a set of similar previous inputs.
We refer to this as interpolated fuzzy memoization. More
complex variations could attempt to perform curve fitting
or apply machine learning techniques to learn the relation
between inputs and outputs. We term this extension learned
fuzzy memoization. Like verification functions, fuzzy memo-
ization solves the overhead issue with frequent cheap checks
rather than rare expensive checks. It is applicable when the
function computed by the checked code is relatively contin-
uous (or easily learnable).

QoR monitors based on fuzzy memoization become more
accurate as they observe more executions of the monitored
code. In the early stages, the prediction model contains few
inputs. As execution proceeds, the monitor adds more results
to the model and predictions improve. However, if a poorly
approximated result is added to the model, it can hurt future
estimates. Also, depending on the memoization implemen-
tation, adding results may increase memory overheads and
eventually outweigh the energy savings from approximation.
In addition, even after many results have been added to the
model, new results in poorly sampled (or discontinuous) re-
gions of the input space may have poor predictions.

To address these issues, we propose a three-pronged ap-
proach. First, the monitor should use some precise runs to
ensure that the model is seeded with known-good values.
Precise runs should be used at the beginning of program
execution to seed the model with some initial values, and
may also be sampled randomly throughout execution to en-
hance the model with data from additional regions of the
input space. Second, the monitor should limit the number of
approximate results added to the model and add only those
whose QoR estimates meet a developer-specified threshold.
This prevents the model from growing too large and may
keep some bad data from corrupting the model. However, as
mentioned above, it is also possible that a negative predic-
tion is due to a poor model rather than poor QoR. This may

be caused, for example, by a sparsely sampled input region.
Thus, our third proposal is that some failed checks lead to
precise re-execution to improve the model’s accuracy.

For example, a simple fuzzy memoization monitor run-
ning our ray tracer might execute as follows:

if (preciseSeedingRun()) {
result = runPrecise { tracePx(x, y); }
addMemo(x, y, result, output);

} else {
result = tracePx(x, y);
if (!compNearestMemos(x, y, result,

output))
if (updateModel())

// Rerun precisely, update memos
else throw new FailedQoR();

}
image[x][y] = result;

Here, the addMemo call adds a new result to the model
and compNearestMemos finds nearby memoized results
to compare with our current result.

Simple fuzzy memoization can be implemented with a
data structure that stores previous results as input–output
(key–value) pairs that can be efficiently retrieved when
we encounter nearby inputs (keys). A self-balanced binary
search tree suffices. Given an input key, we can identify
neighboring keys in O(log n) time. The space overhead of
storing results mandates that we not allow the record of
past results to become too large, so O(log n) should remain
small.

4.4 Handling Side Effects
Monitored computations naturally have inputs (arguments)
and outputs (return values) that can be checked by a QoR
monitor. But what if approximate computations mutate other
data or have other side effects? These side effects impact
quality and may differ in an approximate execution. For
example, control flow changes in the approximate execution
may cause a write to execute that does not occur in the
precise version.

Unanticipated side effects can harm quality in ways that
the developer-specified metrics do not account for. Side ef-
fects can thus violate the expectation that quality monitor-
ing catches all unacceptable precision losses. Any monitor-
ing solution needs to account for this difficulty. We identify
three general approaches:

• Ignore side effects: This is the simplest approach, but it
shifts the burden entirely to the developer. The monitor
assumes that the inputs to the QoR function or verifier
are the only things that matter. Developers must ensure
that any other possible side effects are incidental and
will not affect the overall quality of the computation.
This can be difficult, however, due to the possibility of
unanticipated side effects. It may be more appropriate in



a mostly functional language where side effects are less
common.

• Ensure precise and approximate side effects are iden-
tical: In this approach, the compiler and runtime system
ensure that if an approximate execution modifies any data
that is not part of the input to the QoR function or veri-
fier, then an equivalent precise execution would have pro-
duced the same modification. In the general case this re-
quires significant dynamic cooperation from the runtime
system. The overheads required would likely overwhelm
the energy-saving benefits of approximation.

• Restrict side effects: Our final approach simply detects
and forbids side effects in monitored code except for data
that is local to the computation or explicitly marked as
an output of the computation. The monitor can check this
explicitly marked output data and verify its quality. If the
runtime detects disallowed side effects, it raises an excep-
tion. This approach again requires dynamic cooperation
from the runtime but, as we demonstrate in Section 6.2,
can be done relatively cheaply.

We contend that ignoring side effects pushes too much of the
burden onto the developer and that ensuring identical side
effects creates too much overhead. Therefore, our prototype
monitor pursues the third option, as discussed in Section 6.2.
Note that side effects are less of an issue in the offline
case, as we generally work at the granularity of the entire
application.

5. APIs and Usage
This section describes the usage of our offline (Section 5.1)
and online (Section 5.2) QoR tools. Due to space constraints,
we have elided some details of the monitoring APIs. These
additional details can be found in the supplemental material.
For historical reasons, our offline tools are implemented in
C and our online tools in Java, but the ideas are language-
agnostic.

5.1 Offline QoR APIs
Our offline tools are implemented as LLVM compiler passes
that add the appropriate instrumentation to the LLVM IR.
We also provide APIs to access and output the counter data
produced by the instrumentation.

Our dataflow instrumentation tool tracks the number of
approximate operations that dynamically flow into the com-
putation of every result. Users may access these results via
the counters associated with each user variable and expres-
sion result in the program. The following varargs function
dumps the data counters associated with the count variable
arguments to the file fname:

void dumpDataCounters(char *fname,
int count, ...);

Developers can also access the counter values with the fol-
lowing API:

Monitoring Library

checkApprox() CheckMethod

PreciseSampleChecking

VerificationChecking

FuzzyMemoizationChecking

Application
Customized CheckChecked Code

VM/Runtime

Side effect control
Approximate hardware simulation

§ 5.1

§ 5.3

§ 5.2

§ 5.4

§ 5.5

Figure 1. The architecture of our monitoring framework.
Solid arrows indicate inheritance; dashed arrows indicate
parameters.

int dataCounterSum(int count, ...);

This returns the sum of the data counters associated with the
count variable arguments (note that we can call this with
count of 1 to access the value of a single counter).

Our correlation instrumentation keeps counters which
track the number of executions of, and errors in, each ap-
proximate operation in the IR. We primarily access these via
the following APIs:

void recordAndResetVector(double qor);
void dumpVectors(char *fileName);
void appendVectors(char *fileName);

The first routine stores a vector consisting of all of the corre-
lation counters, as well as a floating-point QoR. It also resets
the counters to 0, in case we wish to track correlations and
qualities for multiple iterations of a calculation in the same
execution. The latter two routines dump the stored vector or
vectors to the specified file. The former overwrites the file
and the latter appends to it (in case we are attempting to
track correlations over multiple executions). In all cases, the
vectors are output with descriptive coordinate labels that de-
scribe which source line each vector coordinate corresponds
to as well as whether it is an execution or error counter. Off-
the-shelf tools can then be used to calculate the correlation
between each counter and QoR.2 These APIs were sufficient
for all of the use cases described in Section 7, but we also
provide some additional APIs as described in the supple-
mental material.

5.2 APIs for Online Monitoring
We have designed a runtime system for monitoring the qual-
ity of, and restricting the side effects in, monitored Java code
blocks. Our system is built on top of EnerJ [21] and is flexi-
ble enough to support all approaches presented in Section 4.

Our system is divided into the three layers depicted in
Figure 1. As in any layered system, the orthogonality and

2 In our experiments, we simply imported these vectors as a table into an
open-source spreadsheet application and used it to calculate the correlation
between each counter column and the QoR column.



clear separation of the layers provides important benefits
for extensibility and experimentation. The bottom layer is
the EnerJ runtime/simulator, which we extended with sup-
port for monitoring code blocks, maintaining side-effect re-
strictions, and copying objects to support reexecution. The
middle layer is a pure-Java library that provides classes for
precise sampling, verification functions, and fuzzy memo-
ization. The top layer consists of monitors customized by
application developers using the middle-layer functionality.
This section describes the functionality of the layers and the
interfaces between them. Section 5.2.1 describes what the
bottom layer provides the middle layer: a method for moni-
toring a code block and an interface for describing how the
monitoring needs to proceed. Sections 5.2.2 then describes
the interfaces that the middle layer provides to the top layer
for different forms of monitoring.

5.2.1 The Bottom Layer
Developers monitor code with our checkApprox API:

Object
checkApprox(Object argList[],

Object outputObjs[],
CheckMethod checkM,
CheckApproxCodeBlock m)

Here m is an instance of the CheckApproxCodeBlock
interface, whose method f is the computation to monitor:

public interface CheckApproxCodeBlock
{ Object f(Object[] args); }

The argList array contains the inputs to the checked com-
putation. The outputObjs array contains the objects that
may be written by side effects in the checked computation
(and checked by the monitor). Any stores to objects that are
neither allocated by the checked computation nor members
of this list are considered illegal side effects and cause an
exception. Finally, checkM specifies a method of quality
monitoring, via the CheckMethod interface.

The CheckMethod interface is a flexible interface
whose implementations correspond to different monitor-
ing approaches. Details of the interface are available in the
supplemental material. The next subsection describes im-
plementations of this interface that support our three pro-
posed approaches: precise sampling, verification functions,
and fuzzy memoization.

5.2.2 Middle Layer: Quality Monitors
The PreciseSampleChecking class (an implementa-
tion of CheckMethod) provides monitoriong via precise
sampling. Developers provide a sampling frequency as well
as an implementation of an interface encapsulating a QoR
metric and a constraint. The QoR method computes the QoR
by comparing the precise outputs and return value with the
approximate outputs and return value. The constraint
method returns true if quality is acceptable. This method

may optionally store information about previous QoR values
(e.g., a running average) to help decide if quality is accept-
able. This is why we separate it out from the QoR method,
which is intended to compute a single QoR.

The VerificationChecking class implements ver-
ification function monitoring. Developers pass the construc-
tor an implementation of one of three interfaces, each of
which specifies a different type of verification function. Each
interface contains a qualityVerify method that com-
putes QoR and a constraint method that returns true if
the QoR is acceptable:

• VerifierStreaming for streaming verification. We
pass the outputs and the return values of the current and
last executions to the qualityVerify method.

• VerifierConsistentOutput for consistent output
verification. We pass the current outputs and return value.

• VerifierTraditional for traditional verification.
We pass current input, output, and return values.

In streaming verification, the overhead of copying and stor-
ing the output of every execution can be high. Thus, we
allow the developer to optionally specify that the monitor
should record only every nth execution and pass that to the
next n verifer calls. In this case, the monitor also passes a
distance argument to the checking function that specifies
how long ago the recorded output occurred.

Finally, we implement fuzzy memoization monitoring via
the FuzzyMemoizationChecking class. We pass the
constructor options specifying when to use precise runs to
seed the model and implementations of two interfaces. The
first interface converts the inputs and outputs of the checked
code into a point in the space that we are memoizing over.
The second interface specifies error thresholds for accepting
a monitored computation’s result and for triggering additions
or adjustments to the model. When developers are confident
that quality is high, adding points to the fuzzy model may
improve it. However, this must also be balanced with the
requirement that the model’s overhead not grow too high.
Adjusting the model can also be useful if we believe that the
model’s predictions are poor, e.g., due to discontinuities in
the output of the monitored function. These interfaces are
described in more detail in the supplemental material.

6. Implementation Issues
This section describes some of the most interesting details of
our QoR tool implementations. Section 6.1 describes imple-
menting shadow memories for our offline approaches. Sec-
tion 6.2 discusses handling side effects in monitored code,
including controlling their impact on quality and buffer-
ing/rollback for approaches that may require multiple exe-
cutions.



6.1 Shadow Memories
Both of our offline tools require a shadow memory. Dataflow
instrumentation uses the shadow memory to track dataflow
counts across loads and stores. Correlation instrumentation,
on the other hand, uses the shadow memory to track the ac-
tual values stored in approximate memory. When we load
from an address in approximate memory, we check the corre-
sponding shadow memory address to see if the loaded value
is correct (if it is not correct, we increment the appropriate
error counter).

Both forms of shadow memory are implemented as hash
tables keyed on the real memory address. The values are ei-
ther the dataflow counter for dataflow instrumentation or the
stored value and the address of the store’s error counter for
correlation instrumentation.3 Stores correspond to hash table
inserts and loads to table lookups. Reinsertions of the same
key (i.e., stores to a previously stored-to address) replace the
old value.

6.2 Side Effects in Monitored Code
Our monitoring system restricts side effects by allowing
checked blocks to write only to objects that are either part of
the output list or local to the checked code. Any other mem-
ory write results in an exception. Possible implementation
strategies include reusing existing memory protection mech-
anisms or keeping per-object data indicating which checked
computations may write to the object. Our prototype uses
the latter since the EnerJ simulator already tracks per-object
state.

Specifically, our prototype tracks whether objects are
writable by augmenting heap-allocated objects with per-
object state containing a region number. When we call
checkApprox, it enters a new region by incrementing a
global region counter. To support nested calls, each call to
checkApprox records the region number of the parent call
and restores the counter when it returns. Thus, as we return
from the checkApprox invocations on the call stack, we
also unwind the region number stack. Any object allocated
inside a checked region or specified as output data sets its
region number to the number of the current region. When
entering a nested region, we first check that the output ob-
ject was writable by the parent region. (It is unsafe to make
an object writable by the child when it is not writable by
the parent.) Before returning, we reset the output objects’
region number to the parent region number. To enforce side
effect restrictions, all stores to heap objects inside monitored
code check the destination object’s region number against
the current region number. If there is a mismatch, we throw
an exception.

In addition to restricting side effects, our implementa-
tion needs to buffer and roll back side effects for monitor-
ing approaches that incorporate re-execution (e.g., precise

3 We track the store’s error counter so that we can assign “blame” to the
store in the event of an error due to the approximate memory.

sampling). We provide buffering using a copy-on-write pol-
icy for non-local objects. To implement copy-on-write, we
add a boolean to each object indicating whether it should be
copied when written and a pointer (initially null) to the copy.
If copy-on-write is necessary (e.g., if we are doing the first
execution of a sampled execution), we iterate through the
output list and set the copy-on-write flag. If a store occurs to
an object whose flag is set, we check the copy pointer and
create a copy if it is null. We then perform the store to the
copy instead of the original object. When we load from an
object with the copy-on-write boolean set, we again check
the copy pointer and read the copy if it is present. After the
first execution completes, we remove all the copies and un-
set the copy-on-write flag. This allows the subsequent run to
start as if from scratch.

7. Use Cases
To evaluate our dynamic QoR tools, we experimented with
seven approximate applications. For three of them, we added
both instrumentation and monitoring,4 for one we added just
instrumentation, and for three we added just monitoring.
For two programs, we created two monitored versions using
different monitoring approaches, resulting in a total of eight
monitoring configurations.

Section 7.1 describes the approximate applications we
used. Section 7.2 discusses the insights gained from our of-
fline tool. Finally, Section 7.3 details our online monitoring
results.

7.1 Applications
We considered the following seven approximate applica-
tions. These cover a wide variety of approximation use cases,
ranging from scientific computing, to image processing, sim-
ulations, and even games:

• We used precise sampling online monitoring with an
approximate simple ray tracer (from [21]) that traces
a scene consisting of a plane with a checkboard texture.

• We used two types of verification function monitoring
(streaming and consistency) with an approximated ver-
sion of the classic Asteroids game [14]. We added ap-
proximation by placing the object position/velocity array
in approximate storage.

• We used traditional verification to monitor the quality
of the approximated JME triangle intersection kernel
from [21].

• We used both dataflow and correlation instrumentation to
debug the QoR of an approximate Sobel filter application

4 Note our offline tools were built on top of the LLVM-based EnerC infras-
tructure for approximate computing in C/C++, and our monitoring proto-
type was built on top of the EnerJ infrastructure for approximate computing
in Java, so we were able to use both tools only in applications where we
could find similarly coded C and Java versions.



Sheet2

Page 103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Code point

C
o

rr
e

la
tio

n
Sheet2

Page 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sheet2

Page 1

0

0.05

0.1

0.15

0.2

0.25

(a) (b) (c)

Figure 2. Graphs showing correlations between code points and QoR in (a) canneal, (b) Sobel filtering, and (c) Black
Scholes. The x-axes represent source lines, and the y-axes represent QoR correlations. The x-axes are sorted by correlation
value to show how the correlations are distributed: a small and informative number of approximate code points have high
correlation to QoR.

and used fuzzy memoization monitoring to monitor and
correct the remaining errors.

• We used dataflow instrumentation to better understand
the approximation patterns of an approximate FFT ker-
nel (from [21]) and used this to inform our design of two
online monitors: a consistency verification monitor and a
fuzzy memoization monitor.

• We used correlation instrumentation to better understand
the approximation present in an approximate version of
the PARSEC canneal simulated annealing bench-
mark. This convinced us that the error patterns were such
that a monitor was not necessary (errors often improved
the result).

• We used correlation isntrumentation to debug the quality
of an approximate version of the PARSEC Black Scholes
benchmark (and a Java port of it). We then built a consis-
tency verification monitor to detect any remaining errors.

7.2 Offline Tool Results
Results summary. Our offline tools allowed us to narrow
in on the key quality issues in our applications and to better
understand their characteristics. This section describes our
experiences with the Sobel filter, FFT, simulated annealing,
and Black Scholes applications. The graphs in Figure 2 show
how correlations are distributed in the applications that used
correlation instrumentation. In one case, we were able to
solve an intermittent segmentation fault. In others, we were
able to identify and correct the issues that most commonly
led to poor output QoR, and in another, we were able to
achieve some insights that led us to design a better monitor.
In all cases, we reached important insights through the use of
our offline tools. These insights helped us improve quality,
understand behavior, and design better monitors.

Sobel filter. Our instrumentation of the approximate So-
bel filter enabled us to debug two problems: an intermit-
tent segmentation fault and frequent poor quality filter re-
sults (e.g., no edges). To track down the crash, we created
correlation vectors where the QoR component was deter-
mined entirely by whether or not we crashed. These vectors
quickly pointed us to an array access code point. Dataflow

instrumentation confirmed that this array index could be in-
fluenced by approximate operations, leading to the poten-
tial for out-of-bounds accesses. To investigate the poor qual-
ity results, we created correlation vectors whose QoR was
based on the number of correct elements of the result and
determined that the highest correlation was with code that
computed a scaling factor which was later applied to every
pixel. This scaling factor was being computed approximately
by scanning the initial image. Dataflow instrumentation con-
firmed that there were a large number of approximate opera-
tions in this scan. Since this value impacts every output pixel,
it was causing our frequent garbage results.

FFT. Our primary insights with FFT came from dataflow
instrumentation. We checked the approximate dataflow into
each element of the result and determined that, even with
the relatively small FFT we used in testing (32K elements),
each element of the output vector was dependent on a large
number of approximate operations (almost 180K). Due to
the structure of the FFT, if an error corrupts an intermediate
array value early in the compuation, it can lead to errors that
propagate through the rest of the FFT result. This insight led
us to design a monitor for the FFT application in such a way
that it would catch any errors early so that we could either
attempt to correct them or simply restart the computation.

Simulated annealing. For canneal, we created correla-
tion vectors where the QoR component was determined by
the difference in route length from the precisely computed
version. When we plugged our vectors into a spreadsheet
to compute correlations, we determined that the results with
lower quality were strongly correlated with errors in approx-
imate operations inside the random number generation rou-
tines and nothing else. The random number generation is
used to compute random steps in the simulation, and these
errors appeared to effectively be altering the randomization.
This was causing our annealer to simply find different local
minima. In fact, a number of these different minima were
better than the one found by the precise version. This inves-
tigation gave us increased confidence in the results of our
approximation.



Instruction Instruction Instruction Memory Memory Memory
Application Compute Check Overhead Compute Check Overhead
Triangle intersect, traditional verifier 95.8% 4.2% 4.4% 99.0% 1.0% 1.0%
Asteroids, streaming verifier 64.7% 35.3% 54.6% 89.1% 10.9% 12.3%
Asteroids, consistency verifier 74.1% 25.9% 35.0% 94.8% 5.2% 5.5%
Simple ray tracer, precise sampling 85.7% 14.7% 17.2% 69.9% 30.1% 43.1%
Sobel filter, fuzzy memoization 93.2% 6.8% 7.3% 75.4% 24.7% 32.7%
FFT, consistency verifier 93.5% 6.5% 7.0% 90.9% 9.1% 10.0%
FFT, fuzzy memoization 92.3% 7.7% 8.3% 99.7% 0.3% 0.3%
Black Scholes, consistency verifier 96.7% 3.3% 3.4% 74.2% 24.8% 34.8%

Table 1. The percentage of instructions and memory dedicated to the original computation (compute) and the monitoring
(check) for each application and online monitor. We measure these dynamically, as total instructions executed and total memory
footprint of the monitored versus unmonitored applications.

Precise Approx Savings
Application Type of Monitor Precise Approx Monitored Monitored Retained
Simple Ray Tracer Precise Sampling 100% 67.3% 117.2% 85.5% 44.3%
Asteroids, 10k frames Streaming Verifier 100% 91.2% 103.7% (130.0%) 95.0% (121.5%) 56.8%
Asteroids, 10k frames Consistency Verifier 100% 91.2% 104.8% (119.2%) 95.2% (107.4%) 54.5%
Triangle Intersection Traditional Verifier 100% 83.2% 104.3% 86.8% 77.7%
Sobel Filter Fuzzy Memoization 100% 85.6% 107.0% 92.9% 49.0%
FFT Consistency Verifier 100% 72.8% 106.9% 82.5% 64.3%
FFT Fuzzy Memoization 100% 73.4% 108.4% 81.6% 69.2%
Black Scholes Consistency Verifier 100% 73.1% 117.0% 88.1% 44.4%

Table 2. The modeled energy consumption of each monitored application. Energy is measured relative to the precise,
unmonitored execution energy (the Precise column). The Approx column shows the energy use of an unmonitored approximate
execution. The Precise Monitored column shows the energy use of a precise, monitored execution (this would not be useful in
practice, but is included to show the overall energy overhead of monitoring). Approx Monitored shows the energy use of an
approximate monitored execution and Savings Retained is the percentage of the unmonitored energy savings that are retained
after we add monitoring. All applications were run five times and the energy averaged. We measured the Asteroids application
for 10,000 frames (see Section 7.3). Because these frames include unmonitored post-training frames, the precise monitored
column does not reflect the true overhead of completely monitoring Asteroids. Thus, we have included the relative costs of the
training (monitored) portion of asteroids in parentheses in the appropriate columns.

Black Scholes. In Black Scholes, our correlation instru-
mentation identified two locations with particulary high cor-
relation to QoR. In both cases, we were loading a value
from a location in approximate storage that had not been
accessed in a long time. In our EnerJ-based approximation
model, the decay of an approximate memory value is based
on the amount of time since it was last accessed (since an ac-
cess refreshes the memory). Situations like this suggest that
future approximate languages may want a language feature
that forces a refresh of approximate storage.

7.3 Monitoring Results
Results summary. The overheads of our monitored appli-
cations appear in Table 2. The final column displays the per-
centage of the original energy savings that are retained with
monitoring, which ranges from 44% to 78%. A more de-
tailed breakdown of overheads is in Table 1. Table 3 shows
the accuracy of our monitors. They detect 8–100% of the

errors caught by a high-overhead offline monitor with low
false positive rates (at most 2.5%). This section discusses
our experiences using monitors with our approximate appli-
cations.

A Note on our Energy Model. To evaluate the energy over-
head of online monitoring, we reuse the energy simulation
model from the evaluation of EnerJ [21]. The model quanti-
fies the normalized energy consumed by the CPU and mem-
ory systems during an entire program execution. This tech-
nique assumes a hardware substrate capable of enabling ap-
proximation for each instruction and each cache line as in
Truffle [11].

For each program, we consider four configurations: fully
precise (the baseline), approximate without monitoring,
fully precise with monitoring, and approximate with moni-
toring. The difference between the approximate executions
with and without monitoring reflects the energy “given
back” to enable online monitoring. Although a monitored



precise execution is not useful in practice, it shows the over-
all energy overhead of monitoring. To compare monitored
and unmonitored executions, we scale the processor energy
by the increase in the number of instructions executed and
scale the memory energy by the increase in the time that
the memory must remain active. In most cases, the latter is
also represented by the increase in instruction count. How-
ever, in one case (the Asteroids application), the execution
time does not increase because the application uses sleep
calls to maintain the proper frame rate. Thus we did not
scale its memory energy. We apply the above energy scaling
factors to the precise unmonitored execution to determine
the energy usage of the precise monitored execution. We
then apply the approximation scaling factors from the En-
erJ model to the precise monitored energy to determine the
approximate monitored energy level.

Ray tracer. For the ray tracer, we applied precise sampling
with a sampling rate of 1% around the computation of each
pixel. Our overheads were relatively high due to the simplic-
ity of the pixel computation kernel (it only traces a scene
with a single known plane and texture). Despite the over-
heads, we still managed to retain nearly 50% of the origi-
nal energy savings. Our sampling also achieved an accurate
estimate of the QoR. The mean average error of the mon-
itor’s estimate of the number of bad pixels was just 9.6%.
The range of error across all runs was between 0.3% and
17.6%.

To demonstrate the utility of monitoring in practice, we
also built an end-to-end system on top of our monitored
ray tracer. This system takes advantage of the fact that cer-
tain areas of the image are more susceptible to errors than
other areas (e.g., areas with smaller features). Our end-to-
end monitored application decreases approximation when-
ever the error rate of sampled pixels gets above a config-
urable maximum threshold over a window of samples. Simi-
larly, we lower the energy if the error rate drops below a con-
figurable minimum threshold. This system reduced the error
rate to 4.6%, compared with a rate of 8.6% for the moni-
tored ray tracer without automatic adjustments. In addition,
it used slightly less energy than the regular monitored system
(84.8% of the precise energy usage, versus 85.5% without
adjustment).

Asteroids. We tried two varieties of verification functions
to monitor our approximate Asteroids game: a streaming
verifier and a consistent output verifier. Both check the re-
sults after every time step. The streaming verifier compares
the positions of the asteroids and the ship with their last
known positions and verifies that they have not moved by
more than the maximum velocity. To reduce overhead, we
record only every fifth output and multiply the maximum
allowed move distance by the number of frames since the
frame we are comparing against. Our consistent output ver-
ifier simply checks that the velocities are in the allowable
range and that the positions are within the screen bounds.

We also explored an end-to-end use case of monitoring
in the context of the Asteroids game. To do this, we added
hooks to the EnerJ runtime that allow developers to adjust
the simulated energy levels of the processor and memory.
We then set up our constraint function to check whether
the detected error rate was higher than 0.002% of posi-
tions. Subjectively, we found that this error rate was suffi-
cient to make the game very playable. When our constraint
function detected a higher error rate, we raised the energy.
Once our monitor detected that the error rate had stayed be-
low the desired rate for 1000 (for streaming verification)
or 2000 (for consistent output verification) frames, we de-
clared the training phase over. The higher count was nec-
essary for consistent output verification because it detects
fewer errors (see Table 3). After declaring training complete,
we turned the monitor off. For our results, we let the game
run for 10,000 frames to capture an adequate mix of of pre-
and post-training energy savings. Streaming verification did
slightly better than consistent output verification because it
was able to settle on the correct energy level more quickly
and thus turn off monitoring sooner. If we look at just the
overhead during the training phase, consistent output verifi-
cation’s overhead was better.

Triangle intersection. Our traditional verifier for triangle
intersection was based on the insight that triangles that are
close together are more likely to intersect than triangles that
are far apart. Thus, a traditional verifier could pick a point
on each of the two triangles and compute the Euclidean
distance between them. If the distance between them was
high and the computation returned true (intersection), the
monitor could declare a possible error. Similarly, if the dis-
tance was small and the computation returned false, we
could also declare an error. We quickly noticed, however,
that cases where we declared an intersection between two tri-
angles that were far apart were almost always real errors, but
cases where nearby triangles don’t intersect were a mixed
bag—many were false positives. So, we changed our veri-
fier to look only for the far-apart/intersecting case. We then
corrected errors we caught by declaring that they did not in-
tersect (since we only flagged erroneous intersections). This
optimization allowed us to retain 78% of the energy savings,
with a false positive rate of just 0.2%. We detected 47.7% of
errors, and our correction reduced the error rate from 5.2%to
2.7%.

Sobel filter. For the Sobel filter, we used fuzzy memoiza-
tion to monitor the computation of each pixel gradient. For
our memoization input, we summed the absolute values of
the differences between the north and south neighbors and
the east and west neighbors. For the output, we chose the
magnitude of the gradient vector (this is what edge detectors
look at). Our constraint accepted the computed value if it
was within 60 of the predicted value (we found empirically
that this threshold gave good results). Whenever the mon-
itor indicated a potential quality violation, we re-executed



Application Type of Monitor Errors caught vs. perfect monitor False Positives
Simple Ray Tracer Precise Sampling Sampling rate (with a 9.6% MAE) 0.0%
Asteroids, 10k frames Streaming Verifier 54.8% 0.0%
Asteroids, 10k frames Consistency Verifier 8.0% 0.0%
Triangle Intersection Traditional Verifier 47.7% 0.2%
Sobel Filter Fuzzy Memoization 86.7% 2.5%
FFT Consistency Verifier 100.0% 0.0%
FFT Fuzzy Memoization 90.1% 1.3%
Black Scholes Consistency Verifier 65.8% 0.0%

Table 3. The percentage of errors caught by our online monitors. For precise sampling, the percentage of errors caught will
be approximately the sampling rate, with some level of error. We account for this in the table above by indicating that the
percentage caught will be the sampling rate, plus or minus the mean average error of the rate of sampled versus real errors. We
also show the percentage of executions that resulted in a false positive—i.e., when the monitor reports a QoR error that did not
occur.

the computation precisely. Our monitor successfully iden-
tified and corrected 86.7% of the erroroneus computations,
reducing the error rate from 0.66% to 0.09%. This reduction
was achieved with an overhead of just 7% and allowed us to
retain nearly 50% of the original energy savings. Our false
positive rate was just 2.5%.

FFT. Based on the insights from our offline tools, we
designed a consistent output verification monitor for the
FFT kernel. Rather than applying the verification only at
the end of the computation, we checked the intermediate
results after every 10 iterations. Our verifer checks that every
element of the array is within the maximum possible range
based on the size of the input array. This allows us to catch
errors early, rather than continuing with a computation that is
bound to have poor QoR. In addition, we also implemented
a fuzzy memoization monitor that predicts the magnitude of
the output array based on the maginitude of the input array.
Both monitors caught over 90% of the errors, had no false
positives, and retained over 60% of the energy savings.

Black Scholes. Finally, we implemented consistency ver-
ification monitoring for Black Scholes. We simply check if
the option value is within the maximum possible range, and
if not, declare an error. Our monitor reduced the error rate
from 3.68% to 1.26%, and retained 44.4% of the energy sav-
ings.

8. Related Work
Many systems have proposed to trade off output quality
to improve performance or energy consumption using both
software [2, 12, 22, 24] and hardware techniques [5, 8, 10,
11, 15, 16, 19]. Run-time QoR monitoring and debugging
tools help make these approximate computing techniques
more applicable by letting programmers understand and con-
trol their resulting quality degradations.

Online quality monitoring. Our monitoring work is the
first (to our knowledge) to explore the design space of dy-

namic quality monitoring for approximate computations and
to implement a framework supporting multiple approaches
to monitoring. Here we review related efforts to understand
or control the impacts of approximation on QoR.

Green [2] is a framework for controlling approximation
that can, optionally, invoke user code on a sampling of ex-
ecutions to assess quality. The programmer must provide
an appropriate monitoring scheme. One example application
uses a manual implementation of precise sampling (with no
support for controlling side effects). Our work is comple-
mentary: it explores the design space of monitoring schemes
and provides reusable implementations for a variety of prac-
tical approaches.

PowerDial [12] also dynamically controls an applica-
tion’s degree of approximation. It monitors run-time condi-
tions (e.g., real-time deadlines) and adjusts quality accord-
ingly. Similarly, Eon [23] adjusts system energy at runtime
based on the availability and cost of energy and computa-
tional resources. Whereas those systems monitor resource
consumption, our work focuses on monitoring quality.

Quality-of-service profiling [17] uses offline profiling
runs during development to examine the QoR impact of un-
sound code transformations. The offline calibration steps in
Green and PowerDial work similarly. Online quality moni-
toring, as in our work, requires efficient mechanisms that do
not overwhelm the benefits of approximation.

Previous work [1, 6] uses approximate (or fuzzy) mem-
oization to provide approximation rather than to check the
quality of approximation. In that setting, fuzzy memoization
can be more expensive—since it replaces a baseline com-
putation instead of augmenting it—but must also be more
accurate.

Offline quality debugging. A complementary problem to
online QoR monitoring is quality-oriented debugging. This
work proposes instrumentation-based approaches that pin-
point precise program points that lead to poor output quality



dynamically. These techniques complement prior static ap-
proaches and improve on more basic dynamic approaches.

Static approaches conservatively bound the quality im-
pacts of approximate computing. Carbin et al. [3] propose
a proof system for verifying programmer-specified correct-
ness properties and other work [18, 24] uses probabilistic
reasoning to prove accuracy bounds on program transforma-
tions. EnerJ [21] provides a simple noninterference guaran-
tee. The Rely system [4] bounds the probability that val-
ues produced by an approximate computation are correct
by examining the static data flow of nondeterministic opera-
tions. In this sense, it represents a static complement to our
dataflow instrumentation technique. Static techniques pro-
vide important safety properties but are necessarily conser-
vative; our dynamic techniques are critical to addressing run-
time events that static analyses cannot rule out.

The aforementioned work on quality-of-service profil-
ing [17] describes an exhaustive search process for identi-
fying program loops that do not need full precision. In con-
trast, our instrumentation approaches apply to finer-grained
sources of error without resorting to brute-force search.

9. Conclusion
Dynamic tools should play a key role in providing and main-
taining quality of result for approximate computations. As
we have shown in this paper, offline instrumentation tools
are useful for obtaining a better understanding of quality
tradeoffs during pre-deployment development and testing,
and online monitoring tools can dynamically monitor and
correct for quality degradations in deployed approximate ap-
plications. Just as static and dynamic tools complement each
other in other aspects of software development, we view our
dynamic tools as a key addition to the tools available for us-
ing approximate computing.

References
[1] C. Alvarez, J. Corbal, and M. Valero. Fuzzy memoization for

floating-point multimedia applications. IEEE Transactions on
Computers, 54(7):922 – 927, July 2005.

[2] W. Baek and T. M. Chilimbi. Green: a framework for support-
ing energy-conscious programming using controlled approxi-
mation. In PLDI, 2010.

[3] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Reason-
ing about relaxed programs. In PLDI, June 2012.

[4] M. Carbin, S. Misailovic, and M. C. Rinard. Verifying quanti-
tative reliability for programs that execute on unreliable hard-
ware. In OOPSLA, 2013.

[5] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Kork-
maz, K. V. Palem, and B. Seshasayee. Ultra-efficient (embed-
ded) SOC architectures based on probabilistic CMOS (PC-
MOS) technology. In DATE, 2006.

[6] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour.
Proving programs robust. In FSE, 2011.

[7] Coverity source code security tool. www.coverity.com.

[8] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: an
architectural framework for software recovery of hardware
faults. In ISCA, 2010.

[9] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger. Dark silicon and the end of multicore scaling.
In ISCA, 2011.

[10] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neu-
ral acceleration for general-purpose approximate programs. In
MICRO, 2012.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Ar-
chitecture support for disciplined approximate programming.
In ASPLOS, 2012.

[12] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for responsive
power-aware computing. In ASPLOS, 2011.

[13] S. C. Johnson. Lint, a C Program Checker. Unix Program-
mer’s Supplementary Documents, vol. 1, 1986.

[14] M. Kalisch. Asteroid field. http://jcolorexpansion.
sourceforge.net/asteroid_field.html.

[15] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra.
ERSA: Error resilient system architecture for probabilistic
applications. In DATE, 2010.

[16] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn.
Flikker: Saving refresh-power in mobile devices through crit-
ical data partitioning. In ASPLOS, 2011.

[17] S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard.
Quality of service profiling. In ICSE, 2010.

[18] S. Misailovic, D. M. Roy, and M. C. Rinard. Probabilistically
accurate program transformations. In SAS, 2011.

[19] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones. Scalable
stochastic processors. In DATE, 2010.

[20] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In PLDI, 2007.

[21] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. EnerJ: Approximate data types
for safe and general low-power computation. In PLDI, 2011.

[22] S. Sidiroglou, S. Misailovic, H. Hoffman, and M. Rinard.
Managing performance vs. accuracy trade-offs with loop per-
foration. In FSE, 2011.

[23] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D.
Corner, and E. D. Berger. Eon: a language and runtime system
for perpetual systems. In Proceedings of the 5th international
conference on Embedded networked sensor systems, 2007.

[24] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard. Ran-
domized accuracy-aware program transformations for effi-
cient approximate computations. In POPL, 2012.


